data.polynomial.divMathlib.Data.Polynomial.Div

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(data/polynomial/div): add X_sub_C_dvd_sub_C_eval (#19120)
Diff
@@ -395,11 +395,26 @@ lemma mul_div_by_monic_eq_iff_is_root : (X - C a) * (p /ₘ (X - C a)) = p ↔ i
   by conv {to_rhs, rw ← mod_by_monic_add_div p (monic_X_sub_C a)};
     rw [mod_by_monic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
 
-lemma dvd_iff_is_root : (X - C a) ∣ p ↔ is_root p a :=
+lemma dvd_iff_is_root : X - C a ∣ p ↔ is_root p a :=
 ⟨λ h, by rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _),
     mod_by_monic_X_sub_C_eq_C_eval, ← C_0, C_inj] at h,
   λ h, ⟨(p /ₘ (X - C a)), by rw mul_div_by_monic_eq_iff_is_root.2 h⟩⟩
 
+lemma X_sub_C_dvd_sub_C_eval : X - C a ∣ p - C (p.eval a) :=
+by rw [dvd_iff_is_root, is_root, eval_sub, eval_C, sub_self]
+
+lemma mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
+  P ∈ (ideal.span {C (X - C a), X - C b} : ideal R[X][X]) ↔ (P.eval b).eval a = 0 :=
+begin
+  rw [ideal.mem_span_pair],
+  split; intro h,
+  { rcases h with ⟨_, _, rfl⟩,
+    simp only [eval_C, eval_X, eval_add, eval_sub, eval_mul, add_zero, mul_zero, sub_self] },
+  { cases dvd_iff_is_root.mpr h with p hp,
+    cases @X_sub_C_dvd_sub_C_eval _ b _ P with q hq,
+    exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩ }
+end
+
 lemma mod_by_monic_X (p : R[X]) : p %ₘ X = C (p.eval 0) :=
 by rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
 

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 -/
-import Data.Polynomial.AlgebraMap
-import Data.Polynomial.Inductions
-import Data.Polynomial.Monic
+import Algebra.Polynomial.AlgebraMap
+import Algebra.Polynomial.Inductions
+import Algebra.Polynomial.Monic
 import RingTheory.Multiplicity
 
 #align_import data.polynomial.div from "leanprover-community/mathlib"@"e1e7190efdcefc925cb36f257a8362ef22944204"
Diff
@@ -57,7 +57,7 @@ theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff
       rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this
       obtain ⟨k, hgk⟩ := polynomial.X_dvd_iff.mpr this.symm
       use k
-      rwa [pow_succ, mul_comm X _, mul_assoc, ← hgk]⟩
+      rwa [pow_succ', mul_comm X _, mul_assoc, ← hgk]⟩
 #align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iff
 -/
 
@@ -422,8 +422,8 @@ theorem map_modByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
 #align polynomial.map_mod_by_monic Polynomial.map_modByMonic
 -/
 
-#print Polynomial.dvd_iff_modByMonic_eq_zero /-
-theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
+#print Polynomial.modByMonic_eq_zero_iff_dvd /-
+theorem modByMonic_eq_zero_iff_dvd (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
   ⟨fun h => by rw [← mod_by_monic_add_div p hq, h, zero_add] <;> exact dvd_mul_right _ _, fun h =>
     by
     nontriviality R
@@ -439,7 +439,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
     rw [degree_mul' hlc, degree_eq_nat_degree hq.ne_zero,
       degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
-#align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
+#align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.modByMonic_eq_zero_iff_dvd
 -/
 
 #print Polynomial.map_dvd_map /-
@@ -457,7 +457,7 @@ theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x
 #print Polynomial.modByMonic_one /-
 @[simp]
 theorem modByMonic_one (p : R[X]) : p %ₘ 1 = 0 :=
-  (dvd_iff_modByMonic_eq_zero (by convert monic_one)).2 (one_dvd _)
+  (modByMonic_eq_zero_iff_dvd (by convert monic_one)).2 (one_dvd _)
 #align polynomial.mod_by_monic_one Polynomial.modByMonic_one
 -/
 
@@ -605,7 +605,7 @@ The algorithm is "compute `p %ₘ q` and compare to `0`".
 See `polynomial.mod_by_monic` for the algorithm that computes `%ₘ`.
 -/
 def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
-  decidable_of_iff (p %ₘ q = 0) (dvd_iff_modByMonic_eq_zero hq)
+  decidable_of_iff (p %ₘ q = 0) (modByMonic_eq_zero_iff_dvd hq)
 #align polynomial.decidable_dvd_monic Polynomial.decidableDvdMonic
 -/
 
@@ -712,7 +712,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
   rw [Ne.def, ← is_root.def, ← dvd_iff_is_root]
   rintro ⟨q, hq⟩
   have := div_by_monic_mul_pow_root_multiplicity_eq p a
-  rw [mul_comm, hq, ← mul_assoc, ← pow_succ', root_multiplicity_eq_multiplicity, dif_neg hp] at this
+  rw [mul_comm, hq, ← mul_assoc, ← pow_succ, root_multiplicity_eq_multiplicity, dif_neg hp] at this
   exact
     multiplicity.is_greatest'
       (multiplicity_finite_of_degree_pos_of_monic
Diff
@@ -54,7 +54,7 @@ theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff
     · simp only [pow_zero, one_dvd]
     · obtain ⟨g, hgf⟩ := hn fun d : ℕ => fun H : d < n => hd _ (Nat.lt_succ_of_lt H)
       have := coeff_X_pow_mul g n 0
-      rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this 
+      rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this
       obtain ⟨k, hgk⟩ := polynomial.X_dvd_iff.mpr this.symm
       use k
       rwa [pow_succ, mul_comm X _, mul_assoc, ← hgk]⟩
@@ -75,7 +75,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
     zero_ne_one
   ⟨natDegree q, fun ⟨r, hr⟩ =>
     by
-    have hp0 : p ≠ 0 := fun hp0 => by simp [hp0] at hp  <;> contradiction
+    have hp0 : p ≠ 0 := fun hp0 => by simp [hp0] at hp <;> contradiction
     have hr0 : r ≠ 0 := fun hr0 => by simp_all
     have hpn1 : leadingCoeff p ^ (natDegree q + 1) = 1 := by simp [show _ = _ from hmp]
     have hpn0' : leadingCoeff p ^ (natDegree q + 1) ≠ 0 := hpn1.symm ▸ zn0.symm
@@ -86,7 +86,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
     have hnp : 0 < natDegree p := by
       rw [← WithBot.coe_lt_coe, ← degree_eq_nat_degree hp0] <;> exact hp
     have := congr_arg nat_degree hr
-    rw [nat_degree_mul' hpnr0, nat_degree_pow' hpn0', add_mul, add_assoc] at this 
+    rw [nat_degree_mul' hpnr0, nat_degree_pow' hpn0', add_mul, add_assoc] at this
     exact
       ne_of_lt
         (lt_add_of_le_of_pos (le_mul_of_one_le_right (Nat.zero_le _) hnp)
@@ -260,7 +260,7 @@ theorem modByMonic_eq_sub_mul_div :
           hq
       unfold mod_by_monic div_by_monic div_mod_by_monic_aux
       rw [dif_pos hq, if_pos h]
-      rw [mod_by_monic, dif_pos hq] at ih 
+      rw [mod_by_monic, dif_pos hq] at ih
       refine' ih.trans _
       unfold div_by_monic
       rw [dif_pos hq, dif_pos hq, if_pos h, mul_add, sub_add_eq_sub_sub, mul_comm]
@@ -280,7 +280,7 @@ theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q *
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := mod_by_monic_add_div p hq <;>
-      rwa [h, MulZeroClass.mul_zero, add_zero, mod_by_monic_eq_self_iff hq] at this ,
+      rwa [h, MulZeroClass.mul_zero, add_zero, mod_by_monic_eq_self_iff hq] at this,
     fun h => by
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
@@ -350,13 +350,13 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
   by
   nontriviality R
   by_cases hfg : f /ₘ g = 0
-  · rw [hfg, nat_degree_zero]; rw [div_by_monic_eq_zero_iff hg] at hfg 
+  · rw [hfg, nat_degree_zero]; rw [div_by_monic_eq_zero_iff hg] at hfg
     rw [tsub_eq_zero_iff_le.mpr (nat_degree_le_nat_degree <| le_of_lt hfg)]
-  have hgf := hfg; rw [div_by_monic_eq_zero_iff hg] at hgf ; push_neg at hgf 
+  have hgf := hfg; rw [div_by_monic_eq_zero_iff hg] at hgf; push_neg at hgf
   have := degree_add_div_by_monic hg hgf
   have hf : f ≠ 0 := by intro hf; apply hfg; rw [hf, zero_div_by_monic]
   rw [degree_eq_nat_degree hf, degree_eq_nat_degree hg.ne_zero, degree_eq_nat_degree hfg, ←
-    WithBot.coe_add, WithBot.coe_eq_coe] at this 
+    WithBot.coe_add, WithBot.coe_eq_coe] at this
   rw [← this, add_tsub_cancel_left]
 #align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
 -/
@@ -437,7 +437,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
           (by rw [hmod, leading_coeff_eq_zero.1 h, MulZeroClass.mul_zero, leading_coeff_zero])
     have hlc : leading_coeff q * leading_coeff (r - p /ₘ q) ≠ 0 := by rwa [monic.def.1 hq, one_mul]
     rw [degree_mul' hlc, degree_eq_nat_degree hq.ne_zero,
-      degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this 
+      degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
 #align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
 -/
@@ -483,7 +483,7 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
     cases degree (p %ₘ (X - C a))
     · exact bot_le
     · exact WithBot.some_le_some.2 (Nat.le_of_lt_succ (WithBot.some_lt_some.1 this))
-  rw [eq_C_of_degree_le_zero this, eval_C] at h 
+  rw [eq_C_of_degree_le_zero this, eval_C] at h
   rw [eq_C_of_degree_le_zero this, h]
 #align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
 -/
@@ -504,7 +504,7 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
     rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval, ← C_0,
-      C_inj] at h ,
+      C_inj] at h,
     fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 -/
@@ -712,7 +712,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
   rw [Ne.def, ← is_root.def, ← dvd_iff_is_root]
   rintro ⟨q, hq⟩
   have := div_by_monic_mul_pow_root_multiplicity_eq p a
-  rw [mul_comm, hq, ← mul_assoc, ← pow_succ', root_multiplicity_eq_multiplicity, dif_neg hp] at this 
+  rw [mul_comm, hq, ← mul_assoc, ← pow_succ', root_multiplicity_eq_multiplicity, dif_neg hp] at this
   exact
     multiplicity.is_greatest'
       (multiplicity_finite_of_degree_pos_of_monic
Diff
@@ -692,8 +692,8 @@ theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplici
 #align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
 -/
 
-#print Polynomial.divByMonic_mul_pow_rootMultiplicity_eq /-
-theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
+#print Polynomial.pow_mul_divByMonic_rootMultiplicity_eq /-
+theorem pow_mul_divByMonic_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
   by
   have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_X_sub_C _).pow _
@@ -701,7 +701,7 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
       rw [← mod_by_monic_add_div p this,
         (dvd_iff_mod_by_monic_eq_zero this).2 (pow_root_multiplicity_dvd _ _)] <;>
     simp [mul_comm]
-#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eq
+#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.pow_mul_divByMonic_rootMultiplicity_eq
 -/
 
 #print Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero /-
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 -/
-import Mathbin.Data.Polynomial.AlgebraMap
-import Mathbin.Data.Polynomial.Inductions
-import Mathbin.Data.Polynomial.Monic
-import Mathbin.RingTheory.Multiplicity
+import Data.Polynomial.AlgebraMap
+import Data.Polynomial.Inductions
+import Data.Polynomial.Monic
+import RingTheory.Multiplicity
 
 #align_import data.polynomial.div from "leanprover-community/mathlib"@"e1e7190efdcefc925cb36f257a8362ef22944204"
 
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-
-! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit e1e7190efdcefc925cb36f257a8362ef22944204
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Polynomial.AlgebraMap
 import Mathbin.Data.Polynomial.Inductions
 import Mathbin.Data.Polynomial.Monic
 import Mathbin.RingTheory.Multiplicity
 
+#align_import data.polynomial.div from "leanprover-community/mathlib"@"e1e7190efdcefc925cb36f257a8362ef22944204"
+
 /-!
 # Division of univariate polynomials
 
Diff
@@ -41,11 +41,14 @@ section CommSemiring
 
 variable [CommSemiring R]
 
+#print Polynomial.X_dvd_iff /-
 theorem X_dvd_iff {f : R[X]} : X ∣ f ↔ f.coeff 0 = 0 :=
   ⟨fun ⟨g, hfg⟩ => by rw [hfg, mul_comm, coeff_mul_X_zero], fun hf =>
     ⟨f.divX, by rw [mul_comm, ← add_zero (f.div_X * X), ← C_0, ← hf, div_X_mul_X_add]⟩⟩
 #align polynomial.X_dvd_iff Polynomial.X_dvd_iff
+-/
 
+#print Polynomial.X_pow_dvd_iff /-
 theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
   ⟨fun ⟨g, hgf⟩ d hd => by
     simp only [hgf, coeff_X_pow_mul', ite_eq_right_iff, not_le_of_lt hd, IsEmpty.forall_iff],
@@ -59,6 +62,7 @@ theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff
       use k
       rwa [pow_succ, mul_comm X _, mul_assoc, ← hgk]⟩
 #align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iff
+-/
 
 end CommSemiring
 
@@ -100,6 +104,7 @@ section Ring
 
 variable [Ring R] {p q : R[X]}
 
+#print Polynomial.div_wf_lemma /-
 theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
     degree (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) < degree p :=
   have hp : leadingCoeff p ≠ 0 := mt leadingCoeff_eq_zero.1 h.2
@@ -113,6 +118,7 @@ theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
         degree_eq_nat_degree hq0, ← WithBot.coe_add, tsub_add_cancel_of_le hlt])
     h.2 (by rw [leading_coeff_mul_monic hq, leading_coeff_mul_X_pow, leading_coeff_C])
 #align polynomial.div_wf_lemma Polynomial.div_wf_lemma
+-/
 
 #print Polynomial.divModByMonicAux /-
 /-- See `div_by_monic`. -/
@@ -141,10 +147,8 @@ def modByMonic (p q : R[X]) : R[X] :=
 #align polynomial.mod_by_monic Polynomial.modByMonic
 -/
 
--- mathport name: «expr /ₘ »
 infixl:70 " /ₘ " => divByMonic
 
--- mathport name: «expr %ₘ »
 infixl:70 " %ₘ " => modByMonic
 
 #print Polynomial.degree_modByMonic_lt /-
@@ -441,6 +445,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
 #align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
 -/
 
+#print Polynomial.map_dvd_map /-
 theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
     (hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y :=
   by
@@ -450,6 +455,7 @@ theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x
     ⟨fun H => map_injective f hf <| by rw [H, Polynomial.map_zero], fun H => by
       rw [H, Polynomial.map_zero]⟩
 #align polynomial.map_dvd_map Polynomial.map_dvd_map
+-/
 
 #print Polynomial.modByMonic_one /-
 @[simp]
@@ -465,6 +471,7 @@ theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
 #align polynomial.div_by_monic_one Polynomial.divByMonic_one
 -/
 
+#print Polynomial.modByMonic_X_sub_C_eq_C_eval /-
 @[simp]
 theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
   by
@@ -482,7 +489,9 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
   rw [eq_C_of_degree_le_zero this, eval_C] at h 
   rw [eq_C_of_degree_le_zero this, h]
 #align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
+-/
 
+#print Polynomial.mul_divByMonic_eq_iff_isRoot /-
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
     rw [← h, is_root.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, MulZeroClass.zero_mul],
@@ -492,18 +501,24 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
         rw [← mod_by_monic_add_div p (monic_X_sub_C a)] <;>
       rw [mod_by_monic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
 #align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRoot
+-/
 
+#print Polynomial.dvd_iff_isRoot /-
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
     rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval, ← C_0,
       C_inj] at h ,
     fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
+-/
 
+#print Polynomial.X_sub_C_dvd_sub_C_eval /-
 theorem X_sub_C_dvd_sub_C_eval : X - C a ∣ p - C (p.eval a) := by
   rw [dvd_iff_is_root, is_root, eval_sub, eval_C, sub_self]
 #align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.X_sub_C_dvd_sub_C_eval
+-/
 
+#print Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero /-
 theorem mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
     P ∈ (Ideal.span {C (X - C a), X - C b} : Ideal R[X][X]) ↔ (P.eval b).eval a = 0 :=
   by
@@ -516,16 +531,22 @@ theorem mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]
     cases' @X_sub_C_dvd_sub_C_eval _ b _ P with q hq
     exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩
 #align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
+-/
 
+#print Polynomial.modByMonic_X /-
 theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
 #align polynomial.mod_by_monic_X Polynomial.modByMonic_X
+-/
 
+#print Polynomial.eval₂_modByMonic_eq_self_of_root /-
 theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
     {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
   rw [mod_by_monic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, MulZeroClass.zero_mul, sub_zero]
 #align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
+-/
 
+#print Polynomial.sum_modByMonic_coeff /-
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     ∑ i : Fin n, monomial i ((p %ₘ q).coeff i) = p %ₘ q :=
   by
@@ -534,13 +555,16 @@ theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (sum_fin (fun i c => monomial i c) (by simp) ((degree_mod_by_monic_lt _ hq).trans_le hn)).trans
       (sum_monomial_eq _)
 #align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeff
+-/
 
+#print Polynomial.sub_dvd_eval_sub /-
 theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b :=
   by
   suffices X - C b ∣ p - C (p.eval b) by
     simpa only [coe_eval_ring_hom, eval_sub, eval_X, eval_C] using (eval_ring_hom a).map_dvd this
   simp [dvd_iff_is_root]
 #align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_sub
+-/
 
 #print Polynomial.mul_div_mod_by_monic_cancel_left /-
 theorem mul_div_mod_by_monic_cancel_left (p : R[X]) {q : R[X]} (hmo : q.Monic) : q * p /ₘ q = p :=
@@ -570,9 +594,11 @@ theorem not_isField : ¬IsField R[X] := by
 
 variable {R}
 
+#print Polynomial.ker_evalRingHom /-
 theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} := by ext y;
   simpa only [Ideal.mem_span_singleton, dvd_iff_is_root]
 #align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
+-/
 
 section multiplicity
 
@@ -588,6 +614,7 @@ def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
 
 open scoped Classical
 
+#print Polynomial.multiplicity_X_sub_C_finite /-
 theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
   by
   haveI := nontrivial.of_polynomial_ne h0
@@ -595,6 +622,7 @@ theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite
   rw [degree_X_sub_C]
   decide
 #align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finite
+-/
 
 #print Polynomial.rootMultiplicity /-
 /-- The largest power of `X - C a` which divides `p`.
@@ -608,11 +636,13 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
 -/
 
+#print Polynomial.rootMultiplicity_eq_multiplicity /-
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
       if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_X_sub_C_finite a h0) :=
   by simp [multiplicity, root_multiplicity, Part.Dom] <;> congr <;> funext <;> congr
 #align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicity
+-/
 
 #print Polynomial.rootMultiplicity_zero /-
 @[simp]
@@ -650,17 +680,22 @@ theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
 #align polynomial.root_multiplicity_pos Polynomial.rootMultiplicity_pos
 -/
 
+#print Polynomial.rootMultiplicity_C /-
 @[simp]
 theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
   simp only [root_multiplicity_eq_zero_iff, is_root, eval_C, C_eq_zero, imp_self]
 #align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
+-/
 
+#print Polynomial.pow_rootMultiplicity_dvd /-
 theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
   if h : p = 0 then by simp [h]
   else by
     rw [root_multiplicity_eq_multiplicity, dif_neg h] <;> exact multiplicity.pow_multiplicity_dvd _
 #align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
+-/
 
+#print Polynomial.divByMonic_mul_pow_rootMultiplicity_eq /-
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
   by
@@ -670,7 +705,9 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
         (dvd_iff_mod_by_monic_eq_zero this).2 (pow_root_multiplicity_dvd _ _)] <;>
     simp [mul_comm]
 #align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eq
+-/
 
+#print Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero /-
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 :=
   by
@@ -686,6 +723,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
         (monic_X_sub_C _) hp)
       (Nat.lt_succ_self _) (dvd_of_mul_right_eq _ this)
 #align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero
+-/
 
 end multiplicity
 
Diff
@@ -500,11 +500,11 @@ theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
     fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 
-theorem x_sub_c_dvd_sub_c_eval : X - C a ∣ p - C (p.eval a) := by
+theorem X_sub_C_dvd_sub_C_eval : X - C a ∣ p - C (p.eval a) := by
   rw [dvd_iff_is_root, is_root, eval_sub, eval_C, sub_self]
-#align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.x_sub_c_dvd_sub_c_eval
+#align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.X_sub_C_dvd_sub_C_eval
 
-theorem mem_span_c_x_sub_c_x_sub_c_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
+theorem mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
     P ∈ (Ideal.span {C (X - C a), X - C b} : Ideal R[X][X]) ↔ (P.eval b).eval a = 0 :=
   by
   rw [Ideal.mem_span_pair]
@@ -515,7 +515,7 @@ theorem mem_span_c_x_sub_c_x_sub_c_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]
   · cases' dvd_iff_is_root.mpr h with p hp
     cases' @X_sub_C_dvd_sub_C_eval _ b _ P with q hq
     exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩
-#align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_c_x_sub_c_x_sub_c_iff_eval_eval_eq_zero
+#align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
 
 theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 
 ! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit 290a7ba01fbcab1b64757bdaa270d28f4dcede35
+! leanprover-community/mathlib commit e1e7190efdcefc925cb36f257a8362ef22944204
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -500,6 +500,23 @@ theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
     fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 
+theorem x_sub_c_dvd_sub_c_eval : X - C a ∣ p - C (p.eval a) := by
+  rw [dvd_iff_is_root, is_root, eval_sub, eval_C, sub_self]
+#align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.x_sub_c_dvd_sub_c_eval
+
+theorem mem_span_c_x_sub_c_x_sub_c_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
+    P ∈ (Ideal.span {C (X - C a), X - C b} : Ideal R[X][X]) ↔ (P.eval b).eval a = 0 :=
+  by
+  rw [Ideal.mem_span_pair]
+  constructor <;> intro h
+  · rcases h with ⟨_, _, rfl⟩
+    simp only [eval_C, eval_X, eval_add, eval_sub, eval_mul, add_zero, MulZeroClass.mul_zero,
+      sub_self]
+  · cases' dvd_iff_is_root.mpr h with p hp
+    cases' @X_sub_C_dvd_sub_C_eval _ b _ P with q hq
+    exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩
+#align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_c_x_sub_c_x_sub_c_iff_eval_eval_eq_zero
+
 theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
 #align polynomial.mod_by_monic_X Polynomial.modByMonic_X
Diff
@@ -510,7 +510,7 @@ theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R
 #align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
 
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
-    (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q :=
+    ∑ i : Fin n, monomial i ((p %ₘ q).coeff i) = p %ₘ q :=
   by
   nontriviality R
   exact
Diff
@@ -301,12 +301,10 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
         rw [degree_mul' hlc, degree_eq_nat_degree hq.ne_zero, degree_eq_nat_degree hdiv0, ←
             WithBot.coe_add, WithBot.coe_le_coe] <;>
           exact Nat.le_add_right _ _
-      
   calc
     degree q + degree (p /ₘ q) = degree (q * (p /ₘ q)) := Eq.symm (degree_mul' hlc)
     _ = degree (p %ₘ q + q * (p /ₘ q)) := (degree_add_eq_right_of_degree_lt hmod).symm
     _ = _ := congr_arg _ (mod_by_monic_add_div _ hq)
-    
 #align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonic
 -/
 
