data.is_R_or_C.lemmasMathlib.Data.IsROrC.Lemmas

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -5,7 +5,7 @@ Authors: Frédéric Dupuis
 -/
 import Analysis.NormedSpace.FiniteDimension
 import FieldTheory.Tower
-import Data.IsROrC.Basic
+import Analysis.RCLike.Basic
 
 #align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"1b0a28e1c93409dbf6d69526863cd9984ef652ce"
 
@@ -15,7 +15,7 @@ import Data.IsROrC.Basic
 > Any changes to this file require a corresponding PR to mathlib4.-/
 
 
-variable {K E : Type _} [IsROrC K]
+variable {K E : Type _} [RCLike K]
 
 namespace Polynomial
 
@@ -33,17 +33,17 @@ namespace FiniteDimensional
 
 open scoped Classical
 
-open IsROrC
+open RCLike
 
 library_note "is_R_or_C instance"/--
 This instance generates a type-class problem with a metavariable `?m` that should satisfy
 `is_R_or_C ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
 
 
-#print FiniteDimensional.isROrC_to_real /-
+#print FiniteDimensional.rclike_to_real /-
 /-- An `is_R_or_C` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
 @[nolint dangerous_instance]
-instance isROrC_to_real : FiniteDimensional ℝ K :=
+instance rclike_to_real : FiniteDimensional ℝ K :=
   ⟨⟨{1, i}, by
       rw [eq_top_iff]
       intro a _
@@ -52,38 +52,38 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
       · rw [Submodule.mem_span_singleton]
         use im a
       simp [re_add_im a, Algebra.smul_def, algebra_map_eq_of_real]⟩⟩
-#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
+#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.rclike_to_real
 -/
 
 variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
 
-#print FiniteDimensional.proper_isROrC /-
+#print FiniteDimensional.proper_rclike /-
 /-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
 
 This is not an instance because it would cause a search for `finite_dimensional ?x E` before
 `is_R_or_C ?x`. -/
-theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E :=
+theorem proper_rclike [FiniteDimensional K E] : ProperSpace E :=
   by
   letI : NormedSpace ℝ E := RestrictScalars.normedSpace ℝ K E
   letI : FiniteDimensional ℝ E := FiniteDimensional.trans ℝ K E
   infer_instance
-#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrC
+#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_rclike
 -/
 
 variable {E}
 
-#print FiniteDimensional.IsROrC.properSpace_submodule /-
-instance IsROrC.properSpace_submodule (S : Submodule K E) [FiniteDimensional K ↥S] :
+#print FiniteDimensional.RCLike.properSpace_submodule /-
+instance RCLike.properSpace_submodule (S : Submodule K E) [FiniteDimensional K ↥S] :
     ProperSpace S :=
-  proper_isROrC K S
-#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.IsROrC.properSpace_submodule
+  proper_rclike K S
+#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.RCLike.properSpace_submodule
 -/
 
 end FiniteDimensional
 
-namespace IsROrC
+namespace RCLike
 
-#print IsROrC.reCLM_norm /-
+#print RCLike.reCLM_norm /-
 @[simp, is_R_or_C_simps]
 theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
   by
@@ -91,22 +91,22 @@ theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
   convert ContinuousLinearMap.ratio_le_opNorm _ (1 : K)
   · simp
   · infer_instance
-#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
+#align is_R_or_C.re_clm_norm RCLike.reCLM_norm
 -/
 
-#print IsROrC.conjCLE_norm /-
+#print RCLike.conjCLE_norm /-
 @[simp, is_R_or_C_simps]
 theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
   (@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
+#align is_R_or_C.conj_cle_norm RCLike.conjCLE_norm
 -/
 
-#print IsROrC.ofRealCLM_norm /-
+#print RCLike.ofRealCLM_norm /-
 @[simp, is_R_or_C_simps]
 theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
   LinearIsometry.norm_toContinuousLinearMap ofRealLI
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
+#align is_R_or_C.of_real_clm_norm RCLike.ofRealCLM_norm
 -/
 
