data.is_R_or_C.lemmas
⟷
Mathlib.Data.IsROrC.Lemmas
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -5,7 +5,7 @@ Authors: Frédéric Dupuis
-/
import Analysis.NormedSpace.FiniteDimension
import FieldTheory.Tower
-import Data.IsROrC.Basic
+import Analysis.RCLike.Basic
#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"1b0a28e1c93409dbf6d69526863cd9984ef652ce"
@@ -15,7 +15,7 @@ import Data.IsROrC.Basic
> Any changes to this file require a corresponding PR to mathlib4.-/
-variable {K E : Type _} [IsROrC K]
+variable {K E : Type _} [RCLike K]
namespace Polynomial
@@ -33,17 +33,17 @@ namespace FiniteDimensional
open scoped Classical
-open IsROrC
+open RCLike
library_note "is_R_or_C instance"/--
This instance generates a type-class problem with a metavariable `?m` that should satisfy
`is_R_or_C ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
-#print FiniteDimensional.isROrC_to_real /-
+#print FiniteDimensional.rclike_to_real /-
/-- An `is_R_or_C` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
@[nolint dangerous_instance]
-instance isROrC_to_real : FiniteDimensional ℝ K :=
+instance rclike_to_real : FiniteDimensional ℝ K :=
⟨⟨{1, i}, by
rw [eq_top_iff]
intro a _
@@ -52,38 +52,38 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
· rw [Submodule.mem_span_singleton]
use im a
simp [re_add_im a, Algebra.smul_def, algebra_map_eq_of_real]⟩⟩
-#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
+#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.rclike_to_real
-/
variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
-#print FiniteDimensional.proper_isROrC /-
+#print FiniteDimensional.proper_rclike /-
/-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
This is not an instance because it would cause a search for `finite_dimensional ?x E` before
`is_R_or_C ?x`. -/
-theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E :=
+theorem proper_rclike [FiniteDimensional K E] : ProperSpace E :=
by
letI : NormedSpace ℝ E := RestrictScalars.normedSpace ℝ K E
letI : FiniteDimensional ℝ E := FiniteDimensional.trans ℝ K E
infer_instance
-#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrC
+#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_rclike
-/
variable {E}
-#print FiniteDimensional.IsROrC.properSpace_submodule /-
-instance IsROrC.properSpace_submodule (S : Submodule K E) [FiniteDimensional K ↥S] :
+#print FiniteDimensional.RCLike.properSpace_submodule /-
+instance RCLike.properSpace_submodule (S : Submodule K E) [FiniteDimensional K ↥S] :
ProperSpace S :=
- proper_isROrC K S
-#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.IsROrC.properSpace_submodule
+ proper_rclike K S
+#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.RCLike.properSpace_submodule
-/
end FiniteDimensional
-namespace IsROrC
+namespace RCLike
-#print IsROrC.reCLM_norm /-
+#print RCLike.reCLM_norm /-
@[simp, is_R_or_C_simps]
theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
by
@@ -91,22 +91,22 @@ theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
convert ContinuousLinearMap.ratio_le_opNorm _ (1 : K)
· simp
· infer_instance
-#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
+#align is_R_or_C.re_clm_norm RCLike.reCLM_norm
-/
-#print IsROrC.conjCLE_norm /-
+#print RCLike.conjCLE_norm /-
@[simp, is_R_or_C_simps]
theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
(@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
+#align is_R_or_C.conj_cle_norm RCLike.conjCLE_norm
-/
-#print IsROrC.ofRealCLM_norm /-
+#print RCLike.ofRealCLM_norm /-
@[simp, is_R_or_C_simps]
theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
LinearIsometry.norm_toContinuousLinearMap ofRealLI
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
+#align is_R_or_C.of_real_clm_norm RCLike.ofRealCLM_norm
-/
-end IsROrC
+end RCLike
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -88,7 +88,7 @@ namespace IsROrC
theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
by
apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
- convert ContinuousLinearMap.ratio_le_op_norm _ (1 : K)
+ convert ContinuousLinearMap.ratio_le_opNorm _ (1 : K)
· simp
· infer_instance
#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -83,29 +83,29 @@ end FiniteDimensional
namespace IsROrC
-#print IsROrC.reClm_norm /-
+#print IsROrC.reCLM_norm /-
@[simp, is_R_or_C_simps]
-theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
+theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 :=
by
apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