@@ -377,7 +375,6 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
     calc
       degree (r - f %ₘ g) ≤ max (degree r) (degree (f %ₘ g)) := degree_sub_le _ _
       _ < degree g := max_lt_iff.2 ⟨h.2, degree_mod_by_monic_lt _ hg⟩
-      
   have h₅ : q - f /ₘ g = 0 :=
     by_contradiction fun hqf =>
       not_le_of_gt h₄ <|
@@ -386,7 +383,6 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
             erw [degree_eq_nat_degree hg.ne_zero, degree_eq_nat_degree hqf, WithBot.coe_le_coe] <;>
               exact Nat.le_add_right _ _
           _ = degree (r - f %ₘ g) := by rw [h₂, degree_mul'] <;> simpa [monic.def.1 hg]
-          
   exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
 #align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
 -/
@@ -406,8 +402,7 @@ theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
           _ = _ :=
             Eq.symm <|
               degree_map_eq_of_leading_coeff_ne_zero _
-                (by rw [monic.def.1 hq, f.map_one] <;> exact one_ne_zero)
-          ⟩
+                (by rw [monic.def.1 hq, f.map_one] <;> exact one_ne_zero)⟩
   exact ⟨this.1.symm, this.2.symm⟩
 #align polynomial.map_mod_div_by_monic Polynomial.map_mod_divByMonic
 -/
Diff
@@ -353,7 +353,7 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
   by_cases hfg : f /ₘ g = 0
   · rw [hfg, nat_degree_zero]; rw [div_by_monic_eq_zero_iff hg] at hfg 
     rw [tsub_eq_zero_iff_le.mpr (nat_degree_le_nat_degree <| le_of_lt hfg)]
-  have hgf := hfg; rw [div_by_monic_eq_zero_iff hg] at hgf ; push_neg  at hgf 
+  have hgf := hfg; rw [div_by_monic_eq_zero_iff hg] at hgf ; push_neg at hgf 
   have := degree_add_div_by_monic hg hgf
   have hf : f ≠ 0 := by intro hf; apply hfg; rw [hf, zero_div_by_monic]
   rw [degree_eq_nat_degree hf, degree_eq_nat_degree hg.ne_zero, degree_eq_nat_degree hfg, ←
Diff
@@ -54,7 +54,7 @@ theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff
     · simp only [pow_zero, one_dvd]
     · obtain ⟨g, hgf⟩ := hn fun d : ℕ => fun H : d < n => hd _ (Nat.lt_succ_of_lt H)
       have := coeff_X_pow_mul g n 0
-      rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this
+      rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this 
       obtain ⟨k, hgk⟩ := polynomial.X_dvd_iff.mpr this.symm
       use k
       rwa [pow_succ, mul_comm X _, mul_assoc, ← hgk]⟩
@@ -74,7 +74,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
     zero_ne_one
   ⟨natDegree q, fun ⟨r, hr⟩ =>
     by
-    have hp0 : p ≠ 0 := fun hp0 => by simp [hp0] at hp <;> contradiction
+    have hp0 : p ≠ 0 := fun hp0 => by simp [hp0] at hp  <;> contradiction
     have hr0 : r ≠ 0 := fun hr0 => by simp_all
     have hpn1 : leadingCoeff p ^ (natDegree q + 1) = 1 := by simp [show _ = _ from hmp]
     have hpn0' : leadingCoeff p ^ (natDegree q + 1) ≠ 0 := hpn1.symm ▸ zn0.symm
@@ -85,7 +85,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
     have hnp : 0 < natDegree p := by
       rw [← WithBot.coe_lt_coe, ← degree_eq_nat_degree hp0] <;> exact hp
     have := congr_arg nat_degree hr
-    rw [nat_degree_mul' hpnr0, nat_degree_pow' hpn0', add_mul, add_assoc] at this
+    rw [nat_degree_mul' hpnr0, nat_degree_pow' hpn0', add_mul, add_assoc] at this 
     exact
       ne_of_lt
         (lt_add_of_le_of_pos (le_mul_of_one_le_right (Nat.zero_le _) hnp)
@@ -157,9 +157,9 @@ theorem degree_modByMonic_lt [Nontrivial R] :
       have :
         degree ((p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) %ₘ q) < degree q :=
         degree_mod_by_monic_lt (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) hq
-      unfold mod_by_monic at this⊢
+      unfold mod_by_monic at this ⊢
       unfold div_mod_by_monic_aux
-      rw [dif_pos hq] at this⊢
+      rw [dif_pos hq] at this ⊢
       rw [if_pos h]
       exact this
     else
@@ -259,7 +259,7 @@ theorem modByMonic_eq_sub_mul_div :
           hq
       unfold mod_by_monic div_by_monic div_mod_by_monic_aux
       rw [dif_pos hq, if_pos h]
-      rw [mod_by_monic, dif_pos hq] at ih
+      rw [mod_by_monic, dif_pos hq] at ih 
       refine' ih.trans _
       unfold div_by_monic
       rw [dif_pos hq, dif_pos hq, if_pos h, mul_add, sub_add_eq_sub_sub, mul_comm]
@@ -279,7 +279,7 @@ theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q *
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := mod_by_monic_add_div p hq <;>
-      rwa [h, MulZeroClass.mul_zero, add_zero, mod_by_monic_eq_self_iff hq] at this,
+      rwa [h, MulZeroClass.mul_zero, add_zero, mod_by_monic_eq_self_iff hq] at this ,
     fun h => by
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
@@ -351,13 +351,13 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
   by
   nontriviality R
   by_cases hfg : f /ₘ g = 0
-  · rw [hfg, nat_degree_zero]; rw [div_by_monic_eq_zero_iff hg] at hfg
+  · rw [hfg, nat_degree_zero]; rw [div_by_monic_eq_zero_iff hg] at hfg 
     rw [tsub_eq_zero_iff_le.mpr (nat_degree_le_nat_degree <| le_of_lt hfg)]
-  have hgf := hfg; rw [div_by_monic_eq_zero_iff hg] at hgf; push_neg  at hgf
+  have hgf := hfg; rw [div_by_monic_eq_zero_iff hg] at hgf ; push_neg  at hgf 
   have := degree_add_div_by_monic hg hgf
   have hf : f ≠ 0 := by intro hf; apply hfg; rw [hf, zero_div_by_monic]
   rw [degree_eq_nat_degree hf, degree_eq_nat_degree hg.ne_zero, degree_eq_nat_degree hfg, ←
-    WithBot.coe_add, WithBot.coe_eq_coe] at this
+    WithBot.coe_add, WithBot.coe_eq_coe] at this 
   rw [← this, add_tsub_cancel_left]
 #align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
 -/
@@ -441,7 +441,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
           (by rw [hmod, leading_coeff_eq_zero.1 h, MulZeroClass.mul_zero, leading_coeff_zero])
     have hlc : leading_coeff q * leading_coeff (r - p /ₘ q) ≠ 0 := by rwa [monic.def.1 hq, one_mul]
     rw [degree_mul' hlc, degree_eq_nat_degree hq.ne_zero,
-      degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this
+      degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this 
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
 #align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
 -/
@@ -484,7 +484,7 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
     cases degree (p %ₘ (X - C a))
     · exact bot_le
     · exact WithBot.some_le_some.2 (Nat.le_of_lt_succ (WithBot.some_lt_some.1 this))
-  rw [eq_C_of_degree_le_zero this, eval_C] at h
+  rw [eq_C_of_degree_le_zero this, eval_C] at h 
   rw [eq_C_of_degree_le_zero this, h]
 #align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
 
@@ -501,7 +501,7 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
     rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval, ← C_0,
-      C_inj] at h,
+      C_inj] at h ,
     fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 
@@ -666,7 +666,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
   rw [Ne.def, ← is_root.def, ← dvd_iff_is_root]
   rintro ⟨q, hq⟩
   have := div_by_monic_mul_pow_root_multiplicity_eq p a
-  rw [mul_comm, hq, ← mul_assoc, ← pow_succ', root_multiplicity_eq_multiplicity, dif_neg hp] at this
+  rw [mul_comm, hq, ← mul_assoc, ← pow_succ', root_multiplicity_eq_multiplicity, dif_neg hp] at this 
   exact
     multiplicity.is_greatest'
       (multiplicity_finite_of_degree_pos_of_monic
Diff
@@ -27,7 +27,7 @@ We also define `root_multiplicity`.
 
 noncomputable section
 
-open Classical BigOperators Polynomial
+open scoped Classical BigOperators Polynomial
 
 open Finset
 
@@ -66,6 +66,7 @@ section CommSemiring
 
 variable [CommSemiring R] {p q : R[X]}
 
+#print Polynomial.multiplicity_finite_of_degree_pos_of_monic /-
 theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < degree p) (hmp : Monic p)
     (hq : q ≠ 0) : multiplicity.Finite p q :=
   have zn0 : (0 : R) ≠ 1 :=
@@ -91,6 +92,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
           (add_pos_of_pos_of_nonneg (by rwa [one_mul]) (Nat.zero_le _)))
         this⟩
 #align polynomial.multiplicity_finite_of_degree_pos_of_monic Polynomial.multiplicity_finite_of_degree_pos_of_monic
+-/
 
 end CommSemiring
 
@@ -145,6 +147,7 @@ infixl:70 " /ₘ " => divByMonic
 -- mathport name: «expr %ₘ »
 infixl:70 " %ₘ " => modByMonic
 
+#print Polynomial.degree_modByMonic_lt /-
 theorem degree_modByMonic_lt [Nontrivial R] :
     ∀ (p : R[X]) {q : R[X]} (hq : Monic q), degree (p %ₘ q) < degree q
   | p => fun q hq =>
@@ -171,6 +174,7 @@ theorem degree_modByMonic_lt [Nontrivial R] :
           rw [dif_pos hq, if_neg h, Classical.not_not.1 hp]
           exact lt_of_le_of_ne bot_le (Ne.symm (mt degree_eq_bot.1 hq.ne_zero)))
 #align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_lt
+-/
 
 #print Polynomial.zero_modByMonic /-
 @[simp]
@@ -222,16 +226,20 @@ theorem modByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p %ₘ q = p :=
 #align polynomial.mod_by_monic_eq_of_not_monic Polynomial.modByMonic_eq_of_not_monic
 -/
 
+#print Polynomial.modByMonic_eq_self_iff /-
 theorem modByMonic_eq_self_iff [Nontrivial R] (hq : Monic q) : p %ₘ q = p ↔ degree p < degree q :=
   ⟨fun h => h ▸ degree_modByMonic_lt _ hq, fun h =>
     by
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold mod_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iff
+-/
 
+#print Polynomial.degree_modByMonic_le /-
 theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %ₘ q) ≤ degree q := by
   nontriviality R; exact (degree_mod_by_monic_lt _ hq).le
 #align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_le
+-/
 
 end Ring
 
@@ -267,6 +275,7 @@ theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q *
 #align polynomial.mod_by_monic_add_div Polynomial.modByMonic_add_div
 -/
 
+#print Polynomial.divByMonic_eq_zero_iff /-
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := mod_by_monic_add_div p hq <;>
@@ -275,7 +284,9 @@ theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iff
+-/
 
+#print Polynomial.degree_add_divByMonic /-
 theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     degree q + degree (p /ₘ q) = degree p :=
   by
@@ -297,7 +308,9 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     _ = _ := congr_arg _ (mod_by_monic_add_div _ hq)
     
 #align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonic
+-/
 
+#print Polynomial.degree_divByMonic_le /-
 theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
   if hp0 : p = 0 then by simp only [hp0, zero_div_by_monic, le_refl]
   else
@@ -312,7 +325,9 @@ theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
           simp only [dif_pos hq, h, false_and_iff, if_false, degree_zero, bot_le]
     else (divByMonic_eq_of_not_monic p hq).symm ▸ bot_le
 #align polynomial.degree_div_by_monic_le Polynomial.degree_divByMonic_le
+-/
 
+#print Polynomial.degree_divByMonic_lt /-
 theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0)
     (h0q : 0 < degree q) : degree (p /ₘ q) < degree p :=
   if hpq : degree p < degree q then
@@ -328,6 +343,7 @@ theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0
       WithBot.coe_lt_coe.2
         (Nat.lt_add_of_pos_left (WithBot.coe_lt_coe.1 <| degree_eq_nat_degree hq.ne_zero ▸ h0q))
 #align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_lt
+-/
 
 #print Polynomial.natDegree_divByMonic /-
 theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg : g.Monic) :
@@ -346,6 +362,7 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
 #align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
 -/
 
+#print Polynomial.div_modByMonic_unique /-
 theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
     (h : r + g * q = f ∧ degree r < degree g) : f /ₘ g = q ∧ f %ₘ g = r :=
   by
@@ -372,6 +389,7 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
           
   exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
 #align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
+-/
 
 #print Polynomial.map_mod_divByMonic /-
 theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
@@ -556,7 +574,7 @@ def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
 #align polynomial.decidable_dvd_monic Polynomial.decidableDvdMonic
 -/
 
-open Classical
+open scoped Classical
 
 theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
   by
Diff
@@ -41,23 +41,11 @@ section CommSemiring
 
 variable [CommSemiring R]
 
-/- warning: polynomial.X_dvd_iff -> Polynomial.X_dvd_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) f) (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) f) (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.X_dvd_iff Polynomial.X_dvd_iffₓ'. -/
 theorem X_dvd_iff {f : R[X]} : X ∣ f ↔ f.coeff 0 = 0 :=
   ⟨fun ⟨g, hfg⟩ => by rw [hfg, mul_comm, coeff_mul_X_zero], fun hf =>
     ⟨f.divX, by rw [mul_comm, ← add_zero (f.div_X * X), ← C_0, ← hf, div_X_mul_X_add]⟩⟩
 #align polynomial.X_dvd_iff Polynomial.X_dvd_iff
 
-/- warning: polynomial.X_pow_dvd_iff -> Polynomial.X_pow_dvd_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {n : Nat}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n) f) (forall (d : Nat), (LT.lt.{0} Nat Nat.hasLt d n) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f d) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {n : Nat}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n) f) (forall (d : Nat), (LT.lt.{0} Nat instLTNat d n) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f d) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iffₓ'. -/
 theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
   ⟨fun ⟨g, hgf⟩ d hd => by
     simp only [hgf, coeff_X_pow_mul', ite_eq_right_iff, not_le_of_lt hd, IsEmpty.forall_iff],
@@ -78,12 +66,6 @@ section CommSemiring
 
 variable [CommSemiring R] {p q : R[X]}
 
-/- warning: polynomial.multiplicity_finite_of_degree_pos_of_monic -> Polynomial.multiplicity_finite_of_degree_pos_of_monic is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p)) -> (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p q)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p)) -> (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p q)
-Case conversion may be inaccurate. Consider using '#align polynomial.multiplicity_finite_of_degree_pos_of_monic Polynomial.multiplicity_finite_of_degree_pos_of_monicₓ'. -/
 theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < degree p) (hmp : Monic p)
     (hq : q ≠ 0) : multiplicity.Finite p q :=
   have zn0 : (0 : R) ≠ 1 :=
@@ -116,9 +98,6 @@ section Ring
 
 variable [Ring R] {p q : R[X]}
 
-/- warning: polynomial.div_wf_lemma -> Polynomial.div_wf_lemma is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.div_wf_lemma Polynomial.div_wf_lemmaₓ'. -/
 theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
     degree (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) < degree p :=
   have hp : leadingCoeff p ≠ 0 := mt leadingCoeff_eq_zero.1 h.2
@@ -166,12 +145,6 @@ infixl:70 " /ₘ " => divByMonic
 -- mathport name: «expr %ₘ »
 infixl:70 " %ₘ " => modByMonic
 
-/- warning: polynomial.degree_mod_by_monic_lt -> Polynomial.degree_modByMonic_lt is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_ltₓ'. -/
 theorem degree_modByMonic_lt [Nontrivial R] :
     ∀ (p : R[X]) {q : R[X]} (hq : Monic q), degree (p %ₘ q) < degree q
   | p => fun q hq =>
@@ -249,12 +222,6 @@ theorem modByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p %ₘ q = p :=
 #align polynomial.mod_by_monic_eq_of_not_monic Polynomial.modByMonic_eq_of_not_monic
 -/
 
-/- warning: polynomial.mod_by_monic_eq_self_iff -> Polynomial.modByMonic_eq_self_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R _inst_1 p q) p) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R _inst_1 p q) p) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))
-Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iffₓ'. -/
 theorem modByMonic_eq_self_iff [Nontrivial R] (hq : Monic q) : p %ₘ q = p ↔ degree p < degree q :=
   ⟨fun h => h ▸ degree_modByMonic_lt _ hq, fun h =>
     by
@@ -262,12 +229,6 @@ theorem modByMonic_eq_self_iff [Nontrivial R] (hq : Monic q) : p %ₘ q = p ↔
     unfold mod_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iff
 
-/- warning: polynomial.degree_mod_by_monic_le -> Polynomial.degree_modByMonic_le is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_leₓ'. -/
 theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %ₘ q) ≤ degree q := by
   nontriviality R; exact (degree_mod_by_monic_lt _ hq).le
 #align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_le
@@ -306,12 +267,6 @@ theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q *
 #align polynomial.mod_by_monic_add_div Polynomial.modByMonic_add_div
 -/
 
-/- warning: polynomial.div_by_monic_eq_zero_iff -> Polynomial.divByMonic_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q)))
-Case conversion may be inaccurate. Consider using '#align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iffₓ'. -/
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := mod_by_monic_add_div p hq <;>
@@ -321,12 +276,6 @@ theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔
     unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iff
 
-/- warning: polynomial.degree_add_div_by_monic -> Polynomial.degree_add_divByMonic is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p)) -> (Eq.{1} (WithBot.{0} Nat) (HAdd.hAdd.{0, 0, 0} (WithBot.{0} Nat) (WithBot.{0} Nat) (WithBot.{0} Nat) (instHAdd.{0} (WithBot.{0} Nat) (WithBot.hasAdd.{0} Nat Nat.hasAdd)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p)) -> (Eq.{1} (WithBot.{0} Nat) (HAdd.hAdd.{0, 0, 0} (WithBot.{0} Nat) (WithBot.{0} Nat) (WithBot.{0} Nat) (instHAdd.{0} (WithBot.{0} Nat) (WithBot.add.{0} Nat instAddNat)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonicₓ'. -/
 theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     degree q + degree (p /ₘ q) = degree p :=
   by
@@ -349,12 +298,6 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     
 #align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonic
 
-/- warning: polynomial.degree_div_by_monic_le -> Polynomial.degree_divByMonic_le is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p)
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_div_by_monic_le Polynomial.degree_divByMonic_leₓ'. -/
 theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
   if hp0 : p = 0 then by simp only [hp0, zero_div_by_monic, le_refl]
   else
@@ -370,12 +313,6 @@ theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
     else (divByMonic_eq_of_not_monic p hq).symm ▸ bot_le
 #align polynomial.degree_div_by_monic_le Polynomial.degree_divByMonic_le
 
-/- warning: polynomial.degree_div_by_monic_lt -> Polynomial.degree_divByMonic_lt is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q)) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q)) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p))
-Case conversion may be inaccurate. Consider using '#align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_ltₓ'. -/
 theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0)
     (h0q : 0 < degree q) : degree (p /ₘ q) < degree p :=
   if hpq : degree p < degree q then
@@ -409,12 +346,6 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
 #align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
 -/
 
-/- warning: polynomial.div_mod_by_monic_unique -> Polynomial.div_modByMonic_unique is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {f : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {g : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (r : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HAdd.hAdd.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHAdd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) r (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) g q)) f) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) r) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g))) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) q) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) r))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {f : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {g : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (r : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HAdd.hAdd.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHAdd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.add'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) r (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) g q)) f) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) r) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g))) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) q) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) r))
-Case conversion may be inaccurate. Consider using '#align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_uniqueₓ'. -/
 theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
     (h : r + g * q = f ∧ degree r < degree g) : f /ₘ g = q ∧ f %ₘ g = r :=
   by
@@ -497,12 +428,6 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
 #align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
 -/
 
-/- warning: polynomial.map_dvd_map -> Polynomial.map_dvd_map is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) f)) -> (forall {x : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {y : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x) -> (Iff (Dvd.Dvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f y)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
-but is expected to have type
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))))) f)) -> (forall {x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {y : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x) -> (Iff (Dvd.dvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f y)) (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
-Case conversion may be inaccurate. Consider using '#align polynomial.map_dvd_map Polynomial.map_dvd_mapₓ'. -/
 theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
     (hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y :=
   by
@@ -527,9 +452,6 @@ theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
 #align polynomial.div_by_monic_one Polynomial.divByMonic_one
 -/
 
-/- warning: polynomial.mod_by_monic_X_sub_C_eq_C_eval -> Polynomial.modByMonic_X_sub_C_eq_C_eval is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_evalₓ'. -/
 @[simp]
 theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
   by
@@ -548,9 +470,6 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
   rw [eq_C_of_degree_le_zero this, h]
 #align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
 
-/- warning: polynomial.mul_div_by_monic_eq_iff_is_root -> Polynomial.mul_divByMonic_eq_iff_isRoot is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRootₓ'. -/
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
     rw [← h, is_root.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, MulZeroClass.zero_mul],
@@ -561,12 +480,6 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
       rw [mod_by_monic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
 #align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRoot
 
-/- warning: polynomial.dvd_iff_is_root -> Polynomial.dvd_iff_isRoot is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
-but is expected to have type
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
-Case conversion may be inaccurate. Consider using '#align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRootₓ'. -/
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
     rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval, ← C_0,
@@ -574,30 +487,15 @@ theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
     fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 
-/- warning: polynomial.mod_by_monic_X -> Polynomial.modByMonic_X is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p))
-Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X Polynomial.modByMonic_Xₓ'. -/
 theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
 #align polynomial.mod_by_monic_X Polynomial.modByMonic_X
 
-/- warning: polynomial.eval₂_mod_by_monic_eq_self_of_root -> Polynomial.eval₂_modByMonic_eq_self_of_root is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {x : S}, (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x q) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x p)))
-but is expected to have type
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))} {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {x : S}, (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x q) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CommSemiring.toCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x p)))
-Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_rootₓ'. -/
 theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
     {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
   rw [mod_by_monic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, MulZeroClass.zero_mul, sub_zero]
 #align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
 
-/- warning: polynomial.sum_mod_by_monic_coeff -> Polynomial.sum_modByMonic_coeff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeffₓ'. -/
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q :=
   by
@@ -607,12 +505,6 @@ theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
       (sum_monomial_eq _)
 #align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeff
 
-/- warning: polynomial.sub_dvd_eval_sub -> Polynomial.sub_dvd_eval_sub is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) b p))
-Case conversion may be inaccurate. Consider using '#align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_subₓ'. -/
 theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b :=
   by
   suffices X - C b ∣ p - C (p.eval b) by
@@ -648,9 +540,6 @@ theorem not_isField : ¬IsField R[X] := by
 
 variable {R}
 
-/- warning: polynomial.ker_eval_ring_hom -> Polynomial.ker_evalRingHom is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHomₓ'. -/
 theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} := by ext y;
   simpa only [Ideal.mem_span_singleton, dvd_iff_is_root]
 #align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
@@ -669,12 +558,6 @@ def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
 
 open Classical
 
-/- warning: polynomial.multiplicity_X_sub_C_finite -> Polynomial.multiplicity_X_sub_C_finite is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p)
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p)
-Case conversion may be inaccurate. Consider using '#align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finiteₓ'. -/
 theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
   by
   haveI := nontrivial.of_polynomial_ne h0
@@ -695,9 +578,6 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
 -/
 
-/- warning: polynomial.root_multiplicity_eq_multiplicity -> Polynomial.rootMultiplicity_eq_multiplicity is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicityₓ'. -/
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
       if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_X_sub_C_finite a h0) :=
@@ -740,29 +620,17 @@ theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
 #align polynomial.root_multiplicity_pos Polynomial.rootMultiplicity_pos
 -/
 
-/- warning: polynomial.root_multiplicity_C -> Polynomial.rootMultiplicity_C is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
-Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_Cₓ'. -/
 @[simp]
 theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
   simp only [root_multiplicity_eq_zero_iff, is_root, eval_C, C_eq_zero, imp_self]
 #align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
 
-/- warning: polynomial.pow_root_multiplicity_dvd -> Polynomial.pow_rootMultiplicity_dvd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvdₓ'. -/
 theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
   if h : p = 0 then by simp [h]
   else by
     rw [root_multiplicity_eq_multiplicity, dif_neg h] <;> exact multiplicity.pow_multiplicity_dvd _
 #align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
 
-/- warning: polynomial.div_by_monic_mul_pow_root_multiplicity_eq -> Polynomial.divByMonic_mul_pow_rootMultiplicity_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eqₓ'. -/
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
   by
@@ -773,9 +641,6 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     simp [mul_comm]
 #align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eq
 
-/- warning: polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero -> Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zeroₓ'. -/
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 :=
   by
Diff
@@ -224,10 +224,7 @@ theorem zero_divByMonic (p : R[X]) : 0 /ₘ p = 0 :=
 #print Polynomial.modByMonic_zero /-
 @[simp]
 theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
-  if h : Monic (0 : R[X]) then
-    by
-    haveI := monic_zero_iff_subsingleton.mp h
-    simp
+  if h : Monic (0 : R[X]) then by haveI := monic_zero_iff_subsingleton.mp h; simp
   else by unfold mod_by_monic div_mod_by_monic_aux <;> rw [dif_neg h]
 #align polynomial.mod_by_monic_zero Polynomial.modByMonic_zero
 -/
@@ -235,10 +232,7 @@ theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
 #print Polynomial.divByMonic_zero /-
 @[simp]
 theorem divByMonic_zero (p : R[X]) : p /ₘ 0 = 0 :=
-  if h : Monic (0 : R[X]) then
-    by
-    haveI := monic_zero_iff_subsingleton.mp h
-    simp
+  if h : Monic (0 : R[X]) then by haveI := monic_zero_iff_subsingleton.mp h; simp
   else by unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_neg h]
 #align polynomial.div_by_monic_zero Polynomial.divByMonic_zero
 -/
@@ -274,10 +268,8 @@ lean 3 declaration is
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
 Case conversion may be inaccurate. Consider using '#align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_leₓ'. -/
-theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %ₘ q) ≤ degree q :=
-  by
-  nontriviality R
-  exact (degree_mod_by_monic_lt _ hq).le
+theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %ₘ q) ≤ degree q := by
+  nontriviality R; exact (degree_mod_by_monic_lt _ hq).le
 #align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_le
 
 end Ring
@@ -406,17 +398,11 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
   by
   nontriviality R
   by_cases hfg : f /ₘ g = 0
-  · rw [hfg, nat_degree_zero]
-    rw [div_by_monic_eq_zero_iff hg] at hfg
+  · rw [hfg, nat_degree_zero]; rw [div_by_monic_eq_zero_iff hg] at hfg
     rw [tsub_eq_zero_iff_le.mpr (nat_degree_le_nat_degree <| le_of_lt hfg)]
-  have hgf := hfg
-  rw [div_by_monic_eq_zero_iff hg] at hgf
-  push_neg  at hgf
+  have hgf := hfg; rw [div_by_monic_eq_zero_iff hg] at hgf; push_neg  at hgf
   have := degree_add_div_by_monic hg hgf
-  have hf : f ≠ 0 := by
-    intro hf
-    apply hfg
-    rw [hf, zero_div_by_monic]
+  have hf : f ≠ 0 := by intro hf; apply hfg; rw [hf, zero_div_by_monic]
   rw [degree_eq_nat_degree hf, degree_eq_nat_degree hg.ne_zero, degree_eq_nat_degree hfg, ←
     WithBot.coe_add, WithBot.coe_eq_coe] at this
   rw [← this, add_tsub_cancel_left]
@@ -665,9 +651,7 @@ variable {R}
 /- warning: polynomial.ker_eval_ring_hom -> Polynomial.ker_evalRingHom is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHomₓ'. -/
-theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
-  by
-  ext y
+theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} := by ext y;
   simpa only [Ideal.mem_span_singleton, dvd_iff_is_root]
 #align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
 
Diff
@@ -117,10 +117,7 @@ section Ring
 variable [Ring R] {p q : R[X]}
 
 /- warning: polynomial.div_wf_lemma -> Polynomial.div_wf_lemma is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.ring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.div_wf_lemma Polynomial.div_wf_lemmaₓ'. -/
 theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
     degree (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) < degree p :=
@@ -545,10 +542,7 @@ theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
 -/
 
 /- warning: polynomial.mod_by_monic_X_sub_C_eq_C_eval -> Polynomial.modByMonic_X_sub_C_eq_C_eval is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) a p))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_evalₓ'. -/
 @[simp]
 theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
@@ -569,10 +563,7 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
 #align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
 
