data.nat.log
⟷
Mathlib.Data.Nat.Log
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
nat.le_self_pow
, polynomial.sub_one_pow_totient_le_cyclotomic_eval
, polynomial.cyclotomic_eval_le_add_one_pow_totient
, polynomial.sub_one_pow_totient_lt_nat_abs_cyclotomic_eval
, zmod.order_of_units_dvd_card_sub_one
, and zmod.order_of_dvd_card_sub_one
.polynomial.cyclotomic_eval_lt_sub_one_pow_totient
to polynomial.cyclotomic_eval_lt_add_one_pow_totient
.nat.exists_prime_ge_modeq_one
with nat.exists_prime_gt_modeq_one
.≠ 0
instead of 0 <
in nat.exists_prime_ge_modeq_one
etc.Mathlib 4 version: leanprover-community/mathlib4#1273
@@ -70,7 +70,7 @@ begin
{ have b_pos : 0 < b := zero_le_one.trans_lt hb,
rw [succ_eq_add_one, add_le_add_iff_right, ←ih (y / b) (div_lt_self hy.bot_lt hb)
(nat.div_pos h.1 b_pos).ne', le_div_iff_mul_le b_pos, pow_succ'] },
- { exact iff_of_false (λ hby, h ⟨(le_self_pow hb.le x.succ_ne_zero).trans hby, hb⟩)
+ { exact iff_of_false (λ hby, h ⟨(le_self_pow x.succ_ne_zero _).trans hby, hb⟩)
(not_succ_le_zero _) }
end
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -121,7 +121,7 @@ theorem pow_le_iff_le_log {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) : b
· have b_pos : 0 < b := zero_le_one.trans_lt hb
rw [succ_eq_add_one, add_le_add_iff_right, ←
ih (y / b) (div_lt_self hy.bot_lt hb) (Nat.div_pos h.1 b_pos).ne', le_div_iff_mul_le b_pos,
- pow_succ']
+ pow_succ]
·
exact
iff_of_false (fun hby => h ⟨(le_self_pow x.succ_ne_zero _).trans hby, hb⟩)
@@ -192,7 +192,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
le_trans (pow_le_pow_right_of_le_one' hb m.le_succ)
·
simpa only [log_zero_right, hm.symm, false_iff_iff, not_and, not_lt, le_zero_iff,
- pow_succ] using mul_eq_zero_of_right _
+ pow_succ'] using mul_eq_zero_of_right _
#align nat.log_eq_iff Nat.log_eq_iff
-/
@@ -227,7 +227,7 @@ theorem log_eq_one_iff {b n : ℕ} : log b n = 1 ↔ n < b * b ∧ 1 < b ∧ b
#print Nat.log_mul_base /-
theorem log_mul_base {b n : ℕ} (hb : 1 < b) (hn : n ≠ 0) : log b (n * b) = log b n + 1 :=
by
- apply log_eq_of_pow_le_of_lt_pow <;> rw [pow_succ']
+ apply log_eq_of_pow_le_of_lt_pow <;> rw [pow_succ]
exacts [mul_le_mul_right' (pow_log_le_self _ hn) _,
(mul_lt_mul_right (zero_lt_one.trans hb)).2 (lt_pow_succ_log_self hb _)]
#align nat.log_mul_base Nat.log_mul_base
@@ -400,7 +400,7 @@ theorem le_pow_iff_clog_le {b : ℕ} (hb : 1 < b) {x y : ℕ} : x ≤ b ^ y ↔
rw [clog]; split_ifs
·
rw [succ_eq_add_one, add_le_add_iff_right, ← ih ((x + b - 1) / b) (add_pred_div_lt hb h.2),
- Nat.div_le_iff_le_mul_add_pred b_pos, ← pow_succ,
+ Nat.div_le_iff_le_mul_add_pred b_pos, ← pow_succ',
add_tsub_assoc_of_le (Nat.succ_le_of_lt b_pos), add_le_add_iff_right]
·
exact
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -139,7 +139,7 @@ theorem lt_pow_iff_log_lt {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) : y
theorem pow_le_of_le_log {b x y : ℕ} (hy : y ≠ 0) (h : x ≤ log b y) : b ^ x ≤ y :=
by
refine' (le_or_lt b 1).elim (fun hb => _) fun hb => (pow_le_iff_le_log hb hy).2 h
- rw [log_of_left_le_one hb, nonpos_iff_eq_zero] at h
+ rw [log_of_left_le_one hb, nonpos_iff_eq_zero] at h
rwa [h, pow_zero, one_le_iff_ne_zero]
#align nat.pow_le_of_le_log Nat.pow_le_of_le_log
-/
@@ -185,7 +185,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
rw [le_antisymm_iff, ← lt_succ_iff, ← pow_le_iff_le_log, ← lt_pow_iff_log_lt, and_comm] <;>
assumption
· have hm : m ≠ 0 := h.resolve_right hbn
- rw [not_and_or, not_lt, Ne.def, Classical.not_not] at hbn
+ rw [not_and_or, not_lt, Ne.def, Classical.not_not] at hbn
rcases hbn with (hb | rfl)
·
simpa only [log_of_left_le_one hb, hm.symm, false_iff_iff, not_and, not_lt] using
@@ -200,7 +200,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
theorem log_eq_of_pow_le_of_lt_pow {b m n : ℕ} (h₁ : b ^ m ≤ n) (h₂ : n < b ^ (m + 1)) :
log b n = m := by
rcases eq_or_ne m 0 with (rfl | hm)
- · rw [pow_one] at h₂ ; exact log_of_lt h₂
+ · rw [pow_one] at h₂; exact log_of_lt h₂
· exact (log_eq_iff (Or.inl hm)).2 ⟨h₁, h₂⟩
#align nat.log_eq_of_pow_le_of_lt_pow Nat.log_eq_of_pow_le_of_lt_pow
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -46,7 +46,7 @@ def log (b : ℕ) : ℕ → ℕ
theorem log_eq_zero_iff {b n : ℕ} : log b n = 0 ↔ n < b ∨ b ≤ 1 :=
by
rw [log, ite_eq_right_iff]
- simp only [Nat.succ_ne_zero, imp_false, Decidable.not_and, not_le, not_lt]
+ simp only [Nat.succ_ne_zero, imp_false, Decidable.not_and_iff_or_not_not, not_le, not_lt]
#align nat.log_eq_zero_iff Nat.log_eq_zero_iff
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -189,7 +189,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
rcases hbn with (hb | rfl)
·
simpa only [log_of_left_le_one hb, hm.symm, false_iff_iff, not_and, not_lt] using
- le_trans (pow_le_pow_of_le_one' hb m.le_succ)
+ le_trans (pow_le_pow_right_of_le_one' hb m.le_succ)
·
simpa only [log_zero_right, hm.symm, false_iff_iff, not_and, not_lt, le_zero_iff,
pow_succ] using mul_eq_zero_of_right _
@@ -264,7 +264,7 @@ theorem log_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : log b n ≤ lo
rcases eq_or_ne n 0 with (rfl | hn); · rw [log_zero_right, log_zero_right]
apply le_log_of_pow_le hc
calc
- c ^ log b n ≤ b ^ log b n := pow_le_pow_of_le_left' hb _
+ c ^ log b n ≤ b ^ log b n := pow_le_pow_left' hb _
_ ≤ n := pow_log_le_self _ hn
#align nat.log_anti_left Nat.log_anti_left
-/
@@ -454,7 +454,7 @@ theorem clog_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : clog b n ≤
rw [← le_pow_iff_clog_le (lt_of_lt_of_le hc hb)]
calc
n ≤ c ^ clog c n := le_pow_clog hc _
- _ ≤ b ^ clog c n := pow_le_pow_of_le_left (zero_lt_one.trans hc).le hb _
+ _ ≤ b ^ clog c n := pow_le_pow_left (zero_lt_one.trans hc).le hb _
#align nat.clog_anti_left Nat.clog_anti_left
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Yaël Dillies
-/
-import Mathbin.Data.Nat.Pow
-import Mathbin.Tactic.ByContra
+import Data.Nat.Pow
+import Tactic.ByContra
#align_import data.nat.log from "leanprover-community/mathlib"@"55d224c38461be1e8e4363247dd110137c24a4ff"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Yaël Dillies
-
-! This file was ported from Lean 3 source module data.nat.log
-! leanprover-community/mathlib commit 55d224c38461be1e8e4363247dd110137c24a4ff
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Data.Nat.Pow
import Mathbin.Tactic.ByContra
+#align_import data.nat.log from "leanprover-community/mathlib"@"55d224c38461be1e8e4363247dd110137c24a4ff"
+
/-!