convert ContinuousLinearMap.ratio_le_op_norm _ (1 : K)
· simp
· infer_instance
-#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
+#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
-/
-#print IsROrC.conjCle_norm /-
+#print IsROrC.conjCLE_norm /-
@[simp, is_R_or_C_simps]
-theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
- (@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
+theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
+ (@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
+#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
-/
-#print IsROrC.ofRealClm_norm /-
+#print IsROrC.ofRealCLM_norm /-
@[simp, is_R_or_C_simps]
-theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
- LinearIsometry.norm_toContinuousLinearMap ofRealLi
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_norm
+theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
+ LinearIsometry.norm_toContinuousLinearMap ofRealLI
+#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
-/
end IsROrC
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-/
-import Mathbin.Analysis.NormedSpace.FiniteDimension
-import Mathbin.FieldTheory.Tower
-import Mathbin.Data.IsROrC.Basic
+import Analysis.NormedSpace.FiniteDimension
+import FieldTheory.Tower
+import Data.IsROrC.Basic
#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"1b0a28e1c93409dbf6d69526863cd9984ef652ce"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-
-! This file was ported from Lean 3 source module data.is_R_or_C.lemmas
-! leanprover-community/mathlib commit 1b0a28e1c93409dbf6d69526863cd9984ef652ce
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.NormedSpace.FiniteDimension
import Mathbin.FieldTheory.Tower
import Mathbin.Data.IsROrC.Basic
+#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"1b0a28e1c93409dbf6d69526863cd9984ef652ce"
+
/-! # Further lemmas about `is_R_or_C`
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -24,9 +24,11 @@ namespace Polynomial
open scoped Polynomial
+#print Polynomial.ofReal_eval /-
theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
(@aeval_algebraMap_apply_eq_algebraMap_eval ℝ K _ _ _ x p).symm
#align polynomial.of_real_eval Polynomial.ofReal_eval
+-/
end Polynomial
@@ -58,6 +60,7 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
+#print FiniteDimensional.proper_isROrC /-
/-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
This is not an instance because it would cause a search for `finite_dimensional ?x E` before
@@ -68,6 +71,7 @@ theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E :=
letI : FiniteDimensional ℝ E := FiniteDimensional.trans ℝ K E
infer_instance
#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrC
+-/
variable {E}
@@ -82,6 +86,7 @@ end FiniteDimensional
namespace IsROrC
+#print IsROrC.reClm_norm /-
@[simp, is_R_or_C_simps]
theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
by
@@ -90,16 +95,21 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
· simp
· infer_instance
#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
+-/
+#print IsROrC.conjCle_norm /-
@[simp, is_R_or_C_simps]
theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
(@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
#align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
+-/
+#print IsROrC.ofRealClm_norm /-
@[simp, is_R_or_C_simps]
theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
LinearIsometry.norm_toContinuousLinearMap ofRealLi
#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_norm
+-/
end IsROrC
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -24,11 +24,9 @@ namespace Polynomial
open scoped Polynomial
-#print Polynomial.ofReal_eval /-
theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
(@aeval_algebraMap_apply_eq_algebraMap_eval ℝ K _ _ _ x p).symm
#align polynomial.of_real_eval Polynomial.ofReal_eval
--/
end Polynomial
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -22,7 +22,7 @@ variable {K E : Type _} [IsROrC K]
namespace Polynomial
-open Polynomial
+open scoped Polynomial
#print Polynomial.ofReal_eval /-
theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
@@ -34,7 +34,7 @@ end Polynomial
namespace FiniteDimensional
-open Classical
+open scoped Classical
open IsROrC
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -60,12 +60,6 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
-/- warning: finite_dimensional.proper_is_R_or_C -> FiniteDimensional.proper_isROrC is a dubious translation:
-lean 3 declaration is