-end IsROrC
+end RCLike
 
Diff
@@ -88,7 +88,7 @@ namespace IsROrC
 theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
   by
   apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
-  convert ContinuousLinearMap.ratio_le_op_norm _ (1 : K)
+  convert ContinuousLinearMap.ratio_le_opNorm _ (1 : K)
   · simp
   · infer_instance
 #align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
Diff
@@ -83,29 +83,29 @@ end FiniteDimensional
 
 namespace IsROrC
 
-#print IsROrC.reClm_norm /-
+#print IsROrC.reCLM_norm /-
 @[simp, is_R_or_C_simps]
-theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
+theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
   by
   apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
   convert ContinuousLinearMap.ratio_le_op_norm _ (1 : K)
   · simp
   · infer_instance
-#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
+#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
 -/
 
-#print IsROrC.conjCle_norm /-
+#print IsROrC.conjCLE_norm /-
 @[simp, is_R_or_C_simps]
-theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
-  (@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
+theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
+  (@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
+#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
 -/
 
-#print IsROrC.ofRealClm_norm /-
+#print IsROrC.ofRealCLM_norm /-
 @[simp, is_R_or_C_simps]
-theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
-  LinearIsometry.norm_toContinuousLinearMap ofRealLi
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_norm
+theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
+  LinearIsometry.norm_toContinuousLinearMap ofRealLI
+#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
 -/
 
 end IsROrC
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Frédéric Dupuis
 -/
-import Mathbin.Analysis.NormedSpace.FiniteDimension
-import Mathbin.FieldTheory.Tower
-import Mathbin.Data.IsROrC.Basic
+import Analysis.NormedSpace.FiniteDimension
+import FieldTheory.Tower
+import Data.IsROrC.Basic
 
 #align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"1b0a28e1c93409dbf6d69526863cd9984ef652ce"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Frédéric Dupuis
-
-! This file was ported from Lean 3 source module data.is_R_or_C.lemmas
-! leanprover-community/mathlib commit 1b0a28e1c93409dbf6d69526863cd9984ef652ce
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.NormedSpace.FiniteDimension
 import Mathbin.FieldTheory.Tower
 import Mathbin.Data.IsROrC.Basic
 
+#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"1b0a28e1c93409dbf6d69526863cd9984ef652ce"
+
 /-! # Further lemmas about `is_R_or_C` 
 
 > THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
Diff
@@ -24,9 +24,11 @@ namespace Polynomial
 
 open scoped Polynomial
 
+#print Polynomial.ofReal_eval /-
 theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
   (@aeval_algebraMap_apply_eq_algebraMap_eval ℝ K _ _ _ x p).symm
 #align polynomial.of_real_eval Polynomial.ofReal_eval
+-/
 
 end Polynomial
 
@@ -58,6 +60,7 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
 
 variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
 
+#print FiniteDimensional.proper_isROrC /-
 /-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
 
 This is not an instance because it would cause a search for `finite_dimensional ?x E` before
@@ -68,6 +71,7 @@ theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E :=
   letI : FiniteDimensional ℝ E := FiniteDimensional.trans ℝ K E
   infer_instance
 #align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrC
+-/
 
 variable {E}
 
@@ -82,6 +86,7 @@ end FiniteDimensional
 
 namespace IsROrC
 
+#print IsROrC.reClm_norm /-
 @[simp, is_R_or_C_simps]
 theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
   by
@@ -90,16 +95,21 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
   · simp
   · infer_instance
 #align is_R_or_C.re_clm_norm IsROrC.reClm_norm
+-/
 
+#print IsROrC.conjCle_norm /-
 @[simp, is_R_or_C_simps]
 theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
   (@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
 #align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
+-/
 
