data.polynomial.reverseMathlib.Data.Polynomial.Reverse

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Damiano Testa. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Damiano Testa
 -/
-import Data.Polynomial.Degree.TrailingDegree
-import Data.Polynomial.EraseLead
-import Data.Polynomial.Eval
+import Algebra.Polynomial.Degree.TrailingDegree
+import Algebra.Polynomial.EraseLead
+import Algebra.Polynomial.Eval
 
 #align_import data.polynomial.reverse from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
 
Diff
@@ -369,8 +369,8 @@ theorem reverse_leadingCoeff (f : R[X]) : f.reverse.leadingCoeff = f.trailingCoe
 #align polynomial.reverse_leading_coeff Polynomial.reverse_leadingCoeff
 -/
 
-#print Polynomial.reverse_natTrailingDegree /-
-theorem reverse_natTrailingDegree (f : R[X]) : f.reverse.natTrailingDegree = 0 :=
+#print Polynomial.natTrailingDegree_reverse /-
+theorem natTrailingDegree_reverse (f : R[X]) : f.reverse.natTrailingDegree = 0 :=
   by
   by_cases hf : f = 0
   · rw [hf, reverse_zero, nat_trailing_degree_zero]
@@ -378,7 +378,7 @@ theorem reverse_natTrailingDegree (f : R[X]) : f.reverse.natTrailingDegree = 0 :
     apply nat_trailing_degree_le_of_ne_zero
     rw [coeff_zero_reverse]
     exact mt leading_coeff_eq_zero.mp hf
-#align polynomial.reverse_nat_trailing_degree Polynomial.reverse_natTrailingDegree
+#align polynomial.reverse_nat_trailing_degree Polynomial.natTrailingDegree_reverse
 -/
 
 #print Polynomial.reverse_trailingCoeff /-
Diff
@@ -188,7 +188,7 @@ theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c
   · rw [h, rev_at_invol, coeff_X_pow_self]
   · rw [not_mem_support_iff.mp]
     intro a
-    rw [← one_mul (X ^ n), ← C_1] at a 
+    rw [← one_mul (X ^ n), ← C_1] at a
     apply h
     rw [← mem_support_C_mul_X_pow a, rev_at_invol]
 #align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_pow
@@ -332,7 +332,7 @@ theorem reverse_natDegree_le (f : R[X]) : f.reverse.natDegree ≤ f.natDegree :=
   by
   rw [nat_degree_le_iff_degree_le, degree_le_iff_coeff_zero]
   intro n hn
-  rw [WithBot.coe_lt_coe] at hn 
+  rw [WithBot.coe_lt_coe] at hn
   rw [coeff_reverse, rev_at, Function.Embedding.coeFn_mk, if_neg (not_le_of_gt hn),
     coeff_eq_zero_of_nat_degree_lt hn]
 #align polynomial.reverse_nat_degree_le Polynomial.reverse_natDegree_le
@@ -352,7 +352,7 @@ theorem natDegree_eq_reverse_natDegree_add_natTrailingDegree (f : R[X]) :
   · rw [← le_tsub_iff_left f.reverse_nat_degree_le]
     apply nat_trailing_degree_le_of_ne_zero
     have key := mt leading_coeff_eq_zero.mp (mt reverse_eq_zero.mp hf)
-    rwa [leading_coeff, coeff_reverse, rev_at_le f.reverse_nat_degree_le] at key 
+    rwa [leading_coeff, coeff_reverse, rev_at_le f.reverse_nat_degree_le] at key
 #align polynomial.nat_degree_eq_reverse_nat_degree_add_nat_trailing_degree Polynomial.natDegree_eq_reverse_natDegree_add_natTrailingDegree
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Damiano Testa. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Damiano Testa
 -/
-import Mathbin.Data.Polynomial.Degree.TrailingDegree
-import Mathbin.Data.Polynomial.EraseLead
-import Mathbin.Data.Polynomial.Eval
+import Data.Polynomial.Degree.TrailingDegree
+import Data.Polynomial.EraseLead
+import Data.Polynomial.Eval
 
 #align_import data.polynomial.reverse from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Damiano Testa. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Damiano Testa
-
-! This file was ported from Lean 3 source module data.polynomial.reverse
-! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Polynomial.Degree.TrailingDegree
 import Mathbin.Data.Polynomial.EraseLead
 import Mathbin.Data.Polynomial.Eval
 