- forall (K : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} K] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : FiniteDimensional.{u1, u2} K E (NormedDivisionRing.toDivisionRing.{u1} K (NormedField.toNormedDivisionRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)], ProperSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))
-but is expected to have type
- forall (K : Type.{u2}) (E : Type.{u1}) [_inst_1 : IsROrC.{u2} K] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : FiniteDimensional.{u2, u1} K E (NormedDivisionRing.toDivisionRing.{u2} K (NormedField.toNormedDivisionRing.{u2} K (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2) (NormedSpace.toModule.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)], ProperSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))
-Case conversion may be inaccurate. Consider using '#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrCₓ'. -/
/-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
This is not an instance because it would cause a search for `finite_dimensional ?x E` before
@@ -90,12 +84,6 @@ end FiniteDimensional
namespace IsROrC
-/- warning: is_R_or_C.re_clm_norm -> IsROrC.reClm_norm is a dubious translation:
-lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) Real.module) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.re_clm_norm IsROrC.reClm_normₓ'. -/
@[simp, is_R_or_C_simps]
theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
by
@@ -105,20 +93,11 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
· infer_instance
#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
-/- warning: is_R_or_C.conj_cle_norm -> IsROrC.conjCle_norm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.conj_cle_norm IsROrC.conjCle_normₓ'. -/
@[simp, is_R_or_C_simps]
theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
(@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
#align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
-/- warning: is_R_or_C.of_real_clm_norm -> IsROrC.ofRealClm_norm is a dubious translation:
-lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real.module (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField)) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_normₓ'. -/
@[simp, is_R_or_C_simps]
theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
LinearIsometry.norm_toContinuousLinearMap ofRealLi
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -106,10 +106,7 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
/- warning: is_R_or_C.conj_cle_norm -> IsROrC.conjCle_norm is a dubious translation:
-lean 3 declaration is
- forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (coeBase.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearEquiv.ContinuousLinearMap.coe.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))))))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
- forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (ContinuousLinearEquiv.toContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+<too large>
Case conversion may be inaccurate. Consider using '#align is_R_or_C.conj_cle_norm IsROrC.conjCle_normₓ'. -/
@[simp, is_R_or_C_simps]
theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/1b0a28e1c93409dbf6d69526863cd9984ef652ce
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
! This file was ported from Lean 3 source module data.is_R_or_C.lemmas
-! leanprover-community/mathlib commit 468b141b14016d54b479eb7a0fff1e360b7e3cf6
+! leanprover-community/mathlib commit 1b0a28e1c93409dbf6d69526863cd9984ef652ce
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -12,7 +12,10 @@ import Mathbin.Analysis.NormedSpace.FiniteDimension
import Mathbin.FieldTheory.Tower
import Mathbin.Data.IsROrC.Basic
-/-! # Further lemmas about `is_R_or_C` -/
+/-! # Further lemmas about `is_R_or_C`
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.-/
variable {K E : Type _} [IsROrC K]
mathlib commit https://github.com/leanprover-community/mathlib/commit/f51de8769c34652d82d1c8e5f8f18f8374782bed
@@ -21,9 +21,11 @@ namespace Polynomial
open Polynomial
-theorem of_real_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
+#print Polynomial.ofReal_eval /-
+theorem ofReal_eval (p : ℝ[X]) (x : ℝ) : (p.eval x : K) = aeval (↑x) p :=
(@aeval_algebraMap_apply_eq_algebraMap_eval ℝ K _ _ _ x p).symm
-#align polynomial.of_real_eval Polynomial.of_real_eval
+#align polynomial.of_real_eval Polynomial.ofReal_eval
+-/
end Polynomial
@@ -38,6 +40,7 @@ This instance generates a type-class problem with a metavariable `?m` that shoul