# Natural number logarithms
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -269,7 +269,6 @@ theorem log_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : log b n ≤ lo
calc
c ^ log b n ≤ b ^ log b n := pow_le_pow_of_le_left' hb _
_ ≤ n := pow_log_le_self _ hn
-
#align nat.log_anti_left Nat.log_anti_left
-/
@@ -459,7 +458,6 @@ theorem clog_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : clog b n ≤
calc
n ≤ c ^ clog c n := le_pow_clog hc _
_ ≤ b ^ clog c n := pow_le_pow_of_le_left (zero_lt_one.trans hc).le hb _
-
#align nat.clog_anti_left Nat.clog_anti_left
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -142,7 +142,7 @@ theorem lt_pow_iff_log_lt {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) : y
theorem pow_le_of_le_log {b x y : ℕ} (hy : y ≠ 0) (h : x ≤ log b y) : b ^ x ≤ y :=
by
refine' (le_or_lt b 1).elim (fun hb => _) fun hb => (pow_le_iff_le_log hb hy).2 h
- rw [log_of_left_le_one hb, nonpos_iff_eq_zero] at h
+ rw [log_of_left_le_one hb, nonpos_iff_eq_zero] at h
rwa [h, pow_zero, one_le_iff_ne_zero]
#align nat.pow_le_of_le_log Nat.pow_le_of_le_log
-/
@@ -151,7 +151,7 @@ theorem pow_le_of_le_log {b x y : ℕ} (hy : y ≠ 0) (h : x ≤ log b y) : b ^
theorem le_log_of_pow_le {b x y : ℕ} (hb : 1 < b) (h : b ^ x ≤ y) : x ≤ log b y :=
by
rcases ne_or_eq y 0 with (hy | rfl)
- exacts[(pow_le_iff_le_log hb hy).1 h, (h.not_lt (pow_pos (zero_lt_one.trans hb) _)).elim]
+ exacts [(pow_le_iff_le_log hb hy).1 h, (h.not_lt (pow_pos (zero_lt_one.trans hb) _)).elim]
#align nat.le_log_of_pow_le Nat.le_log_of_pow_le
-/
@@ -188,7 +188,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
rw [le_antisymm_iff, ← lt_succ_iff, ← pow_le_iff_le_log, ← lt_pow_iff_log_lt, and_comm] <;>
assumption
· have hm : m ≠ 0 := h.resolve_right hbn
- rw [not_and_or, not_lt, Ne.def, Classical.not_not] at hbn
+ rw [not_and_or, not_lt, Ne.def, Classical.not_not] at hbn
rcases hbn with (hb | rfl)
·
simpa only [log_of_left_le_one hb, hm.symm, false_iff_iff, not_and, not_lt] using
@@ -203,7 +203,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
theorem log_eq_of_pow_le_of_lt_pow {b m n : ℕ} (h₁ : b ^ m ≤ n) (h₂ : n < b ^ (m + 1)) :
log b n = m := by
rcases eq_or_ne m 0 with (rfl | hm)
- · rw [pow_one] at h₂; exact log_of_lt h₂
+ · rw [pow_one] at h₂ ; exact log_of_lt h₂
· exact (log_eq_iff (Or.inl hm)).2 ⟨h₁, h₂⟩
#align nat.log_eq_of_pow_le_of_lt_pow Nat.log_eq_of_pow_le_of_lt_pow
-/
@@ -231,7 +231,7 @@ theorem log_eq_one_iff {b n : ℕ} : log b n = 1 ↔ n < b * b ∧ 1 < b ∧ b
theorem log_mul_base {b n : ℕ} (hb : 1 < b) (hn : n ≠ 0) : log b (n * b) = log b n + 1 :=
by
apply log_eq_of_pow_le_of_lt_pow <;> rw [pow_succ']
- exacts[mul_le_mul_right' (pow_log_le_self _ hn) _,
+ exacts [mul_le_mul_right' (pow_log_le_self _ hn) _,
(mul_lt_mul_right (zero_lt_one.trans hb)).2 (lt_pow_succ_log_self hb _)]
#align nat.log_mul_base Nat.log_mul_base
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -79,10 +79,8 @@ theorem log_pos {b n : ℕ} (hb : 1 < b) (hbn : b ≤ n) : 0 < log b n :=
-/
#print Nat.log_of_one_lt_of_le /-
-theorem log_of_one_lt_of_le {b n : ℕ} (h : 1 < b) (hn : b ≤ n) : log b n = log b (n / b) + 1 :=
- by
- rw [log]
- exact if_pos ⟨hn, h⟩
+theorem log_of_one_lt_of_le {b n : ℕ} (h : 1 < b) (hn : b ≤ n) : log b n = log b (n / b) + 1 := by
+ rw [log]; exact if_pos ⟨hn, h⟩
#align nat.log_of_one_lt_of_le Nat.log_of_one_lt_of_le
-/
@@ -205,8 +203,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
theorem log_eq_of_pow_le_of_lt_pow {b m n : ℕ} (h₁ : b ^ m ≤ n) (h₂ : n < b ^ (m + 1)) :
log b n = m := by
rcases eq_or_ne m 0 with (rfl | hm)
- · rw [pow_one] at h₂
- exact log_of_lt h₂
+ · rw [pow_one] at h₂; exact log_of_lt h₂
· exact (log_eq_iff (Or.inl hm)).2 ⟨h₁, h₂⟩
#align nat.log_eq_of_pow_le_of_lt_pow Nat.log_eq_of_pow_le_of_lt_pow
-/
@@ -251,8 +248,7 @@ theorem log_monotone {b : ℕ} : Monotone (log b) :=
by
refine' monotone_nat_of_le_succ fun n => _
cases' le_or_lt b 1 with hb hb
- · rw [log_of_left_le_one hb]
- exact zero_le _
+ · rw [log_of_left_le_one hb]; exact zero_le _
· exact le_log_of_pow_le hb (pow_log_le_add_one _ _)
#align nat.log_monotone Nat.log_monotone
-/
@@ -377,9 +373,7 @@ theorem clog_of_two_le {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) :
-/
#print Nat.clog_pos /-
-theorem clog_pos {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) : 0 < clog b n :=
- by
- rw [clog_of_two_le hb hn]
+theorem clog_pos {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) : 0 < clog b n := by rw [clog_of_two_le hb hn];
exact zero_lt_succ _
#align nat.clog_pos Nat.clog_pos
-/
@@ -427,8 +421,7 @@ theorem pow_lt_iff_lt_clog {b : ℕ} (hb : 1 < b) {x y : ℕ} : b ^ y < x ↔ y
#print Nat.clog_pow /-
theorem clog_pow (b x : ℕ) (hb : 1 < b) : clog b (b ^ x) = x :=
- eq_of_forall_ge_iff fun z => by
- rw [← le_pow_iff_clog_le hb]
+ eq_of_forall_ge_iff fun z => by rw [← le_pow_iff_clog_le hb];
exact (pow_right_strict_mono hb).le_iff_le
#align nat.clog_pow Nat.clog_pow
-/
@@ -452,8 +445,7 @@ theorem le_pow_clog {b : ℕ} (hb : 1 < b) (x : ℕ) : x ≤ b ^ clog b x :=
theorem clog_mono_right (b : ℕ) {n m : ℕ} (h : n ≤ m) : clog b n ≤ clog b m :=
by
cases' le_or_lt b 1 with hb hb
- · rw [clog_of_left_le_one hb]
- exact zero_le _
+ · rw [clog_of_left_le_one hb]; exact zero_le _
· rw [← le_pow_iff_clog_le hb]
exact h.trans (le_pow_clog hb _)
#align nat.clog_mono_right Nat.clog_mono_right
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -313,7 +313,6 @@ private theorem add_pred_div_lt {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) : (n + b
rw [div_lt_iff_lt_mul (zero_lt_one.trans hb), ← succ_le_iff, ← pred_eq_sub_one,
succ_pred_eq_of_pos (add_pos (zero_lt_one.trans hn) (zero_lt_one.trans hb))]
exact add_le_mul hn hb
-#align nat.add_pred_div_lt nat.add_pred_div_lt
/-! ### Ceil logarithm -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -302,7 +302,7 @@ theorem log_div_mul_self (b n : ℕ) : log b (n / b * b) = log b n :=
cases' le_or_lt b 1 with hb hb
· rw [log_of_left_le_one hb, log_of_left_le_one hb]
cases' lt_or_le n b with h h
- · rw [div_eq_of_lt h, zero_mul, log_zero_right, log_of_lt h]
+ · rw [div_eq_of_lt h, MulZeroClass.zero_mul, log_zero_right, log_of_lt h]
rw [log_mul_base hb (Nat.div_pos h (zero_le_one.trans_lt hb)).ne', log_div_base,
tsub_add_cancel_of_le (succ_le_iff.2 <| log_pos hb h)]
#align nat.log_div_mul_self Nat.log_div_mul_self
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Move Set.Ixx
, Finset.Ixx
, Multiset.Ixx
together under two different folders:
Order.Interval
for their definition and basic propertiesAlgebra.Order.Interval
for their algebraic propertiesMove the definitions of Multiset.Ixx
to what is now Order.Interval.Multiset
. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx
three years ago).