+#align_import data.polynomial.reverse from "leanprover-community/mathlib"@"69c6a5a12d8a2b159f20933e60115a4f2de62b58"
+
 /-!
 # Reverse of a univariate polynomial
 
Diff
@@ -174,11 +174,14 @@ theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + r
 #align polynomial.reflect_add Polynomial.reflect_add
 -/
 
+#print Polynomial.reflect_C_mul /-
 @[simp]
 theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f := by
   ext; simp only [coeff_reflect, coeff_C_mul]
 #align polynomial.reflect_C_mul Polynomial.reflect_C_mul
+-/
 
+#print Polynomial.reflect_C_mul_X_pow /-
 @[simp]
 theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n :=
   by
@@ -192,11 +195,14 @@ theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c
     apply h
     rw [← mem_support_C_mul_X_pow a, rev_at_invol]
 #align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_pow
+-/
 
+#print Polynomial.reflect_C /-
 @[simp]
 theorem reflect_C (r : R) (N : ℕ) : reflect N (C r) = C r * X ^ N := by
   conv_lhs => rw [← mul_one (C r), ← pow_zero X, reflect_C_mul_X_pow, rev_at_zero]
 #align polynomial.reflect_C Polynomial.reflect_C
+-/
 
 #print Polynomial.reflect_monomial /-
 @[simp]
@@ -258,6 +264,7 @@ section Eval₂
 
 variable {S : Type _} [CommSemiring S]
 
+#print Polynomial.eval₂_reflect_mul_pow /-
 theorem eval₂_reflect_mul_pow (i : R →+* S) (x : S) [Invertible x] (N : ℕ) (f : R[X])
     (hf : f.natDegree ≤ N) : eval₂ i (⅟ x) (reflect N f) * x ^ N = eval₂ i x f :=
   by
@@ -272,7 +279,9 @@ theorem eval₂_reflect_mul_pow (i : R →+* S) (x : S) [Invertible x] (N : ℕ)
   · intros
     simp [*, add_mul]
 #align polynomial.eval₂_reflect_mul_pow Polynomial.eval₂_reflect_mul_pow
+-/
 
+#print Polynomial.eval₂_reflect_eq_zero_iff /-
 theorem eval₂_reflect_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (N : ℕ) (f : R[X])
     (hf : f.natDegree ≤ N) : eval₂ i (⅟ x) (reflect N f) = 0 ↔ eval₂ i x f = 0 :=
   by
@@ -283,6 +292,7 @@ theorem eval₂_reflect_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (N :
     rw [← mul_one (eval₂ i (⅟ x) _), ← one_pow N, ← mul_invOf_self x, mul_pow, ← mul_assoc, h,
       MulZeroClass.zero_mul]
 #align polynomial.eval₂_reflect_eq_zero_iff Polynomial.eval₂_reflect_eq_zero_iff
+-/
 
 end Eval₂
 
@@ -380,13 +390,16 @@ theorem reverse_trailingCoeff (f : R[X]) : f.reverse.trailingCoeff = f.leadingCo
 #align polynomial.reverse_trailing_coeff Polynomial.reverse_trailingCoeff
 -/
 
+#print Polynomial.reverse_mul /-
 theorem reverse_mul {f g : R[X]} (fg : f.leadingCoeff * g.leadingCoeff ≠ 0) :
     reverse (f * g) = reverse f * reverse g :=
   by
   unfold reverse
   rw [nat_degree_mul' fg, reflect_mul f g rfl.le rfl.le]
 #align polynomial.reverse_mul Polynomial.reverse_mul
+-/
 
+#print Polynomial.reverse_mul_of_domain /-
 @[simp]
 theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[X]) :
     reverse (f * g) = reverse f * reverse g :=
@@ -397,12 +410,15 @@ theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[
   · rw [g0, MulZeroClass.mul_zero, reverse_zero, MulZeroClass.mul_zero]
   simp [reverse_mul, *]
 #align polynomial.reverse_mul_of_domain Polynomial.reverse_mul_of_domain
+-/
 