`is_R_or_C ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
+#print FiniteDimensional.isROrC_to_real /-
/-- An `is_R_or_C` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
@[nolint dangerous_instance]
instance isROrC_to_real : FiniteDimensional ℝ K :=
@@ -50,9 +53,16 @@ instance isROrC_to_real : FiniteDimensional ℝ K :=
use im a
simp [re_add_im a, Algebra.smul_def, algebra_map_eq_of_real]⟩⟩
#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
+-/
variable (K E) [NormedAddCommGroup E] [NormedSpace K E]
+/- warning: finite_dimensional.proper_is_R_or_C -> FiniteDimensional.proper_isROrC is a dubious translation:
+lean 3 declaration is
+ forall (K : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} K] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : FiniteDimensional.{u1, u2} K E (NormedDivisionRing.toDivisionRing.{u1} K (NormedField.toNormedDivisionRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} K E (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)], ProperSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))
+but is expected to have type
+ forall (K : Type.{u2}) (E : Type.{u1}) [_inst_1 : IsROrC.{u2} K] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : FiniteDimensional.{u2, u1} K E (NormedDivisionRing.toDivisionRing.{u2} K (NormedField.toNormedDivisionRing.{u2} K (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2) (NormedSpace.toModule.{u2, u1} K E (DenselyNormedField.toNormedField.{u2} K (IsROrC.toDenselyNormedField.{u2} K _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3)], ProperSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))
+Case conversion may be inaccurate. Consider using '#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrCₓ'. -/
/-- A finite dimensional vector space over an `is_R_or_C` is a proper metric space.
This is not an instance because it would cause a search for `finite_dimensional ?x E` before
@@ -66,15 +76,23 @@ theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E :=
variable {E}
+#print FiniteDimensional.IsROrC.properSpace_submodule /-
instance IsROrC.properSpace_submodule (S : Submodule K E) [FiniteDimensional K ↥S] :
ProperSpace S :=
proper_isROrC K S
#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.IsROrC.properSpace_submodule
+-/
end FiniteDimensional
namespace IsROrC
+/- warning: is_R_or_C.re_clm_norm -> IsROrC.reClm_norm is a dubious translation:
+lean 3 declaration is
+ forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) Real.module) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
+but is expected to have type
+ forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, 0} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, 0} Real Real K Real (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.reClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.re_clm_norm IsROrC.reClm_normₓ'. -/
@[simp, is_R_or_C_simps]
theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
by
@@ -84,11 +102,23 @@ theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 :=
· infer_instance
#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
+/- warning: is_R_or_C.conj_cle_norm -> IsROrC.conjCle_norm is a dubious translation:
+lean 3 declaration is
+ forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (HasLiftT.mk.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (CoeTCₓ.coe.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (coeBase.{succ u1, succ u1} (ContinuousLinearEquiv.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearEquiv.ContinuousLinearMap.coe.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))))))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
+but is expected to have type
+ forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, u1, u1} Real Real K K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (ContinuousLinearEquiv.toContinuousLinearMap.{0, 0, u1, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) (RingHomInvPair.ids.{0} Real Real.semiring) (RingHomInvPair.ids.{0} Real Real.semiring) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1))) (IsROrC.conjCle.{u1} K _inst_1))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.conj_cle_norm IsROrC.conjCle_normₓ'. -/
@[simp, is_R_or_C_simps]
theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
(@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
#align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
+/- warning: is_R_or_C.of_real_clm_norm -> IsROrC.ofRealClm_norm is a dubious translation:
+lean 3 declaration is
+ forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.addCommMonoid K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSemiNormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} K (NormedAddCommGroup.toAddCommGroup.{u1} K (NonUnitalNormedRing.toNormedAddCommGroup.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) Real.module (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
+but is expected to have type
+ forall {K : Type.{u1}} [_inst_1 : IsROrC.{u1} K], Eq.{1} Real (Norm.norm.{u1} (ContinuousLinearMap.{0, 0, 0, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) Real.instAddCommMonoidReal K (UniformSpace.toTopologicalSpace.{u1} K (PseudoMetricSpace.toUniformSpace.{u1} K (SeminormedRing.toPseudoMetricSpace.{u1} K (SeminormedCommRing.toSeminormedRing.{u1} K (NormedCommRing.toSeminormedCommRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} K (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} K (NonAssocRing.toNonUnitalNonAssocRing.{u1} K (Ring.toNonAssocRing.{u1} K (NormedRing.toRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))))) (NormedSpace.toModule.{0, 0} Real Real Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NormedField.toNormedSpace.{0} Real Real.normedField)) (NormedSpace.toModule.{0, u1} Real K Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)))) (ContinuousLinearMap.hasOpNorm.{0, 0, 0, u1} Real Real Real K (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{0} Real (NonUnitalNormedRing.toNonUnitalSeminormedRing.{0} Real (NormedRing.toNonUnitalNormedRing.{0} Real (NormedCommRing.toNormedRing.{0} Real Real.normedCommRing)))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} K (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} K (NormedRing.toNonUnitalNormedRing.{u1} K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField) (NormedField.toNormedSpace.{0} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField))) (NormedAlgebra.toNormedSpace'.{0, u1} Real (NontriviallyNormedField.toNormedField.{0} Real (DenselyNormedField.toNontriviallyNormedField.{0} Real Real.denselyNormedField)) K (NormedCommRing.toNormedRing.{u1} K (NormedField.toNormedCommRing.{u1} K (DenselyNormedField.toNormedField.{u1} K (IsROrC.toDenselyNormedField.{u1} K _inst_1)))) (IsROrC.toNormedAlgebra.{u1} K _inst_1)) (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring))) (IsROrC.ofRealClm.{u1} K _inst_1)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_normₓ'. -/
@[simp, is_R_or_C_simps]
theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
LinearIsometry.norm_toContinuousLinearMap ofRealLi
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -34,7 +34,8 @@ This instance generates a type-class problem with a metavariable `?m` that shoul
`RCLike ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
/-- An `RCLike` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
--- Porting note: was @[nolint dangerous_instance]
+-- Porting note(#12094): removed nolint; dangerous_instance linter not ported yet
+-- @[nolint dangerous_instance]
instance rclike_to_real : FiniteDimensional ℝ K :=
⟨{1, I}, by
suffices ∀ x : K, ∃ a b : ℝ, a • 1 + b • I = x by
FiniteDimensional.trans
higher up the import hierarchy (#12079)
@YaelDillies pointed out that the import Data.Complex.Module → FieldTheory.Tower
brings with it too many things. The only declaration from FieldTheory.Tower
needed for Data.Complex.Module
is FiniteDimensional.trans
, which we can easily move up the import hierarchy (14 imports higher, in fact). So this means we can cut the long pole of Mathlib by up to 13 files.
Specific Zulip discussion starts here: https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/The.20long.20pole.20in.20mathlib/near/432796670
@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-/
import Mathlib.Analysis.NormedSpace.FiniteDimension
-import Mathlib.FieldTheory.Tower
import Mathlib.Analysis.RCLike.Basic
#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
Data
(#11753)
RCLike
is an analytic typeclass, hence should be under Analysis
@@ -5,7 +5,7 @@ Authors: Frédéric Dupuis
-/
import Mathlib.Analysis.NormedSpace.FiniteDimension
import Mathlib.FieldTheory.Tower
-import Mathlib.Data.RCLike.Basic
+import Mathlib.Analysis.RCLike.Basic
#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
IsROrC
to RCLike
(#10819)
IsROrC
contains data, which goes against the expectation that classes prefixed with Is
are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC
to RCLike
.