Move the algebraic results out of what is now Order.Interval.Finset.Basic
to a new file Algebra.Order.Interval.Finset.Basic
.
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Yaël Dillies
-/
import Mathlib.Data.Nat.Defs
-import Mathlib.Data.Set.Intervals.Basic
+import Mathlib.Order.Interval.Set.Basic
import Mathlib.Tactic.Monotonicity.Attr
#align_import data.nat.log from "leanprover-community/mathlib"@"3e00d81bdcbf77c8188bbd18f5524ddc3ed8cac6"
These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>
@@ -53,7 +53,7 @@ theorem log_of_left_le_one {b : ℕ} (hb : b ≤ 1) (n) : log b n = 0 :=
@[simp]
theorem log_pos_iff {b n : ℕ} : 0 < log b n ↔ b ≤ n ∧ 1 < b := by
- rw [Nat.pos_iff_ne_zero, Ne.def, log_eq_zero_iff, not_or, not_lt, not_le]
+ rw [Nat.pos_iff_ne_zero, Ne, log_eq_zero_iff, not_or, not_lt, not_le]
#align nat.log_pos_iff Nat.log_pos_iff
theorem log_pos {b n : ℕ} (hb : 1 < b) (hbn : b ≤ n) : 0 < log b n :=
@@ -137,7 +137,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
· rw [le_antisymm_iff, ← Nat.lt_succ_iff, ← pow_le_iff_le_log, ← lt_pow_iff_log_lt, and_comm] <;>
assumption
have hm : m ≠ 0 := h.resolve_right hbn
- rw [not_and_or, not_lt, Ne.def, not_not] at hbn
+ rw [not_and_or, not_lt, Ne, not_not] at hbn
rcases hbn with (hb | rfl)
· obtain rfl | rfl := le_one_iff_eq_zero_or_eq_one.1 hb
any_goals
Move basic Nat
lemmas from Data.Nat.Order.Basic
and Data.Nat.Pow
to Data.Nat.Defs
. Most proofs need adapting, but that's easily solved by replacing the general mathlib lemmas by the new Std Nat
-specific lemmas and using omega
.
Data.Nat.Pow
to Algebra.GroupPower.Order
Data.Nat.Pow
to Algebra.GroupPower.Order
bit
/bit0
/bit1
lemmas from Data.Nat.Order.Basic
to Data.Nat.Bits
Data.Nat.Order.Basic
anymoreNat
-specific lemmas to help fix the fallout (look for nolint simpNF
)Nat.mul_self_le_mul_self_iff
and Nat.mul_self_lt_mul_self_iff
around (they were misnamed)Nat.one_lt_pow
implicit@@ -3,8 +3,9 @@ Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Yaël Dillies
-/
-import Mathlib.Data.Nat.Pow
+import Mathlib.Data.Nat.Defs
import Mathlib.Data.Set.Intervals.Basic
+import Mathlib.Tactic.Monotonicity.Attr
#align_import data.nat.log from "leanprover-community/mathlib"@"3e00d81bdcbf77c8188bbd18f5524ddc3ed8cac6"
@@ -31,7 +32,7 @@ such that `b^k ≤ n`, so if `b^k = n`, it returns exactly `k`. -/
def log (b : ℕ) : ℕ → ℕ
| n =>
if h : b ≤ n ∧ 1 < b then
- have : n / b < n := div_lt_self ((zero_lt_one.trans h.2).trans_le h.1) h.2
+ have : n / b < n := div_lt_self ((Nat.zero_lt_one.trans h.2).trans_le h.1) h.2
log b (n / b) + 1
else 0
#align nat.log Nat.log
@@ -52,7 +53,7 @@ theorem log_of_left_le_one {b : ℕ} (hb : b ≤ 1) (n) : log b n = 0 :=
@[simp]
theorem log_pos_iff {b n : ℕ} : 0 < log b n ↔ b ≤ n ∧ 1 < b := by
- rw [pos_iff_ne_zero, Ne.def, log_eq_zero_iff, not_or, not_lt, not_le]
+ rw [Nat.pos_iff_ne_zero, Ne.def, log_eq_zero_iff, not_or, not_lt, not_le]
#align nat.log_pos_iff Nat.log_pos_iff
theorem log_pos {b n : ℕ} (hb : 1 < b) (hbn : b ≤ n) : 0 < log b n :=
@@ -64,9 +65,7 @@ theorem log_of_one_lt_of_le {b n : ℕ} (h : 1 < b) (hn : b ≤ n) : log b n = l
exact if_pos ⟨hn, h⟩
#align nat.log_of_one_lt_of_le Nat.log_of_one_lt_of_le
-@[simp]
-theorem log_zero_left : ∀ n, log 0 n = 0 :=
- log_of_left_le_one zero_le_one
+@[simp] lemma log_zero_left : ∀ n, log 0 n = 0 := log_of_left_le_one $ Nat.zero_le _
#align nat.log_zero_left Nat.log_zero_left
@[simp]
@@ -90,13 +89,13 @@ theorem pow_le_iff_le_log {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) :
b ^ x ≤ y ↔ x ≤ log b y := by
induction' y using Nat.strong_induction_on with y ih generalizing x
cases x with
- | zero => exact iff_of_true hy.bot_lt (zero_le _)
+ | zero => dsimp; omega
| succ x =>
rw [log]; split_ifs with h
- · have b_pos : 0 < b := zero_le_one.trans_lt hb
- rw [succ_eq_add_one, add_le_add_iff_right, ←
- ih (y / b) (div_lt_self hy.bot_lt hb) (Nat.div_pos h.1 b_pos).ne', le_div_iff_mul_le b_pos,
- pow_succ', mul_comm]
+ · have b_pos : 0 < b := lt_of_succ_lt hb
+ rw [succ_eq_add_one, Nat.add_le_add_iff_right, ← ih (y / b) (div_lt_self
+ (Nat.pos_iff_ne_zero.2 hy) hb) (Nat.div_pos h.1 b_pos).ne', le_div_iff_mul_le b_pos,
+ pow_succ', Nat.mul_comm]
· exact iff_of_false (fun hby => h ⟨(le_self_pow x.succ_ne_zero _).trans hby, hb⟩)
(not_succ_le_zero _)
#align nat.pow_le_iff_le_log Nat.pow_le_iff_le_log
@@ -107,13 +106,13 @@ theorem lt_pow_iff_log_lt {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) : y
theorem pow_le_of_le_log {b x y : ℕ} (hy : y ≠ 0) (h : x ≤ log b y) : b ^ x ≤ y := by
refine' (le_or_lt b 1).elim (fun hb => _) fun hb => (pow_le_iff_le_log hb hy).2 h
- rw [log_of_left_le_one hb, nonpos_iff_eq_zero] at h
- rwa [h, pow_zero, one_le_iff_ne_zero]
+ rw [log_of_left_le_one hb, Nat.le_zero] at h
+ rwa [h, Nat.pow_zero, one_le_iff_ne_zero]
#align nat.pow_le_of_le_log Nat.pow_le_of_le_log
theorem le_log_of_pow_le {b x y : ℕ} (hb : 1 < b) (h : b ^ x ≤ y) : x ≤ log b y := by
rcases ne_or_eq y 0 with (hy | rfl)
- exacts [(pow_le_iff_le_log hb hy).1 h, (h.not_lt (pow_pos (zero_lt_one.trans hb) _)).elim]
+ exacts [(pow_le_iff_le_log hb hy).1 h, (h.not_lt (Nat.pow_pos (Nat.zero_lt_one.trans hb))).elim]
#align nat.le_log_of_pow_le Nat.le_log_of_pow_le