+#print IsROrC.ofRealClm_norm /-
 @[simp, is_R_or_C_simps]
 theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
   LinearIsometry.norm_toContinuousLinearMap ofRealLi
 #align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_norm
+-/
 
 end IsROrC
 
Diff
@@ -24,11 +24,9 @@ namespace Polynomial
 
 open scoped Polynomial
 
-#print Polynomial.ofReal_eval /-
 theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
   (@aeval_algebraMap_apply_eq_algebraMap_eval ℝ K _ _ _ x p).symm
 #align polynomial.of_real_eval Polynomial.ofReal_eval
--/
 
 end Polynomial
 
Diff
@@ -22,7 +22,7 @@ variable {K E : Type _} [IsROrC K]
 
 namespace Polynomial
 
-open Polynomial
+open scoped Polynomial
 
 #print Polynomial.ofReal_eval /-
 theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
@@ -34,7 +34,7 @@ end Polynomial
 
 namespace FiniteDimensional
 
-open Classical
+open scoped Classical
 
 open IsROrC
 
Diff
@@ -60,12 +60,6 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
 
 variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
 
-/- warning: finite_dimensional.proper_is_R_or_C -> FiniteDimensional.proper_isROrC is a dubious translation:
-lean 3 declaration is
-  forall (K : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} K] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : FiniteDimensional.{u1, u2} K E (NormedDivisionRing.toDivisionRing.{u1} K (NormedField.toNormedDivisionRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)], ProperSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))
-but is expected to have type
-  forall (K : Type.{u2}) (E : Type.{u1}) [_inst_1 : IsROrC.{u2} K] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : FiniteDimensional.{u2, u1} K E (NormedDivisionRing.toDivisionRing.{u2} K (NormedField.toNormedDivisionRing.{u2} K (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2) (NormedSpace.toModule.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)], ProperSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))
-Case conversion may be inaccurate. Consider using '#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrCₓ'. -/
 /-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
 
 This is not an instance because it would cause a search for `finite_dimensional ?x E` before
@@ -90,12 +84,6 @@ end FiniteDimensional
 
 namespace IsROrC
 
-/- warning: is_R_or_C.re_clm_norm -> IsROrC.reClm_norm is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) Real.module) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.re_clm_norm IsROrC.reClm_normₓ'. -/
 @[simp, is_R_or_C_simps]
 theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
   by
@@ -105,20 +93,11 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
   · infer_instance
 #align is_R_or_C.re_clm_norm IsROrC.reClm_norm
 
-/- warning: is_R_or_C.conj_cle_norm -> IsROrC.conjCle_norm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.conj_cle_norm IsROrC.conjCle_normₓ'. -/
 @[simp, is_R_or_C_simps]
 theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
   (@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
 #align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
 
-/- warning: is_R_or_C.of_real_clm_norm -> IsROrC.ofRealClm_norm is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real.module (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField)) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_normₓ'. -/
 @[simp, is_R_or_C_simps]
 theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
   LinearIsometry.norm_toContinuousLinearMap ofRealLi
Diff
@@ -106,10 +106,7 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
 #align is_R_or_C.re_clm_norm IsROrC.reClm_norm
 
 /- warning: is_R_or_C.conj_cle_norm -> IsROrC.conjCle_norm is a dubious translation:
-lean 3 declaration is
-  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (coeBase.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearEquiv.ContinuousLinearMap.coe.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))))))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
-  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (ContinuousLinearEquiv.toContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+<too large>
 Case conversion may be inaccurate. Consider using '#align is_R_or_C.conj_cle_norm IsROrC.conjCle_normₓ'. -/
 @[simp, is_R_or_C_simps]
 theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Frédéric Dupuis
 
 ! This file was ported from Lean 3 source module data.is_R_or_C.lemmas
-! leanprover-community/mathlib commit 468b141b14016d54b479eb7a0fff1e360b7e3cf6
+! leanprover-community/mathlib commit 1b0a28e1c93409dbf6d69526863cd9984ef652ce
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -12,7 +12,10 @@ import Mathbin.Analysis.NormedSpace.FiniteDimension
 import Mathbin.FieldTheory.Tower
 import Mathbin.Data.IsROrC.Basic
 
-/-! # Further lemmas about `is_R_or_C` -/
+/-! # Further lemmas about `is_R_or_C` 
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.-/
 
 
 variable {K E : Type _} [IsROrC K]
Diff
@@ -21,9 +21,11 @@ namespace Polynomial
 
 open Polynomial
 
-theorem of_real_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
+#print Polynomial.ofReal_eval /-
+theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
   (@aeval_algebraMap_apply_eq_algebraMap_eval ℝ K _ _ _ x p).symm
-#align polynomial.of_real_eval Polynomial.of_real_eval
+#align polynomial.of_real_eval Polynomial.ofReal_eval
+-/
 
 end Polynomial
 
@@ -38,6 +40,7 @@ This instance generates a type-class problem with a metavariable `?m` that shoul
 `is_R_or_C ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
 