@@ -5,14 +5,14 @@ Authors: Frédéric Dupuis
-/
import Mathlib.Analysis.NormedSpace.FiniteDimension
import Mathlib.FieldTheory.Tower
-import Mathlib.Data.IsROrC.Basic
+import Mathlib.Data.RCLike.Basic
#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
-/-! # Further lemmas about `IsROrC` -/
+/-! # Further lemmas about `RCLike` -/
-variable {K E : Type*} [IsROrC K]
+variable {K E : Type*} [RCLike K]
namespace Polynomial
@@ -28,73 +28,73 @@ namespace FiniteDimensional
open scoped Classical
-open IsROrC
+open RCLike
-library_note "IsROrC instance"/--
+library_note "RCLike instance"/--
This instance generates a type-class problem with a metavariable `?m` that should satisfy
-`IsROrC ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
+`RCLike ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
-/-- An `IsROrC` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
+/-- An `RCLike` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
-- Porting note: was @[nolint dangerous_instance]
-instance isROrC_to_real : FiniteDimensional ℝ K :=
+instance rclike_to_real : FiniteDimensional ℝ K :=
⟨{1, I}, by
suffices ∀ x : K, ∃ a b : ℝ, a • 1 + b • I = x by
simpa [Submodule.eq_top_iff', Submodule.mem_span_pair]
exact fun x ↦ ⟨re x, im x, by simp [real_smul_eq_coe_mul]⟩⟩
-#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
+#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.rclike_to_real
variable (K E)
variable [NormedAddCommGroup E] [NormedSpace K E]
-/-- A finite dimensional vector space over an `IsROrC` is a proper metric space.
+/-- A finite dimensional vector space over an `RCLike` is a proper metric space.
This is not an instance because it would cause a search for `FiniteDimensional ?x E` before
-`IsROrC ?x`. -/
-theorem proper_isROrC [FiniteDimensional K E] : ProperSpace E := by
+`RCLike ?x`. -/
+theorem proper_rclike [FiniteDimensional K E] : ProperSpace E := by
letI : NormedSpace ℝ E := RestrictScalars.normedSpace ℝ K E
letI : FiniteDimensional ℝ E := FiniteDimensional.trans ℝ K E
infer_instance
-#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_isROrC
+#align finite_dimensional.proper_is_R_or_C FiniteDimensional.proper_rclike
variable {E}
-instance IsROrC.properSpace_submodule (S : Submodule K E) [FiniteDimensional K S] :
+instance RCLike.properSpace_submodule (S : Submodule K E) [FiniteDimensional K S] :
ProperSpace S :=
- proper_isROrC K S
-#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.IsROrC.properSpace_submodule
+ proper_rclike K S
+#align finite_dimensional.is_R_or_C.proper_space_submodule FiniteDimensional.RCLike.properSpace_submodule
end FiniteDimensional
-namespace IsROrC
+namespace RCLike
-@[simp, isROrC_simps]
+@[simp, rclike_simps]
theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 := by
apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
convert ContinuousLinearMap.ratio_le_opNorm (reCLM : K →L[ℝ] ℝ) (1 : K)
simp
-#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
+#align is_R_or_C.re_clm_norm RCLike.reCLM_norm
-@[simp, isROrC_simps]
+@[simp, rclike_simps]
theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
(@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
+#align is_R_or_C.conj_cle_norm RCLike.conjCLE_norm
-@[simp, isROrC_simps]
+@[simp, rclike_simps]
theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
-- Porting note: the following timed out
-- LinearIsometry.norm_toContinuousLinearMap ofRealLI
LinearIsometry.norm_toContinuousLinearMap _
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
+#align is_R_or_C.of_real_clm_norm RCLike.ofRealCLM_norm
-end IsROrC
+end RCLike
namespace Polynomial
open ComplexConjugate in
lemma aeval_conj (p : ℝ[X]) (z : K) : aeval (conj z) p = conj (aeval z p) :=
- aeval_algHom_apply (IsROrC.conjAe (K := K)) z p
+ aeval_algHom_apply (RCLike.conjAe (K := K)) z p
-lemma aeval_ofReal (p : ℝ[X]) (x : ℝ) : aeval (IsROrC.ofReal x : K) p = eval x p :=
- aeval_algHom_apply IsROrC.ofRealAm x p
+lemma aeval_ofReal (p : ℝ[X]) (x : ℝ) : aeval (RCLike.ofReal x : K) p = eval x p :=
+ aeval_algHom_apply RCLike.ofRealAm x p
end Polynomial
open Classical
(#11199)
We remove all but one open Classical
s, instead preferring to use open scoped Classical
. The only real side-effect this led to is moving a couple declarations to use Exists.choose
instead of Classical.choose
.