+#print Polynomial.trailingCoeff_mul /-
 theorem trailingCoeff_mul {R : Type _} [Ring R] [NoZeroDivisors R] (p q : R[X]) :
     (p * q).trailingCoeff = p.trailingCoeff * q.trailingCoeff := by
   rw [← reverse_leading_coeff, reverse_mul_of_domain, leading_coeff_mul, reverse_leading_coeff,
     reverse_leading_coeff]
 #align polynomial.trailing_coeff_mul Polynomial.trailingCoeff_mul
+-/
 
 #print Polynomial.coeff_one_reverse /-
 @[simp]
@@ -421,16 +437,20 @@ section Eval₂
 
 variable {S : Type _} [CommSemiring S]
 
+#print Polynomial.eval₂_reverse_mul_pow /-
 theorem eval₂_reverse_mul_pow (i : R →+* S) (x : S) [Invertible x] (f : R[X]) :
     eval₂ i (⅟ x) (reverse f) * x ^ f.natDegree = eval₂ i x f :=
   eval₂_reflect_mul_pow i _ _ f le_rfl
 #align polynomial.eval₂_reverse_mul_pow Polynomial.eval₂_reverse_mul_pow
+-/
 
+#print Polynomial.eval₂_reverse_eq_zero_iff /-
 @[simp]
 theorem eval₂_reverse_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (f : R[X]) :
     eval₂ i (⅟ x) (reverse f) = 0 ↔ eval₂ i x f = 0 :=
   eval₂_reflect_eq_zero_iff i x _ _ le_rfl
 #align polynomial.eval₂_reverse_eq_zero_iff Polynomial.eval₂_reverse_eq_zero_iff
+-/
 
 end Eval₂
 
Diff
@@ -150,7 +150,6 @@ theorem coeff_reflect (N : ℕ) (f : R[X]) (i : ℕ) : coeff (reflect N f) i = f
     Finsupp.embDomain (rev_at N) f i = Finsupp.embDomain (rev_at N) f (rev_at N (rev_at N i)) := by
       rw [rev_at_invol]
     _ = f (rev_at N i) := Finsupp.embDomain_apply _ _ _
-    
 #align polynomial.coeff_reflect Polynomial.coeff_reflect
 -/
 
Diff
@@ -189,7 +189,7 @@ theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c
   · rw [h, rev_at_invol, coeff_X_pow_self]
   · rw [not_mem_support_iff.mp]
     intro a
-    rw [← one_mul (X ^ n), ← C_1] at a
+    rw [← one_mul (X ^ n), ← C_1] at a 
     apply h
     rw [← mem_support_C_mul_X_pow a, rev_at_invol]
 #align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_pow
@@ -326,7 +326,7 @@ theorem reverse_natDegree_le (f : R[X]) : f.reverse.natDegree ≤ f.natDegree :=
   by
   rw [nat_degree_le_iff_degree_le, degree_le_iff_coeff_zero]
   intro n hn
-  rw [WithBot.coe_lt_coe] at hn
+  rw [WithBot.coe_lt_coe] at hn 
   rw [coeff_reverse, rev_at, Function.Embedding.coeFn_mk, if_neg (not_le_of_gt hn),
     coeff_eq_zero_of_nat_degree_lt hn]
 #align polynomial.reverse_nat_degree_le Polynomial.reverse_natDegree_le
@@ -346,7 +346,7 @@ theorem natDegree_eq_reverse_natDegree_add_natTrailingDegree (f : R[X]) :
   · rw [← le_tsub_iff_left f.reverse_nat_degree_le]
     apply nat_trailing_degree_le_of_ne_zero
     have key := mt leading_coeff_eq_zero.mp (mt reverse_eq_zero.mp hf)
-    rwa [leading_coeff, coeff_reverse, rev_at_le f.reverse_nat_degree_le] at key
+    rwa [leading_coeff, coeff_reverse, rev_at_le f.reverse_nat_degree_le] at key 
 #align polynomial.nat_degree_eq_reverse_nat_degree_add_nat_trailing_degree Polynomial.natDegree_eq_reverse_natDegree_add_natTrailingDegree
 -/
 