theorem pow_log_le_self (b : ℕ) {x : ℕ} (hx : x ≠ 0) : b ^ log b x ≤ x :=
@@ -137,28 +136,31 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
rcases em (1 < b ∧ n ≠ 0) with (⟨hb, hn⟩ | hbn)
· rw [le_antisymm_iff, ← Nat.lt_succ_iff, ← pow_le_iff_le_log, ← lt_pow_iff_log_lt, and_comm] <;>
assumption
- · have hm : m ≠ 0 := h.resolve_right hbn
- rw [not_and_or, not_lt, Ne.def, not_not] at hbn
- rcases hbn with (hb | rfl)
- · simpa only [log_of_left_le_one hb, hm.symm, false_iff_iff, not_and, not_lt] using
- le_trans (pow_le_pow_right_of_le_one' hb m.le_succ)
- · simp [@eq_comm _ 0, hm]
+ have hm : m ≠ 0 := h.resolve_right hbn
+ rw [not_and_or, not_lt, Ne.def, not_not] at hbn
+ rcases hbn with (hb | rfl)
+ · obtain rfl | rfl := le_one_iff_eq_zero_or_eq_one.1 hb
+ any_goals
+ simp only [ne_eq, zero_eq, reduceSucc, lt_self_iff_false, not_lt_zero, false_and, or_false]
+ at h
+ simp [h, eq_comm (a := 0), Nat.zero_pow (Nat.pos_iff_ne_zero.2 _)] <;> omega
+ · simp [@eq_comm _ 0, hm]
#align nat.log_eq_iff Nat.log_eq_iff
theorem log_eq_of_pow_le_of_lt_pow {b m n : ℕ} (h₁ : b ^ m ≤ n) (h₂ : n < b ^ (m + 1)) :
log b n = m := by
rcases eq_or_ne m 0 with (rfl | hm)
- · rw [pow_one] at h₂
+ · rw [Nat.pow_one] at h₂
exact log_of_lt h₂
· exact (log_eq_iff (Or.inl hm)).2 ⟨h₁, h₂⟩
#align nat.log_eq_of_pow_le_of_lt_pow Nat.log_eq_of_pow_le_of_lt_pow
theorem log_pow {b : ℕ} (hb : 1 < b) (x : ℕ) : log b (b ^ x) = x :=
- log_eq_of_pow_le_of_lt_pow le_rfl (pow_lt_pow_right hb x.lt_succ_self)
+ log_eq_of_pow_le_of_lt_pow le_rfl (Nat.pow_lt_pow_right hb x.lt_succ_self)
#align nat.log_pow Nat.log_pow
theorem log_eq_one_iff' {b n : ℕ} : log b n = 1 ↔ b ≤ n ∧ n < b * b := by
- rw [log_eq_iff (Or.inl one_ne_zero), pow_add, pow_one]
+ rw [log_eq_iff (Or.inl Nat.one_ne_zero), Nat.pow_add, Nat.pow_one]
#align nat.log_eq_one_iff' Nat.log_eq_one_iff'
theorem log_eq_one_iff {b n : ℕ} : log b n = 1 ↔ n < b * b ∧ 1 < b ∧ b ≤ n :=
@@ -167,9 +169,9 @@ theorem log_eq_one_iff {b n : ℕ} : log b n = 1 ↔ n < b * b ∧ 1 < b ∧ b
#align nat.log_eq_one_iff Nat.log_eq_one_iff
theorem log_mul_base {b n : ℕ} (hb : 1 < b) (hn : n ≠ 0) : log b (n * b) = log b n + 1 := by
- apply log_eq_of_pow_le_of_lt_pow <;> rw [pow_succ', mul_comm b]
- exacts [mul_le_mul_right' (pow_log_le_self _ hn) _,
- (mul_lt_mul_right (zero_lt_one.trans hb)).2 (lt_pow_succ_log_self hb _)]
+ apply log_eq_of_pow_le_of_lt_pow <;> rw [pow_succ', Nat.mul_comm b]
+ exacts [Nat.mul_le_mul_right _ (pow_log_le_self _ hn),
+ (Nat.mul_lt_mul_right (Nat.zero_lt_one.trans hb)).2 (lt_pow_succ_log_self hb _)]
#align nat.log_mul_base Nat.log_mul_base
theorem pow_log_le_add_one (b : ℕ) : ∀ x, b ^ log b x ≤ x + 1
@@ -195,7 +197,7 @@ theorem log_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : log b n ≤ lo
rcases eq_or_ne n 0 with (rfl | hn); · rw [log_zero_right, log_zero_right]
apply le_log_of_pow_le hc
calc
- c ^ log b n ≤ b ^ log b n := pow_le_pow_left' hb _
+ c ^ log b n ≤ b ^ log b n := Nat.pow_le_pow_left hb _
_ ≤ n := pow_log_le_self _ hn
#align nat.log_anti_left Nat.log_anti_left
@@ -209,7 +211,7 @@ theorem log_div_base (b n : ℕ) : log b (n / b) = log b n - 1 := by
· rw [log_of_left_le_one hb, log_of_left_le_one hb, Nat.zero_sub]
cases' lt_or_le n b with h h
· rw [div_eq_of_lt h, log_of_lt h, log_zero_right]
- rw [log_of_one_lt_of_le hb h, add_tsub_cancel_right]
+ rw [log_of_one_lt_of_le hb h, Nat.add_sub_cancel_right]
#align nat.log_div_base Nat.log_div_base
@[simp]
@@ -217,15 +219,15 @@ theorem log_div_mul_self (b n : ℕ) : log b (n / b * b) = log b n := by
rcases le_or_lt b 1 with hb | hb
· rw [log_of_left_le_one hb, log_of_left_le_one hb]
cases' lt_or_le n b with h h
- · rw [div_eq_of_lt h, zero_mul, log_zero_right, log_of_lt h]
- rw [log_mul_base hb (Nat.div_pos h (zero_le_one.trans_lt hb)).ne', log_div_base,
- tsub_add_cancel_of_le (succ_le_iff.2 <| log_pos hb h)]
+ · rw [div_eq_of_lt h, Nat.zero_mul, log_zero_right, log_of_lt h]
+ rw [log_mul_base hb (Nat.div_pos h (by omega)).ne', log_div_base,
+ Nat.sub_add_cancel (succ_le_iff.2 <| log_pos hb h)]
#align nat.log_div_mul_self Nat.log_div_mul_self
theorem add_pred_div_lt {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) : (n + b - 1) / b < n := by
- rw [div_lt_iff_lt_mul (zero_lt_one.trans hb), ← succ_le_iff, ← pred_eq_sub_one,
- succ_pred_eq_of_pos (add_pos (zero_lt_one.trans hn) (zero_lt_one.trans hb))]
- exact add_le_mul hn hb
+ rw [div_lt_iff_lt_mul (by omega), ← succ_le_iff, ← pred_eq_sub_one,
+ succ_pred_eq_of_pos (by omega)]
+ exact Nat.add_le_mul hn hb
-- Porting note: Was private in mathlib 3
-- #align nat.add_pred_div_lt Nat.add_pred_div_lt
@@ -251,14 +253,10 @@ theorem clog_of_right_le_one {n : ℕ} (hn : n ≤ 1) (b : ℕ) : clog b n = 0 :
rw [clog, dif_neg fun h : 1 < b ∧ 1 < n => h.2.not_le hn]
#align nat.clog_of_right_le_one Nat.clog_of_right_le_one
-@[simp]
-theorem clog_zero_left (n : ℕ) : clog 0 n = 0 :=
- clog_of_left_le_one zero_le_one _
+@[simp] lemma clog_zero_left (n : ℕ) : clog 0 n = 0 := clog_of_left_le_one (Nat.zero_le _) _
#align nat.clog_zero_left Nat.clog_zero_left
-@[simp]
-theorem clog_zero_right (b : ℕ) : clog b 0 = 0 :=
- clog_of_right_le_one zero_le_one _
+@[simp] lemma clog_zero_right (b : ℕ) : clog b 0 = 0 := clog_of_right_le_one (Nat.zero_le _) _