 /- warning: polynomial.mul_div_by_monic_eq_iff_is_root -> Polynomial.mul_divByMonic_eq_iff_isRoot is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
-but is expected to have type
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRootₓ'. -/
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
@@ -619,10 +610,7 @@ theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R
 #align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
 
 /- warning: polynomial.sum_mod_by_monic_coeff -> Polynomial.sum_modByMonic_coeff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (AddCommGroup.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toAddCommGroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeffₓ'. -/
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q :=
@@ -675,10 +663,7 @@ theorem not_isField : ¬IsField R[X] := by
 variable {R}
 
 /- warning: polynomial.ker_eval_ring_hom -> Polynomial.ker_evalRingHom is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.ringHomClass.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.hasSingleton.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.instSingletonSet.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHomₓ'. -/
 theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
   by
@@ -727,10 +712,7 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
 -/
 
 /- warning: polynomial.root_multiplicity_eq_multiplicity -> Polynomial.rootMultiplicity_eq_multiplicity is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) => OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (a : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (b : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Classical.propDecidable (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) => OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (fun (a : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (b : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Classical.propDecidable ((fun (x._@.Mathlib.RingTheory.Multiplicity._hyg.25 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (x._@.Mathlib.RingTheory.Multiplicity._hyg.27 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) x._@.Mathlib.RingTheory.Multiplicity._hyg.25 x._@.Mathlib.RingTheory.Multiplicity._hyg.27) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicityₓ'. -/
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
@@ -786,10 +768,7 @@ theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
 #align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
 
 /- warning: polynomial.pow_root_multiplicity_dvd -> Polynomial.pow_rootMultiplicity_dvd is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvdₓ'. -/
 theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
   if h : p = 0 then by simp [h]
@@ -798,10 +777,7 @@ theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplici
 #align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
 
 /- warning: polynomial.div_by_monic_mul_pow_root_multiplicity_eq -> Polynomial.divByMonic_mul_pow_rootMultiplicity_eq is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eqₓ'. -/
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
@@ -814,10 +790,7 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
 #align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eq
 
 /- warning: polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero -> Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zeroₓ'. -/
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 :=
Diff
@@ -622,7 +622,7 @@ theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (AddCommGroup.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toAddCommGroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 Case conversion may be inaccurate. Consider using '#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeffₓ'. -/
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q :=
Diff
@@ -120,7 +120,7 @@ variable [Ring R] {p q : R[X]}
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.ring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_wf_lemma Polynomial.div_wf_lemmaₓ'. -/
 theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
     degree (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) < degree p :=
@@ -518,7 +518,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
 lean 3 declaration is
   forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) f)) -> (forall {x : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {y : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x) -> (Iff (Dvd.Dvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f y)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
 but is expected to have type
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))))) f)) -> (forall {x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {y : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x) -> (Iff (Dvd.dvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f y)) (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))))) f)) -> (forall {x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {y : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x) -> (Iff (Dvd.dvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f y)) (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
 Case conversion may be inaccurate. Consider using '#align polynomial.map_dvd_map Polynomial.map_dvd_mapₓ'. -/
 theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
     (hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y :=
@@ -548,7 +548,7 @@ theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) a p))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) a p))
 Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_evalₓ'. -/
 @[simp]
 theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
@@ -572,7 +572,7 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
 lean 3 declaration is
   forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
 but is expected to have type
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
 Case conversion may be inaccurate. Consider using '#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRootₓ'. -/
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
@@ -588,7 +588,7 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
 lean 3 declaration is
   forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
 but is expected to have type
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
 Case conversion may be inaccurate. Consider using '#align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRootₓ'. -/
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
@@ -601,7 +601,7 @@ theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p))
 Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X Polynomial.modByMonic_Xₓ'. -/
 theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
@@ -678,7 +678,7 @@ variable {R}
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.ringHomClass.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.hasSingleton.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.instSingletonSet.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x))))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.instSingletonSet.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x))))
 Case conversion may be inaccurate. Consider using '#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHomₓ'. -/
 theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
   by
@@ -704,7 +704,7 @@ open Classical
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p)
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p)
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p)
 Case conversion may be inaccurate. Consider using '#align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finiteₓ'. -/
 theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
   by
@@ -730,7 +730,7 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) => OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (a : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (b : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Classical.propDecidable (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) => OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (fun (a : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (b : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Classical.propDecidable ((fun (x._@.Mathlib.RingTheory.Multiplicity._hyg.25 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (x._@.Mathlib.RingTheory.Multiplicity._hyg.27 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) x._@.Mathlib.RingTheory.Multiplicity._hyg.25 x._@.Mathlib.RingTheory.Multiplicity._hyg.27) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) => OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (fun (a : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (b : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Classical.propDecidable ((fun (x._@.Mathlib.RingTheory.Multiplicity._hyg.25 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (x._@.Mathlib.RingTheory.Multiplicity._hyg.27 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) x._@.Mathlib.RingTheory.Multiplicity._hyg.25 x._@.Mathlib.RingTheory.Multiplicity._hyg.27) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
 Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicityₓ'. -/
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
@@ -778,7 +778,7 @@ theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
 Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_Cₓ'. -/
 @[simp]
 theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
@@ -789,7 +789,7 @@ theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
 Case conversion may be inaccurate. Consider using '#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvdₓ'. -/
 theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
   if h : p = 0 then by simp [h]
@@ -801,7 +801,7 @@ theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplici
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
 Case conversion may be inaccurate. Consider using '#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eqₓ'. -/
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
@@ -817,7 +817,7 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zeroₓ'. -/
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 :=
Diff
@@ -622,7 +622,7 @@ theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (AddCommGroup.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toAddCommGroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 Case conversion may be inaccurate. Consider using '#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeffₓ'. -/
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q :=
Diff
@@ -78,7 +78,12 @@ section CommSemiring
 
 variable [CommSemiring R] {p q : R[X]}
 
-#print Polynomial.multiplicity_finite_of_degree_pos_of_monic /-
+/- warning: polynomial.multiplicity_finite_of_degree_pos_of_monic -> Polynomial.multiplicity_finite_of_degree_pos_of_monic is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p)) -> (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p q)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p)) -> (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) p) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) q (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))) p q)
+Case conversion may be inaccurate. Consider using '#align polynomial.multiplicity_finite_of_degree_pos_of_monic Polynomial.multiplicity_finite_of_degree_pos_of_monicₓ'. -/
 theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < degree p) (hmp : Monic p)
     (hq : q ≠ 0) : multiplicity.Finite p q :=
   have zn0 : (0 : R) ≠ 1 :=
@@ -104,7 +109,6 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
           (add_pos_of_pos_of_nonneg (by rwa [one_mul]) (Nat.zero_le _)))
         this⟩
 #align polynomial.multiplicity_finite_of_degree_pos_of_monic Polynomial.multiplicity_finite_of_degree_pos_of_monic
--/
 
 end CommSemiring
 
@@ -114,7 +118,7 @@ variable [Ring R] {p q : R[X]}
 
 /- warning: polynomial.div_wf_lemma -> Polynomial.div_wf_lemma is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.ring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.ring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_wf_lemma Polynomial.div_wf_lemmaₓ'. -/
@@ -165,7 +169,12 @@ infixl:70 " /ₘ " => divByMonic
 -- mathport name: «expr %ₘ »
 infixl:70 " %ₘ " => modByMonic
 
-#print Polynomial.degree_modByMonic_lt /-
+/- warning: polynomial.degree_mod_by_monic_lt -> Polynomial.degree_modByMonic_lt is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] [_inst_2 : Nontrivial.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_ltₓ'. -/
 theorem degree_modByMonic_lt [Nontrivial R] :
     ∀ (p : R[X]) {q : R[X]} (hq : Monic q), degree (p %ₘ q) < degree q
   | p => fun q hq =>
@@ -192,7 +201,6 @@ theorem degree_modByMonic_lt [Nontrivial R] :
           rw [dif_pos hq, if_neg h, Classical.not_not.1 hp]
           exact lt_of_le_of_ne bot_le (Ne.symm (mt degree_eq_bot.1 hq.ne_zero)))
 #align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_lt
--/
 
 #print Polynomial.zero_modByMonic /-
 @[simp]
@@ -250,22 +258,30 @@ theorem modByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p %ₘ q = p :=
 #align polynomial.mod_by_monic_eq_of_not_monic Polynomial.modByMonic_eq_of_not_monic
 -/
 
-#print Polynomial.modByMonic_eq_self_iff /-
+/- warning: polynomial.mod_by_monic_eq_self_iff -> Polynomial.modByMonic_eq_self_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R _inst_1 p q) p) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R _inst_1 p q) p) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))
+Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iffₓ'. -/
 theorem modByMonic_eq_self_iff [Nontrivial R] (hq : Monic q) : p %ₘ q = p ↔ degree p < degree q :=
   ⟨fun h => h ▸ degree_modByMonic_lt _ hq, fun h =>
     by
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold mod_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iff
--/
 
-#print Polynomial.degree_modByMonic_le /-
+/- warning: polynomial.degree_mod_by_monic_le -> Polynomial.degree_modByMonic_le is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (Polynomial.modByMonic.{u1} R _inst_1 p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_leₓ'. -/
 theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %ₘ q) ≤ degree q :=
   by
   nontriviality R
   exact (degree_mod_by_monic_lt _ hq).le
 #align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_le
--/
 
 end Ring
 
@@ -301,7 +317,12 @@ theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q *
 #align polynomial.mod_by_monic_add_div Polynomial.modByMonic_add_div
 -/
 
-#print Polynomial.divByMonic_eq_zero_iff /-
+/- warning: polynomial.div_by_monic_eq_zero_iff -> Polynomial.divByMonic_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} [_inst_2 : Nontrivial.{u1} R], (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q)))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iffₓ'. -/
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := mod_by_monic_add_div p hq <;>
@@ -310,9 +331,13 @@ theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iff
--/
 
-#print Polynomial.degree_add_divByMonic /-
+/- warning: polynomial.degree_add_div_by_monic -> Polynomial.degree_add_divByMonic is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p)) -> (Eq.{1} (WithBot.{0} Nat) (HAdd.hAdd.{0, 0, 0} (WithBot.{0} Nat) (WithBot.{0} Nat) (WithBot.{0} Nat) (instHAdd.{0} (WithBot.{0} Nat) (WithBot.hasAdd.{0} Nat Nat.hasAdd)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p)) -> (Eq.{1} (WithBot.{0} Nat) (HAdd.hAdd.{0, 0, 0} (WithBot.{0} Nat) (WithBot.{0} Nat) (WithBot.{0} Nat) (instHAdd.{0} (WithBot.{0} Nat) (WithBot.add.{0} Nat instAddNat)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonicₓ'. -/
 theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     degree q + degree (p /ₘ q) = degree p :=
   by
@@ -334,9 +359,13 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     _ = _ := congr_arg _ (mod_by_monic_add_div _ hq)
     
 #align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonic
--/
 
-#print Polynomial.degree_divByMonic_le /-
+/- warning: polynomial.degree_div_by_monic_le -> Polynomial.degree_divByMonic_le is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p)
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_div_by_monic_le Polynomial.degree_divByMonic_leₓ'. -/
 theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
   if hp0 : p = 0 then by simp only [hp0, zero_div_by_monic, le_refl]
   else
@@ -351,9 +380,13 @@ theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
           simp only [dif_pos hq, h, false_and_iff, if_false, degree_zero, bot_le]
     else (divByMonic_eq_of_not_monic p hq).symm ▸ bot_le
 #align polynomial.degree_div_by_monic_le Polynomial.degree_divByMonic_le
--/
 
-#print Polynomial.degree_divByMonic_lt /-
+/- warning: polynomial.degree_div_by_monic_lt -> Polynomial.degree_divByMonic_lt is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q)) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q)) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p))
+Case conversion may be inaccurate. Consider using '#align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_ltₓ'. -/
 theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0)
     (h0q : 0 < degree q) : degree (p /ₘ q) < degree p :=
   if hpq : degree p < degree q then
@@ -369,7 +402,6 @@ theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0
       WithBot.coe_lt_coe.2
         (Nat.lt_add_of_pos_left (WithBot.coe_lt_coe.1 <| degree_eq_nat_degree hq.ne_zero ▸ h0q))
 #align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_lt
--/
 
 #print Polynomial.natDegree_divByMonic /-
 theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg : g.Monic) :
@@ -394,7 +426,12 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
 #align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
 -/
 
-#print Polynomial.div_modByMonic_unique /-
+/- warning: polynomial.div_mod_by_monic_unique -> Polynomial.div_modByMonic_unique is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {f : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {g : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (r : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HAdd.hAdd.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHAdd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.add'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) r (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) g q)) f) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) r) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g))) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) q) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) r))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {f : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {g : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (r : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HAdd.hAdd.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHAdd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.add'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) r (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) g q)) f) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) r) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) g))) -> (And (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) q) (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) f g) r))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_uniqueₓ'. -/
 theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
     (h : r + g * q = f ∧ degree r < degree g) : f /ₘ g = q ∧ f %ₘ g = r :=
   by
@@ -421,7 +458,6 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
           
   exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
 #align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
--/
 
 #print Polynomial.map_mod_divByMonic /-
 theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
@@ -584,7 +620,7 @@ theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R
 
 /- warning: polynomial.sum_mod_by_monic_coeff -> Polynomial.sum_modByMonic_coeff is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (AddCommGroup.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toAddCommGroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (AddCommGroup.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toAddCommGroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 Case conversion may be inaccurate. Consider using '#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeffₓ'. -/
Diff
@@ -482,7 +482,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
 lean 3 declaration is
   forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) f)) -> (forall {x : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {y : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x) -> (Iff (Dvd.Dvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f y)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
 but is expected to have type
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2))))))) f)) -> (forall {x : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {y : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x) -> (Iff (Dvd.dvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f y)) (Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))) R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))))))) f)) -> (forall {x : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {y : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x) -> (Iff (Dvd.dvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f y)) (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
 Case conversion may be inaccurate. Consider using '#align polynomial.map_dvd_map Polynomial.map_dvd_mapₓ'. -/
 theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
     (hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y :=
@@ -512,7 +512,7 @@ theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) a p))
 Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_evalₓ'. -/
 @[simp]
 theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
@@ -536,7 +536,7 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
 lean 3 declaration is
   forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
 but is expected to have type
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
 Case conversion may be inaccurate. Consider using '#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRootₓ'. -/
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
@@ -552,7 +552,7 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
 lean 3 declaration is
   forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
 but is expected to have type
-  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) p a)
 Case conversion may be inaccurate. Consider using '#align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRootₓ'. -/
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
@@ -565,7 +565,7 @@ theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p))
 Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X Polynomial.modByMonic_Xₓ'. -/
 theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
@@ -575,7 +575,7 @@ theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
 lean 3 declaration is
   forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {x : S}, (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x q) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x p)))
 but is expected to have type
-  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {x : S}, (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x q) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CommSemiring.toCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x p)))
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))} {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {x : S}, (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x q) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CommSemiring.toCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.eval₂.{u1, u2} R S (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)) f x p)))
 Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_rootₓ'. -/
 theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
     {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
@@ -586,7 +586,7 @@ theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (AddCommGroup.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toAddCommGroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} {q : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Semiring.toModule.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
 Case conversion may be inaccurate. Consider using '#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeffₓ'. -/
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q :=
@@ -601,7 +601,7 @@ theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))), Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) b p))
 Case conversion may be inaccurate. Consider using '#align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_subₓ'. -/
 theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b :=
   by
@@ -642,7 +642,7 @@ variable {R}
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.ringHomClass.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.hasSingleton.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.instSingletonSet.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x))))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.instSingletonSet.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) x))))
 Case conversion may be inaccurate. Consider using '#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHomₓ'. -/
 theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
   by
@@ -668,7 +668,7 @@ open Classical
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p)
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p)
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p)
 Case conversion may be inaccurate. Consider using '#align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finiteₓ'. -/
 theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
   by
@@ -694,7 +694,7 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) => OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (a : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (b : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Classical.propDecidable (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) => OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (a : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (b : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Classical.propDecidable ((fun (x._@.Mathlib.RingTheory.Multiplicity._hyg.25 : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (x._@.Mathlib.RingTheory.Multiplicity._hyg.27 : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x._@.Mathlib.RingTheory.Multiplicity._hyg.25 x._@.Mathlib.RingTheory.Multiplicity._hyg.27) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) => OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (fun (a : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (b : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Classical.propDecidable ((fun (x._@.Mathlib.RingTheory.Multiplicity._hyg.25 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (x._@.Mathlib.RingTheory.Multiplicity._hyg.27 : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) => Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) x._@.Mathlib.RingTheory.Multiplicity._hyg.25 x._@.Mathlib.RingTheory.Multiplicity._hyg.27) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
 Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicityₓ'. -/
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
@@ -742,7 +742,7 @@ theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
 Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_Cₓ'. -/
 @[simp]
 theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
@@ -753,7 +753,7 @@ theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
 Case conversion may be inaccurate. Consider using '#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvdₓ'. -/
 theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
   if h : p = 0 then by simp [h]
@@ -765,7 +765,7 @@ theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplici
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
 Case conversion may be inaccurate. Consider using '#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eqₓ'. -/
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
@@ -781,7 +781,7 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.zero.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zeroₓ'. -/
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 :=
Diff
@@ -599,7 +599,7 @@ theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
 
 /- warning: polynomial.sub_dvd_eval_sub -> Polynomial.sub_dvd_eval_sub is a dubious translation:
 lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
 but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
 Case conversion may be inaccurate. Consider using '#align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_subₓ'. -/
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 
 ! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit da420a8c6dd5bdfb85c4ced85c34388f633bc6ff
+! leanprover-community/mathlib commit 290a7ba01fbcab1b64757bdaa270d28f4dcede35
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -16,6 +16,9 @@ import Mathbin.RingTheory.Multiplicity
 /-!
 # Division of univariate polynomials
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 The main defs are `div_by_monic` and `mod_by_monic`.
 The compatibility between these is given by `mod_by_monic_add_div`.
 We also define `root_multiplicity`.
Diff
@@ -38,12 +38,24 @@ section CommSemiring
 
 variable [CommSemiring R]
 
-theorem x_dvd_iff {f : R[X]} : X ∣ f ↔ f.coeff 0 = 0 :=
+/- warning: polynomial.X_dvd_iff -> Polynomial.X_dvd_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) f) (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) f) (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.X_dvd_iff Polynomial.X_dvd_iffₓ'. -/
+theorem X_dvd_iff {f : R[X]} : X ∣ f ↔ f.coeff 0 = 0 :=
   ⟨fun ⟨g, hfg⟩ => by rw [hfg, mul_comm, coeff_mul_X_zero], fun hf =>
     ⟨f.divX, by rw [mul_comm, ← add_zero (f.div_X * X), ← C_0, ← hf, div_X_mul_X_add]⟩⟩
-#align polynomial.X_dvd_iff Polynomial.x_dvd_iff
-
-theorem x_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
+#align polynomial.X_dvd_iff Polynomial.X_dvd_iff
+
+/- warning: polynomial.X_pow_dvd_iff -> Polynomial.X_pow_dvd_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {n : Nat}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n) f) (forall (d : Nat), (LT.lt.{0} Nat Nat.hasLt d n) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f d) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1))))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommSemiring.{u1} R] {f : Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)} {n : Nat}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (semigroupDvd.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (NonUnitalCommSemiring.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (CommSemiring.toNonUnitalCommSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.commSemiring.{u1} R _inst_1)))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1)) n) f) (forall (d : Nat), (LT.lt.{0} Nat instLTNat d n) -> (Eq.{succ u1} R (Polynomial.coeff.{u1} R (CommSemiring.toSemiring.{u1} R _inst_1) f d) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iffₓ'. -/
+theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
   ⟨fun ⟨g, hgf⟩ d hd => by
     simp only [hgf, coeff_X_pow_mul', ite_eq_right_iff, not_le_of_lt hd, IsEmpty.forall_iff],
     fun hd => by
@@ -55,7 +67,7 @@ theorem x_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff
       obtain ⟨k, hgk⟩ := polynomial.X_dvd_iff.mpr this.symm
       use k
       rwa [pow_succ, mul_comm X _, mul_assoc, ← hgk]⟩
-#align polynomial.X_pow_dvd_iff Polynomial.x_pow_dvd_iff
+#align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iff
 
 end CommSemiring
 
@@ -63,6 +75,7 @@ section CommSemiring
 
 variable [CommSemiring R] {p q : R[X]}
 
+#print Polynomial.multiplicity_finite_of_degree_pos_of_monic /-
 theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < degree p) (hmp : Monic p)
     (hq : q ≠ 0) : multiplicity.Finite p q :=
   have zn0 : (0 : R) ≠ 1 :=
@@ -88,6 +101,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
           (add_pos_of_pos_of_nonneg (by rwa [one_mul]) (Nat.zero_le _)))
         this⟩
 #align polynomial.multiplicity_finite_of_degree_pos_of_monic Polynomial.multiplicity_finite_of_degree_pos_of_monic
+-/
 
 end CommSemiring
 
@@ -95,6 +109,12 @@ section Ring
 
 variable [Ring R] {p q : R[X]}
 
+/- warning: polynomial.div_wf_lemma -> Polynomial.div_wf_lemma is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.ring.{u1} R _inst_1)))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat Nat.hasSub) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)}, (And (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) -> (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R _inst_1) q) -> (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.sub.{u1} R _inst_1)) p (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.leadingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_1) p)) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R _inst_1)) (HSub.hSub.{0, 0, 0} Nat Nat Nat (instHSub.{0} Nat instSubNat) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p) (Polynomial.natDegree.{u1} R (Ring.toSemiring.{u1} R _inst_1) q)))) q))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R _inst_1) p))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_wf_lemma Polynomial.div_wf_lemmaₓ'. -/
 theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
     degree (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) < degree p :=
   have hp : leadingCoeff p ≠ 0 := mt leadingCoeff_eq_zero.1 h.2
@@ -109,6 +129,7 @@ theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
     h.2 (by rw [leading_coeff_mul_monic hq, leading_coeff_mul_X_pow, leading_coeff_C])
 #align polynomial.div_wf_lemma Polynomial.div_wf_lemma
 
+#print Polynomial.divModByMonicAux /-
 /-- See `div_by_monic`. -/
 noncomputable def divModByMonicAux : ∀ (p : R[X]) {q : R[X]}, Monic q → R[X] × R[X]
   | p => fun q hq =>
@@ -119,16 +140,21 @@ noncomputable def divModByMonicAux : ∀ (p : R[X]) {q : R[X]}, Monic q → R[X]
       ⟨z + dm.1, dm.2⟩
     else ⟨0, p⟩
 #align polynomial.div_mod_by_monic_aux Polynomial.divModByMonicAux
+-/
 
+#print Polynomial.divByMonic /-
 /-- `div_by_monic` gives the quotient of `p` by a monic polynomial `q`. -/
 def divByMonic (p q : R[X]) : R[X] :=
   if hq : Monic q then (divModByMonicAux p hq).1 else 0
 #align polynomial.div_by_monic Polynomial.divByMonic
+-/
 
+#print Polynomial.modByMonic /-
 /-- `mod_by_monic` gives the remainder of `p` by a monic polynomial `q`. -/
 def modByMonic (p q : R[X]) : R[X] :=
   if hq : Monic q then (divModByMonicAux p hq).2 else p
 #align polynomial.mod_by_monic Polynomial.modByMonic
+-/
 
 -- mathport name: «expr /ₘ »
 infixl:70 " /ₘ " => divByMonic
@@ -136,6 +162,7 @@ infixl:70 " /ₘ " => divByMonic
 -- mathport name: «expr %ₘ »
 infixl:70 " %ₘ " => modByMonic
 
+#print Polynomial.degree_modByMonic_lt /-
 theorem degree_modByMonic_lt [Nontrivial R] :
     ∀ (p : R[X]) {q : R[X]} (hq : Monic q), degree (p %ₘ q) < degree q
   | p => fun q hq =>
@@ -162,7 +189,9 @@ theorem degree_modByMonic_lt [Nontrivial R] :
           rw [dif_pos hq, if_neg h, Classical.not_not.1 hp]
           exact lt_of_le_of_ne bot_le (Ne.symm (mt degree_eq_bot.1 hq.ne_zero)))
 #align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_lt
+-/
 
+#print Polynomial.zero_modByMonic /-
 @[simp]
 theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0 :=
   by
@@ -171,7 +200,9 @@ theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0 :=
   · rw [dif_pos hp, if_neg (mt And.right (not_not_intro rfl))]
   · rw [dif_neg hp]
 #align polynomial.zero_mod_by_monic Polynomial.zero_modByMonic
+-/
 
+#print Polynomial.zero_divByMonic /-
 @[simp]
 theorem zero_divByMonic (p : R[X]) : 0 /ₘ p = 0 :=
   by
@@ -180,7 +211,9 @@ theorem zero_divByMonic (p : R[X]) : 0 /ₘ p = 0 :=
   · rw [dif_pos hp, if_neg (mt And.right (not_not_intro rfl))]
   · rw [dif_neg hp]
 #align polynomial.zero_div_by_monic Polynomial.zero_divByMonic
+-/
 
+#print Polynomial.modByMonic_zero /-
 @[simp]
 theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
   if h : Monic (0 : R[X]) then
@@ -189,7 +222,9 @@ theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
     simp
   else by unfold mod_by_monic div_mod_by_monic_aux <;> rw [dif_neg h]
 #align polynomial.mod_by_monic_zero Polynomial.modByMonic_zero
+-/
 
+#print Polynomial.divByMonic_zero /-
 @[simp]
 theorem divByMonic_zero (p : R[X]) : p /ₘ 0 = 0 :=
   if h : Monic (0 : R[X]) then
@@ -198,27 +233,36 @@ theorem divByMonic_zero (p : R[X]) : p /ₘ 0 = 0 :=
     simp
   else by unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_neg h]
 #align polynomial.div_by_monic_zero Polynomial.divByMonic_zero
+-/
 
+#print Polynomial.divByMonic_eq_of_not_monic /-
 theorem divByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p /ₘ q = 0 :=
   dif_neg hq
 #align polynomial.div_by_monic_eq_of_not_monic Polynomial.divByMonic_eq_of_not_monic
+-/
 