Diff
@@ -30,7 +30,7 @@ namespace Polynomial
 
 open Polynomial Finsupp Finset
 
-open Classical Polynomial
+open scoped Classical Polynomial
 
 section Semiring
 
Diff
@@ -175,23 +175,11 @@ theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + r
 #align polynomial.reflect_add Polynomial.reflect_add
 -/
 
-/- warning: polynomial.reflect_C_mul -> Polynomial.reflect_C_mul is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
-Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul Polynomial.reflect_C_mulₓ'. -/
 @[simp]
 theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f := by
   ext; simp only [coeff_reflect, coeff_C_mul]
 #align polynomial.reflect_C_mul Polynomial.reflect_C_mul
 
-/- warning: polynomial.reflect_C_mul_X_pow -> Polynomial.reflect_C_mul_X_pow is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (coeFn.{1, 1} (Function.Embedding.{1, 1} Nat Nat) (fun (_x : Function.Embedding.{1, 1} Nat Nat) => Nat -> Nat) (Function.Embedding.hasCoeToFun.{1, 1} Nat Nat) (Polynomial.revAt N) n)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat (fun (_x : Nat) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat Nat (Function.instEmbeddingLikeEmbedding.{1, 1} Nat Nat)) (Polynomial.revAt N) n)))
-Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_powₓ'. -/
 @[simp]
 theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n :=
   by
@@ -206,12 +194,6 @@ theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c
     rw [← mem_support_C_mul_X_pow a, rev_at_invol]
 #align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_pow
 
-/- warning: polynomial.reflect_C -> Polynomial.reflect_C is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
-Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C Polynomial.reflect_Cₓ'. -/
 @[simp]
 theorem reflect_C (r : R) (N : ℕ) : reflect N (C r) = C r * X ^ N := by
   conv_lhs => rw [← mul_one (C r), ← pow_zero X, reflect_C_mul_X_pow, rev_at_zero]
@@ -277,12 +259,6 @@ section Eval₂
 
 variable {S : Type _} [CommSemiring S]
 
-/- warning: polynomial.eval₂_reflect_mul_pow -> Polynomial.eval₂_reflect_mul_pow is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (N : Nat) (f : Polynomial.{u1} R _inst_1), (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} R _inst_1 f) N) -> (Eq.{succ u2} S (HMul.hMul.{u2, u2, u2} S S S (instHMul.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reflect.{u1} R _inst_1 N f)) (HPow.hPow.{u2, 0, u2} S Nat S (instHPow.{u2, 0} S Nat (Monoid.Pow.{u2} S (MonoidWithZero.toMonoid.{u2} S (Semiring.toMonoidWithZero.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x N)) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f))
-but is expected to have type
-  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (N : Nat) (f : Polynomial.{u2} R _inst_1), (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u2} R _inst_1 f) N) -> (Eq.{succ u1} S (HMul.hMul.{u1, u1, u1} S S S (instHMul.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reflect.{u2} R _inst_1 N f)) (HPow.hPow.{u1, 0, u1} S Nat S (instHPow.{u1, 0} S Nat (Monoid.Pow.{u1} S (MonoidWithZero.toMonoid.{u1} S (Semiring.toMonoidWithZero.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) x N)) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f))
-Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reflect_mul_pow Polynomial.eval₂_reflect_mul_powₓ'. -/
 theorem eval₂_reflect_mul_pow (i : R →+* S) (x : S) [Invertible x] (N : ℕ) (f : R[X])
     (hf : f.natDegree ≤ N) : eval₂ i (⅟ x) (reflect N f) * x ^ N = eval₂ i x f :=
   by
@@ -298,12 +274,6 @@ theorem eval₂_reflect_mul_pow (i : R →+* S) (x : S) [Invertible x] (N : ℕ)
     simp [*, add_mul]
 #align polynomial.eval₂_reflect_mul_pow Polynomial.eval₂_reflect_mul_pow
 