#align nat.clog_zero_right Nat.clog_zero_right
@[simp]
@@ -282,27 +280,24 @@ theorem clog_pos {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) : 0 < clog b n := by
theorem clog_eq_one {b n : ℕ} (hn : 2 ≤ n) (h : n ≤ b) : clog b n = 1 := by
rw [clog_of_two_le (hn.trans h) hn, clog_of_right_le_one]
- have n_pos : 0 < n := (zero_lt_two' ℕ).trans_le hn
- rw [← Nat.lt_succ_iff, Nat.div_lt_iff_lt_mul (n_pos.trans_le h), ← succ_le_iff, ← pred_eq_sub_one,
- succ_pred_eq_of_pos (add_pos n_pos (n_pos.trans_le h)), succ_mul, one_mul]
- exact add_le_add_right h _
+ rw [← Nat.lt_succ_iff, Nat.div_lt_iff_lt_mul] <;> omega
#align nat.clog_eq_one Nat.clog_eq_one
/-- `clog b` and `pow b` form a Galois connection. -/
theorem le_pow_iff_clog_le {b : ℕ} (hb : 1 < b) {x y : ℕ} : x ≤ b ^ y ↔ clog b x ≤ y := by
induction' x using Nat.strong_induction_on with x ih generalizing y
cases y
- · rw [pow_zero]
+ · rw [Nat.pow_zero]
refine' ⟨fun h => (clog_of_right_le_one h b).le, _⟩
simp_rw [← not_lt]
contrapose!
exact clog_pos hb
- have b_pos : 0 < b := (zero_lt_one' ℕ).trans hb
+ have b_pos : 0 < b := zero_lt_of_lt hb
rw [clog]; split_ifs with h
- · rw [succ_eq_add_one, add_le_add_iff_right, ← ih ((x + b - 1) / b) (add_pred_div_lt hb h.2),
- Nat.div_le_iff_le_mul_add_pred b_pos, mul_comm b, ← Nat.pow_succ,
- add_tsub_assoc_of_le (Nat.succ_le_of_lt b_pos), add_le_add_iff_right]
- · exact iff_of_true ((not_lt.1 (not_and.1 h hb)).trans <| succ_le_of_lt <| pow_pos b_pos _)
+ · rw [succ_eq_add_one, Nat.add_le_add_iff_right, ← ih ((x + b - 1) / b) (add_pred_div_lt hb h.2),
+ Nat.div_le_iff_le_mul_add_pred b_pos, Nat.mul_comm b, ← Nat.pow_succ,
+ Nat.add_sub_assoc (Nat.succ_le_of_lt b_pos), Nat.add_le_add_iff_right]
+ · exact iff_of_true ((not_lt.1 (not_and.1 h hb)).trans <| succ_le_of_lt <| Nat.pow_pos b_pos)
(zero_le _)
#align nat.le_pow_iff_clog_le Nat.le_pow_iff_clog_le
@@ -311,9 +306,7 @@ theorem pow_lt_iff_lt_clog {b : ℕ} (hb : 1 < b) {x y : ℕ} : b ^ y < x ↔ y
#align nat.pow_lt_iff_lt_clog Nat.pow_lt_iff_lt_clog
theorem clog_pow (b x : ℕ) (hb : 1 < b) : clog b (b ^ x) = x :=
- eq_of_forall_ge_iff fun z => by
- rw [← le_pow_iff_clog_le hb]
- exact (pow_right_strictMono hb).le_iff_le
+ eq_of_forall_ge_iff fun z ↦ by rw [← le_pow_iff_clog_le hb, Nat.pow_le_pow_iff_right hb]
#align nat.clog_pow Nat.clog_pow
theorem pow_pred_clog_lt_self {b : ℕ} (hb : 1 < b) {x : ℕ} (hx : 1 < x) :
@@ -359,7 +352,7 @@ theorem log_le_clog (b n : ℕ) : log b n ≤ clog b n := by
rw [log_zero_right]
exact zero_le _
| succ n =>
- exact (pow_right_strictMono hb).le_iff_le.1
+ exact (Nat.pow_le_pow_iff_right hb).1
((pow_log_le_self b n.succ_ne_zero).trans <| le_pow_clog hb _)
#align nat.log_le_clog Nat.log_le_clog
This is a very large PR, but it has been reviewed piecemeal already in PRs to the bump/v4.7.0
branch as we update to intermediate nightlies.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: damiano <adomani@gmail.com>
@@ -173,7 +173,7 @@ theorem log_mul_base {b n : ℕ} (hb : 1 < b) (hn : n ≠ 0) : log b (n * b) = l
#align nat.log_mul_base Nat.log_mul_base
theorem pow_log_le_add_one (b : ℕ) : ∀ x, b ^ log b x ≤ x + 1
- | 0 => by rw [log_zero_right, pow_zero]
+ | 0 => by rw [log_zero_right, Nat.pow_zero]
| x + 1 => (pow_log_le_self b x.succ_ne_zero).trans (x + 1).le_succ
#align nat.pow_log_le_add_one Nat.pow_log_le_add_one
@@ -300,7 +300,7 @@ theorem le_pow_iff_clog_le {b : ℕ} (hb : 1 < b) {x y : ℕ} : x ≤ b ^ y ↔
have b_pos : 0 < b := (zero_lt_one' ℕ).trans hb
rw [clog]; split_ifs with h
· rw [succ_eq_add_one, add_le_add_iff_right, ← ih ((x + b - 1) / b) (add_pred_div_lt hb h.2),
- Nat.div_le_iff_le_mul_add_pred b_pos, mul_comm b, ← pow_succ,
+ Nat.div_le_iff_le_mul_add_pred b_pos, mul_comm b, ← Nat.pow_succ,
add_tsub_assoc_of_le (Nat.succ_le_of_lt b_pos), add_le_add_iff_right]
· exact iff_of_true ((not_lt.1 (not_and.1 h hb)).trans <| succ_le_of_lt <| pow_pos b_pos _)
(zero_le _)
@@ -135,7 +135,7 @@ theorem lt_pow_succ_log_self {b : ℕ} (hb : 1 < b) (x : ℕ) : x < b ^ (log b x
theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
log b n = m ↔ b ^ m ≤ n ∧ n < b ^ (m + 1) := by
rcases em (1 < b ∧ n ≠ 0) with (⟨hb, hn⟩ | hbn)
- · rw [le_antisymm_iff, ← lt_succ_iff, ← pow_le_iff_le_log, ← lt_pow_iff_log_lt, and_comm] <;>
+ · rw [le_antisymm_iff, ← Nat.lt_succ_iff, ← pow_le_iff_le_log, ← lt_pow_iff_log_lt, and_comm] <;>
assumption
· have hm : m ≠ 0 := h.resolve_right hbn
rw [not_and_or, not_lt, Ne.def, not_not] at hbn
@@ -283,7 +283,7 @@ theorem clog_pos {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) : 0 < clog b n := by
theorem clog_eq_one {b n : ℕ} (hn : 2 ≤ n) (h : n ≤ b) : clog b n = 1 := by
rw [clog_of_two_le (hn.trans h) hn, clog_of_right_le_one]
have n_pos : 0 < n := (zero_lt_two' ℕ).trans_le hn
- rw [← lt_succ_iff, Nat.div_lt_iff_lt_mul (n_pos.trans_le h), ← succ_le_iff, ← pred_eq_sub_one,
+ rw [← Nat.lt_succ_iff, Nat.div_lt_iff_lt_mul (n_pos.trans_le h), ← succ_le_iff, ← pred_eq_sub_one,
succ_pred_eq_of_pos (add_pos n_pos (n_pos.trans_le h)), succ_mul, one_mul]
exact add_le_add_right h _
#align nat.clog_eq_one Nat.clog_eq_one
f ^ n
(#9617)
This involves moving lemmas from Algebra.GroupPower.Ring
to Algebra.GroupWithZero.Basic
and changing some 0 < n
assumptions to n ≠ 0
.