 
+#print FiniteDimensional.isROrC_to_real /-
 /-- An `is_R_or_C` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
 @[nolint dangerous_instance]
 instance isROrC_to_real : FiniteDimensional ℝ K :=
@@ -50,9 +53,16 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
         use im a
       simp [re_add_im a, Algebra.smul_def, algebra_map_eq_of_real]⟩⟩
 #align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
+-/
 
 variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
 
+/- warning: finite_dimensional.proper_is_R_or_C -> FiniteDimensional.proper_isROrC is a dubious translation:
+lean 3 declaration is
+  forall (K : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} K] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : FiniteDimensional.{u1, u2} K E (NormedDivisionRing.toDivisionRing.{u1} K (NormedField.toNormedDivisionRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)], ProperSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))
+but is expected to have type
+  forall (K : Type.{u2}) (E : Type.{u1}) [_inst_1 : IsROrC.{u2} K] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : FiniteDimensional.{u2, u1} K E (NormedDivisionRing.toDivisionRing.{u2} K (NormedField.toNormedDivisionRing.{u2} K (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2) (NormedSpace.toModule.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)], ProperSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))
+Case conversion may be inaccurate. Consider using '#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrCₓ'. -/
 /-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
 
 This is not an instance because it would cause a search for `finite_dimensional ?x E` before
@@ -66,15 +76,23 @@ theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E :=
 
 variable {E}
 
+#print FiniteDimensional.IsROrC.properSpace_submodule /-
 instance IsROrC.properSpace_submodule (S : Submodule K E) [FiniteDimensional K ↥S] :
     ProperSpace S :=
   proper_isROrC K S
 #align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.IsROrC.properSpace_submodule
+-/
 
 end FiniteDimensional
 
 namespace IsROrC
 
+/- warning: is_R_or_C.re_clm_norm -> IsROrC.reClm_norm is a dubious translation:
+lean 3 declaration is
+  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) Real.module) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
+but is expected to have type
+  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.re_clm_norm IsROrC.reClm_normₓ'. -/
 @[simp, is_R_or_C_simps]
 theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
   by
@@ -84,11 +102,23 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
   · infer_instance
 #align is_R_or_C.re_clm_norm IsROrC.reClm_norm
 
+/- warning: is_R_or_C.conj_cle_norm -> IsROrC.conjCle_norm is a dubious translation:
+lean 3 declaration is
+  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (coeBase.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearEquiv.ContinuousLinearMap.coe.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))))))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
+but is expected to have type
+  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (ContinuousLinearEquiv.toContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.conj_cle_norm IsROrC.conjCle_normₓ'. -/
 @[simp, is_R_or_C_simps]
 theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
   (@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
 #align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
 
+/- warning: is_R_or_C.of_real_clm_norm -> IsROrC.ofRealClm_norm is a dubious translation:
+lean 3 declaration is
+  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real.module (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
+but is expected to have type
+  forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField)) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_normₓ'. -/
 @[simp, is_R_or_C_simps]
 theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
   LinearIsometry.norm_toContinuousLinearMap ofRealLi

Changes in mathlib4

mathlib3
mathlib4
chore: classify porting notes referring to missing linters (#12098)

Reference the newly created issues #12094 and #12096, as well as the pre-existing #5171. Change all references to #10927 to #5171. Some of these changes were not labelled as "porting note"; change this for good measure.