-/- warning: polynomial.eval₂_reflect_eq_zero_iff -> Polynomial.eval₂_reflect_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (N : Nat) (f : Polynomial.{u1} R _inst_1), (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} R _inst_1 f) N) -> (Iff (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reflect.{u1} R _inst_1 N f)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))))) (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))))))
-but is expected to have type
-  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (N : Nat) (f : Polynomial.{u2} R _inst_1), (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u2} R _inst_1 f) N) -> (Iff (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reflect.{u2} R _inst_1 N f)) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2))))) (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reflect_eq_zero_iff Polynomial.eval₂_reflect_eq_zero_iffₓ'. -/
 theorem eval₂_reflect_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (N : ℕ) (f : R[X])
     (hf : f.natDegree ≤ N) : eval₂ i (⅟ x) (reflect N f) = 0 ↔ eval₂ i x f = 0 :=
   by
@@ -411,12 +381,6 @@ theorem reverse_trailingCoeff (f : R[X]) : f.reverse.trailingCoeff = f.leadingCo
 #align polynomial.reverse_trailing_coeff Polynomial.reverse_trailingCoeff
 -/
 
-/- warning: polynomial.reverse_mul -> Polynomial.reverse_mul is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {f : Polynomial.{u1} R _inst_1} {g : Polynomial.{u1} R _inst_1}, (Ne.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (Polynomial.leadingCoeff.{u1} R _inst_1 f) (Polynomial.leadingCoeff.{u1} R _inst_1 g)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))))))) -> (Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reverse.{u1} R _inst_1 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (Polynomial.reverse.{u1} R _inst_1 f) (Polynomial.reverse.{u1} R _inst_1 g)))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {f : Polynomial.{u1} R _inst_1} {g : Polynomial.{u1} R _inst_1}, (Ne.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Polynomial.leadingCoeff.{u1} R _inst_1 f) (Polynomial.leadingCoeff.{u1} R _inst_1 g)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reverse.{u1} R _inst_1 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (Polynomial.reverse.{u1} R _inst_1 f) (Polynomial.reverse.{u1} R _inst_1 g)))
-Case conversion may be inaccurate. Consider using '#align polynomial.reverse_mul Polynomial.reverse_mulₓ'. -/
 theorem reverse_mul {f g : R[X]} (fg : f.leadingCoeff * g.leadingCoeff ≠ 0) :
     reverse (f * g) = reverse f * reverse g :=
   by
@@ -424,12 +388,6 @@ theorem reverse_mul {f g : R[X]} (fg : f.leadingCoeff * g.leadingCoeff ≠ 0) :
   rw [nat_degree_mul' fg, reflect_mul f g rfl.le rfl.le]
 #align polynomial.reverse_mul Polynomial.reverse_mul
 
-/- warning: polynomial.reverse_mul_of_domain -> Polynomial.reverse_mul_of_domain is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_2)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))))] (f : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (g : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) f) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) g))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_2)))] (f : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (g : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) f) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) g))
-Case conversion may be inaccurate. Consider using '#align polynomial.reverse_mul_of_domain Polynomial.reverse_mul_of_domainₓ'. -/
 @[simp]
 theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[X]) :
     reverse (f * g) = reverse f * reverse g :=
@@ -441,12 +399,6 @@ theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[
   simp [reverse_mul, *]
 #align polynomial.reverse_mul_of_domain Polynomial.reverse_mul_of_domain
 
-/- warning: polynomial.trailing_coeff_mul -> Polynomial.trailingCoeff_mul is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_2)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))))] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} R (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_2))) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) p) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) q))
-but is expected to have type
-  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_2)))] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} R (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) p) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) q))
-Case conversion may be inaccurate. Consider using '#align polynomial.trailing_coeff_mul Polynomial.trailingCoeff_mulₓ'. -/
 theorem trailingCoeff_mul {R : Type _} [Ring R] [NoZeroDivisors R] (p q : R[X]) :
     (p * q).trailingCoeff = p.trailingCoeff * q.trailingCoeff := by
   rw [← reverse_leading_coeff, reverse_mul_of_domain, leading_coeff_mul, reverse_leading_coeff,
@@ -470,23 +422,11 @@ section Eval₂
 
 variable {S : Type _} [CommSemiring S]
 