From LeanAPAP
@@ -142,8 +142,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
rcases hbn with (hb | rfl)
· simpa only [log_of_left_le_one hb, hm.symm, false_iff_iff, not_and, not_lt] using
le_trans (pow_le_pow_right_of_le_one' hb m.le_succ)
- · simpa only [log_zero_right, hm.symm, nonpos_iff_eq_zero, false_iff, not_and, not_lt,
- add_pos_iff, zero_lt_one, or_true, pow_eq_zero_iff] using pow_eq_zero
+ · simp [@eq_comm _ 0, hm]
#align nat.log_eq_iff Nat.log_eq_iff
theorem log_eq_of_pow_le_of_lt_pow {b m n : ℕ} (h₁ : b ^ m ≤ n) (h₂ : n < b ^ (m + 1)) :
@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Yaël Dillies
-/
import Mathlib.Data.Nat.Pow
+import Mathlib.Data.Set.Intervals.Basic
#align_import data.nat.log from "leanprover-community/mathlib"@"3e00d81bdcbf77c8188bbd18f5524ddc3ed8cac6"
cases'
(#9171)
I literally went through and regex'd some uses of cases'
, replacing them with rcases
; this is meant to be a low effort PR as I hope that tools can do this in the future.
rcases
is an easier replacement than cases
, though with better tools we could in future do a second pass converting simple rcases
added here (and existing ones) to cases
.
@@ -179,7 +179,7 @@ theorem pow_log_le_add_one (b : ℕ) : ∀ x, b ^ log b x ≤ x + 1
theorem log_monotone {b : ℕ} : Monotone (log b) := by
refine' monotone_nat_of_le_succ fun n => _
- cases' le_or_lt b 1 with hb hb
+ rcases le_or_lt b 1 with hb | hb
· rw [log_of_left_le_one hb]
exact zero_le _
· exact le_log_of_pow_le hb (pow_log_le_add_one _ _)
@@ -205,7 +205,7 @@ theorem log_antitone_left {n : ℕ} : AntitoneOn (fun b => log b n) (Set.Ioi 1)
@[simp]
theorem log_div_base (b n : ℕ) : log b (n / b) = log b n - 1 := by
- cases' le_or_lt b 1 with hb hb
+ rcases le_or_lt b 1 with hb | hb
· rw [log_of_left_le_one hb, log_of_left_le_one hb, Nat.zero_sub]
cases' lt_or_le n b with h h
· rw [div_eq_of_lt h, log_of_lt h, log_zero_right]
@@ -214,7 +214,7 @@ theorem log_div_base (b n : ℕ) : log b (n / b) = log b n - 1 := by
@[simp]
theorem log_div_mul_self (b n : ℕ) : log b (n / b * b) = log b n := by
- cases' le_or_lt b 1 with hb hb
+ rcases le_or_lt b 1 with hb | hb
· rw [log_of_left_le_one hb, log_of_left_le_one hb]
cases' lt_or_le n b with h h
· rw [div_eq_of_lt h, zero_mul, log_zero_right, log_of_lt h]
@@ -328,7 +328,7 @@ theorem le_pow_clog {b : ℕ} (hb : 1 < b) (x : ℕ) : x ≤ b ^ clog b x :=
@[mono]
theorem clog_mono_right (b : ℕ) {n m : ℕ} (h : n ≤ m) : clog b n ≤ clog b m := by
- cases' le_or_lt b 1 with hb hb
+ rcases le_or_lt b 1 with hb | hb
· rw [clog_of_left_le_one hb]
exact zero_le _
· rw [← le_pow_iff_clog_le hb]
The names for lemmas about monotonicity of (a ^ ·)
and (· ^ n)
were a mess. This PR tidies up everything related by following the naming convention for (a * ·)
and (· * b)
. Namely, (a ^ ·)
is pow_right
and (· ^ n)
is pow_left
in lemma names. All lemma renames follow the corresponding multiplication lemma names closely.