+#print Polynomial.modByMonic_eq_of_not_monic /-
 theorem modByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p %ₘ q = p :=
   dif_neg hq
 #align polynomial.mod_by_monic_eq_of_not_monic Polynomial.modByMonic_eq_of_not_monic
+-/
 
+#print Polynomial.modByMonic_eq_self_iff /-
 theorem modByMonic_eq_self_iff [Nontrivial R] (hq : Monic q) : p %ₘ q = p ↔ degree p < degree q :=
   ⟨fun h => h ▸ degree_modByMonic_lt _ hq, fun h =>
     by
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold mod_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iff
+-/
 
+#print Polynomial.degree_modByMonic_le /-
 theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %ₘ q) ≤ degree q :=
   by
   nontriviality R
   exact (degree_mod_by_monic_lt _ hq).le
 #align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_le
+-/
 
 end Ring
 
@@ -226,6 +270,7 @@ section CommRing
 
 variable [CommRing R] {p q : R[X]}
 
+#print Polynomial.modByMonic_eq_sub_mul_div /-
 theorem modByMonic_eq_sub_mul_div :
     ∀ (p : R[X]) {q : R[X]} (hq : Monic q), p %ₘ q = p - q * (p /ₘ q)
   | p => fun q hq =>
@@ -245,11 +290,15 @@ theorem modByMonic_eq_sub_mul_div :
       unfold mod_by_monic div_by_monic div_mod_by_monic_aux
       rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, MulZeroClass.mul_zero, sub_zero]
 #align polynomial.mod_by_monic_eq_sub_mul_div Polynomial.modByMonic_eq_sub_mul_div
+-/
 
+#print Polynomial.modByMonic_add_div /-
 theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q * (p /ₘ q) = p :=
   eq_sub_iff_add_eq.1 (modByMonic_eq_sub_mul_div p hq)
 #align polynomial.mod_by_monic_add_div Polynomial.modByMonic_add_div
+-/
 
+#print Polynomial.divByMonic_eq_zero_iff /-
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := mod_by_monic_add_div p hq <;>
@@ -258,7 +307,9 @@ theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iff
+-/
 
+#print Polynomial.degree_add_divByMonic /-
 theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     degree q + degree (p /ₘ q) = degree p :=
   by
@@ -280,7 +331,9 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     _ = _ := congr_arg _ (mod_by_monic_add_div _ hq)
     
 #align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonic
+-/
 
+#print Polynomial.degree_divByMonic_le /-
 theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
   if hp0 : p = 0 then by simp only [hp0, zero_div_by_monic, le_refl]
   else
@@ -295,7 +348,9 @@ theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
           simp only [dif_pos hq, h, false_and_iff, if_false, degree_zero, bot_le]
     else (divByMonic_eq_of_not_monic p hq).symm ▸ bot_le
 #align polynomial.degree_div_by_monic_le Polynomial.degree_divByMonic_le
+-/
 
+#print Polynomial.degree_divByMonic_lt /-
 theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0)
     (h0q : 0 < degree q) : degree (p /ₘ q) < degree p :=
   if hpq : degree p < degree q then
@@ -311,7 +366,9 @@ theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0
       WithBot.coe_lt_coe.2
         (Nat.lt_add_of_pos_left (WithBot.coe_lt_coe.1 <| degree_eq_nat_degree hq.ne_zero ▸ h0q))
 #align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_lt
+-/
 
+#print Polynomial.natDegree_divByMonic /-
 theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg : g.Monic) :
     natDegree (f /ₘ g) = natDegree f - natDegree g :=
   by
@@ -332,7 +389,9 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
     WithBot.coe_add, WithBot.coe_eq_coe] at this
   rw [← this, add_tsub_cancel_left]
 #align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
+-/
 
+#print Polynomial.div_modByMonic_unique /-
 theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
     (h : r + g * q = f ∧ degree r < degree g) : f /ₘ g = q ∧ f %ₘ g = r :=
   by
@@ -359,7 +418,9 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
           
   exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
 #align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
+-/
 
+#print Polynomial.map_mod_divByMonic /-
 theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
     (p /ₘ q).map f = p.map f /ₘ q.map f ∧ (p %ₘ q).map f = p.map f %ₘ q.map f :=
   by
@@ -378,17 +439,23 @@ theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
           ⟩
   exact ⟨this.1.symm, this.2.symm⟩
 #align polynomial.map_mod_div_by_monic Polynomial.map_mod_divByMonic
+-/
 
+#print Polynomial.map_divByMonic /-
 theorem map_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
     (p /ₘ q).map f = p.map f /ₘ q.map f :=
   (map_mod_divByMonic f hq).1
 #align polynomial.map_div_by_monic Polynomial.map_divByMonic
+-/
 
+#print Polynomial.map_modByMonic /-
 theorem map_modByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
     (p %ₘ q).map f = p.map f %ₘ q.map f :=
   (map_mod_divByMonic f hq).2
 #align polynomial.map_mod_by_monic Polynomial.map_modByMonic
+-/
 
+#print Polynomial.dvd_iff_modByMonic_eq_zero /-
 theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
   ⟨fun h => by rw [← mod_by_monic_add_div p hq, h, zero_add] <;> exact dvd_mul_right _ _, fun h =>
     by
@@ -406,7 +473,14 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
       degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
 #align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
+-/
 
+/- warning: polynomial.map_dvd_map -> Polynomial.map_dvd_map is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) f)) -> (forall {x : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {y : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x) -> (Iff (Dvd.Dvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f y)) (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
+but is expected to have type
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))), (Function.Injective.{succ u1, succ u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2))))))) f)) -> (forall {x : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {y : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x) -> (Iff (Dvd.dvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (semigroupDvd.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (SemigroupWithZero.toSemigroup.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalSemiring.toSemigroupWithZero.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalRing.toNonUnitalSemiring.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (NonUnitalCommRing.toNonUnitalRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (CommRing.toNonUnitalCommRing.{u2} (Polynomial.{u2} S (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2))) (Polynomial.commRing.{u2} S _inst_2))))))) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x) (Polynomial.map.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f y)) (Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) x y)))
+Case conversion may be inaccurate. Consider using '#align polynomial.map_dvd_map Polynomial.map_dvd_mapₓ'. -/
 theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
     (hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y :=
   by
@@ -417,18 +491,28 @@ theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x
       rw [H, Polynomial.map_zero]⟩
 #align polynomial.map_dvd_map Polynomial.map_dvd_map
 
+#print Polynomial.modByMonic_one /-
 @[simp]
 theorem modByMonic_one (p : R[X]) : p %ₘ 1 = 0 :=
   (dvd_iff_modByMonic_eq_zero (by convert monic_one)).2 (one_dvd _)
 #align polynomial.mod_by_monic_one Polynomial.modByMonic_one
+-/
 
+#print Polynomial.divByMonic_one /-
 @[simp]
 theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
   conv_rhs => rw [← mod_by_monic_add_div p monic_one] <;> simp
 #align polynomial.div_by_monic_one Polynomial.divByMonic_one
+-/
 
+/- warning: polynomial.mod_by_monic_X_sub_C_eq_C_eval -> Polynomial.modByMonic_X_sub_C_eq_C_eval is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p))
+Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_evalₓ'. -/
 @[simp]
-theorem modByMonic_x_sub_c_eq_c_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
+theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
   by
   nontriviality R
   have h : (p %ₘ (X - C a)).eval a = p.eval a := by
@@ -443,8 +527,14 @@ theorem modByMonic_x_sub_c_eq_c_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
     · exact WithBot.some_le_some.2 (Nat.le_of_lt_succ (WithBot.some_lt_some.1 this))
   rw [eq_C_of_degree_le_zero this, eval_C] at h
   rw [eq_C_of_degree_le_zero this, h]
-#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_x_sub_c_eq_c_eval
-
+#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
+
+/- warning: polynomial.mul_div_by_monic_eq_iff_is_root -> Polynomial.mul_divByMonic_eq_iff_isRoot is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
+but is expected to have type
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)))) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
+Case conversion may be inaccurate. Consider using '#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRootₓ'. -/
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
     rw [← h, is_root.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, MulZeroClass.zero_mul],
@@ -455,6 +545,12 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
       rw [mod_by_monic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
 #align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRoot
 
+/- warning: polynomial.dvd_iff_is_root -> Polynomial.dvd_iff_isRoot is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
+but is expected to have type
+  forall {R : Type.{u1}} {a : R} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, Iff (Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.IsRoot.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) p a)
+Case conversion may be inaccurate. Consider using '#align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRootₓ'. -/
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
     rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval, ← C_0,
@@ -462,15 +558,33 @@ theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
     fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 
-theorem modByMonic_x (p : R[X]) : p %ₘ X = C (p.eval 0) := by
+/- warning: polynomial.mod_by_monic_X -> Polynomial.modByMonic_X is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))) p))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) p))
+Case conversion may be inaccurate. Consider using '#align polynomial.mod_by_monic_X Polynomial.modByMonic_Xₓ'. -/
+theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
-#align polynomial.mod_by_monic_X Polynomial.modByMonic_x
-
+#align polynomial.mod_by_monic_X Polynomial.modByMonic_X
+
+/- warning: polynomial.eval₂_mod_by_monic_eq_self_of_root -> Polynomial.eval₂_modByMonic_eq_self_of_root is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {x : S}, (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x q) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonUnitalNonAssocRing.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))))))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x p)))
+but is expected to have type
+  forall {R : Type.{u1}} {S : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} S] {f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S (CommRing.toRing.{u2} S _inst_2)))} {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {x : S}, (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x q) (OfNat.ofNat.{u2} S 0 (Zero.toOfNat0.{u2} S (CommMonoidWithZero.toZero.{u2} S (CommSemiring.toCommMonoidWithZero.{u2} S (CommRing.toCommSemiring.{u2} S _inst_2)))))) -> (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)) (Polynomial.eval₂.{u1, u2} R S (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u2} S (CommRing.toRing.{u2} S _inst_2)) f x p)))
+Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_rootₓ'. -/
 theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
     {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
   rw [mod_by_monic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, MulZeroClass.zero_mul, sub_zero]
 #align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
 
+/- warning: polynomial.sum_mod_by_monic_coeff -> Polynomial.sum_modByMonic_coeff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (WithBot.{0} Nat) (HasLiftT.mk.{1, 1} Nat (WithBot.{0} Nat) (CoeTCₓ.coe.{1, 1} Nat (WithBot.{0} Nat) (WithBot.hasCoeT.{0} Nat))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (AddCommGroup.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toAddCommGroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => coeFn.{succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (LinearMap.hasCoeToFun.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) (Fin n) Nat (HasLiftT.mk.{1, 1} (Fin n) Nat (CoeTCₓ.coe.{1, 1} (Fin n) Nat (coeBase.{1, 1} (Fin n) Nat (Fin.coeToNat n)))) i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} {q : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))}, (Polynomial.Monic.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) -> (forall {n : Nat}, (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) q) (Nat.cast.{0} (WithBot.{0} Nat) (Semiring.toNatCast.{0} (WithBot.{0} Nat) (OrderedSemiring.toSemiring.{0} (WithBot.{0} Nat) (OrderedCommSemiring.toOrderedSemiring.{0} (WithBot.{0} Nat) (WithBot.orderedCommSemiring.{0} Nat (fun (a : Nat) (b : Nat) => instDecidableEqNat a b) Nat.canonicallyOrderedCommSemiring Nat.nontrivial)))) n)) -> (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Finset.sum.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Fin n) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toNonAssocRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Finset.univ.{0} (Fin n) (Fin.fintype n)) (fun (i : Fin n) => FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u1, u1, u1, u1} R R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u1, u1} R R R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.module.{u1, u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Semiring.toModule.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.id.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.monomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Fin.val n i)) (Polynomial.coeff.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q) (Fin.val n i)))) (Polynomial.modByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p q)))
+Case conversion may be inaccurate. Consider using '#align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeffₓ'. -/
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q :=
   by
@@ -480,6 +594,12 @@ theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
       (sum_monomial_eq _)
 #align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeff
 
+/- warning: polynomial.sub_dvd_eval_sub -> Polynomial.sub_dvd_eval_sub is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.Dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (SubNegMonoid.toHasSub.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (a : R) (b : R) (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))), Dvd.dvd.{u1} R (semigroupDvd.{u1} R (SemigroupWithZero.toSemigroup.{u1} R (NonUnitalSemiring.toSemigroupWithZero.{u1} R (NonUnitalRing.toNonUnitalSemiring.{u1} R (NonUnitalCommRing.toNonUnitalRing.{u1} R (CommRing.toNonUnitalCommRing.{u1} R _inst_1)))))) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) a b) (HSub.hSub.{u1, u1, u1} R R R (instHSub.{u1} R (Ring.toSub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a p) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) b p))
+Case conversion may be inaccurate. Consider using '#align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_subₓ'. -/
 theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b :=
   by
   suffices X - C b ∣ p - C (p.eval b) by
@@ -487,6 +607,7 @@ theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b :=
   simp [dvd_iff_is_root]
 #align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_sub
 
+#print Polynomial.mul_div_mod_by_monic_cancel_left /-
 theorem mul_div_mod_by_monic_cancel_left (p : R[X]) {q : R[X]} (hmo : q.Monic) : q * p /ₘ q = p :=
   by
   nontriviality R
@@ -494,9 +615,11 @@ theorem mul_div_mod_by_monic_cancel_left (p : R[X]) {q : R[X]} (hmo : q.Monic) :
   rw [degree_zero]
   exact Ne.bot_lt fun h => hmo.ne_zero (degree_eq_bot.1 h)
 #align polynomial.mul_div_mod_by_monic_cancel_left Polynomial.mul_div_mod_by_monic_cancel_left
+-/
 
 variable (R)
 
+#print Polynomial.not_isField /-
 theorem not_isField : ¬IsField R[X] := by
   nontriviality R
   rw [Ring.not_isField_iff_exists_ideal_bot_lt_and_lt_top]
@@ -505,12 +628,19 @@ theorem not_isField : ¬IsField R[X] := by
   · rw [bot_lt_iff_ne_bot, Ne.def, Ideal.span_singleton_eq_bot]
     exact Polynomial.X_ne_zero
   · rw [lt_top_iff_ne_top, Ne.def, Ideal.eq_top_iff_one, Ideal.mem_span_singleton,
-      Polynomial.x_dvd_iff, Polynomial.coeff_one_zero]
+      Polynomial.X_dvd_iff, Polynomial.coeff_one_zero]
     exact one_ne_zero
 #align polynomial.not_is_field Polynomial.not_isField
+-/
 
 variable {R}
 
+/- warning: polynomial.ker_eval_ring_hom -> Polynomial.ker_evalRingHom is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.ringHomClass.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.hasSingleton.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (x : R), Eq.{succ u1} (Ideal.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (RingHom.ker.{u1, u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (RingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) R (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Polynomial.evalRingHom.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1) x)) (Ideal.span.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Singleton.singleton.{u1, u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Set.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (Set.instSingletonSet.{u1} (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x) (Polynomial.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) x))))
+Case conversion may be inaccurate. Consider using '#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHomₓ'. -/
 theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
   by
   ext y
@@ -519,6 +649,7 @@ theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
 
 section multiplicity
 
+#print Polynomial.decidableDvdMonic /-
 /-- An algorithm for deciding polynomial divisibility.
 The algorithm is "compute `p %ₘ q` and compare to `0`".
 See `polynomial.mod_by_monic` for the algorithm that computes `%ₘ`.
@@ -526,17 +657,25 @@ See `polynomial.mod_by_monic` for the algorithm that computes `%ₘ`.
 def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
   decidable_of_iff (p %ₘ q = 0) (dvd_iff_modByMonic_eq_zero hq)
 #align polynomial.decidable_dvd_monic Polynomial.decidableDvdMonic
+-/
 
 open Classical
 
-theorem multiplicity_x_sub_c_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
+/- warning: polynomial.multiplicity_X_sub_C_finite -> Polynomial.multiplicity_X_sub_C_finite is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p)
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (multiplicity.Finite.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p)
+Case conversion may be inaccurate. Consider using '#align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finiteₓ'. -/
+theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
   by
   haveI := nontrivial.of_polynomial_ne h0
   refine' multiplicity_finite_of_degree_pos_of_monic _ (monic_X_sub_C _) h0
   rw [degree_X_sub_C]
   decide
-#align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_x_sub_c_finite
+#align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finite
 
+#print Polynomial.rootMultiplicity /-
 /-- The largest power of `X - C a` which divides `p`.
 This is computable via the divisibility algorithm `polynomial.decidable_dvd_monic`. -/
 def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
@@ -546,50 +685,85 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
       @Not.decidable _ (decidableDvdMonic p ((monic_X_sub_C a).pow (n + 1)))
     Nat.find (multiplicity_X_sub_C_finite a h0)
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
+-/
 
+/- warning: polynomial.root_multiplicity_eq_multiplicity -> Polynomial.rootMultiplicity_eq_multiplicity is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) => OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (fun (a : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (b : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Classical.propDecidable (Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a p) (dite.{1} Nat (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (Classical.propDecidable (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (fun (h0 : Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) => OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) (fun (h0 : Not (Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) => Part.get.{0} Nat (multiplicity.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (a : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (b : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Classical.propDecidable ((fun (x._@.Mathlib.RingTheory.Multiplicity._hyg.25 : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (x._@.Mathlib.RingTheory.Multiplicity._hyg.27 : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) => Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Monoid.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) x._@.Mathlib.RingTheory.Multiplicity._hyg.25 x._@.Mathlib.RingTheory.Multiplicity._hyg.27) a b)) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) p) (Polynomial.multiplicity_X_sub_C_finite.{u1} R _inst_1 p a h0)))
+Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicityₓ'. -/
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
-      if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_x_sub_c_finite a h0) :=
+      if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_X_sub_C_finite a h0) :=
   by simp [multiplicity, root_multiplicity, Part.Dom] <;> congr <;> funext <;> congr
 #align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicity
 
+#print Polynomial.rootMultiplicity_zero /-
 @[simp]
 theorem rootMultiplicity_zero {x : R} : rootMultiplicity x 0 = 0 :=
   dif_pos rfl
 #align polynomial.root_multiplicity_zero Polynomial.rootMultiplicity_zero
+-/
 
+#print Polynomial.rootMultiplicity_eq_zero_iff /-
 @[simp]
 theorem rootMultiplicity_eq_zero_iff {p : R[X]} {x : R} :
     rootMultiplicity x p = 0 ↔ IsRoot p x → p = 0 := by
   simp only [root_multiplicity_eq_multiplicity, dite_eq_left_iff, PartENat.get_eq_iff_eq_coe,
     Nat.cast_zero, multiplicity.multiplicity_eq_zero, dvd_iff_is_root, not_imp_not]
 #align polynomial.root_multiplicity_eq_zero_iff Polynomial.rootMultiplicity_eq_zero_iff
+-/
 
+#print Polynomial.rootMultiplicity_eq_zero /-
 theorem rootMultiplicity_eq_zero {p : R[X]} {x : R} (h : ¬IsRoot p x) : rootMultiplicity x p = 0 :=
   rootMultiplicity_eq_zero_iff.2 fun h' => (h h').elim
 #align polynomial.root_multiplicity_eq_zero Polynomial.rootMultiplicity_eq_zero
+-/
 
+#print Polynomial.rootMultiplicity_pos' /-
 @[simp]
 theorem rootMultiplicity_pos' {p : R[X]} {x : R} : 0 < rootMultiplicity x p ↔ p ≠ 0 ∧ IsRoot p x :=
   by rw [pos_iff_ne_zero, Ne.def, root_multiplicity_eq_zero_iff, not_imp, and_comm]
 #align polynomial.root_multiplicity_pos' Polynomial.rootMultiplicity_pos'
+-/
 
+#print Polynomial.rootMultiplicity_pos /-
 theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
     0 < rootMultiplicity x p ↔ IsRoot p x :=
   rootMultiplicity_pos'.trans (and_iff_right hp)
 #align polynomial.root_multiplicity_pos Polynomial.rootMultiplicity_pos
+-/
 
+/- warning: polynomial.root_multiplicity_C -> Polynomial.rootMultiplicity_C is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (r : R) (a : R), Eq.{1} Nat (Polynomial.rootMultiplicity.{u1} R _inst_1 a (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) r)) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
+Case conversion may be inaccurate. Consider using '#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_Cₓ'. -/
 @[simp]
-theorem rootMultiplicity_c (r a : R) : rootMultiplicity a (C r) = 0 := by
+theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
   simp only [root_multiplicity_eq_zero_iff, is_root, eval_C, C_eq_zero, imp_self]
-#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_c
-
+#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
+
+/- warning: polynomial.pow_root_multiplicity_dvd -> Polynomial.pow_rootMultiplicity_dvd is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Dvd.Dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Dvd.dvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (semigroupDvd.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (SemigroupWithZero.toSemigroup.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalSemiring.toSemigroupWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalRing.toNonUnitalSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalCommRing.toNonUnitalRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (CommRing.toNonUnitalCommRing.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.commRing.{u1} R _inst_1))))))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)) p
+Case conversion may be inaccurate. Consider using '#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvdₓ'. -/
 theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
   if h : p = 0 then by simp [h]
   else by
     rw [root_multiplicity_eq_multiplicity, dif_neg h] <;> exact multiplicity.pow_multiplicity_dvd _
 #align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
 
+/- warning: polynomial.div_by_monic_mul_pow_root_multiplicity_eq -> Polynomial.divByMonic_mul_pow_rootMultiplicity_eq is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (a : R), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p))) p
+Case conversion may be inaccurate. Consider using '#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eqₓ'. -/
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
   by
@@ -600,6 +774,12 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     simp [mul_comm]
 #align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eq
 
+/- warning: polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero -> Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (OfNat.mk.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.zero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Ring.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.ring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) => R -> (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R (CommRing.toRing.{u1} R _inst_1))))))))))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : CommRing.{u1} R] {p : Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))} (a : R), (Ne.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) p (OfNat.ofNat.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.zero.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) -> (Ne.{succ u1} R (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) a (Polynomial.divByMonic.{u1} R (CommRing.toRing.{u1} R _inst_1) p (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHPow.{u1, 0} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))))) (HSub.hSub.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a) (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (instHSub.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.sub.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.X.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))))) R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) (Polynomial.semiring.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)))))))) (Polynomial.C.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1))) a)) (Polynomial.rootMultiplicity.{u1} R _inst_1 a p)))) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (CommMonoidWithZero.toZero.{u1} R (CommSemiring.toCommMonoidWithZero.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zeroₓ'. -/
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 :=
   by
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 
 ! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit 742aa2cb249f23408bba420f8b6fe7a2b8093407
+! leanprover-community/mathlib commit da420a8c6dd5bdfb85c4ced85c34388f633bc6ff
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -517,28 +517,6 @@ theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
   simpa only [Ideal.mem_span_singleton, dvd_iff_is_root]
 #align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
 
-/-- For a commutative ring $R$, evaluating a polynomial at an element $x \in R$ induces an
-isomorphism of $R$-algebras $R[X] / \langle X - x \rangle \cong R$. -/
-noncomputable def quotientSpanXSubCAlgEquiv (x : R) :
-    (R[X] ⧸ Ideal.span ({X - C x} : Set R[X])) ≃ₐ[R] R :=
-  (AlgEquiv.restrictScalars R <|
-          Ideal.quotientEquivAlgOfEq R
-            (ker_eval_ring_hom x : RingHom.ker (aeval x).toRingHom = _)).symm.trans <|
-    Ideal.quotientKerAlgEquivOfRightInverse fun _ => eval_C
-#align polynomial.quotient_span_X_sub_C_alg_equiv Polynomial.quotientSpanXSubCAlgEquiv
-
-@[simp]
-theorem quotientSpanXSubCAlgEquiv_mk (x : R) (p : R[X]) :
-    quotientSpanXSubCAlgEquiv x (Ideal.Quotient.mk _ p) = p.eval x :=
-  rfl
-#align polynomial.quotient_span_X_sub_C_alg_equiv_mk Polynomial.quotientSpanXSubCAlgEquiv_mk
-
-@[simp]
-theorem quotientSpanXSubCAlgEquiv_symm_apply (x : R) (y : R) :
-    (quotientSpanXSubCAlgEquiv x).symm y = algebraMap R _ y :=
-  rfl
-#align polynomial.quotient_span_X_sub_C_alg_equiv_symm_apply Polynomial.quotientSpanXSubCAlgEquiv_symm_apply
-
 section multiplicity
 
 /-- An algorithm for deciding polynomial divisibility.
Diff
@@ -243,7 +243,7 @@ theorem modByMonic_eq_sub_mul_div :
       rw [dif_pos hq, dif_pos hq, if_pos h, mul_add, sub_add_eq_sub_sub, mul_comm]
     else by
       unfold mod_by_monic div_by_monic div_mod_by_monic_aux
-      rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, mul_zero, sub_zero]
+      rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, MulZeroClass.mul_zero, sub_zero]
 #align polynomial.mod_by_monic_eq_sub_mul_div Polynomial.modByMonic_eq_sub_mul_div
 
 theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q * (p /ₘ q) = p :=
@@ -253,7 +253,7 @@ theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q *
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := mod_by_monic_add_div p hq <;>
-      rwa [h, mul_zero, add_zero, mod_by_monic_eq_self_iff hq] at this,
+      rwa [h, MulZeroClass.mul_zero, add_zero, mod_by_monic_eq_self_iff hq] at this,
     fun h => by
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold div_by_monic div_mod_by_monic_aux <;> rw [dif_pos hq, if_neg (mt And.left this)]⟩
@@ -400,7 +400,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
     have hrpq0 : leading_coeff (r - p /ₘ q) ≠ 0 := fun h =>
       hpq0 <|
         leading_coeff_eq_zero.1
-          (by rw [hmod, leading_coeff_eq_zero.1 h, mul_zero, leading_coeff_zero])
+          (by rw [hmod, leading_coeff_eq_zero.1 h, MulZeroClass.mul_zero, leading_coeff_zero])
     have hlc : leading_coeff q * leading_coeff (r - p /ₘ q) ≠ 0 := by rwa [monic.def.1 hq, one_mul]
     rw [degree_mul' hlc, degree_eq_nat_degree hq.ne_zero,
       degree_eq_nat_degree (mt leading_coeff_eq_zero.2 hrpq0)] at this
@@ -433,7 +433,7 @@ theorem modByMonic_x_sub_c_eq_c_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
   nontriviality R
   have h : (p %ₘ (X - C a)).eval a = p.eval a := by
     rw [mod_by_monic_eq_sub_mul_div _ (monic_X_sub_C a), eval_sub, eval_mul, eval_sub, eval_X,
-      eval_C, sub_self, zero_mul, sub_zero]
+      eval_C, sub_self, MulZeroClass.zero_mul, sub_zero]
   have : degree (p %ₘ (X - C a)) < 1 :=
     degree_X_sub_C a ▸ degree_mod_by_monic_lt p (monic_X_sub_C a)
   have : degree (p %ₘ (X - C a)) ≤ 0 :=
@@ -446,7 +446,8 @@ theorem modByMonic_x_sub_c_eq_c_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
 #align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_x_sub_c_eq_c_eval
 