-/- warning: polynomial.eval₂_reverse_mul_pow -> Polynomial.eval₂_reverse_mul_pow is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (f : Polynomial.{u1} R _inst_1), Eq.{succ u2} S (HMul.hMul.{u2, u2, u2} S S S (instHMul.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reverse.{u1} R _inst_1 f)) (HPow.hPow.{u2, 0, u2} S Nat S (instHPow.{u2, 0} S Nat (Monoid.Pow.{u2} S (MonoidWithZero.toMonoid.{u2} S (Semiring.toMonoidWithZero.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x (Polynomial.natDegree.{u1} R _inst_1 f))) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f)
-but is expected to have type
-  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (f : Polynomial.{u2} R _inst_1), Eq.{succ u1} S (HMul.hMul.{u1, u1, u1} S S S (instHMul.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reverse.{u2} R _inst_1 f)) (HPow.hPow.{u1, 0, u1} S Nat S (instHPow.{u1, 0} S Nat (Monoid.Pow.{u1} S (MonoidWithZero.toMonoid.{u1} S (Semiring.toMonoidWithZero.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) x (Polynomial.natDegree.{u2} R _inst_1 f))) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f)
-Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reverse_mul_pow Polynomial.eval₂_reverse_mul_powₓ'. -/
 theorem eval₂_reverse_mul_pow (i : R →+* S) (x : S) [Invertible x] (f : R[X]) :
     eval₂ i (⅟ x) (reverse f) * x ^ f.natDegree = eval₂ i x f :=
   eval₂_reflect_mul_pow i _ _ f le_rfl
 #align polynomial.eval₂_reverse_mul_pow Polynomial.eval₂_reverse_mul_pow
 
-/- warning: polynomial.eval₂_reverse_eq_zero_iff -> Polynomial.eval₂_reverse_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (f : Polynomial.{u1} R _inst_1), Iff (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reverse.{u1} R _inst_1 f)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))))) (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))))))
-but is expected to have type
-  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (f : Polynomial.{u2} R _inst_1), Iff (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reverse.{u2} R _inst_1 f)) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2))))) (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reverse_eq_zero_iff Polynomial.eval₂_reverse_eq_zero_iffₓ'. -/
 @[simp]
 theorem eval₂_reverse_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (f : R[X]) :
     eval₂ i (⅟ x) (reverse f) = 0 ↔ eval₂ i x f = 0 :=
Diff
@@ -163,18 +163,14 @@ theorem reflect_zero {N : ℕ} : reflect N (0 : R[X]) = 0 :=
 
 #print Polynomial.reflect_eq_zero_iff /-
 @[simp]
-theorem reflect_eq_zero_iff {N : ℕ} {f : R[X]} : reflect N (f : R[X]) = 0 ↔ f = 0 :=
-  by
-  rcases f with ⟨⟩
-  simp [reflect]
+theorem reflect_eq_zero_iff {N : ℕ} {f : R[X]} : reflect N (f : R[X]) = 0 ↔ f = 0 := by
+  rcases f with ⟨⟩; simp [reflect]
 #align polynomial.reflect_eq_zero_iff Polynomial.reflect_eq_zero_iff
 -/
 
 #print Polynomial.reflect_add /-
 @[simp]
-theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + reflect N g :=
-  by
-  ext
+theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + reflect N g := by ext;
   simp only [coeff_add, coeff_reflect]
 #align polynomial.reflect_add Polynomial.reflect_add
 -/
@@ -186,10 +182,8 @@ but is expected to have type
   forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
 Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul Polynomial.reflect_C_mulₓ'. -/
 @[simp]
-theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f :=
-  by
-  ext
-  simp only [coeff_reflect, coeff_C_mul]
+theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f := by
+  ext; simp only [coeff_reflect, coeff_C_mul]
 #align polynomial.reflect_C_mul Polynomial.reflect_C_mul
 