The first few commits are explicitly labelled regex replaces for ease of review.
@@ -26,7 +26,7 @@ end Polynomial
namespace FiniteDimensional
-open Classical
+open scoped Classical
open IsROrC
@@ -87,3 +87,14 @@ theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
end IsROrC
+
+namespace Polynomial
+
+open ComplexConjugate in
+lemma aeval_conj (p : ℝ[X]) (z : K) : aeval (conj z) p = conj (aeval z p) :=
+ aeval_algHom_apply (IsROrC.conjAe (K := K)) z p
+
+lemma aeval_ofReal (p : ℝ[X]) (x : ℝ) : aeval (IsROrC.ofReal x : K) p = eval x p :=
+ aeval_algHom_apply IsROrC.ofRealAm x p
+
+end Polynomial
@@ -70,7 +70,7 @@ namespace IsROrC
@[simp, isROrC_simps]
theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 := by
apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
- convert ContinuousLinearMap.ratio_le_op_norm (reCLM : K →L[ℝ] ℝ) (1 : K)
+ convert ContinuousLinearMap.ratio_le_opNorm (reCLM : K →L[ℝ] ℝ) (1 : K)
simp
#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
Clm
-> CLM
, Cle
-> CLE
(#10018)
Rename
Complex.equivRealProdClm
→ Complex.equivRealProdCLM
;
CLE
?Complex.reClm
→ Complex.reCLM
;Complex.imClm
→ Complex.imCLM
;Complex.conjLie
→ Complex.conjLIE
;Complex.conjCle
→ Complex.conjCLE
;Complex.ofRealLi
→ Complex.ofRealLI
;Complex.ofRealClm
→ Complex.ofRealCLM
;fderivInnerClm
→ fderivInnerCLM
;LinearPMap.adjointDomainMkClm
→ LinearPMap.adjointDomainMkCLM
;LinearPMap.adjointDomainMkClmExtend
→ LinearPMap.adjointDomainMkCLMExtend
;IsROrC.reClm
→ IsROrC.reCLM
;IsROrC.imClm
→ IsROrC.imCLM
;IsROrC.conjLie
→ IsROrC.conjLIE
;IsROrC.conjCle
→ IsROrC.conjCLE
;IsROrC.ofRealLi
→ IsROrC.ofRealLI
;IsROrC.ofRealClm
→ IsROrC.ofRealCLM
;MeasureTheory.condexpL1Clm
→ MeasureTheory.condexpL1CLM
;algebraMapClm
→ algebraMapCLM
;WeakDual.CharacterSpace.toClm
→ WeakDual.CharacterSpace.toCLM
;BoundedContinuousFunction.evalClm
→ BoundedContinuousFunction.evalCLM
;ContinuousMap.evalClm
→ ContinuousMap.evalCLM
;TrivSqZeroExt.fstClm
→ TrivSqZeroExt.fstClm
;TrivSqZeroExt.sndClm
→ TrivSqZeroExt.sndCLM
;TrivSqZeroExt.inlClm
→ TrivSqZeroExt.inlCLM
;TrivSqZeroExt.inrClm
→ TrivSqZeroExt.inrCLM
and related theorems.