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
-  ⟨fun h => by rw [← h, is_root.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
+  ⟨fun h => by
+    rw [← h, is_root.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, MulZeroClass.zero_mul],
     fun h : p.eval a = 0 => by
     conv =>
         rhs
@@ -467,7 +468,7 @@ theorem modByMonic_x (p : R[X]) : p %ₘ X = C (p.eval 0) := by
 
 theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
     {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
-  rw [mod_by_monic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, zero_mul, sub_zero]
+  rw [mod_by_monic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, MulZeroClass.zero_mul, sub_zero]
 #align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
 
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
Diff
@@ -564,7 +564,7 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
   if h0 : p = 0 then 0
   else
     let I : DecidablePred fun n : ℕ => ¬(X - C a) ^ (n + 1) ∣ p := fun n =>
-      @Not.decidable _ (decidableDvdMonic p ((monic_x_sub_c a).pow (n + 1)))
+      @Not.decidable _ (decidableDvdMonic p ((monic_X_sub_C a).pow (n + 1)))
     Nat.find (multiplicity_X_sub_C_finite a h0)
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
 
@@ -614,7 +614,7 @@ theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplici
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
     p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
   by
-  have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_x_sub_c _).pow _
+  have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_X_sub_C _).pow _
   conv_rhs =>
       rw [← mod_by_monic_add_div p this,
         (dvd_iff_mod_by_monic_eq_zero this).2 (pow_root_multiplicity_dvd _ _)] <;>
Diff
@@ -523,7 +523,7 @@ noncomputable def quotientSpanXSubCAlgEquiv (x : R) :
   (AlgEquiv.restrictScalars R <|
           Ideal.quotientEquivAlgOfEq R
             (ker_eval_ring_hom x : RingHom.ker (aeval x).toRingHom = _)).symm.trans <|
-    Ideal.quotientKerAlgEquivOfRightInverse fun _ => eval_c
+    Ideal.quotientKerAlgEquivOfRightInverse fun _ => eval_C
 #align polynomial.quotient_span_X_sub_C_alg_equiv Polynomial.quotientSpanXSubCAlgEquiv
 
 @[simp]
Diff
@@ -38,12 +38,12 @@ section CommSemiring
 
 variable [CommSemiring R]
 
-theorem x_dvd_iff {f : R[X]} : x ∣ f ↔ f.coeff 0 = 0 :=
+theorem x_dvd_iff {f : R[X]} : X ∣ f ↔ f.coeff 0 = 0 :=
   ⟨fun ⟨g, hfg⟩ => by rw [hfg, mul_comm, coeff_mul_X_zero], fun hf =>
     ⟨f.divX, by rw [mul_comm, ← add_zero (f.div_X * X), ← C_0, ← hf, div_X_mul_X_add]⟩⟩
 #align polynomial.X_dvd_iff Polynomial.x_dvd_iff
 
-theorem x_pow_dvd_iff {f : R[X]} {n : ℕ} : x ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
+theorem x_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
   ⟨fun ⟨g, hgf⟩ d hd => by
     simp only [hgf, coeff_X_pow_mul', ite_eq_right_iff, not_le_of_lt hd, IsEmpty.forall_iff],
     fun hd => by
@@ -96,7 +96,7 @@ section Ring
 variable [Ring R] {p q : R[X]}
 
 theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
-    degree (p - c (leadingCoeff p) * x ^ (natDegree p - natDegree q) * q) < degree p :=
+    degree (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) < degree p :=
   have hp : leadingCoeff p ≠ 0 := mt leadingCoeff_eq_zero.1 h.2
   have hq0 : q ≠ 0 := hq.ne_zero_of_polynomial_ne h.2
   have hlt : natDegree q ≤ natDegree p :=
@@ -113,7 +113,7 @@ theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
 noncomputable def divModByMonicAux : ∀ (p : R[X]) {q : R[X]}, Monic q → R[X] × R[X]
   | p => fun q hq =>
     if h : degree q ≤ degree p ∧ p ≠ 0 then
-      let z := c (leadingCoeff p) * x ^ (natDegree p - natDegree q)
+      let z := C (leadingCoeff p) * X ^ (natDegree p - natDegree q)
       have wf := div_wf_lemma h hq
       let dm := div_mod_by_monic_aux (p - z * q) hq
       ⟨z + dm.1, dm.2⟩
@@ -143,8 +143,8 @@ theorem degree_modByMonic_lt [Nontrivial R] :
       by
       have wf := div_wf_lemma ⟨h.1, h.2⟩ hq
       have :
-        degree ((p - c (leadingCoeff p) * x ^ (natDegree p - natDegree q) * q) %ₘ q) < degree q :=
-        degree_mod_by_monic_lt (p - c (leadingCoeff p) * x ^ (natDegree p - natDegree q) * q) hq
+        degree ((p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) %ₘ q) < degree q :=
+        degree_mod_by_monic_lt (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) hq
       unfold mod_by_monic at this⊢
       unfold div_mod_by_monic_aux
       rw [dif_pos hq] at this⊢
@@ -233,7 +233,7 @@ theorem modByMonic_eq_sub_mul_div :
       by
       have wf := div_wf_lemma h hq
       have ih :=
-        mod_by_monic_eq_sub_mul_div (p - c (leadingCoeff p) * x ^ (natDegree p - natDegree q) * q)
+        mod_by_monic_eq_sub_mul_div (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q)
           hq
       unfold mod_by_monic div_by_monic div_mod_by_monic_aux
       rw [dif_pos hq, if_pos h]
@@ -428,7 +428,7 @@ theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
 #align polynomial.div_by_monic_one Polynomial.divByMonic_one
 
 @[simp]
-theorem modByMonic_x_sub_c_eq_c_eval (p : R[X]) (a : R) : p %ₘ (x - c a) = c (p.eval a) :=
+theorem modByMonic_x_sub_c_eq_c_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) :=
   by
   nontriviality R
   have h : (p %ₘ (X - C a)).eval a = p.eval a := by
@@ -445,7 +445,7 @@ theorem modByMonic_x_sub_c_eq_c_eval (p : R[X]) (a : R) : p %ₘ (x - c a) = c (
   rw [eq_C_of_degree_le_zero this, h]
 #align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_x_sub_c_eq_c_eval
 
-theorem mul_divByMonic_eq_iff_isRoot : (x - c a) * (p /ₘ (x - c a)) = p ↔ IsRoot p a :=
+theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by rw [← h, is_root.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
     fun h : p.eval a = 0 => by
     conv =>
@@ -454,14 +454,14 @@ theorem mul_divByMonic_eq_iff_isRoot : (x - c a) * (p /ₘ (x - c a)) = p ↔ Is
       rw [mod_by_monic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
 #align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRoot
 
-theorem dvd_iff_isRoot : x - c a ∣ p ↔ IsRoot p a :=
+theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
     rwa [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval, ← C_0,
       C_inj] at h,
-    fun h => ⟨p /ₘ (x - c a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
+    fun h => ⟨p /ₘ (X - C a), by rw [mul_div_by_monic_eq_iff_is_root.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 
-theorem modByMonic_x (p : R[X]) : p %ₘ x = c (p.eval 0) := by
+theorem modByMonic_x (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← mod_by_monic_X_sub_C_eq_C_eval, C_0, sub_zero]
 #align polynomial.mod_by_monic_X Polynomial.modByMonic_x
 
@@ -499,10 +499,10 @@ variable (R)
 theorem not_isField : ¬IsField R[X] := by
   nontriviality R
   rw [Ring.not_isField_iff_exists_ideal_bot_lt_and_lt_top]
-  use Ideal.span {Polynomial.x}
+  use Ideal.span {Polynomial.X}
   constructor
   · rw [bot_lt_iff_ne_bot, Ne.def, Ideal.span_singleton_eq_bot]
-    exact Polynomial.x_ne_zero
+    exact Polynomial.X_ne_zero
   · rw [lt_top_iff_ne_top, Ne.def, Ideal.eq_top_iff_one, Ideal.mem_span_singleton,
       Polynomial.x_dvd_iff, Polynomial.coeff_one_zero]
     exact one_ne_zero
@@ -510,7 +510,7 @@ theorem not_isField : ¬IsField R[X] := by
 
 variable {R}
 
-theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {x - c x} :=
+theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {X - C x} :=
   by
   ext y
   simpa only [Ideal.mem_span_singleton, dvd_iff_is_root]
@@ -519,7 +519,7 @@ theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {x - c x} :=
 /-- For a commutative ring $R$, evaluating a polynomial at an element $x \in R$ induces an
 isomorphism of $R$-algebras $R[X] / \langle X - x \rangle \cong R$. -/
 noncomputable def quotientSpanXSubCAlgEquiv (x : R) :
-    (R[X] ⧸ Ideal.span ({x - c x} : Set R[X])) ≃ₐ[R] R :=
+    (R[X] ⧸ Ideal.span ({X - C x} : Set R[X])) ≃ₐ[R] R :=
   (AlgEquiv.restrictScalars R <|
           Ideal.quotientEquivAlgOfEq R
             (ker_eval_ring_hom x : RingHom.ker (aeval x).toRingHom = _)).symm.trans <|
@@ -550,7 +550,7 @@ def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
 
 open Classical
 
-theorem multiplicity_x_sub_c_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (x - c a) p :=
+theorem multiplicity_x_sub_c_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p :=
   by
   haveI := nontrivial.of_polynomial_ne h0
   refine' multiplicity_finite_of_degree_pos_of_monic _ (monic_X_sub_C _) h0
@@ -563,14 +563,14 @@ This is computable via the divisibility algorithm `polynomial.decidable_dvd_moni
 def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
   if h0 : p = 0 then 0
   else
-    let I : DecidablePred fun n : ℕ => ¬(x - c a) ^ (n + 1) ∣ p := fun n =>
+    let I : DecidablePred fun n : ℕ => ¬(X - C a) ^ (n + 1) ∣ p := fun n =>
       @Not.decidable _ (decidableDvdMonic p ((monic_x_sub_c a).pow (n + 1)))
     Nat.find (multiplicity_X_sub_C_finite a h0)
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
 
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
-      if h0 : p = 0 then 0 else (multiplicity (x - c a) p).get (multiplicity_x_sub_c_finite a h0) :=
+      if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_x_sub_c_finite a h0) :=
   by simp [multiplicity, root_multiplicity, Part.Dom] <;> congr <;> funext <;> congr
 #align polynomial.root_multiplicity_eq_multiplicity Polynomial.rootMultiplicity_eq_multiplicity
 
@@ -601,20 +601,20 @@ theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
 #align polynomial.root_multiplicity_pos Polynomial.rootMultiplicity_pos
 
 @[simp]
-theorem rootMultiplicity_c (r a : R) : rootMultiplicity a (c r) = 0 := by
+theorem rootMultiplicity_c (r a : R) : rootMultiplicity a (C r) = 0 := by
   simp only [root_multiplicity_eq_zero_iff, is_root, eval_C, C_eq_zero, imp_self]
 #align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_c
 
-theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (x - c a) ^ rootMultiplicity a p ∣ p :=
+theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
   if h : p = 0 then by simp [h]
   else by
     rw [root_multiplicity_eq_multiplicity, dif_neg h] <;> exact multiplicity.pow_multiplicity_dvd _
 #align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
 
 theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
-    p /ₘ (x - c a) ^ rootMultiplicity a p * (x - c a) ^ rootMultiplicity a p = p :=
+    p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p :=
   by
-  have : Monic ((x - c a) ^ rootMultiplicity a p) := (monic_x_sub_c _).pow _
+  have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_x_sub_c _).pow _
   conv_rhs =>
       rw [← mod_by_monic_add_div p this,
         (dvd_iff_mod_by_monic_eq_zero this).2 (pow_root_multiplicity_dvd _ _)] <;>
@@ -622,7 +622,7 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
 #align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eq
 
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
-    eval a (p /ₘ (x - c a) ^ rootMultiplicity a p) ≠ 0 :=
+    eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 :=
   by
   haveI : Nontrivial R := nontrivial.of_polynomial_ne hp
   rw [Ne.def, ← is_root.def, ← dvd_iff_is_root]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 
 ! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit e064a7bf82ad94c3c17b5128bbd860d1ec34874e
+! leanprover-community/mathlib commit 742aa2cb249f23408bba420f8b6fe7a2b8093407
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -38,11 +38,25 @@ section CommSemiring
 
 variable [CommSemiring R]
 
-theorem x_dvd_iff {α : Type u} [CommSemiring α] {f : α[X]} : x ∣ f ↔ f.coeff 0 = 0 :=
+theorem x_dvd_iff {f : R[X]} : x ∣ f ↔ f.coeff 0 = 0 :=
   ⟨fun ⟨g, hfg⟩ => by rw [hfg, mul_comm, coeff_mul_X_zero], fun hf =>
     ⟨f.divX, by rw [mul_comm, ← add_zero (f.div_X * X), ← C_0, ← hf, div_X_mul_X_add]⟩⟩
 #align polynomial.X_dvd_iff Polynomial.x_dvd_iff
 
+theorem x_pow_dvd_iff {f : R[X]} {n : ℕ} : x ^ n ∣ f ↔ ∀ d < n, f.coeff d = 0 :=
+  ⟨fun ⟨g, hgf⟩ d hd => by
+    simp only [hgf, coeff_X_pow_mul', ite_eq_right_iff, not_le_of_lt hd, IsEmpty.forall_iff],
+    fun hd => by
+    induction' n with n hn
+    · simp only [pow_zero, one_dvd]
+    · obtain ⟨g, hgf⟩ := hn fun d : ℕ => fun H : d < n => hd _ (Nat.lt_succ_of_lt H)
+      have := coeff_X_pow_mul g n 0
+      rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this
+      obtain ⟨k, hgk⟩ := polynomial.X_dvd_iff.mpr this.symm
+      use k
+      rwa [pow_succ, mul_comm X _, mul_assoc, ← hgk]⟩
+#align polynomial.X_pow_dvd_iff Polynomial.x_pow_dvd_iff
+
 end CommSemiring
 
 section CommSemiring
Diff
@@ -356,7 +356,7 @@ theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
       ⟨Eq.symm <| by rw [← Polynomial.map_mul, ← Polynomial.map_add, mod_by_monic_add_div _ hq],
         calc
           _ ≤ degree (p %ₘ q) := degree_map_le _ _
-          _ < degree q := degree_mod_by_monic_lt _ hq
+          _ < degree q := (degree_mod_by_monic_lt _ hq)
           _ = _ :=
             Eq.symm <|
               degree_map_eq_of_leading_coeff_ne_zero _
Diff
@@ -4,10 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 
 ! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit 3d32bf9cef95940e3fe1ca0dd2412e0f21579f46
+! leanprover-community/mathlib commit e064a7bf82ad94c3c17b5128bbd860d1ec34874e
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
+import Mathbin.Data.Polynomial.AlgebraMap
 import Mathbin.Data.Polynomial.Inductions
 import Mathbin.Data.Polynomial.Monic
 import Mathbin.RingTheory.Multiplicity
@@ -495,6 +496,34 @@ theorem not_isField : ¬IsField R[X] := by
 
 variable {R}
 
+theorem ker_evalRingHom (x : R) : (evalRingHom x).ker = Ideal.span {x - c x} :=
+  by
+  ext y
+  simpa only [Ideal.mem_span_singleton, dvd_iff_is_root]
+#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
+
+/-- For a commutative ring $R$, evaluating a polynomial at an element $x \in R$ induces an
+isomorphism of $R$-algebras $R[X] / \langle X - x \rangle \cong R$. -/
+noncomputable def quotientSpanXSubCAlgEquiv (x : R) :
+    (R[X] ⧸ Ideal.span ({x - c x} : Set R[X])) ≃ₐ[R] R :=
+  (AlgEquiv.restrictScalars R <|
+          Ideal.quotientEquivAlgOfEq R
+            (ker_eval_ring_hom x : RingHom.ker (aeval x).toRingHom = _)).symm.trans <|
+    Ideal.quotientKerAlgEquivOfRightInverse fun _ => eval_c
+#align polynomial.quotient_span_X_sub_C_alg_equiv Polynomial.quotientSpanXSubCAlgEquiv
+
+@[simp]
+theorem quotientSpanXSubCAlgEquiv_mk (x : R) (p : R[X]) :
+    quotientSpanXSubCAlgEquiv x (Ideal.Quotient.mk _ p) = p.eval x :=
+  rfl
+#align polynomial.quotient_span_X_sub_C_alg_equiv_mk Polynomial.quotientSpanXSubCAlgEquiv_mk
+
+@[simp]
+theorem quotientSpanXSubCAlgEquiv_symm_apply (x : R) (y : R) :
+    (quotientSpanXSubCAlgEquiv x).symm y = algebraMap R _ y :=
+  rfl
+#align polynomial.quotient_span_X_sub_C_alg_equiv_symm_apply Polynomial.quotientSpanXSubCAlgEquiv_symm_apply
+
 section multiplicity
 
 /-- An algorithm for deciding polynomial divisibility.

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 3 (#12372)

A PR analogous to #12338 and #12361: reformatting proofs following the multiple goals linter of #12339.

Diff
@@ -556,7 +556,8 @@ theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
   · rw [Subsingleton.elim (C r) 0, rootMultiplicity_zero]
   classical
   rw [rootMultiplicity_eq_multiplicity]
-  split_ifs with hr; rfl
+  split_ifs with hr
+  · rfl
   have h : natDegree (C r) < natDegree (X - C a) := by simp
   simp_rw [multiplicity.multiplicity_eq_zero.mpr ((monic_X_sub_C a).not_dvd_of_natDegree_lt hr h)]
   rfl
chore: unify date formatting in lemma deprecations (#12334)
  • consistently use the YYYY-MM-DD format
  • when easily possible, put the date on the same line as the deprecated attribute
  • when easily possible, format the entire declaration on the same line

Why these changes?

  • consistency makes it easier for tools to parse this information
  • compactness: I don't see a good reason for these declarations taking up more space than needed; as I understand it, deprecated lemmas are not supposed to be used in mathlib anyway
  • putting the date on the same line as the attribute makes it easier to discover un-dated deprecations; they also ease writing a tool to replace these by a machine-readable version using leanprover/lean4#3968
Diff
@@ -412,8 +412,7 @@ theorem modByMonic_eq_zero_iff_dvd (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
 #align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.modByMonic_eq_zero_iff_dvd
 
--- 2024-03-23
-@[deprecated] alias dvd_iff_modByMonic_eq_zero := modByMonic_eq_zero_iff_dvd
+@[deprecated] alias dvd_iff_modByMonic_eq_zero := modByMonic_eq_zero_iff_dvd -- 2024-03-23
 
 /-- See `Polynomial.mul_left_modByMonic` for the other multiplication order. That version, unlike
 this one, requires commutativity. -/
chore: backports from #11997, adaptations for nightly-2024-04-07 (#12176)

These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -69,7 +69,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
     have hpn1 : leadingCoeff p ^ (natDegree q + 1) = 1 := by simp [show _ = _ from hmp]
     have hpn0' : leadingCoeff p ^ (natDegree q + 1) ≠ 0 := hpn1.symm ▸ zn0.symm
     have hpnr0 : leadingCoeff (p ^ (natDegree q + 1)) * leadingCoeff r ≠ 0 := by
-      simp only [leadingCoeff_pow' hpn0', leadingCoeff_eq_zero, hpn1, one_pow, one_mul, Ne.def,
+      simp only [leadingCoeff_pow' hpn0', leadingCoeff_eq_zero, hpn1, one_pow, one_mul, Ne,
           hr0, not_false_eq_true]
     have hnp : 0 < natDegree p := Nat.cast_lt.1 <| by
       rw [← degree_eq_natDegree hp0]; exact hp
@@ -276,9 +276,9 @@ theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔
 theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
     degree q + degree (p /ₘ q) = degree p := by
   nontriviality R
-  have hdiv0 : p /ₘ q ≠ 0 := by rwa [Ne.def, divByMonic_eq_zero_iff hq, not_lt]
+  have hdiv0 : p /ₘ q ≠ 0 := by rwa [Ne, divByMonic_eq_zero_iff hq, not_lt]
   have hlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0 := by
-    rwa [Monic.def.1 hq, one_mul, Ne.def, leadingCoeff_eq_zero]
+    rwa [Monic.def.1 hq, one_mul, Ne, leadingCoeff_eq_zero]
   have hmod : degree (p %ₘ q) < degree (q * (p /ₘ q)) :=
     calc
       degree (p %ₘ q) < degree q := degree_modByMonic_lt _ hq
@@ -682,7 +682,7 @@ theorem rootMultiplicity_eq_zero {p : R[X]} {x : R} (h : ¬IsRoot p x) : rootMul
 
 @[simp]
 theorem rootMultiplicity_pos' {p : R[X]} {x : R} : 0 < rootMultiplicity x p ↔ p ≠ 0 ∧ IsRoot p x :=
-  by rw [pos_iff_ne_zero, Ne.def, rootMultiplicity_eq_zero_iff, not_imp, and_comm]
+  by rw [pos_iff_ne_zero, Ne, rootMultiplicity_eq_zero_iff, not_imp, and_comm]
 #align polynomial.root_multiplicity_pos' Polynomial.rootMultiplicity_pos'
 
 theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
@@ -694,7 +694,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 := by
   classical
   haveI : Nontrivial R := Nontrivial.of_polynomial_ne hp
-  rw [Ne.def, ← IsRoot.def, ← dvd_iff_isRoot]
+  rw [Ne, ← IsRoot, ← dvd_iff_isRoot]
   rintro ⟨q, hq⟩
   have := pow_mul_divByMonic_rootMultiplicity_eq p a
   rw [hq, ← mul_assoc, ← pow_succ, rootMultiplicity_eq_multiplicity, dif_neg hp] at this
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -377,7 +377,7 @@ theorem map_mod_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
       ⟨Eq.symm <| by rw [← Polynomial.map_mul, ← Polynomial.map_add, modByMonic_add_div _ hq],
         calc
           _ ≤ degree (p %ₘ q) := degree_map_le _ _
-          _ < degree q := (degree_modByMonic_lt _ hq)
+          _ < degree q := degree_modByMonic_lt _ hq
           _ = _ :=
             Eq.symm <|
               degree_map_eq_of_leadingCoeff_ne_zero _
chore: exact by decide -> decide (#12067)

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -701,7 +701,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
   exact
     multiplicity.is_greatest'
       (multiplicity_finite_of_degree_pos_of_monic
-        (show (0 : WithBot ℕ) < degree (X - C a) by rw [degree_X_sub_C]; exact by decide)
+        (show (0 : WithBot ℕ) < degree (X - C a) by rw [degree_X_sub_C]; decide)
         (monic_X_sub_C _) hp)
       (Nat.lt_succ_self _) (dvd_of_mul_right_eq _ this)
 #align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero
chore: rename IsRoot.definition back to IsRoot.def (#11999)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -278,7 +278,7 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
   nontriviality R
   have hdiv0 : p /ₘ q ≠ 0 := by rwa [Ne.def, divByMonic_eq_zero_iff hq, not_lt]
   have hlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0 := by
-    rwa [Monic.def'.1 hq, one_mul, Ne.def, leadingCoeff_eq_zero]
+    rwa [Monic.def.1 hq, one_mul, Ne.def, leadingCoeff_eq_zero]
   have hmod : degree (p %ₘ q) < degree (q * (p /ₘ q)) :=
     calc
       degree (p %ₘ q) < degree q := degree_modByMonic_lt _ hq
@@ -364,7 +364,7 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
           degree g ≤ degree g + degree (q - f /ₘ g) := by
             erw [degree_eq_natDegree hg.ne_zero, degree_eq_natDegree hqf, WithBot.coe_le_coe]
             exact Nat.le_add_right _ _
-          _ = degree (r - f %ₘ g) := by rw [h₂, degree_mul']; simpa [Monic.def'.1 hg]
+          _ = degree (r - f %ₘ g) := by rw [h₂, degree_mul']; simpa [Monic.def.1 hg]
   exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
 #align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
 
@@ -381,7 +381,7 @@ theorem map_mod_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
           _ = _ :=
             Eq.symm <|
               degree_map_eq_of_leadingCoeff_ne_zero _
-                (by rw [Monic.def'.1 hq, f.map_one]; exact one_ne_zero)⟩
+                (by rw [Monic.def.1 hq, f.map_one]; exact one_ne_zero)⟩
   exact ⟨this.1.symm, this.2.symm⟩
 #align polynomial.map_mod_div_by_monic Polynomial.map_mod_divByMonic
 
@@ -406,7 +406,7 @@ theorem modByMonic_eq_zero_iff_dvd (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
       hpq0 <|
         leadingCoeff_eq_zero.1
           (by rw [hmod, leadingCoeff_eq_zero.1 h, mul_zero, leadingCoeff_zero])
-    have hlc : leadingCoeff q * leadingCoeff (r - p /ₘ q) ≠ 0 := by rwa [Monic.def'.1 hq, one_mul]
+    have hlc : leadingCoeff q * leadingCoeff (r - p /ₘ q) ≠ 0 := by rwa [Monic.def.1 hq, one_mul]
     rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero,
       degree_eq_natDegree (mt leadingCoeff_eq_zero.2 hrpq0)] at this
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
@@ -615,7 +615,7 @@ set_option linter.uppercaseLean3 false in
 
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
-    rw [← h, IsRoot.definition, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
+    rw [← h, IsRoot.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
     fun h : p.eval a = 0 => by
     conv_rhs =>
         rw [← modByMonic_add_div p (monic_X_sub_C a)]
@@ -694,7 +694,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 := by
   classical
   haveI : Nontrivial R := Nontrivial.of_polynomial_ne hp
-  rw [Ne.def, ← IsRoot.definition, ← dvd_iff_isRoot]
+  rw [Ne.def, ← IsRoot.def, ← dvd_iff_isRoot]
   rintro ⟨q, hq⟩
   have := pow_mul_divByMonic_rootMultiplicity_eq p a
   rw [hq, ← mul_assoc, ← pow_succ, rootMultiplicity_eq_multiplicity, dif_neg hp] at this
move(Polynomial): Move out of Data (#11751)

Polynomial and MvPolynomial are algebraic objects, hence should be under Algebra (or at least not under Data)

Diff
@@ -3,8 +3,8 @@ Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 -/
-import Mathlib.Data.Polynomial.Inductions
-import Mathlib.Data.Polynomial.Monic
+import Mathlib.Algebra.Polynomial.Inductions
+import Mathlib.Algebra.Polynomial.Monic
 import Mathlib.RingTheory.Multiplicity
 import Mathlib.RingTheory.Ideal.Operations
 
change the order of operation in zsmulRec and nsmulRec (#11451)

We change the following field in the definition of an additive commutative monoid:

 nsmul_succ : ∀ (n : ℕ) (x : G),
-  AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+  AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x

where the latter is more natural

We adjust the definitions of ^ in monoids, groups, etc. Originally there was a warning comment about why this natural order was preferred

use x * npowRec n x and not npowRec n x * x in the definition to make sure that definitional unfolding of npowRec is blocked, to avoid deep recursion issues.

but it seems to no longer apply.