 /- warning: polynomial.reflect_C_mul_X_pow -> Polynomial.reflect_C_mul_X_pow is a dubious translation:
@@ -315,9 +309,8 @@ theorem eval₂_reflect_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (N :
   by
   conv_rhs => rw [← eval₂_reflect_mul_pow i x N f hf]
   constructor
-  · intro h
-    rw [h, MulZeroClass.zero_mul]
-  · intro h
+  · intro h; rw [h, MulZeroClass.zero_mul]
+  · intro h;
     rw [← mul_one (eval₂ i (⅟ x) _), ← one_pow N, ← mul_invOf_self x, mul_pow, ← mul_assoc, h,
       MulZeroClass.zero_mul]
 #align polynomial.eval₂_reflect_eq_zero_iff Polynomial.eval₂_reflect_eq_zero_iff
Diff
@@ -183,7 +183,7 @@ theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + r
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
 Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul Polynomial.reflect_C_mulₓ'. -/
 @[simp]
 theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f :=
@@ -196,7 +196,7 @@ theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r *
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (coeFn.{1, 1} (Function.Embedding.{1, 1} Nat Nat) (fun (_x : Function.Embedding.{1, 1} Nat Nat) => Nat -> Nat) (Function.Embedding.hasCoeToFun.{1, 1} Nat Nat) (Polynomial.revAt N) n)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat (fun (_x : Nat) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat Nat (Function.instEmbeddingLikeEmbedding.{1, 1} Nat Nat)) (Polynomial.revAt N) n)))
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat (fun (_x : Nat) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat Nat (Function.instEmbeddingLikeEmbedding.{1, 1} Nat Nat)) (Polynomial.revAt N) n)))
 Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_powₓ'. -/
 @[simp]
 theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n :=
@@ -216,7 +216,7 @@ theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
 Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C Polynomial.reflect_Cₓ'. -/
 @[simp]
 theorem reflect_C (r : R) (N : ℕ) : reflect N (C r) = C r * X ^ N := by
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Damiano Testa
 
 ! This file was ported from Lean 3 source module data.polynomial.reverse
-! leanprover-community/mathlib commit 44de64f183393284a16016dfb2a48ac97382f2bd
+! leanprover-community/mathlib commit 69c6a5a12d8a2b159f20933e60115a4f2de62b58
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Data.Polynomial.Eval
 /-!
 # Reverse of a univariate polynomial
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 The main definition is `reverse`.  Applying `reverse` to a polynomial `f : R[X]` produces
 the polynomial with a reversed list of coefficients, equivalent to `X^f.nat_degree * f(1/X)`.
 
Diff
@@ -180,7 +180,7 @@ theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + r
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
 Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul Polynomial.reflect_C_mulₓ'. -/
 @[simp]
 theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f :=
@@ -193,7 +193,7 @@ theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r *
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (coeFn.{1, 1} (Function.Embedding.{1, 1} Nat Nat) (fun (_x : Function.Embedding.{1, 1} Nat Nat) => Nat -> Nat) (Function.Embedding.hasCoeToFun.{1, 1} Nat Nat) (Polynomial.revAt N) n)))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat (fun (_x : Nat) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat Nat (Function.instEmbeddingLikeEmbedding.{1, 1} Nat Nat)) (Polynomial.revAt N) n)))
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat (fun (_x : Nat) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat Nat (Function.instEmbeddingLikeEmbedding.{1, 1} Nat Nat)) (Polynomial.revAt N) n)))
 Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_powₓ'. -/
 @[simp]
 theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n :=
@@ -213,7 +213,7 @@ theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c
 lean 3 declaration is
   forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
 but is expected to have type
-  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
 Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C Polynomial.reflect_Cₓ'. -/
 @[simp]
 theorem reflect_C (r : R) (N : ℕ) : reflect N (C r) = C r * X ^ N := by
Diff
@@ -248,7 +248,7 @@ theorem reflect_mul_induction (cf cg : ℕ) :
     -- second induction (right): induction step
     · intro N O f g Cf Cg Nf Og
       by_cases g0 : g = 0
-      · rw [g0, reflect_zero, mul_zero, mul_zero, reflect_zero]
+      · rw [g0, reflect_zero, MulZeroClass.mul_zero, MulZeroClass.mul_zero, reflect_zero]
       rw [← erase_lead_add_C_mul_X_pow g, mul_add, reflect_add, reflect_add, mul_add, hcg, hcg] <;>
         try assumption
       · exact le_add_left card_support_C_mul_X_pow_le_one
@@ -258,7 +258,7 @@ theorem reflect_mul_induction (cf cg : ℕ) :
   --first induction (left): induction step
   · intro N O f g Cf Cg Nf Og
     by_cases f0 : f = 0
-    · rw [f0, reflect_zero, zero_mul, zero_mul, reflect_zero]
+    · rw [f0, reflect_zero, MulZeroClass.zero_mul, MulZeroClass.zero_mul, reflect_zero]
     rw [← erase_lead_add_C_mul_X_pow f, add_mul, reflect_add, reflect_add, add_mul, hcf, hcf] <;>
       try assumption
     · exact le_add_left card_support_C_mul_X_pow_le_one
@@ -313,10 +313,10 @@ theorem eval₂_reflect_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (N :
   conv_rhs => rw [← eval₂_reflect_mul_pow i x N f hf]
   constructor
   · intro h
-    rw [h, zero_mul]
+    rw [h, MulZeroClass.zero_mul]
   · intro h
     rw [← mul_one (eval₂ i (⅟ x) _), ← one_pow N, ← mul_invOf_self x, mul_pow, ← mul_assoc, h,
-      zero_mul]
+      MulZeroClass.zero_mul]
 #align polynomial.eval₂_reflect_eq_zero_iff Polynomial.eval₂_reflect_eq_zero_iff
 