Diff
@@ -34,7 +34,8 @@ This instance generates a type-class problem with a metavariable `?m` that shoul
 `RCLike ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
 
 /-- An `RCLike` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
--- Porting note: was @[nolint dangerous_instance]
+-- Porting note(#12094): removed nolint; dangerous_instance linter not ported yet
+-- @[nolint dangerous_instance]
 instance rclike_to_real : FiniteDimensional ℝ K :=
   ⟨{1, I}, by
     suffices ∀ x : K, ∃ a b : ℝ, a • 1 + b • I = x by
chore: move FiniteDimensional.trans higher up the import hierarchy (#12079)

@YaelDillies pointed out that the import Data.Complex.Module → FieldTheory.Tower brings with it too many things. The only declaration from FieldTheory.Tower needed for Data.Complex.Module is FiniteDimensional.trans, which we can easily move up the import hierarchy (14 imports higher, in fact). So this means we can cut the long pole of Mathlib by up to 13 files.

Specific Zulip discussion starts here: https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/The.20long.20pole.20in.20mathlib/near/432796670

Diff
@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Frédéric Dupuis
 -/
 import Mathlib.Analysis.NormedSpace.FiniteDimension
-import Mathlib.FieldTheory.Tower
 import Mathlib.Analysis.RCLike.Basic
 
 #align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
move(RCLike): Move out of Data (#11753)

RCLike is an analytic typeclass, hence should be under Analysis

Diff
@@ -5,7 +5,7 @@ Authors: Frédéric Dupuis
 -/
 import Mathlib.Analysis.NormedSpace.FiniteDimension
 import Mathlib.FieldTheory.Tower
-import Mathlib.Data.RCLike.Basic
+import Mathlib.Analysis.RCLike.Basic
 
 #align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
 
chore: Rename IsROrC to RCLike (#10819)

IsROrC contains data, which goes against the expectation that classes prefixed with Is are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC to RCLike.

Diff
@@ -5,14 +5,14 @@ Authors: Frédéric Dupuis
 -/
 import Mathlib.Analysis.NormedSpace.FiniteDimension
 import Mathlib.FieldTheory.Tower
-import Mathlib.Data.IsROrC.Basic
+import Mathlib.Data.RCLike.Basic
 
 #align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
 
-/-! # Further lemmas about `IsROrC` -/
+/-! # Further lemmas about `RCLike` -/
 
 
-variable {K E : Type*} [IsROrC K]
+variable {K E : Type*} [RCLike K]
 
 namespace Polynomial
 
@@ -28,73 +28,73 @@ namespace FiniteDimensional
 
 open scoped Classical
 
-open IsROrC
+open RCLike
 
-library_note "IsROrC instance"/--
+library_note "RCLike instance"/--
 This instance generates a type-class problem with a metavariable `?m` that should satisfy
-`IsROrC ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
+`RCLike ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
 
-/-- An `IsROrC` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
+/-- An `RCLike` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
 -- Porting note: was @[nolint dangerous_instance]
-instance isROrC_to_real : FiniteDimensional ℝ K :=
+instance rclike_to_real : FiniteDimensional ℝ K :=
   ⟨{1, I}, by
     suffices ∀ x : K, ∃ a b : ℝ, a • 1 + b • I = x by
       simpa [Submodule.eq_top_iff', Submodule.mem_span_pair]
     exact fun x ↦ ⟨re x, im x, by simp [real_smul_eq_coe_mul]⟩⟩
-#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
+#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.rclike_to_real
 
 variable (K E)
 variable [NormedAddCommGroup E] [NormedSpace K E]
 
-/-- A finite dimensional vector space over an `IsROrC` is a proper metric space.
+/-- A finite dimensional vector space over an `RCLike` is a proper metric space.
 
 This is not an instance because it would cause a search for `FiniteDimensional ?x E` before
-`IsROrC ?x`. -/
-theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E := by
+`RCLike ?x`. -/
+theorem proper_rclike [FiniteDimensional K E] : ProperSpace E := by
   letI : NormedSpace ℝ E := RestrictScalars.normedSpace ℝ K E
   letI : FiniteDimensional ℝ E := FiniteDimensional.trans ℝ K E
   infer_instance
-#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrC
+#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_rclike
 
 variable {E}
 
-instance IsROrC.properSpace_submodule (S : Submodule K E) [FiniteDimensional K S] :
+instance RCLike.properSpace_submodule (S : Submodule K E) [FiniteDimensional K S] :
     ProperSpace S :=
-  proper_isROrC K S
-#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.IsROrC.properSpace_submodule
+  proper_rclike K S
+#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.RCLike.properSpace_submodule
 
 end FiniteDimensional
 
-namespace IsROrC
+namespace RCLike
 
-@[simp, isROrC_simps]
+@[simp, rclike_simps]
 theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 := by
   apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
   convert ContinuousLinearMap.ratio_le_opNorm (reCLM : K →L[ℝ] ℝ) (1 : K)
   simp
-#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
+#align is_R_or_C.re_clm_norm RCLike.reCLM_norm
 