Algebra.GroupPower.Order
pow_mono
→ pow_right_mono
pow_le_pow
→ pow_le_pow_right
pow_le_pow_of_le_left
→ pow_le_pow_left
pow_lt_pow_of_lt_left
→ pow_lt_pow_left
strictMonoOn_pow
→ pow_left_strictMonoOn
pow_strictMono_right
→ pow_right_strictMono
pow_lt_pow
→ pow_lt_pow_right
pow_lt_pow_iff
→ pow_lt_pow_iff_right
pow_le_pow_iff
→ pow_le_pow_iff_right
self_lt_pow
→ lt_self_pow
strictAnti_pow
→ pow_right_strictAnti
pow_lt_pow_iff_of_lt_one
→ pow_lt_pow_iff_right_of_lt_one
pow_lt_pow_of_lt_one
→ pow_lt_pow_right_of_lt_one
lt_of_pow_lt_pow
→ lt_of_pow_lt_pow_left
le_of_pow_le_pow
→ le_of_pow_le_pow_left
pow_lt_pow₀
→ pow_lt_pow_right₀
Algebra.GroupPower.CovariantClass
pow_le_pow_of_le_left'
→ pow_le_pow_left'
nsmul_le_nsmul_of_le_right
→ nsmul_le_nsmul_right
pow_lt_pow'
→ pow_lt_pow_right'
nsmul_lt_nsmul
→ nsmul_lt_nsmul_left
pow_strictMono_left
→ pow_right_strictMono'
nsmul_strictMono_right
→ nsmul_left_strictMono
StrictMono.pow_right'
→ StrictMono.pow_const
StrictMono.nsmul_left
→ StrictMono.const_nsmul
pow_strictMono_right'
→ pow_left_strictMono
nsmul_strictMono_left
→ nsmul_right_strictMono
Monotone.pow_right
→ Monotone.pow_const
Monotone.nsmul_left
→ Monotone.const_nsmul
lt_of_pow_lt_pow'
→ lt_of_pow_lt_pow_left'
lt_of_nsmul_lt_nsmul
→ lt_of_nsmul_lt_nsmul_right
pow_le_pow'
→ pow_le_pow_right'
nsmul_le_nsmul
→ nsmul_le_nsmul_left
pow_le_pow_of_le_one'
→ pow_le_pow_right_of_le_one'
nsmul_le_nsmul_of_nonpos
→ nsmul_le_nsmul_left_of_nonpos
le_of_pow_le_pow'
→ le_of_pow_le_pow_left'
le_of_nsmul_le_nsmul'
→ le_of_nsmul_le_nsmul_right'
pow_le_pow_iff'
→ pow_le_pow_iff_right'
nsmul_le_nsmul_iff
→ nsmul_le_nsmul_iff_left
pow_lt_pow_iff'
→ pow_lt_pow_iff_right'
nsmul_lt_nsmul_iff
→ nsmul_lt_nsmul_iff_left
Data.Nat.Pow
Nat.pow_lt_pow_of_lt_left
→ Nat.pow_lt_pow_left
Nat.pow_le_iff_le_left
→ Nat.pow_le_pow_iff_left
Nat.pow_lt_iff_lt_left
→ Nat.pow_lt_pow_iff_left
pow_le_pow_iff_left
pow_lt_pow_iff_left
pow_right_injective
pow_right_inj
Nat.pow_le_pow_left
to have the correct name since Nat.pow_le_pow_of_le_left
is in Std.Nat.pow_le_pow_right
to have the correct name since Nat.pow_le_pow_of_le_right
is in Std.self_le_pow
was a duplicate of le_self_pow
.Nat.pow_lt_pow_of_lt_right
is defeq to pow_lt_pow_right
.Nat.pow_right_strictMono
is defeq to pow_right_strictMono
.Nat.pow_le_iff_le_right
is defeq to pow_le_pow_iff_right
.Nat.pow_lt_iff_lt_right
is defeq to pow_lt_pow_iff_right
.0 < n
or 1 ≤ n
to n ≠ 0
.Nat
lemmas have been protected
.@@ -140,7 +140,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
rw [not_and_or, not_lt, Ne.def, not_not] at hbn
rcases hbn with (hb | rfl)
· simpa only [log_of_left_le_one hb, hm.symm, false_iff_iff, not_and, not_lt] using
- le_trans (pow_le_pow_of_le_one' hb m.le_succ)
+ le_trans (pow_le_pow_right_of_le_one' hb m.le_succ)
· simpa only [log_zero_right, hm.symm, nonpos_iff_eq_zero, false_iff, not_and, not_lt,
add_pos_iff, zero_lt_one, or_true, pow_eq_zero_iff] using pow_eq_zero
#align nat.log_eq_iff Nat.log_eq_iff
@@ -154,7 +154,7 @@ theorem log_eq_of_pow_le_of_lt_pow {b m n : ℕ} (h₁ : b ^ m ≤ n) (h₂ : n
#align nat.log_eq_of_pow_le_of_lt_pow Nat.log_eq_of_pow_le_of_lt_pow
theorem log_pow {b : ℕ} (hb : 1 < b) (x : ℕ) : log b (b ^ x) = x :=
- log_eq_of_pow_le_of_lt_pow le_rfl (pow_lt_pow hb x.lt_succ_self)
+ log_eq_of_pow_le_of_lt_pow le_rfl (pow_lt_pow_right hb x.lt_succ_self)
#align nat.log_pow Nat.log_pow
theorem log_eq_one_iff' {b n : ℕ} : log b n = 1 ↔ b ≤ n ∧ n < b * b := by
@@ -195,7 +195,7 @@ theorem log_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : log b n ≤ lo
rcases eq_or_ne n 0 with (rfl | hn); · rw [log_zero_right, log_zero_right]
apply le_log_of_pow_le hc
calc
- c ^ log b n ≤ b ^ log b n := pow_le_pow_of_le_left' hb _
+ c ^ log b n ≤ b ^ log b n := pow_le_pow_left' hb _
_ ≤ n := pow_log_le_self _ hn
#align nat.log_anti_left Nat.log_anti_left
@@ -340,7 +340,7 @@ theorem clog_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : clog b n ≤
rw [← le_pow_iff_clog_le (lt_of_lt_of_le hc hb)]
calc
n ≤ c ^ clog c n := le_pow_clog hc _
- _ ≤ b ^ clog c n := pow_le_pow_of_le_left hb _
+ _ ≤ b ^ clog c n := Nat.pow_le_pow_left hb _
#align nat.clog_anti_left Nat.clog_anti_left
theorem clog_monotone (b : ℕ) : Monotone (clog b) := fun _ _ => clog_mono_right _
This is the supremum of
along with some minor fixes from failures on nightly-testing as Mathlib master
is merged into it.
Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.
I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0
branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.
In particular this includes adjustments for the Lean PRs
We can get rid of all the
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)
macros across Mathlib (and in any projects that want to write natural number powers of reals).
Changes the default behaviour of simp
to (config := {decide := false})
. This makes simp
(and consequentially norm_num
) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp
or norm_num
to decide
or rfl
, or adding (config := {decide := true})
.
This changed the behaviour of simp
so that simp [f]
will only unfold "fully applied" occurrences of f
. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true })
. We may in future add a syntax for this, e.g. simp [!f]
; please provide feedback! In the meantime, we have made the following changes:
(config := { unfoldPartialApp := true })
in some places, to recover the old behaviour@[eqns]
to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp
and Function.flip
.This change in Lean may require further changes down the line (e.g. adding the !f
syntax, and/or upstreaming the special treatment for Function.comp
and Function.flip
, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!
Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>
@@ -142,7 +142,7 @@ theorem log_eq_iff {b m n : ℕ} (h : m ≠ 0 ∨ 1 < b ∧ n ≠ 0) :
· simpa only [log_of_left_le_one hb, hm.symm, false_iff_iff, not_and, not_lt] using
le_trans (pow_le_pow_of_le_one' hb m.le_succ)
· simpa only [log_zero_right, hm.symm, nonpos_iff_eq_zero, false_iff, not_and, not_lt,
- add_pos_iff, or_true, pow_eq_zero_iff] using pow_eq_zero
+ add_pos_iff, zero_lt_one, or_true, pow_eq_zero_iff] using pow_eq_zero
#align nat.log_eq_iff Nat.log_eq_iff
theorem log_eq_of_pow_le_of_lt_pow {b m n : ℕ} (h₁ : b ^ m ≤ n) (h₂ : n < b ^ (m + 1)) :
@@ -317,7 +317,7 @@ theorem clog_pow (b x : ℕ) (hb : 1 < b) : clog b (b ^ x) = x :=
#align nat.clog_pow Nat.clog_pow
theorem pow_pred_clog_lt_self {b : ℕ} (hb : 1 < b) {x : ℕ} (hx : 1 < x) :
- b ^ (clog b x).pred < x := by
+ b ^ (clog b x).pred < x := by
rw [← not_le, le_pow_iff_clog_le hb, not_le]
exact pred_lt (clog_pos hb hx).ne'
#align nat.pow_pred_clog_lt_self Nat.pow_pred_clog_lt_self
Briefly during the port we were adding "Ported by" headers, but only ~60 / 3000 files ended up with such a header.
I propose deleting them.
We could consider adding these uniformly via a script, as part of the great history rewrite...?