@@ -68,22 +68,22 @@ end FiniteDimensional
namespace IsROrC
@[simp, isROrC_simps]
-theorem reClm_norm : ‖(reClm : K →L[ℝ] ℝ)‖ = 1 := by
+theorem reCLM_norm : ‖(reCLM : K →L[ℝ] ℝ)‖ = 1 := by
apply le_antisymm (LinearMap.mkContinuous_norm_le _ zero_le_one _)
- convert ContinuousLinearMap.ratio_le_op_norm (reClm : K →L[ℝ] ℝ) (1 : K)
+ convert ContinuousLinearMap.ratio_le_op_norm (reCLM : K →L[ℝ] ℝ) (1 : K)
simp
-#align is_R_or_C.re_clm_norm IsROrC.reClm_norm
+#align is_R_or_C.re_clm_norm IsROrC.reCLM_norm
@[simp, isROrC_simps]
-theorem conjCle_norm : ‖(@conjCle K _ : K →L[ℝ] K)‖ = 1 :=
- (@conjLie K _).toLinearIsometry.norm_toContinuousLinearMap
-#align is_R_or_C.conj_cle_norm IsROrC.conjCle_norm
+theorem conjCLE_norm : ‖(@conjCLE K _ : K →L[ℝ] K)‖ = 1 :=
+ (@conjLIE K _).toLinearIsometry.norm_toContinuousLinearMap
+#align is_R_or_C.conj_cle_norm IsROrC.conjCLE_norm
@[simp, isROrC_simps]
-theorem ofRealClm_norm : ‖(ofRealClm : ℝ →L[ℝ] K)‖ = 1 :=
+theorem ofRealCLM_norm : ‖(ofRealCLM : ℝ →L[ℝ] K)‖ = 1 :=
-- Porting note: the following timed out
- -- LinearIsometry.norm_toContinuousLinearMap ofRealLi
+ -- LinearIsometry.norm_toContinuousLinearMap ofRealLI
LinearIsometry.norm_toContinuousLinearMap _
-#align is_R_or_C.of_real_clm_norm IsROrC.ofRealClm_norm
+#align is_R_or_C.of_real_clm_norm IsROrC.ofRealCLM_norm
end IsROrC
@@ -34,18 +34,13 @@ library_note "IsROrC instance"/--
This instance generates a type-class problem with a metavariable `?m` that should satisfy
`IsROrC ?m`. Since this can only be satisfied by `ℝ` or `ℂ`, this does not cause problems. -/
-
/-- An `IsROrC` field is finite-dimensional over `ℝ`, since it is spanned by `{1, I}`. -/
-- Porting note: was @[nolint dangerous_instance]
instance isROrC_to_real : FiniteDimensional ℝ K :=
- ⟨⟨{1, I}, by
- rw [eq_top_iff]
- intro a _
- rw [Finset.coe_insert, Finset.coe_singleton, Submodule.mem_span_insert]
- refine' ⟨re a, im a • I, _, _⟩
- · rw [Submodule.mem_span_singleton]
- use im a
- simp [re_add_im a, Algebra.smul_def, algebraMap_eq_ofReal]⟩⟩
+ ⟨{1, I}, by
+ suffices ∀ x : K, ∃ a b : ℝ, a • 1 + b • I = x by
+ simpa [Submodule.eq_top_iff', Submodule.mem_span_pair]
+ exact fun x ↦ ⟨re x, im x, by simp [real_smul_eq_coe_mul]⟩⟩
#align finite_dimensional.is_R_or_C_to_real FiniteDimensional.isROrC_to_real
variable (K E)
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -12,7 +12,7 @@ import Mathlib.Data.IsROrC.Basic
/-! # Further lemmas about `IsROrC` -/
-variable {K E : Type _} [IsROrC K]
+variable {K E : Type*} [IsROrC K]
namespace Polynomial
@@ -2,16 +2,13 @@
Copyright (c) 2020 Frédéric Dupuis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Frédéric Dupuis
-
-! This file was ported from Lean 3 source module data.is_R_or_C.lemmas
-! leanprover-community/mathlib commit 468b141b14016d54b479eb7a0fff1e360b7e3cf6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.NormedSpace.FiniteDimension
import Mathlib.FieldTheory.Tower
import Mathlib.Data.IsROrC.Basic
+#align_import data.is_R_or_C.lemmas from "leanprover-community/mathlib"@"468b141b14016d54b479eb7a0fff1e360b7e3cf6"
+
/-! # Further lemmas about `IsROrC` -/
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file