-@[simp, isROrC_simps]
+@[simp, rclike_simps]
 theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
   (@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
+#align is_R_or_C.conj_cle_norm RCLike.conjCLE_norm
 
-@[simp, isROrC_simps]
+@[simp, rclike_simps]
 theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
   -- Porting note: the following timed out
   -- LinearIsometry.norm_toContinuousLinearMap ofRealLI
   LinearIsometry.norm_toContinuousLinearMap _
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
+#align is_R_or_C.of_real_clm_norm RCLike.ofRealCLM_norm
 
-end IsROrC
+end RCLike
 
 namespace Polynomial
 
 open ComplexConjugate in
 lemma aeval_conj (p : ℝ[X]) (z : K) : aeval (conj z) p = conj (aeval z p) :=
-  aeval_algHom_apply (IsROrC.conjAe (K := K)) z p
+  aeval_algHom_apply (RCLike.conjAe (K := K)) z p
 
-lemma aeval_ofReal (p : ℝ[X]) (x : ℝ) : aeval (IsROrC.ofReal x : K) p = eval x p :=
-  aeval_algHom_apply IsROrC.ofRealAm x p
+lemma aeval_ofReal (p : ℝ[X]) (x : ℝ) : aeval (RCLike.ofReal x : K) p = eval x p :=
+  aeval_algHom_apply RCLike.ofRealAm x p
 
 end Polynomial
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -26,7 +26,7 @@ end Polynomial
 
 namespace FiniteDimensional
 
-open Classical
+open scoped Classical
 
 open IsROrC
 
feat: an irreducible real polynomial has degree ≤2 (#10431)
Diff
@@ -87,3 +87,14 @@ theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
 #align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
 
 end IsROrC
+
+namespace Polynomial
+
+open ComplexConjugate in
+lemma aeval_conj (p : ℝ[X]) (z : K) : aeval (conj z) p = conj (aeval z p) :=
+  aeval_algHom_apply (IsROrC.conjAe (K := K)) z p
+
+lemma aeval_ofReal (p : ℝ[X]) (x : ℝ) : aeval (IsROrC.ofReal x : K) p = eval x p :=
+  aeval_algHom_apply IsROrC.ofRealAm x p
+
+end Polynomial
chore: rename op_norm to opNorm (#10185)

Co-authored-by: adomani <adomani@gmail.com>

Diff
@@ -70,7 +70,7 @@ namespace IsROrC
 @[simp, isROrC_simps]
 theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 := by
   apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
-  convert ContinuousLinearMap.ratio_le_op_norm (reCLM : K →L[ℝ] ℝ) (1 : K)
+  convert ContinuousLinearMap.ratio_le_opNorm (reCLM : K →L[ℝ] ℝ) (1 : K)
   simp
 #align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
 
fix: Clm -> CLM, Cle -> CLE (#10018)