Remarks on the PR :

  • pow_succ and pow_succ' have switched their meanings.
  • Most of the time, the proofs were adjusted by priming/unpriming one lemma, or exchanging left and right; a few proofs were more complicated to adjust.
  • In particular, [Mathlib/NumberTheory/RamificationInertia.lean] used Ideal.IsPrime.mul_mem_pow which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul.
  • the docstring for Cauchy condensation test in [Mathlib/Analysis/PSeries.lean] was mathematically incorrect, I added the mention that the function is antitone.
Diff
@@ -52,7 +52,7 @@ theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff
       rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this
       obtain ⟨k, hgk⟩ := Polynomial.X_dvd_iff.mpr this.symm
       use k
-      rwa [pow_succ', mul_assoc, ← hgk]⟩
+      rwa [pow_succ, mul_assoc, ← hgk]⟩
 set_option linter.uppercaseLean3 false in
 #align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iff
 
@@ -475,7 +475,7 @@ theorem coeff_divByMonic_X_sub_C (p : R[X]) (a : R) (n : ℕ) :
           sum_cons, Nat.sub_self, pow_zero, one_mul, mul_sum]
       congr 1; refine sum_congr ?_ fun i hi ↦ ?_
       · ext; simp [Nat.succ_le]
-      rw [← mul_assoc, ← pow_succ, eq_comm, i.sub_succ', Nat.sub_add_cancel]
+      rw [← mul_assoc, ← pow_succ', eq_comm, i.sub_succ', Nat.sub_add_cancel]
       apply Nat.le_sub_of_add_le
       rw [add_comm]; exact (mem_Icc.mp hi).1
     · exact this _ le_rfl
@@ -697,7 +697,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
   rw [Ne.def, ← IsRoot.definition, ← dvd_iff_isRoot]
   rintro ⟨q, hq⟩
   have := pow_mul_divByMonic_rootMultiplicity_eq p a
-  rw [hq, ← mul_assoc, ← pow_succ', rootMultiplicity_eq_multiplicity, dif_neg hp] at this
+  rw [hq, ← mul_assoc, ← pow_succ, rootMultiplicity_eq_multiplicity, dif_neg hp] at this
   exact
     multiplicity.is_greatest'
       (multiplicity_finite_of_degree_pos_of_monic
feat: Polynomial.mul_modByMonic (#11113)

Adds simp lemma for (p * q) %ₘ q = 0 and (q * p) %ₘ q = 0.

Also corrects a misspelling: dvd_iff_modByMonic_eq_zero should be modByMonic_eq_zero_iff_dvd

Diff
@@ -395,7 +395,7 @@ theorem map_modByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
   (map_mod_divByMonic f hq).2
 #align polynomial.map_mod_by_monic Polynomial.map_modByMonic
 
-theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
+theorem modByMonic_eq_zero_iff_dvd (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
   ⟨fun h => by rw [← modByMonic_add_div p hq, h, zero_add]; exact dvd_mul_right _ _, fun h => by
     nontriviality R
     obtain ⟨r, hr⟩ := exists_eq_mul_right_of_dvd h
@@ -410,11 +410,21 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
     rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero,
       degree_eq_natDegree (mt leadingCoeff_eq_zero.2 hrpq0)] at this
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
-#align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
+#align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.modByMonic_eq_zero_iff_dvd
+
+-- 2024-03-23
+@[deprecated] alias dvd_iff_modByMonic_eq_zero := modByMonic_eq_zero_iff_dvd
+
+/-- See `Polynomial.mul_left_modByMonic` for the other multiplication order. That version, unlike
+this one, requires commutativity. -/
+@[simp]
+lemma self_mul_modByMonic (hq : q.Monic) : (q * p) %ₘ q = 0 := by
+  rw [modByMonic_eq_zero_iff_dvd hq]
+  exact dvd_mul_right q p
 
 theorem map_dvd_map [Ring S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
     (hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y := by
-  rw [← dvd_iff_modByMonic_eq_zero hx, ← dvd_iff_modByMonic_eq_zero (hx.map f), ←
+  rw [← modByMonic_eq_zero_iff_dvd hx, ← modByMonic_eq_zero_iff_dvd (hx.map f), ←
     map_modByMonic f hx]
   exact
     ⟨fun H => map_injective f hf <| by rw [H, Polynomial.map_zero], fun H => by
@@ -423,7 +433,7 @@ theorem map_dvd_map [Ring S] (f : R →+* S) (hf : Function.Injective f) {x y :
 
 @[simp]
 theorem modByMonic_one (p : R[X]) : p %ₘ 1 = 0 :=
-  (dvd_iff_modByMonic_eq_zero (by convert monic_one (R := R))).2 (one_dvd _)
+  (modByMonic_eq_zero_iff_dvd (by convert monic_one (R := R))).2 (one_dvd _)
 #align polynomial.mod_by_monic_one Polynomial.modByMonic_one
 
 @[simp]
@@ -493,7 +503,7 @@ The algorithm is "compute `p %ₘ q` and compare to `0`".
 See `polynomial.modByMonic` for the algorithm that computes `%ₘ`.
 -/
 def decidableDvdMonic [DecidableEq R] (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
-  decidable_of_iff (p %ₘ q = 0) (dvd_iff_modByMonic_eq_zero hq)
+  decidable_of_iff (p %ₘ q = 0) (modByMonic_eq_zero_iff_dvd hq)
 #align polynomial.decidable_dvd_monic Polynomial.decidableDvdMonic
 
 theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p := by
@@ -567,7 +577,7 @@ theorem pow_mul_divByMonic_rootMultiplicity_eq (p : R[X]) (a : R) :
   have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_X_sub_C _).pow _
   conv_rhs =>
       rw [← modByMonic_add_div p this,
-        (dvd_iff_modByMonic_eq_zero this).2 (pow_rootMultiplicity_dvd _ _)]
+        (modByMonic_eq_zero_iff_dvd this).2 (pow_rootMultiplicity_dvd _ _)]
   simp
 #align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.pow_mul_divByMonic_rootMultiplicity_eq
 
@@ -614,7 +624,7 @@ theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ Is
 
 theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
   ⟨fun h => by
-    rwa [← dvd_iff_modByMonic_eq_zero (monic_X_sub_C _), modByMonic_X_sub_C_eq_C_eval, ← C_0,
+    rwa [← modByMonic_eq_zero_iff_dvd (monic_X_sub_C _), modByMonic_X_sub_C_eq_C_eval, ← C_0,
       C_inj] at h,
     fun h => ⟨p /ₘ (X - C a), by rw [mul_divByMonic_eq_iff_isRoot.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
@@ -696,6 +706,13 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
       (Nat.lt_succ_self _) (dvd_of_mul_right_eq _ this)
 #align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero
 
+/-- See `Polynomial.mul_right_modByMonic` for the other multiplication order. This version, unlike
+that one, requires commutativity. -/
+@[simp]
+lemma mul_self_modByMonic (hq : q.Monic) : (p * q) %ₘ q = 0 := by
+  rw [modByMonic_eq_zero_iff_dvd hq]
+  exact dvd_mul_left q p
+
 end CommRing
 
 end Polynomial
chore: rename away from 'def' (#11548)

This will become an error in 2024-03-16 nightly, possibly not permanently.

Co-authored-by: Scott Morrison <scott@tqft.net>

Diff
@@ -278,7 +278,7 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
   nontriviality R
   have hdiv0 : p /ₘ q ≠ 0 := by rwa [Ne.def, divByMonic_eq_zero_iff hq, not_lt]
   have hlc : leadingCoeff q * leadingCoeff (p /ₘ q) ≠ 0 := by
-    rwa [Monic.def.1 hq, one_mul, Ne.def, leadingCoeff_eq_zero]
+    rwa [Monic.def'.1 hq, one_mul, Ne.def, leadingCoeff_eq_zero]
   have hmod : degree (p %ₘ q) < degree (q * (p /ₘ q)) :=
     calc
       degree (p %ₘ q) < degree q := degree_modByMonic_lt _ hq
@@ -364,7 +364,7 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
           degree g ≤ degree g + degree (q - f /ₘ g) := by
             erw [degree_eq_natDegree hg.ne_zero, degree_eq_natDegree hqf, WithBot.coe_le_coe]
             exact Nat.le_add_right _ _
-          _ = degree (r - f %ₘ g) := by rw [h₂, degree_mul']; simpa [Monic.def.1 hg]
+          _ = degree (r - f %ₘ g) := by rw [h₂, degree_mul']; simpa [Monic.def'.1 hg]
   exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
 #align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
 
@@ -381,7 +381,7 @@ theorem map_mod_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
           _ = _ :=
             Eq.symm <|
               degree_map_eq_of_leadingCoeff_ne_zero _
-                (by rw [Monic.def.1 hq, f.map_one]; exact one_ne_zero)⟩
+                (by rw [Monic.def'.1 hq, f.map_one]; exact one_ne_zero)⟩
   exact ⟨this.1.symm, this.2.symm⟩
 #align polynomial.map_mod_div_by_monic Polynomial.map_mod_divByMonic
 
@@ -406,7 +406,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
       hpq0 <|
         leadingCoeff_eq_zero.1
           (by rw [hmod, leadingCoeff_eq_zero.1 h, mul_zero, leadingCoeff_zero])
-    have hlc : leadingCoeff q * leadingCoeff (r - p /ₘ q) ≠ 0 := by rwa [Monic.def.1 hq, one_mul]
+    have hlc : leadingCoeff q * leadingCoeff (r - p /ₘ q) ≠ 0 := by rwa [Monic.def'.1 hq, one_mul]
     rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero,
       degree_eq_natDegree (mt leadingCoeff_eq_zero.2 hrpq0)] at this
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
@@ -605,7 +605,7 @@ set_option linter.uppercaseLean3 false in
 
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
-    rw [← h, IsRoot.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
+    rw [← h, IsRoot.definition, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
     fun h : p.eval a = 0 => by
     conv_rhs =>
         rw [← modByMonic_add_div p (monic_X_sub_C a)]
@@ -684,7 +684,7 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 := by
   classical
   haveI : Nontrivial R := Nontrivial.of_polynomial_ne hp
-  rw [Ne.def, ← IsRoot.def, ← dvd_iff_isRoot]
+  rw [Ne.def, ← IsRoot.definition, ← dvd_iff_isRoot]
   rintro ⟨q, hq⟩
   have := pow_mul_divByMonic_rootMultiplicity_eq p a
   rw [hq, ← mul_assoc, ← pow_succ', rootMultiplicity_eq_multiplicity, dif_neg hp] at this
refactor(Data.Finset.Card): termination_by change (#11370)

this will break once https://github.com/leanprover/lean4/pull/3658 lands, so let's fix this now.

Also avoids binding unused variables in termination_by.

Diff
@@ -112,7 +112,7 @@ noncomputable def divModByMonicAux : ∀ (_p : R[X]) {q : R[X]}, Monic q → R[X
       let dm := divModByMonicAux (p - q * z) hq
       ⟨z + dm.1, dm.2⟩
     else ⟨0, p⟩
-  termination_by p q hq => p
+  termination_by p => p
 #align polynomial.div_mod_by_monic_aux Polynomial.divModByMonicAux
 
 /-- `divByMonic` gives the quotient of `p` by a monic polynomial `q`. -/
@@ -160,7 +160,7 @@ theorem degree_modByMonic_lt [Nontrivial R] :
           dsimp
           rw [dif_pos hq, if_neg h, Classical.not_not.1 hp]
           exact lt_of_le_of_ne bot_le (Ne.symm (mt degree_eq_bot.1 hq.ne_zero)))
-  termination_by p q hq => p
+  termination_by p => p
 #align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_lt
 
 theorem natDegree_modByMonic_lt (p : R[X]) {q : R[X]} (hmq : Monic q) (hq : q ≠ 1) :
@@ -256,7 +256,7 @@ theorem modByMonic_eq_sub_mul_div :
       unfold modByMonic divByMonic divModByMonicAux
       dsimp
       rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, mul_zero, sub_zero]
-  termination_by p q hq => p
+  termination_by p => p
 #align polynomial.mod_by_monic_eq_sub_mul_div Polynomial.modByMonic_eq_sub_mul_div
 
 theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q * (p /ₘ q) = p :=
chore: move to v4.6.0-rc1, merging adaptations from bump/v4.6.0 (#10176)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Joachim Breitner <mail@joachim-breitner.de>

Diff
@@ -112,7 +112,7 @@ noncomputable def divModByMonicAux : ∀ (_p : R[X]) {q : R[X]}, Monic q → R[X
       let dm := divModByMonicAux (p - q * z) hq
       ⟨z + dm.1, dm.2⟩
     else ⟨0, p⟩
-  termination_by divModByMonicAux p q hq => p
+  termination_by p q hq => p
 #align polynomial.div_mod_by_monic_aux Polynomial.divModByMonicAux
 
 /-- `divByMonic` gives the quotient of `p` by a monic polynomial `q`. -/
@@ -160,7 +160,7 @@ theorem degree_modByMonic_lt [Nontrivial R] :
           dsimp
           rw [dif_pos hq, if_neg h, Classical.not_not.1 hp]
           exact lt_of_le_of_ne bot_le (Ne.symm (mt degree_eq_bot.1 hq.ne_zero)))
-  termination_by degree_modByMonic_lt p q hq => p
+  termination_by p q hq => p
 #align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_lt
 
 theorem natDegree_modByMonic_lt (p : R[X]) {q : R[X]} (hmq : Monic q) (hq : q ≠ 1) :
@@ -256,7 +256,7 @@ theorem modByMonic_eq_sub_mul_div :
       unfold modByMonic divByMonic divModByMonicAux
       dsimp
       rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, mul_zero, sub_zero]
-  termination_by modByMonic_eq_sub_mul_div p q hq => p
+  termination_by p q hq => p
 #align polynomial.mod_by_monic_eq_sub_mul_div Polynomial.modByMonic_eq_sub_mul_div
 
 theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q * (p /ₘ q) = p :=
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -3,10 +3,10 @@ Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 -/
-import Mathlib.Data.Polynomial.AlgebraMap
 import Mathlib.Data.Polynomial.Inductions
 import Mathlib.Data.Polynomial.Monic
 import Mathlib.RingTheory.Multiplicity
+import Mathlib.RingTheory.Ideal.Operations
 
 #align_import data.polynomial.div from "leanprover-community/mathlib"@"e1e7190efdcefc925cb36f257a8362ef22944204"
 
feat: coefficients of division by X-x (#9071)

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -447,6 +447,37 @@ theorem mul_div_mod_by_monic_cancel_left (p : R[X]) {q : R[X]} (hmo : q.Monic) :
   exact Ne.bot_lt fun h => hmo.ne_zero (degree_eq_bot.1 h)
 #align polynomial.mul_div_mod_by_monic_cancel_left Polynomial.mul_div_mod_by_monic_cancel_left
 
+lemma coeff_divByMonic_X_sub_C_rec (p : R[X]) (a : R) (n : ℕ) :
+    (p /ₘ (X - C a)).coeff n = coeff p (n + 1) + a * (p /ₘ (X - C a)).coeff (n + 1) := by
+  nontriviality R
+  have := monic_X_sub_C a
+  set q := p /ₘ (X - C a)
+  rw [← p.modByMonic_add_div this]
+  have : degree (p %ₘ (X - C a)) < ↑(n + 1) := degree_X_sub_C a ▸ p.degree_modByMonic_lt this
+    |>.trans_le <| WithBot.coe_le_coe.mpr le_add_self
+  simp [sub_mul, add_sub, coeff_eq_zero_of_degree_lt this]
+
+theorem coeff_divByMonic_X_sub_C (p : R[X]) (a : R) (n : ℕ) :
+    (p /ₘ (X - C a)).coeff n = ∑ i in Icc (n + 1) p.natDegree, a ^ (i - (n + 1)) * p.coeff i := by
+  wlog h : p.natDegree ≤ n generalizing n
+  · refine Nat.decreasingInduction' (fun n hn _ ih ↦ ?_) (le_of_not_le h) ?_
+    · rw [coeff_divByMonic_X_sub_C_rec, ih, eq_comm, Icc_eq_cons_Ioc (Nat.succ_le.mpr hn),
+          sum_cons, Nat.sub_self, pow_zero, one_mul, mul_sum]
+      congr 1; refine sum_congr ?_ fun i hi ↦ ?_
+      · ext; simp [Nat.succ_le]
+      rw [← mul_assoc, ← pow_succ, eq_comm, i.sub_succ', Nat.sub_add_cancel]
+      apply Nat.le_sub_of_add_le
+      rw [add_comm]; exact (mem_Icc.mp hi).1
+    · exact this _ le_rfl
+  rw [Icc_eq_empty (Nat.lt_succ.mpr h).not_le, sum_empty]
+  nontriviality R
+  by_cases hp : p.natDegree = 0
+  · rw [(divByMonic_eq_zero_iff <| monic_X_sub_C a).mpr, coeff_zero]
+    apply degree_lt_degree; rw [hp, natDegree_X_sub_C]; norm_num
+  · apply coeff_eq_zero_of_natDegree_lt
+    rw [natDegree_divByMonic p (monic_X_sub_C a), natDegree_X_sub_C]
+    exact (Nat.pred_lt hp).trans_le h
+
 variable (R) in
 theorem not_isField : ¬IsField R[X] := by
   nontriviality R
feat(Data/Polynomial/RingDivision): improvements to Polynomial.rootMultiplicity (#8563)

Main changes:

  • add Monic.mem_nonZeroDivisors and mem_nonZeroDivisors_of_leadingCoeff which states that a monic polynomial (resp. a polynomial whose leading coefficient is not zero divisor) is not a zero divisor.
  • add rootMultiplicity_mul_X_sub_C_pow which states that * (X - a) ^ n adds the root multiplicity at a by n.
  • change the conditions in rootMultiplicity_X_sub_C_self, rootMultiplicity_X_sub_C and rootMultiplicity_X_sub_C_pow from IsDomain to Nontrivial.
  • add rootMultiplicity_eq_natTrailingDegree which relates rootMultiplicity and natTrailingDegree, and eval_divByMonic_eq_trailingCoeff_comp.
  • add le_rootMultiplicity_mul which is similar to le_trailingDegree_mul.
  • add rootMultiplicity_mul' which slightly generalizes rootMultiplicity_mul

In Data/Polynomial/FieldDivision:

  • add rootMultiplicity_sub_one_le_derivative_rootMultiplicity_of_ne_zero which slightly generalizes rootMultiplicity_sub_one_le_derivative_rootMultiplicity.
  • add derivative_rootMultiplicity_of_root_of_mem_nonZeroDivisors which slightly generalizes derivative_rootMultiplicity_of_root.
  • add several theorems relating roots of iterate derivative to rootMultiplicity

In addition:

  • move eq_of_monic_of_associated from RingDivision to Monic and generalize.
  • add dvd_cancel lemmas to NonZeroDivisors.
  • add algEquivOfCompEqX: two polynomials that compose to X both ways induces an isomorphism of the polynomial algebra.
  • add divisibility lemmas to Polynomial/Derivative.

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -540,6 +540,12 @@ theorem pow_mul_divByMonic_rootMultiplicity_eq (p : R[X]) (a : R) :
   simp
 #align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.pow_mul_divByMonic_rootMultiplicity_eq
 
+theorem exists_eq_pow_rootMultiplicity_mul_and_not_dvd (p : R[X]) (hp : p ≠ 0) (a : R) :
+    ∃ q : R[X], p = (X - C a) ^ p.rootMultiplicity a * q ∧ ¬ (X - C a) ∣ q := by
+  classical
+  rw [rootMultiplicity_eq_multiplicity, dif_neg hp]
+  apply multiplicity.exists_eq_pow_mul_and_not_dvd
+
 end multiplicity
 
 end Ring
chore: generalize Polynomial.Div to noncommutative rings (#8889)

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -31,13 +31,13 @@ universe u v w z
 
 variable {R : Type u} {S : Type v} {T : Type w} {A : Type z} {a b : R} {n : ℕ}
 
-section CommSemiring
+section Semiring
 
-variable [CommSemiring R]
+variable [Semiring R]
 
 theorem X_dvd_iff {f : R[X]} : X ∣ f ↔ f.coeff 0 = 0 :=
-  ⟨fun ⟨g, hfg⟩ => by rw [hfg, mul_comm, coeff_mul_X_zero], fun hf =>
-    ⟨f.divX, by rw [mul_comm, ← add_zero (f.divX * X), ← C_0, ← hf, divX_mul_X_add]⟩⟩
+  ⟨fun ⟨g, hfg⟩ => by rw [hfg, coeff_X_mul_zero], fun hf =>
+    ⟨f.divX, by rw [← add_zero (X * f.divX), ← C_0, ← hf, X_mul_divX_add]⟩⟩
 set_option linter.uppercaseLean3 false in
 #align polynomial.X_dvd_iff Polynomial.X_dvd_iff
 
@@ -52,15 +52,11 @@ theorem X_pow_dvd_iff {f : R[X]} {n : ℕ} : X ^ n ∣ f ↔ ∀ d < n, f.coeff
       rw [zero_add, ← hgf, hd n (Nat.lt_succ_self n)] at this
       obtain ⟨k, hgk⟩ := Polynomial.X_dvd_iff.mpr this.symm
       use k
-      rwa [pow_succ, mul_comm X _, mul_assoc, ← hgk]⟩
+      rwa [pow_succ', mul_assoc, ← hgk]⟩
 set_option linter.uppercaseLean3 false in
 #align polynomial.X_pow_dvd_iff Polynomial.X_pow_dvd_iff
 
-end CommSemiring
-
-section CommSemiring
-
-variable [CommSemiring R] {p q : R[X]}
+variable {p q : R[X]}
 
 theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < degree p) (hmp : Monic p)
     (hq : q ≠ 0) : multiplicity.Finite p q :=
@@ -86,14 +82,14 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
         this⟩
 #align polynomial.multiplicity_finite_of_degree_pos_of_monic Polynomial.multiplicity_finite_of_degree_pos_of_monic
 
-end CommSemiring
+end Semiring
 
 section Ring
 
 variable [Ring R] {p q : R[X]}
 
 theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
-    degree (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) < degree p :=
+    degree (p - q * (C (leadingCoeff p) * X ^ (natDegree p - natDegree q))) < degree p :=
   have hp : leadingCoeff p ≠ 0 := mt leadingCoeff_eq_zero.1 h.2
   have hq0 : q ≠ 0 := hq.ne_zero_of_polynomial_ne h.2
   have hlt : natDegree q ≤ natDegree p :=
@@ -101,9 +97,9 @@ theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
       (by rw [← degree_eq_natDegree h.2, ← degree_eq_natDegree hq0]; exact h.1)
   degree_sub_lt
     (by
-      rw [hq.degree_mul, degree_C_mul_X_pow _ hp, degree_eq_natDegree h.2,
+      rw [hq.degree_mul_comm, hq.degree_mul, degree_C_mul_X_pow _ hp, degree_eq_natDegree h.2,
         degree_eq_natDegree hq0, ← Nat.cast_add, tsub_add_cancel_of_le hlt])
-    h.2 (by rw [leadingCoeff_mul_monic hq, leadingCoeff_mul_X_pow, leadingCoeff_C])
+    h.2 (by rw [leadingCoeff_monic_mul hq, leadingCoeff_mul_X_pow, leadingCoeff_C])
 #align polynomial.div_wf_lemma Polynomial.div_wf_lemma
 
 /-- See `divByMonic`. -/
@@ -113,7 +109,7 @@ noncomputable def divModByMonicAux : ∀ (_p : R[X]) {q : R[X]}, Monic q → R[X
     if h : degree q ≤ degree p ∧ p ≠ 0 then
       let z := C (leadingCoeff p) * X ^ (natDegree p - natDegree q)
       have _wf := div_wf_lemma h hq
-      let dm := divModByMonicAux (p - z * q) hq
+      let dm := divModByMonicAux (p - q * z) hq
       ⟨z + dm.1, dm.2⟩
     else ⟨0, p⟩
   termination_by divModByMonicAux p q hq => p
@@ -143,9 +139,8 @@ theorem degree_modByMonic_lt [Nontrivial R] :
     letI := Classical.decEq R
     if h : degree q ≤ degree p ∧ p ≠ 0 then by
       have _wf := div_wf_lemma ⟨h.1, h.2⟩ hq
-      have :
-        degree ((p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) %ₘ q) < degree q :=
-        degree_modByMonic_lt (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) hq
+      have :=
+        degree_modByMonic_lt (p - q * (C (leadingCoeff p) * X ^ (natDegree p - natDegree q))) hq
       unfold modByMonic at this ⊢
       unfold divModByMonicAux
       dsimp
@@ -239,12 +234,6 @@ theorem natDegree_modByMonic_le (p : Polynomial R) {g : Polynomial R} (hg : g.Mo
     natDegree (p %ₘ g) ≤ g.natDegree :=
   natDegree_le_natDegree (degree_modByMonic_le p hg)
 