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -2,7 +2,6 @@
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Yaël Dillies
-Ported by: Rémy Degenne
-/
import Mathlib.Data.Nat.Pow
@@ -3,14 +3,11 @@ Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Yaël Dillies
Ported by: Rémy Degenne
-
-! This file was ported from Lean 3 source module data.nat.log
-! leanprover-community/mathlib commit 3e00d81bdcbf77c8188bbd18f5524ddc3ed8cac6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Data.Nat.Pow
+#align_import data.nat.log from "leanprover-community/mathlib"@"3e00d81bdcbf77c8188bbd18f5524ddc3ed8cac6"
+
/-!
# Natural number logarithms
@@ -116,7 +116,7 @@ theorem pow_le_of_le_log {b x y : ℕ} (hy : y ≠ 0) (h : x ≤ log b y) : b ^
theorem le_log_of_pow_le {b x y : ℕ} (hb : 1 < b) (h : b ^ x ≤ y) : x ≤ log b y := by
rcases ne_or_eq y 0 with (hy | rfl)
- exacts[(pow_le_iff_le_log hb hy).1 h, (h.not_lt (pow_pos (zero_lt_one.trans hb) _)).elim]
+ exacts [(pow_le_iff_le_log hb hy).1 h, (h.not_lt (pow_pos (zero_lt_one.trans hb) _)).elim]
#align nat.le_log_of_pow_le Nat.le_log_of_pow_le
theorem pow_log_le_self (b : ℕ) {x : ℕ} (hx : x ≠ 0) : b ^ log b x ≤ x :=
This makes a mathlib4 version of mathlib3's tactic.basic
, now called Mathlib.Tactic.Common
, which imports all tactics which do not have significant theory requirements, and then is imported all across the base of the hierarchy.
This ensures that all common tactics are available nearly everywhere in the library, rather than having to be imported one-by-one as you need them.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -10,7 +10,6 @@ Ported by: Rémy Degenne
! if you have ported upstream changes.
-/
import Mathlib.Data.Nat.Pow
-import Mathlib.Tactic.ByContra
/-!
# Natural number logarithms
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -202,7 +202,6 @@ theorem log_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : log b n ≤ lo
calc
c ^ log b n ≤ b ^ log b n := pow_le_pow_of_le_left' hb _
_ ≤ n := pow_log_le_self _ hn
-
#align nat.log_anti_left Nat.log_anti_left
theorem log_antitone_left {n : ℕ} : AntitoneOn (fun b => log b n) (Set.Ioi 1) := fun _ hc _ _ hb =>
@@ -347,7 +346,6 @@ theorem clog_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : clog b n ≤
calc
n ≤ c ^ clog c n := le_pow_clog hc _
_ ≤ b ^ clog c n := pow_le_pow_of_le_left hb _
-
#align nat.clog_anti_left Nat.clog_anti_left
theorem clog_monotone (b : ℕ) : Monotone (clog b) := fun _ _ => clog_mono_right _
This is an extremely partial port of the mono*
tactic from Lean 3, implemented as a macro on top of solve_by_elim
. The original mono
had many configuration options and no documentation, so quite a bit is missing (and almost all the Lean 3 tests fail). Nonetheless I think it's worth merging this, because
@[mono]
mono
will succeed fairly often in the port even though it fails nearly all the testsCo-authored-by: thorimur <68410468+thorimur@users.noreply.github.com>
@@ -190,12 +190,12 @@ theorem log_monotone {b : ℕ} : Monotone (log b) := by
· exact le_log_of_pow_le hb (pow_log_le_add_one _ _)
#align nat.log_monotone Nat.log_monotone
---@[mono] -- porting note: unknown attribute
+@[mono]
theorem log_mono_right {b n m : ℕ} (h : n ≤ m) : log b n ≤ log b m :=
log_monotone h
#align nat.log_mono_right Nat.log_mono_right
---@[mono]
+@[mono]
theorem log_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : log b n ≤ log c n := by
rcases eq_or_ne n 0 with (rfl | hn); · rw [log_zero_right, log_zero_right]
apply le_log_of_pow_le hc
@@ -332,7 +332,7 @@ theorem le_pow_clog {b : ℕ} (hb : 1 < b) (x : ℕ) : x ≤ b ^ clog b x :=
(le_pow_iff_clog_le hb).2 le_rfl
#align nat.le_pow_clog Nat.le_pow_clog
---@[mono]
+@[mono]
theorem clog_mono_right (b : ℕ) {n m : ℕ} (h : n ≤ m) : clog b n ≤ clog b m := by
cases' le_or_lt b 1 with hb hb
· rw [clog_of_left_le_one hb]
@@ -341,7 +341,7 @@ theorem clog_mono_right (b : ℕ) {n m : ℕ} (h : n ≤ m) : clog b n ≤ clog
exact h.trans (le_pow_clog hb _)
#align nat.clog_mono_right Nat.clog_mono_right
---@[mono]
+@[mono]
theorem clog_anti_left {b c n : ℕ} (hc : 1 < c) (hb : c ≤ b) : clog b n ≤ clog c n := by
rw [← le_pow_iff_clog_le (lt_of_lt_of_le hc hb)]
calc
@@ -232,7 +232,8 @@ theorem add_pred_div_lt {b n : ℕ} (hb : 1 < b) (hn : 2 ≤ n) : (n + b - 1) /
rw [div_lt_iff_lt_mul (zero_lt_one.trans hb), ← succ_le_iff, ← pred_eq_sub_one,
succ_pred_eq_of_pos (add_pos (zero_lt_one.trans hn) (zero_lt_one.trans hb))]
exact add_le_mul hn hb
-#align nat.add_pred_div_lt Nat.add_pred_div_lt
+-- Porting note: Was private in mathlib 3
+-- #align nat.add_pred_div_lt Nat.add_pred_div_lt
/-! ### Ceil logarithm -/
This was done semi-automatically with some regular expressions in vim in contrast to the fully automatic https://github.com/leanprover-community/mathlib4/pull/1523.
Co-authored-by: Moritz Firsching <firsching@google.com>
@@ -90,8 +90,8 @@ theorem log_one_right (b : ℕ) : log b 1 = 0 :=
/-- `pow b` and `log b` (almost) form a Galois connection. See also `Nat.pow_le_of_le_log` and
`Nat.le_log_of_pow_le` for individual implications under weaker assumptions. -/
-theorem pow_le_iff_le_log {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) : b ^ x ≤ y ↔ x ≤ log b y :=
- by
+theorem pow_le_iff_le_log {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) :
+ b ^ x ≤ y ↔ x ≤ log b y := by
induction' y using Nat.strong_induction_on with y ih generalizing x
cases x with
| zero => exact iff_of_true hy.bot_lt (zero_le _)
Nat.le_self_pow
(#1273)
This is the Lean 4 version of leanprover-community/mathlib#18022
Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>
@@ -5,7 +5,7 @@ Authors: Simon Hudon, Yaël Dillies
Ported by: Rémy Degenne
! This file was ported from Lean 3 source module data.nat.log
-! leanprover-community/mathlib commit 11bb0c9152e5d14278fb0ac5e0be6d50e2c8fa05
+! leanprover-community/mathlib commit 3e00d81bdcbf77c8188bbd18f5524ddc3ed8cac6
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -101,7 +101,7 @@ theorem pow_le_iff_le_log {b : ℕ} (hb : 1 < b) {x y : ℕ} (hy : y ≠ 0) : b
rw [succ_eq_add_one, add_le_add_iff_right, ←
ih (y / b) (div_lt_self hy.bot_lt hb) (Nat.div_pos h.1 b_pos).ne', le_div_iff_mul_le b_pos,
pow_succ', mul_comm]
- · exact iff_of_false (fun hby => h ⟨(le_self_pow hb.le x.succ_ne_zero).trans hby, hb⟩)
+ · exact iff_of_false (fun hby => h ⟨(le_self_pow x.succ_ne_zero _).trans hby, hb⟩)
(not_succ_le_zero _)
#align nat.pow_le_iff_le_log Nat.pow_le_iff_le_log
The unported dependencies are