Rename

  • Complex.equivRealProdClmComplex.equivRealProdCLM;
    • TODO: should this one use CLE?
  • Complex.reClmComplex.reCLM;
  • Complex.imClmComplex.imCLM;
  • Complex.conjLieComplex.conjLIE;
  • Complex.conjCleComplex.conjCLE;
  • Complex.ofRealLiComplex.ofRealLI;
  • Complex.ofRealClmComplex.ofRealCLM;
  • fderivInnerClmfderivInnerCLM;
  • LinearPMap.adjointDomainMkClmLinearPMap.adjointDomainMkCLM;
  • LinearPMap.adjointDomainMkClmExtendLinearPMap.adjointDomainMkCLMExtend;
  • IsROrC.reClmIsROrC.reCLM;
  • IsROrC.imClmIsROrC.imCLM;
  • IsROrC.conjLieIsROrC.conjLIE;
  • IsROrC.conjCleIsROrC.conjCLE;
  • IsROrC.ofRealLiIsROrC.ofRealLI;
  • IsROrC.ofRealClmIsROrC.ofRealCLM;
  • MeasureTheory.condexpL1ClmMeasureTheory.condexpL1CLM;
  • algebraMapClmalgebraMapCLM;
  • WeakDual.CharacterSpace.toClmWeakDual.CharacterSpace.toCLM;
  • BoundedContinuousFunction.evalClmBoundedContinuousFunction.evalCLM;
  • ContinuousMap.evalClmContinuousMap.evalCLM;
  • TrivSqZeroExt.fstClmTrivSqZeroExt.fstClm;
  • TrivSqZeroExt.sndClmTrivSqZeroExt.sndCLM;
  • TrivSqZeroExt.inlClmTrivSqZeroExt.inlCLM;
  • TrivSqZeroExt.inrClmTrivSqZeroExt.inrCLM

and related theorems.

Diff
@@ -68,22 +68,22 @@ end FiniteDimensional
 namespace IsROrC
 
 @[simp, isROrC_simps]
-theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 := by
+theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 := by
   apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
-  convert ContinuousLinearMap.ratio_le_op_norm (reClm : K →L[ℝ] ℝ) (1 : K)
+  convert ContinuousLinearMap.ratio_le_op_norm (reCLM : K →L[ℝ] ℝ) (1 : K)
   simp
-#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
+#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
 
 @[simp, isROrC_simps]
-theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
-  (@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
+theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
+  (@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
+#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
 
 @[simp, isROrC_simps]
-theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
+theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
   -- Porting note: the following timed out
-  -- LinearIsometry.norm_toContinuousLinearMap ofRealLi
+  -- LinearIsometry.norm_toContinuousLinearMap ofRealLI
   LinearIsometry.norm_toContinuousLinearMap _
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_norm
+#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
 
 end IsROrC
chore: golf FiniteDimensional.isROrC_to_real (#9921)
Diff
@@ -34,18 +34,13 @@ library_note "IsROrC instance"/--
 This instance generates a type-class problem with a metavariable `?m` that should satisfy
 `IsROrC ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
 
-
 /-- An `IsROrC` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
 -- Porting note: was @[nolint dangerous_instance]
 instance isROrC_to_real : FiniteDimensional ℝ K :=
-  ⟨⟨{1, I}, by
-      rw [eq_top_iff]
-      intro a _
-      rw [Finset.coe_insert, Finset.coe_singleton, Submodule.mem_span_insert]
-      refine' ⟨re a, im a • I, _, _⟩
-      · rw [Submodule.mem_span_singleton]
-        use im a
-      simp [re_add_im a, Algebra.smul_def, algebraMap_eq_ofReal]⟩⟩
+  ⟨{1, I}, by
+    suffices ∀ x : K, ∃ a b : ℝ, a • 1 + b • I = x by
+      simpa [Submodule.eq_top_iff', Submodule.mem_span_pair]
+    exact fun x ↦ ⟨re x, im x, by simp [real_smul_eq_coe_mul]⟩⟩
 #align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
 
 variable (K E)
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -12,7 +12,7 @@ import Mathlib.Data.IsROrC.Basic
 /-! # Further lemmas about `IsROrC` -/
 
 
-variable {K E : Type _} [IsROrC K]
+variable {K E : Type*} [IsROrC K]
 
 namespace Polynomial
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Frédéric Dupuis
-
-! This file was ported from Lean 3 source module data.is_R_or_C.lemmas
-! leanprover-community/mathlib commit 468b141b14016d54b479eb7a0fff1e360b7e3cf6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.NormedSpace.FiniteDimension
 import Mathlib.FieldTheory.Tower
 import Mathlib.Data.IsROrC.Basic
 
+#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
+
 /-! # Further lemmas about `IsROrC` -/
 
 
feat: port Data.IsROrC.Lemmas (#4141)

Dependencies 12 + 816

817 files ported (98.6%)
360619 lines ported (98.5%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file