-end Ring
-
-section CommRing
-
-variable [CommRing R] {p q : R[X]}
-
 theorem X_dvd_sub_C : X ∣ p - C (p.coeff 0) := by
   simp [X_dvd_iff, coeff_C]
 
@@ -254,15 +243,15 @@ theorem modByMonic_eq_sub_mul_div :
     letI := Classical.decEq R
     if h : degree q ≤ degree p ∧ p ≠ 0 then by
       have _wf := div_wf_lemma h hq
-      have ih :=
-        modByMonic_eq_sub_mul_div (p - C (leadingCoeff p) * X ^ (natDegree p - natDegree q) * q) hq
+      have ih := modByMonic_eq_sub_mul_div
+        (p - q * (C (leadingCoeff p) * X ^ (natDegree p - natDegree q))) hq
       unfold modByMonic divByMonic divModByMonicAux
       dsimp
       rw [dif_pos hq, if_pos h]
       rw [modByMonic, dif_pos hq] at ih
       refine' ih.trans _
       unfold divByMonic
-      rw [dif_pos hq, dif_pos hq, if_pos h, mul_add, sub_add_eq_sub_sub, mul_comm]
+      rw [dif_pos hq, dif_pos hq, if_pos h, mul_add, sub_add_eq_sub_sub]
     else by
       unfold modByMonic divByMonic divModByMonicAux
       dsimp
@@ -335,7 +324,7 @@ theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0
           by simpa [degree_eq_natDegree hq.ne_zero] using h0q))
 #align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_lt
 
-theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg : g.Monic) :
+theorem natDegree_divByMonic (f : R[X]) {g : R[X]} (hg : g.Monic) :
     natDegree (f /ₘ g) = natDegree f - natDegree g := by
   nontriviality R
   by_cases hfg : f /ₘ g = 0
@@ -379,7 +368,7 @@ theorem div_modByMonic_unique {f g} (q r : R[X]) (hg : Monic g)
   exact ⟨Eq.symm <| eq_of_sub_eq_zero h₅, Eq.symm <| eq_of_sub_eq_zero <| by simpa [h₅] using h₁⟩
 #align polynomial.div_mod_by_monic_unique Polynomial.div_modByMonic_unique
 
-theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
+theorem map_mod_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
     (p /ₘ q).map f = p.map f /ₘ q.map f ∧ (p %ₘ q).map f = p.map f %ₘ q.map f := by
   nontriviality S
   haveI : Nontrivial R := f.domain_nontrivial
@@ -396,12 +385,12 @@ theorem map_mod_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
   exact ⟨this.1.symm, this.2.symm⟩
 #align polynomial.map_mod_div_by_monic Polynomial.map_mod_divByMonic
 
-theorem map_divByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
+theorem map_divByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
     (p /ₘ q).map f = p.map f /ₘ q.map f :=
   (map_mod_divByMonic f hq).1
 #align polynomial.map_div_by_monic Polynomial.map_divByMonic
 
-theorem map_modByMonic [CommRing S] (f : R →+* S) (hq : Monic q) :
+theorem map_modByMonic [Ring S] (f : R →+* S) (hq : Monic q) :
     (p %ₘ q).map f = p.map f %ₘ q.map f :=
   (map_mod_divByMonic f hq).2
 #align polynomial.map_mod_by_monic Polynomial.map_modByMonic
@@ -423,7 +412,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
     exact not_lt_of_ge (Nat.le_add_right _ _) (WithBot.some_lt_some.1 this)⟩
 #align polynomial.dvd_iff_mod_by_monic_eq_zero Polynomial.dvd_iff_modByMonic_eq_zero
 
-theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
+theorem map_dvd_map [Ring S] (f : R →+* S) (hf : Function.Injective f) {x y : R[X]}
     (hx : x.Monic) : x.map f ∣ y.map f ↔ x ∣ y := by
   rw [← dvd_iff_modByMonic_eq_zero hx, ← dvd_iff_modByMonic_eq_zero (hx.map f), ←
     map_modByMonic f hx]
@@ -442,67 +431,6 @@ theorem divByMonic_one (p : R[X]) : p /ₘ 1 = p := by
   conv_rhs => rw [← modByMonic_add_div p monic_one]; simp
 #align polynomial.div_by_monic_one Polynomial.divByMonic_one
 
-@[simp]
-theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) := by
-  nontriviality R
-  have h : (p %ₘ (X - C a)).eval a = p.eval a := by
-    rw [modByMonic_eq_sub_mul_div _ (monic_X_sub_C a), eval_sub, eval_mul, eval_sub, eval_X,
-      eval_C, sub_self, zero_mul, sub_zero]
-  have : degree (p %ₘ (X - C a)) < 1 :=
-    degree_X_sub_C a ▸ degree_modByMonic_lt p (monic_X_sub_C a)
-  have : degree (p %ₘ (X - C a)) ≤ 0 := by
-    revert this
-    cases degree (p %ₘ (X - C a))
-    · exact fun _ => bot_le
-    · exact fun h => WithBot.some_le_some.2 (Nat.le_of_lt_succ (WithBot.some_lt_some.1 h))
-  rw [eq_C_of_degree_le_zero this, eval_C] at h
-  rw [eq_C_of_degree_le_zero this, h]
-set_option linter.uppercaseLean3 false in
-#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
-
-theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
-  ⟨fun h => by
-    rw [← h, IsRoot.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
-    fun h : p.eval a = 0 => by
-    conv_rhs =>
-        rw [← modByMonic_add_div p (monic_X_sub_C a)]
-        rw [modByMonic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
-#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRoot
-
-theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
-  ⟨fun h => by
-    rwa [← dvd_iff_modByMonic_eq_zero (monic_X_sub_C _), modByMonic_X_sub_C_eq_C_eval, ← C_0,
-      C_inj] at h,
-    fun h => ⟨p /ₘ (X - C a), by rw [mul_divByMonic_eq_iff_isRoot.2 h]⟩⟩
-#align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
-
-theorem X_sub_C_dvd_sub_C_eval : X - C a ∣ p - C (p.eval a) := by
-  rw [dvd_iff_isRoot, IsRoot, eval_sub, eval_C, sub_self]
-set_option linter.uppercaseLean3 false in
-#align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.X_sub_C_dvd_sub_C_eval
-
-theorem mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
-    P ∈ Ideal.span {C (X - C a), X - C b} ↔ (P.eval b).eval a = 0 := by
-  rw [Ideal.mem_span_pair]
-  constructor <;> intro h
-  · rcases h with ⟨_, _, rfl⟩
-    simp only [eval_C, eval_X, eval_add, eval_sub, eval_mul, add_zero, mul_zero, sub_self]
-  · rcases dvd_iff_isRoot.mpr h with ⟨p, hp⟩
-    rcases @X_sub_C_dvd_sub_C_eval _ b _ P with ⟨q, hq⟩
-    exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩
-set_option linter.uppercaseLean3 false in
-#align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
-
-theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
-  rw [← modByMonic_X_sub_C_eq_C_eval, C_0, sub_zero]
-set_option linter.uppercaseLean3 false in
-#align polynomial.mod_by_monic_X Polynomial.modByMonic_X
-
-theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
-    {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
-  rw [modByMonic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, zero_mul, sub_zero]
-#align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
-
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
     (∑ i : Fin n, monomial i ((p %ₘ q).coeff i)) = p %ₘ q := by
   nontriviality R
@@ -511,12 +439,6 @@ theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
       (sum_monomial_eq _)
 #align polynomial.sum_mod_by_monic_coeff Polynomial.sum_modByMonic_coeff
 
-theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b := by
-  suffices X - C b ∣ p - C (p.eval b) by
-    simpa only [coe_evalRingHom, eval_sub, eval_X, eval_C] using (evalRingHom a).map_dvd this
-  simp [dvd_iff_isRoot]
-#align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_sub
-
 theorem mul_div_mod_by_monic_cancel_left (p : R[X]) {q : R[X]} (hmo : q.Monic) :
     q * p /ₘ q = p := by
   nontriviality R
@@ -525,27 +447,14 @@ theorem mul_div_mod_by_monic_cancel_left (p : R[X]) {q : R[X]} (hmo : q.Monic) :
   exact Ne.bot_lt fun h => hmo.ne_zero (degree_eq_bot.1 h)
 #align polynomial.mul_div_mod_by_monic_cancel_left Polynomial.mul_div_mod_by_monic_cancel_left
 
-variable (R)
-
+variable (R) in
 theorem not_isField : ¬IsField R[X] := by
   nontriviality R
-  rw [Ring.not_isField_iff_exists_ideal_bot_lt_and_lt_top]
-  use Ideal.span {Polynomial.X}
-  constructor
-  · rw [bot_lt_iff_ne_bot, Ne.def, Ideal.span_singleton_eq_bot]
-    exact Polynomial.X_ne_zero
-  · rw [lt_top_iff_ne_top, Ne.def, Ideal.eq_top_iff_one, Ideal.mem_span_singleton,
-      Polynomial.X_dvd_iff, Polynomial.coeff_one_zero]
-    exact one_ne_zero
+  intro h
+  letI := h.toField
+  simpa using congr_arg natDegree (monic_X.eq_one_of_isUnit <| monic_X (R := R).ne_zero.isUnit)
 #align polynomial.not_is_field Polynomial.not_isField
 
-variable {R}
-
-theorem ker_evalRingHom (x : R) : RingHom.ker (evalRingHom x) = Ideal.span {X - C x} := by
-  ext y
-  simp [Ideal.mem_span_singleton, dvd_iff_isRoot, RingHom.mem_ker]
-#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
-
 section multiplicity
 
 /-- An algorithm for deciding polynomial divisibility.
@@ -601,6 +510,117 @@ theorem rootMultiplicity_zero {x : R} : rootMultiplicity x 0 = 0 :=
   dif_pos rfl
 #align polynomial.root_multiplicity_zero Polynomial.rootMultiplicity_zero
 
+@[simp]
+theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
+  cases subsingleton_or_nontrivial R
+  · rw [Subsingleton.elim (C r) 0, rootMultiplicity_zero]
+  classical
+  rw [rootMultiplicity_eq_multiplicity]
+  split_ifs with hr; rfl
+  have h : natDegree (C r) < natDegree (X - C a) := by simp
+  simp_rw [multiplicity.multiplicity_eq_zero.mpr ((monic_X_sub_C a).not_dvd_of_natDegree_lt hr h)]
+  rfl
+set_option linter.uppercaseLean3 false in
+#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
+
+theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
+  letI := Classical.decEq R
+  if h : p = 0 then by simp [h]
+  else by
+    classical
+    rw [rootMultiplicity_eq_multiplicity, dif_neg h]; exact multiplicity.pow_multiplicity_dvd _
+#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
+
+theorem pow_mul_divByMonic_rootMultiplicity_eq (p : R[X]) (a : R) :
+    (X - C a) ^ rootMultiplicity a p * (p /ₘ (X - C a) ^ rootMultiplicity a p) = p := by
+  have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_X_sub_C _).pow _
+  conv_rhs =>
+      rw [← modByMonic_add_div p this,
+        (dvd_iff_modByMonic_eq_zero this).2 (pow_rootMultiplicity_dvd _ _)]
+  simp
+#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.pow_mul_divByMonic_rootMultiplicity_eq
+
+end multiplicity
+
+end Ring
+
+section CommRing
+
+variable [CommRing R] {p q : R[X]}
+
+@[simp]
+theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (p.eval a) := by
+  nontriviality R
+  have h : (p %ₘ (X - C a)).eval a = p.eval a := by
+    rw [modByMonic_eq_sub_mul_div _ (monic_X_sub_C a), eval_sub, eval_mul, eval_sub, eval_X,
+      eval_C, sub_self, zero_mul, sub_zero]
+  have : degree (p %ₘ (X - C a)) < 1 :=
+    degree_X_sub_C a ▸ degree_modByMonic_lt p (monic_X_sub_C a)
+  have : degree (p %ₘ (X - C a)) ≤ 0 := by
+    revert this
+    cases degree (p %ₘ (X - C a))
+    · exact fun _ => bot_le
+    · exact fun h => WithBot.some_le_some.2 (Nat.le_of_lt_succ (WithBot.some_lt_some.1 h))
+  rw [eq_C_of_degree_le_zero this, eval_C] at h
+  rw [eq_C_of_degree_le_zero this, h]
+set_option linter.uppercaseLean3 false in
+#align polynomial.mod_by_monic_X_sub_C_eq_C_eval Polynomial.modByMonic_X_sub_C_eq_C_eval
+
+theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
+  ⟨fun h => by
+    rw [← h, IsRoot.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
+    fun h : p.eval a = 0 => by
+    conv_rhs =>
+        rw [← modByMonic_add_div p (monic_X_sub_C a)]
+        rw [modByMonic_X_sub_C_eq_C_eval, h, C_0, zero_add]⟩
+#align polynomial.mul_div_by_monic_eq_iff_is_root Polynomial.mul_divByMonic_eq_iff_isRoot
+
+theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
+  ⟨fun h => by
+    rwa [← dvd_iff_modByMonic_eq_zero (monic_X_sub_C _), modByMonic_X_sub_C_eq_C_eval, ← C_0,
+      C_inj] at h,
+    fun h => ⟨p /ₘ (X - C a), by rw [mul_divByMonic_eq_iff_isRoot.2 h]⟩⟩
+#align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
+
+theorem X_sub_C_dvd_sub_C_eval : X - C a ∣ p - C (p.eval a) := by
+  rw [dvd_iff_isRoot, IsRoot, eval_sub, eval_C, sub_self]
+set_option linter.uppercaseLean3 false in
+#align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.X_sub_C_dvd_sub_C_eval
+
+theorem mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
+    P ∈ Ideal.span {C (X - C a), X - C b} ↔ (P.eval b).eval a = 0 := by
+  rw [Ideal.mem_span_pair]
+  constructor <;> intro h
+  · rcases h with ⟨_, _, rfl⟩
+    simp only [eval_C, eval_X, eval_add, eval_sub, eval_mul, add_zero, mul_zero, sub_self]
+  · rcases dvd_iff_isRoot.mpr h with ⟨p, hp⟩
+    rcases @X_sub_C_dvd_sub_C_eval _ b _ P with ⟨q, hq⟩
+    exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩
+set_option linter.uppercaseLean3 false in
+#align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
+
+-- TODO: generalize this to Ring. In general, 0 can be replaced by any element in the center of R.
+theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
+  rw [← modByMonic_X_sub_C_eq_C_eval, C_0, sub_zero]
+set_option linter.uppercaseLean3 false in
+#align polynomial.mod_by_monic_X Polynomial.modByMonic_X
+
+theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
+    {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
+  rw [modByMonic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, zero_mul, sub_zero]
+#align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
+
+theorem sub_dvd_eval_sub (a b : R) (p : R[X]) : a - b ∣ p.eval a - p.eval b := by
+  suffices X - C b ∣ p - C (p.eval b) by
+    simpa only [coe_evalRingHom, eval_sub, eval_X, eval_C] using (evalRingHom a).map_dvd this
+  simp [dvd_iff_isRoot]
+#align polynomial.sub_dvd_eval_sub Polynomial.sub_dvd_eval_sub
+
+theorem ker_evalRingHom (x : R) : RingHom.ker (evalRingHom x) = Ideal.span {X - C x} := by
+  ext y
+  simp [Ideal.mem_span_singleton, dvd_iff_isRoot, RingHom.mem_ker]
+#align polynomial.ker_eval_ring_hom Polynomial.ker_evalRingHom
+
 @[simp]
 theorem rootMultiplicity_eq_zero_iff {p : R[X]} {x : R} :
     rootMultiplicity x p = 0 ↔ IsRoot p x → p = 0 := by
@@ -623,37 +643,14 @@ theorem rootMultiplicity_pos {p : R[X]} (hp : p ≠ 0) {x : R} :
   rootMultiplicity_pos'.trans (and_iff_right hp)
 #align polynomial.root_multiplicity_pos Polynomial.rootMultiplicity_pos
 
-@[simp]
-theorem rootMultiplicity_C (r a : R) : rootMultiplicity a (C r) = 0 := by
-  simp only [rootMultiplicity_eq_zero_iff, IsRoot, eval_C, C_eq_zero, imp_self]
-set_option linter.uppercaseLean3 false in
-#align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
-
-theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
-  letI := Classical.decEq R
-  if h : p = 0 then by simp [h]
-  else by
-    classical
-    rw [rootMultiplicity_eq_multiplicity, dif_neg h]; exact multiplicity.pow_multiplicity_dvd _
-#align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
-
-theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
-    p /ₘ (X - C a) ^ rootMultiplicity a p * (X - C a) ^ rootMultiplicity a p = p := by
-  have : Monic ((X - C a) ^ rootMultiplicity a p) := (monic_X_sub_C _).pow _
-  conv_rhs =>
-      rw [← modByMonic_add_div p this,
-        (dvd_iff_modByMonic_eq_zero this).2 (pow_rootMultiplicity_dvd _ _)]
-  simp [mul_comm]
-#align polynomial.div_by_monic_mul_pow_root_multiplicity_eq Polynomial.divByMonic_mul_pow_rootMultiplicity_eq
-
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 := by
   classical
   haveI : Nontrivial R := Nontrivial.of_polynomial_ne hp
   rw [Ne.def, ← IsRoot.def, ← dvd_iff_isRoot]
   rintro ⟨q, hq⟩
-  have := divByMonic_mul_pow_rootMultiplicity_eq p a
-  rw [mul_comm, hq, ← mul_assoc, ← pow_succ', rootMultiplicity_eq_multiplicity, dif_neg hp] at this
+  have := pow_mul_divByMonic_rootMultiplicity_eq p a
+  rw [hq, ← mul_assoc, ← pow_succ', rootMultiplicity_eq_multiplicity, dif_neg hp] at this
   exact
     multiplicity.is_greatest'
       (multiplicity_finite_of_degree_pos_of_monic
@@ -662,8 +659,6 @@ theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p
       (Nat.lt_succ_self _) (dvd_of_mul_right_eq _ this)
 #align polynomial.eval_div_by_monic_pow_root_multiplicity_ne_zero Polynomial.eval_divByMonic_pow_rootMultiplicity_ne_zero
 
-end multiplicity
-
 end CommRing
 
 end Polynomial
chore: bump to v4.3.0-rc2 (#8366)

PR contents

This is the supremum of

along with some minor fixes from failures on nightly-testing as Mathlib master is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0 branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

leanprover/lean4#2778

We can get rid of all the

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)

macros across Mathlib (and in any projects that want to write natural number powers of reals).

leanprover/lean4#2722

Changes the default behaviour of simp to (config := {decide := false}). This makes simp (and consequentially norm_num) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp or norm_num to decide or rfl, or adding (config := {decide := true}).

leanprover/lean4#2783

This changed the behaviour of simp so that simp [f] will only unfold "fully applied" occurrences of f. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true }). We may in future add a syntax for this, e.g. simp [!f]; please provide feedback! In the meantime, we have made the following changes:

  • switching to using explicit lemmas that have the intended level of application
  • (config := { unfoldPartialApp := true }) in some places, to recover the old behaviour
  • Using @[eqns] to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp and Function.flip.

This change in Lean may require further changes down the line (e.g. adding the !f syntax, and/or upstreaming the special treatment for Function.comp and Function.flip, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -74,7 +74,7 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
     have hpn0' : leadingCoeff p ^ (natDegree q + 1) ≠ 0 := hpn1.symm ▸ zn0.symm
     have hpnr0 : leadingCoeff (p ^ (natDegree q + 1)) * leadingCoeff r ≠ 0 := by
       simp only [leadingCoeff_pow' hpn0', leadingCoeff_eq_zero, hpn1, one_pow, one_mul, Ne.def,
-          hr0]
+          hr0, not_false_eq_true]
     have hnp : 0 < natDegree p := Nat.cast_lt.1 <| by
       rw [← degree_eq_natDegree hp0]; exact hp
     have := congr_arg natDegree hr
chore: tidy various files (#8409)
Diff
@@ -237,7 +237,7 @@ theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %
 
 theorem natDegree_modByMonic_le (p : Polynomial R) {g : Polynomial R} (hg : g.Monic) :
     natDegree (p %ₘ g) ≤ g.natDegree :=
-natDegree_le_natDegree (degree_modByMonic_le p hg)
+  natDegree_le_natDegree (degree_modByMonic_le p hg)
 
 end Ring
 
fix: attribute [simp] ... in -> attribute [local simp] ... in (#7678)

Mathlib.Logic.Unique contains the line attribute [simp] eq_iff_true_of_subsingleton in ...:

https://github.com/leanprover-community/mathlib4/blob/96a11c7aac574c00370c2b3dab483cb676405c5d/Mathlib/Logic/Unique.lean#L255-L256

Despite what the in part may imply, this adds the lemma to the simp set "globally", including for downstream files; it is likely that attribute [local simp] eq_iff_true_of_subsingleton in ... was meant instead (or maybe scoped simp, but I think "scoped" refers to the current namespace). Indeed, the relevant lemma is not marked with @[simp] for possible slowness: https://github.com/leanprover/std4/blob/846e9e1d6bb534774d1acd2dc430e70987da3c18/Std/Logic.lean#L749. Adding it to the simp set causes the example at https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Regression.20in.20simp to slow down.

This PR changes this and fixes the relevant downstream simps. There was also one ocurrence of attribute [simp] FullSubcategory.comp_def FullSubcategory.id_def in in Mathlib.CategoryTheory.Monoidal.Subcategory but that was much easier to fix.

https://github.com/leanprover-community/mathlib4/blob/bc49eb9ba756a233370b4b68bcdedd60402f71ed/Mathlib/CategoryTheory/Monoidal/Subcategory.lean#L118-L119

Diff
@@ -202,7 +202,7 @@ theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
   letI := Classical.decEq R
   if h : Monic (0 : R[X]) then by
     haveI := monic_zero_iff_subsingleton.mp h
-    simp
+    simp [eq_iff_true_of_subsingleton]
   else by unfold modByMonic divModByMonicAux; rw [dif_neg h]
 #align polynomial.mod_by_monic_zero Polynomial.modByMonic_zero
 
@@ -211,7 +211,7 @@ theorem divByMonic_zero (p : R[X]) : p /ₘ 0 = 0 :=
   letI := Classical.decEq R
   if h : Monic (0 : R[X]) then by
     haveI := monic_zero_iff_subsingleton.mp h
-    simp
+    simp [eq_iff_true_of_subsingleton]
   else by unfold divByMonic divModByMonicAux; rw [dif_neg h]
 #align polynomial.div_by_monic_zero Polynomial.divByMonic_zero
 
refactor(Data/Polynomial): remove open Classical (#7706)

This doesn't change any polynomial operations, but:

  • Makes some Decidable values computable (otherwise, they're pointless!)
  • Add a few missing arguments to lemmas here and there to make them more general

This is exhaustive, within the directories it touches.

Once again, the use of letI := Classical.decEq R instead of classical here is because of the weird style of proofs in these files, where if is preferred to by_cases.

Diff
@@ -21,7 +21,7 @@ We also define `rootMultiplicity`.
 
 noncomputable section
 
-open Classical BigOperators Polynomial
+open BigOperators Polynomial
 
 open Finset
 
@@ -109,6 +109,7 @@ theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
 /-- See `divByMonic`. -/
 noncomputable def divModByMonicAux : ∀ (_p : R[X]) {q : R[X]}, Monic q → R[X] × R[X]
   | p, q, hq =>
+    letI := Classical.decEq R
     if h : degree q ≤ degree p ∧ p ≠ 0 then
       let z := C (leadingCoeff p) * X ^ (natDegree p - natDegree q)
       have _wf := div_wf_lemma h hq
@@ -120,11 +121,13 @@ noncomputable def divModByMonicAux : ∀ (_p : R[X]) {q : R[X]}, Monic q → R[X
 
 /-- `divByMonic` gives the quotient of `p` by a monic polynomial `q`. -/
 def divByMonic (p q : R[X]) : R[X] :=
+  letI := Classical.decEq R
   if hq : Monic q then (divModByMonicAux p hq).1 else 0
 #align polynomial.div_by_monic Polynomial.divByMonic
 
 /-- `modByMonic` gives the remainder of `p` by a monic polynomial `q`. -/
 def modByMonic (p q : R[X]) : R[X] :=
+  letI := Classical.decEq R
   if hq : Monic q then (divModByMonicAux p hq).2 else p
 #align polynomial.mod_by_monic Polynomial.modByMonic
 
@@ -137,6 +140,7 @@ infixl:70 " %ₘ " => modByMonic
 theorem degree_modByMonic_lt [Nontrivial R] :
     ∀ (p : R[X]) {q : R[X]} (_hq : Monic q), degree (p %ₘ q) < degree q
   | p, q, hq =>
+    letI := Classical.decEq R
     if h : degree q ≤ degree p ∧ p ≠ 0 then by
       have _wf := div_wf_lemma ⟨h.1, h.2⟩ hq
       have :
@@ -175,6 +179,7 @@ theorem natDegree_modByMonic_lt (p : R[X]) {q : R[X]} (hmq : Monic q) (hq : q 
 
 @[simp]
 theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0 := by
+  classical
   unfold modByMonic divModByMonicAux
   dsimp
   by_cases hp : Monic p
@@ -184,6 +189,7 @@ theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0 := by
 
 @[simp]
 theorem zero_divByMonic (p : R[X]) : 0 /ₘ p = 0 := by
+  classical
   unfold divByMonic divModByMonicAux
   dsimp
   by_cases hp : Monic p
@@ -193,6 +199,7 @@ theorem zero_divByMonic (p : R[X]) : 0 /ₘ p = 0 := by
 
 @[simp]
 theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
+  letI := Classical.decEq R
   if h : Monic (0 : R[X]) then by
     haveI := monic_zero_iff_subsingleton.mp h
     simp
@@ -201,6 +208,7 @@ theorem modByMonic_zero (p : R[X]) : p %ₘ 0 = p :=
 
 @[simp]
 theorem divByMonic_zero (p : R[X]) : p /ₘ 0 = 0 :=
+  letI := Classical.decEq R
   if h : Monic (0 : R[X]) then by
     haveI := monic_zero_iff_subsingleton.mp h
     simp
@@ -217,6 +225,7 @@ theorem modByMonic_eq_of_not_monic (p : R[X]) (hq : ¬Monic q) : p %ₘ q = p :=
 
 theorem modByMonic_eq_self_iff [Nontrivial R] (hq : Monic q) : p %ₘ q = p ↔ degree p < degree q :=
   ⟨fun h => h ▸ degree_modByMonic_lt _ hq, fun h => by
+    classical
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold modByMonic divModByMonicAux; dsimp; rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.mod_by_monic_eq_self_iff Polynomial.modByMonic_eq_self_iff
@@ -242,6 +251,7 @@ theorem X_dvd_sub_C : X ∣ p - C (p.coeff 0) := by
 theorem modByMonic_eq_sub_mul_div :
     ∀ (p : R[X]) {q : R[X]} (_hq : Monic q), p %ₘ q = p - q * (p /ₘ q)
   | p, q, hq =>
+    letI := Classical.decEq R
     if h : degree q ≤ degree p ∧ p ≠ 0 then by
       have _wf := div_wf_lemma h hq
       have ih :=
@@ -268,7 +278,8 @@ theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔
   ⟨fun h => by
     have := modByMonic_add_div p hq;
       rwa [h, mul_zero, add_zero, modByMonic_eq_self_iff hq] at this,
-    fun h => by
+  fun h => by
+    classical
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold divByMonic divModByMonicAux; dsimp; rw [dif_pos hq, if_neg (mt And.left this)]⟩
 #align polynomial.div_by_monic_eq_zero_iff Polynomial.divByMonic_eq_zero_iff
@@ -293,6 +304,7 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
 #align polynomial.degree_add_div_by_monic Polynomial.degree_add_divByMonic
 
 theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
+  letI := Classical.decEq R
   if hp0 : p = 0 then by simp only [hp0, zero_divByMonic, le_refl]
   else
     if hq : Monic q then
@@ -540,7 +552,7 @@ section multiplicity
 The algorithm is "compute `p %ₘ q` and compare to `0`".
 See `polynomial.modByMonic` for the algorithm that computes `%ₘ`.
 -/
-def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
+def decidableDvdMonic [DecidableEq R] (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
   decidable_of_iff (p %ₘ q = 0) (dvd_iff_modByMonic_eq_zero hq)
 #align polynomial.decidable_dvd_monic Polynomial.decidableDvdMonic
 
@@ -555,8 +567,10 @@ set_option linter.uppercaseLean3 false in
 /- Porting note: stripping out classical for decidability instance parameter might
 make for better ergonomics -/
 /-- The largest power of `X - C a` which divides `p`.
-This is computable via the divisibility algorithm `Polynomial.decidableDvdMonic`. -/
+This *could be* computable via the divisibility algorithm `Polynomial.decidableDvdMonic`,
+as shown by `Polynomial.rootMultiplicity_eq_nat_find_of_nonzero` which has a computable RHS. -/
 def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
+  letI := Classical.decEq R
   if h0 : p = 0 then 0
   else
     let _ : DecidablePred fun n : ℕ => ¬(X - C a) ^ (n + 1) ∣ p := fun n =>
@@ -566,15 +580,17 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
 
 /- Porting note: added the following due to diamond with decidableProp and
 decidableDvdMonic see also [Zulip]
-(https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/
-non-defeq.20aliased.20instance) -/
-theorem rootMultiplicity_eq_nat_find_of_nonzero {p : R[X]} (p0 : p ≠ 0) {a : R} :
+(https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/non-defeq.20aliased.20instance) -/
+theorem rootMultiplicity_eq_nat_find_of_nonzero [DecidableEq R] {p : R[X]} (p0 : p ≠ 0) {a : R} :
+    letI : DecidablePred fun n : ℕ => ¬(X - C a) ^ (n + 1) ∣ p := fun n =>
+      @Not.decidable _ (decidableDvdMonic p ((monic_X_sub_C a).pow (n + 1)))
     rootMultiplicity a p = Nat.find (multiplicity_X_sub_C_finite a p0) := by
   dsimp [rootMultiplicity]
+  cases Subsingleton.elim ‹DecidableEq R› (Classical.decEq R)
   rw [dif_neg p0]
-  convert rfl
 
-theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
+theorem rootMultiplicity_eq_multiplicity [DecidableEq R] [@DecidableRel R[X] (· ∣ ·)]
+    (p : R[X]) (a : R) :
     rootMultiplicity a p =
       if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_X_sub_C_finite a h0) :=
   by simp [multiplicity, rootMultiplicity, Part.Dom]; congr; funext; congr
@@ -588,6 +604,7 @@ theorem rootMultiplicity_zero {x : R} : rootMultiplicity x 0 = 0 :=
 @[simp]
 theorem rootMultiplicity_eq_zero_iff {p : R[X]} {x : R} :
     rootMultiplicity x p = 0 ↔ IsRoot p x → p = 0 := by
+  classical
   simp only [rootMultiplicity_eq_multiplicity, dite_eq_left_iff, PartENat.get_eq_iff_eq_coe,
     Nat.cast_zero, multiplicity.multiplicity_eq_zero, dvd_iff_isRoot, not_imp_not]
 #align polynomial.root_multiplicity_eq_zero_iff Polynomial.rootMultiplicity_eq_zero_iff
@@ -613,8 +630,10 @@ set_option linter.uppercaseLean3 false in
 #align polynomial.root_multiplicity_C Polynomial.rootMultiplicity_C
 
 theorem pow_rootMultiplicity_dvd (p : R[X]) (a : R) : (X - C a) ^ rootMultiplicity a p ∣ p :=
+  letI := Classical.decEq R
   if h : p = 0 then by simp [h]
   else by
+    classical
     rw [rootMultiplicity_eq_multiplicity, dif_neg h]; exact multiplicity.pow_multiplicity_dvd _
 #align polynomial.pow_root_multiplicity_dvd Polynomial.pow_rootMultiplicity_dvd
 
@@ -629,6 +648,7 @@ theorem divByMonic_mul_pow_rootMultiplicity_eq (p : R[X]) (a : R) :
 
 theorem eval_divByMonic_pow_rootMultiplicity_ne_zero {p : R[X]} (a : R) (hp : p ≠ 0) :
     eval a (p /ₘ (X - C a) ^ rootMultiplicity a p) ≠ 0 := by
+  classical
   haveI : Nontrivial R := Nontrivial.of_polynomial_ne hp
   rw [Ne.def, ← IsRoot.def, ← dvd_iff_isRoot]
   rintro ⟨q, hq⟩
feat: add theorem natDegree_modByMonic_lt (#7278)

Adds the natDegree analogue of this theorem

Co-authored-by: Pratyush Mishra <prat@upenn.edu>

Diff
@@ -164,6 +164,15 @@ theorem degree_modByMonic_lt [Nontrivial R] :
   termination_by degree_modByMonic_lt p q hq => p
 #align polynomial.degree_mod_by_monic_lt Polynomial.degree_modByMonic_lt
 
+theorem natDegree_modByMonic_lt (p : R[X]) {q : R[X]} (hmq : Monic q) (hq : q ≠ 1) :
+    natDegree (p %ₘ q) < q.natDegree := by
+  by_cases hpq : p %ₘ q = 0
+  · rw [hpq, natDegree_zero, Nat.pos_iff_ne_zero]
+    contrapose! hq
+    exact eq_one_of_monic_natDegree_zero hmq hq
+  · haveI := Nontrivial.of_polynomial_ne hpq
+    exact natDegree_lt_natDegree hpq (degree_modByMonic_lt p hmq)
+
 @[simp]
 theorem zero_modByMonic (p : R[X]) : 0 %ₘ p = 0 := by
   unfold modByMonic divModByMonicAux
feat: expand API for Polynomial.divX and some related results (#6428)

Various lemmas about Polynomial.natDegree

Co-authored-by: Pratyush Mishra

Diff
@@ -217,12 +217,19 @@ theorem degree_modByMonic_le (p : R[X]) {q : R[X]} (hq : Monic q) : degree (p %
   exact (degree_modByMonic_lt _ hq).le
 #align polynomial.degree_mod_by_monic_le Polynomial.degree_modByMonic_le
 
+theorem natDegree_modByMonic_le (p : Polynomial R) {g : Polynomial R} (hg : g.Monic) :
+    natDegree (p %ₘ g) ≤ g.natDegree :=
+natDegree_le_natDegree (degree_modByMonic_le p hg)
+
 end Ring
 
 section CommRing
 
 variable [CommRing R] {p q : R[X]}
 
+theorem X_dvd_sub_C : X ∣ p - C (p.coeff 0) := by
+  simp [X_dvd_iff, coeff_C]
+
 theorem modByMonic_eq_sub_mul_div :
     ∀ (p : R[X]) {q : R[X]} (_hq : Monic q), p %ₘ q = p - q * (p /ₘ q)
   | p, q, hq =>
feat: WithTop.charZero (#6992)

Also WithBot.charZero

Diff
@@ -75,9 +75,8 @@ theorem multiplicity_finite_of_degree_pos_of_monic (hp : (0 : WithBot ℕ) < deg
     have hpnr0 : leadingCoeff (p ^ (natDegree q + 1)) * leadingCoeff r ≠ 0 := by
       simp only [leadingCoeff_pow' hpn0', leadingCoeff_eq_zero, hpn1, one_pow, one_mul, Ne.def,
           hr0]
-    have hnp : 0 < natDegree p := by
-      rw [← WithBot.coe_lt_coe, ← Nat.cast_withBot, ← Nat.cast_withBot,
-        ← degree_eq_natDegree hp0]; exact hp
+    have hnp : 0 < natDegree p := Nat.cast_lt.1 <| by
+      rw [← degree_eq_natDegree hp0]; exact hp
     have := congr_arg natDegree hr
     rw [natDegree_mul' hpnr0, natDegree_pow' hpn0', add_mul, add_assoc] at this
     exact
@@ -98,9 +97,8 @@ theorem div_wf_lemma (h : degree q ≤ degree p ∧ p ≠ 0) (hq : Monic q) :
   have hp : leadingCoeff p ≠ 0 := mt leadingCoeff_eq_zero.1 h.2
   have hq0 : q ≠ 0 := hq.ne_zero_of_polynomial_ne h.2
   have hlt : natDegree q ≤ natDegree p :=
-    WithBot.coe_le_coe.1
-      (by rw [← Nat.cast_withBot, ← Nat.cast_withBot, ← degree_eq_natDegree h.2,
-        ← degree_eq_natDegree hq0]; exact h.1)
+    Nat.cast_le.1
+      (by rw [← degree_eq_natDegree h.2, ← degree_eq_natDegree hq0]; exact h.1)
   degree_sub_lt
     (by
       rw [hq.degree_mul, degree_C_mul_X_pow _ hp, degree_eq_natDegree h.2,
@@ -270,7 +268,7 @@ theorem degree_add_divByMonic (hq : Monic q) (h : degree q ≤ degree p) :
       degree (p %ₘ q) < degree q := degree_modByMonic_lt _ hq
       _ ≤ _ := by
         rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero, degree_eq_natDegree hdiv0, ←
-            Nat.cast_add, Nat.cast_withBot, Nat.cast_withBot, WithBot.coe_le_coe]
+            Nat.cast_add, Nat.cast_le]
         exact Nat.le_add_right _ _
   calc
     degree q + degree (p /ₘ q) = degree (q * (p /ₘ q)) := Eq.symm (degree_mul' hlc)
@@ -304,9 +302,9 @@ theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0
     rw [← degree_add_divByMonic hq (not_lt.1 hpq), degree_eq_natDegree hq.ne_zero,
       degree_eq_natDegree (mt (divByMonic_eq_zero_iff hq).1 hpq)]
     exact
-      WithBot.coe_lt_coe.2
-        (Nat.lt_add_of_pos_left (WithBot.coe_lt_coe.1 <|
-          by simpa [Nat.cast_withBot, degree_eq_natDegree hq.ne_zero] using h0q))
+      Nat.cast_lt.2
+        (Nat.lt_add_of_pos_left (Nat.cast_lt.1 <|
+          by simpa [degree_eq_natDegree hq.ne_zero] using h0q))
 #align polynomial.degree_div_by_monic_lt Polynomial.degree_divByMonic_lt
 
 theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg : g.Monic) :
@@ -325,8 +323,7 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
     apply hfg
     rw [hf, zero_divByMonic]
   rw [degree_eq_natDegree hf, degree_eq_natDegree hg.ne_zero, degree_eq_natDegree hfg,
-    Nat.cast_withBot, Nat.cast_withBot, Nat.cast_withBot,
-    ← WithBot.coe_add, WithBot.coe_eq_coe] at this
+    ← Nat.cast_add, Nat.cast_inj] at this
   rw [← this, add_tsub_cancel_left]
 #align polynomial.nat_degree_div_by_monic Polynomial.natDegree_divByMonic
 
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -242,7 +242,7 @@ theorem modByMonic_eq_sub_mul_div :
     else by
       unfold modByMonic divByMonic divModByMonicAux
       dsimp
-      rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, MulZeroClass.mul_zero, sub_zero]
+      rw [dif_pos hq, if_neg h, dif_pos hq, if_neg h, mul_zero, sub_zero]
   termination_by modByMonic_eq_sub_mul_div p q hq => p
 #align polynomial.mod_by_monic_eq_sub_mul_div Polynomial.modByMonic_eq_sub_mul_div
 
@@ -253,7 +253,7 @@ theorem modByMonic_add_div (p : R[X]) {q : R[X]} (hq : Monic q) : p %ₘ q + q *
 theorem divByMonic_eq_zero_iff [Nontrivial R] (hq : Monic q) : p /ₘ q = 0 ↔ degree p < degree q :=
   ⟨fun h => by
     have := modByMonic_add_div p hq;
-      rwa [h, MulZeroClass.mul_zero, add_zero, modByMonic_eq_self_iff hq] at this,
+      rwa [h, mul_zero, add_zero, modByMonic_eq_self_iff hq] at this,
     fun h => by
     have : ¬degree q ≤ degree p := not_le_of_gt h
     unfold divByMonic divModByMonicAux; dsimp; rw [dif_pos hq, if_neg (mt And.left this)]⟩
@@ -391,7 +391,7 @@ theorem dvd_iff_modByMonic_eq_zero (hq : Monic q) : p %ₘ q = 0 ↔ q ∣ p :=
     have hrpq0 : leadingCoeff (r - p /ₘ q) ≠ 0 := fun h =>
       hpq0 <|
         leadingCoeff_eq_zero.1
-          (by rw [hmod, leadingCoeff_eq_zero.1 h, MulZeroClass.mul_zero, leadingCoeff_zero])
+          (by rw [hmod, leadingCoeff_eq_zero.1 h, mul_zero, leadingCoeff_zero])
     have hlc : leadingCoeff q * leadingCoeff (r - p /ₘ q) ≠ 0 := by rwa [Monic.def.1 hq, one_mul]
     rw [degree_mul' hlc, degree_eq_natDegree hq.ne_zero,
       degree_eq_natDegree (mt leadingCoeff_eq_zero.2 hrpq0)] at this
@@ -422,7 +422,7 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
   nontriviality R
   have h : (p %ₘ (X - C a)).eval a = p.eval a := by
     rw [modByMonic_eq_sub_mul_div _ (monic_X_sub_C a), eval_sub, eval_mul, eval_sub, eval_X,
-      eval_C, sub_self, MulZeroClass.zero_mul, sub_zero]
+      eval_C, sub_self, zero_mul, sub_zero]
   have : degree (p %ₘ (X - C a)) < 1 :=
     degree_X_sub_C a ▸ degree_modByMonic_lt p (monic_X_sub_C a)
   have : degree (p %ₘ (X - C a)) ≤ 0 := by
@@ -437,7 +437,7 @@ set_option linter.uppercaseLean3 false in
 
 theorem mul_divByMonic_eq_iff_isRoot : (X - C a) * (p /ₘ (X - C a)) = p ↔ IsRoot p a :=
   ⟨fun h => by
-    rw [← h, IsRoot.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, MulZeroClass.zero_mul],
+    rw [← h, IsRoot.def, eval_mul, eval_sub, eval_X, eval_C, sub_self, zero_mul],
     fun h : p.eval a = 0 => by
     conv_rhs =>
         rw [← modByMonic_add_div p (monic_X_sub_C a)]
@@ -475,7 +475,7 @@ set_option linter.uppercaseLean3 false in
 
 theorem eval₂_modByMonic_eq_self_of_root [CommRing S] {f : R →+* S} {p q : R[X]} (hq : q.Monic)
     {x : S} (hx : q.eval₂ f x = 0) : (p %ₘ q).eval₂ f x = p.eval₂ f x := by
-  rw [modByMonic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, MulZeroClass.zero_mul, sub_zero]
+  rw [modByMonic_eq_sub_mul_div p hq, eval₂_sub, eval₂_mul, hx, zero_mul, sub_zero]
 #align polynomial.eval₂_mod_by_monic_eq_self_of_root Polynomial.eval₂_modByMonic_eq_self_of_root
 
 theorem sum_modByMonic_coeff (hq : q.Monic) {n : ℕ} (hn : q.degree ≤ n) :
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-
-! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit e1e7190efdcefc925cb36f257a8362ef22944204
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Polynomial.AlgebraMap
 import Mathlib.Data.Polynomial.Inductions
 import Mathlib.Data.Polynomial.Monic
 import Mathlib.RingTheory.Multiplicity
 
+#align_import data.polynomial.div from "leanprover-community/mathlib"@"e1e7190efdcefc925cb36f257a8362ef22944204"
+
 /-!
 # Division of univariate polynomials
 
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -321,7 +321,7 @@ theorem natDegree_divByMonic {R : Type u} [CommRing R] (f : R[X]) {g : R[X]} (hg
     rw [tsub_eq_zero_iff_le.mpr (natDegree_le_natDegree <| le_of_lt hfg)]
   have hgf := hfg
   rw [divByMonic_eq_zero_iff hg] at hgf
-  push_neg  at hgf
+  push_neg at hgf
   have := degree_add_divByMonic hg hgf
   have hf : f ≠ 0 := by
     intro hf
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
 
 ! This file was ported from Lean 3 source module data.polynomial.div
-! leanprover-community/mathlib commit da420a8c6dd5bdfb85c4ced85c34388f633bc6ff
+! leanprover-community/mathlib commit e1e7190efdcefc925cb36f257a8362ef22944204
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -454,6 +454,23 @@ theorem dvd_iff_isRoot : X - C a ∣ p ↔ IsRoot p a :=
     fun h => ⟨p /ₘ (X - C a), by rw [mul_divByMonic_eq_iff_isRoot.2 h]⟩⟩
 #align polynomial.dvd_iff_is_root Polynomial.dvd_iff_isRoot
 
+theorem X_sub_C_dvd_sub_C_eval : X - C a ∣ p - C (p.eval a) := by
+  rw [dvd_iff_isRoot, IsRoot, eval_sub, eval_C, sub_self]
+set_option linter.uppercaseLean3 false in
+#align polynomial.X_sub_C_dvd_sub_C_eval Polynomial.X_sub_C_dvd_sub_C_eval
+
+theorem mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero {b : R[X]} {P : R[X][X]} :
+    P ∈ Ideal.span {C (X - C a), X - C b} ↔ (P.eval b).eval a = 0 := by
+  rw [Ideal.mem_span_pair]
+  constructor <;> intro h
+  · rcases h with ⟨_, _, rfl⟩
+    simp only [eval_C, eval_X, eval_add, eval_sub, eval_mul, add_zero, mul_zero, sub_self]
+  · rcases dvd_iff_isRoot.mpr h with ⟨p, hp⟩
+    rcases @X_sub_C_dvd_sub_C_eval _ b _ P with ⟨q, hq⟩
+    exact ⟨C p, q, by rw [mul_comm, mul_comm q, eq_add_of_sub_eq' hq, hp, C_mul]⟩
+set_option linter.uppercaseLean3 false in
+#align polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero Polynomial.mem_span_C_X_sub_C_X_sub_C_iff_eval_eval_eq_zero
+
 theorem modByMonic_X (p : R[X]) : p %ₘ X = C (p.eval 0) := by
   rw [← modByMonic_X_sub_C_eq_C_eval, C_0, sub_zero]
 set_option linter.uppercaseLean3 false in
chore: formatting issues (#4947)

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -412,7 +412,7 @@ theorem map_dvd_map [CommRing S] (f : R →+* S) (hf : Function.Injective f) {x
 
 @[simp]
 theorem modByMonic_one (p : R[X]) : p %ₘ 1 = 0 :=
-  (dvd_iff_modByMonic_eq_zero (by convert monic_one (R:=R))).2 (one_dvd _)
+  (dvd_iff_modByMonic_eq_zero (by convert monic_one (R := R))).2 (one_dvd _)
 #align polynomial.mod_by_monic_one Polynomial.modByMonic_one
 
 @[simp]
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -526,7 +526,7 @@ set_option linter.uppercaseLean3 false in
 #align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finite
 
 /- Porting note: stripping out classical for decidability instance parameter might
-make for better ergnomics -/
+make for better ergonomics -/
 /-- The largest power of `X - C a` which divides `p`.
 This is computable via the divisibility algorithm `Polynomial.decidableDvdMonic`. -/
 def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
@@ -537,7 +537,7 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
     Nat.find (multiplicity_X_sub_C_finite a h0)
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
 
-/- Porting note: added the following due to diamand with decidableProp and
+/- Porting note: added the following due to diamond with decidableProp and
 decidableDvdMonic see also [Zulip]
 (https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/
 non-defeq.20aliased.20instance) -/
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -298,8 +298,7 @@ theorem degree_divByMonic_le (p q : R[X]) : degree (p /ₘ q) ≤ degree p :=
 
 theorem degree_divByMonic_lt (p : R[X]) {q : R[X]} (hq : Monic q) (hp0 : p ≠ 0)
     (h0q : 0 < degree q) : degree (p /ₘ q) < degree p :=
-  if hpq : degree p < degree q then
-    by
+  if hpq : degree p < degree q then by
     haveI := Nontrivial.of_polynomial_ne hp0
     rw [(divByMonic_eq_zero_iff hq).2 hpq, degree_eq_natDegree hp0]
     exact WithBot.bot_lt_coe _
@@ -429,8 +428,7 @@ theorem modByMonic_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p %ₘ (X - C a) = C (
       eval_C, sub_self, MulZeroClass.zero_mul, sub_zero]
   have : degree (p %ₘ (X - C a)) < 1 :=
     degree_X_sub_C a ▸ degree_modByMonic_lt p (monic_X_sub_C a)
-  have : degree (p %ₘ (X - C a)) ≤ 0 :=
-    by
+  have : degree (p %ₘ (X - C a)) ≤ 0 := by
     revert this
     cases degree (p %ₘ (X - C a))
     · exact fun _ => bot_le
@@ -527,7 +525,7 @@ theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite
 set_option linter.uppercaseLean3 false in
 #align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finite
 
-/- Porting note: stripping out classical for decidability instance parameter might 
+/- Porting note: stripping out classical for decidability instance parameter might
 make for better ergnomics -/
 /-- The largest power of `X - C a` which divides `p`.
 This is computable via the divisibility algorithm `Polynomial.decidableDvdMonic`. -/
@@ -539,7 +537,7 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
     Nat.find (multiplicity_X_sub_C_finite a h0)
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
 
-/- Porting note: added the following due to diamand with decidableProp and 
+/- Porting note: added the following due to diamand with decidableProp and
 decidableDvdMonic see also [Zulip]
 (https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/
 non-defeq.20aliased.20instance) -/
@@ -547,7 +545,7 @@ theorem rootMultiplicity_eq_nat_find_of_nonzero {p : R[X]} (p0 : p ≠ 0) {a : R
     rootMultiplicity a p = Nat.find (multiplicity_X_sub_C_finite a p0) := by
   dsimp [rootMultiplicity]
   rw [dif_neg p0]
-  convert rfl 
+  convert rfl
 
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
feat port:Data.Polynomial.RingDivision (#3029)
Diff
@@ -519,8 +519,6 @@ def decidableDvdMonic (p : R[X]) (hq : Monic q) : Decidable (q ∣ p) :=
   decidable_of_iff (p %ₘ q = 0) (dvd_iff_modByMonic_eq_zero hq)
 #align polynomial.decidable_dvd_monic Polynomial.decidableDvdMonic
 
-open Classical
-
 theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite (X - C a) p := by
   haveI := Nontrivial.of_polynomial_ne h0
   refine' multiplicity_finite_of_degree_pos_of_monic _ (monic_X_sub_C _) h0
@@ -529,6 +527,8 @@ theorem multiplicity_X_sub_C_finite (a : R) (h0 : p ≠ 0) : multiplicity.Finite
 set_option linter.uppercaseLean3 false in
 #align polynomial.multiplicity_X_sub_C_finite Polynomial.multiplicity_X_sub_C_finite
 
+/- Porting note: stripping out classical for decidability instance parameter might 
+make for better ergnomics -/
 /-- The largest power of `X - C a` which divides `p`.
 This is computable via the divisibility algorithm `Polynomial.decidableDvdMonic`. -/
 def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
@@ -539,6 +539,16 @@ def rootMultiplicity (a : R) (p : R[X]) : ℕ :=
     Nat.find (multiplicity_X_sub_C_finite a h0)
 #align polynomial.root_multiplicity Polynomial.rootMultiplicity
 
+/- Porting note: added the following due to diamand with decidableProp and 
+decidableDvdMonic see also [Zulip]
+(https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/
+non-defeq.20aliased.20instance) -/
+theorem rootMultiplicity_eq_nat_find_of_nonzero {p : R[X]} (p0 : p ≠ 0) {a : R} :
+    rootMultiplicity a p = Nat.find (multiplicity_X_sub_C_finite a p0) := by
+  dsimp [rootMultiplicity]
+  rw [dif_neg p0]
+  convert rfl 
+
 theorem rootMultiplicity_eq_multiplicity (p : R[X]) (a : R) :
     rootMultiplicity a p =
       if h0 : p = 0 then 0 else (multiplicity (X - C a) p).get (multiplicity_X_sub_C_finite a h0) :=
feat: port Data.Polynomial.Div (#2975)

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Dependencies 8 + 476

477 files ported (98.4%)
198384 lines ported (98.5%)
Show graph

The unported dependencies are