 end Eval₂
@@ -439,9 +439,9 @@ theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[
     reverse (f * g) = reverse f * reverse g :=
   by
   by_cases f0 : f = 0
-  · simp only [f0, zero_mul, reverse_zero]
+  · simp only [f0, MulZeroClass.zero_mul, reverse_zero]
   by_cases g0 : g = 0
-  · rw [g0, mul_zero, reverse_zero, mul_zero]
+  · rw [g0, MulZeroClass.mul_zero, reverse_zero, MulZeroClass.mul_zero]
   simp [reverse_mul, *]
 #align polynomial.reverse_mul_of_domain Polynomial.reverse_mul_of_domain
 
Diff
@@ -33,13 +33,16 @@ section Semiring
 
 variable {R : Type _} [Semiring R] {f : R[X]}
 
+#print Polynomial.revAtFun /-
 /-- If `i ≤ N`, then `rev_at_fun N i` returns `N - i`, otherwise it returns `i`.
 This is the map used by the embedding `rev_at`.
 -/
 def revAtFun (N i : ℕ) : ℕ :=
   ite (i ≤ N) (N - i) i
 #align polynomial.rev_at_fun Polynomial.revAtFun
+-/
 
+#print Polynomial.revAtFun_invol /-
 theorem revAtFun_invol {N i : ℕ} : revAtFun N (revAtFun N i) = i :=
   by
   unfold rev_at_fun
@@ -50,13 +53,17 @@ theorem revAtFun_invol {N i : ℕ} : revAtFun N (revAtFun N i) = i :=
     exact Nat.sub_le N i
   · rfl
 #align polynomial.rev_at_fun_invol Polynomial.revAtFun_invol
+-/
 
+#print Polynomial.revAtFun_inj /-
 theorem revAtFun_inj {N : ℕ} : Function.Injective (revAtFun N) :=
   by
   intro a b hab
   rw [← @rev_at_fun_invol N a, hab, rev_at_fun_invol]
 #align polynomial.rev_at_fun_inj Polynomial.revAtFun_inj
+-/
 
+#print Polynomial.revAt /-
 /-- If `i ≤ N`, then `rev_at N i` returns `N - i`, otherwise it returns `i`.
 Essentially, this embedding is only used for `i ≤ N`.
 The advantage of `rev_at N i` over `N - i` is that `rev_at` is an involution.
@@ -66,23 +73,31 @@ def revAt (N : ℕ) : Function.Embedding ℕ ℕ
   toFun i := ite (i ≤ N) (N - i) i
   inj' := revAtFun_inj
 #align polynomial.rev_at Polynomial.revAt
+-/
 
+#print Polynomial.revAtFun_eq /-
 /-- We prefer to use the bundled `rev_at` over unbundled `rev_at_fun`. -/
 @[simp]
 theorem revAtFun_eq (N i : ℕ) : revAtFun N i = revAt N i :=
   rfl
 #align polynomial.rev_at_fun_eq Polynomial.revAtFun_eq
+-/
 
+#print Polynomial.revAt_invol /-
 @[simp]
 theorem revAt_invol {N i : ℕ} : (revAt N) (revAt N i) = i :=
   revAtFun_invol
 #align polynomial.rev_at_invol Polynomial.revAt_invol
+-/
 
+#print Polynomial.revAt_le /-
 @[simp]
 theorem revAt_le {N i : ℕ} (H : i ≤ N) : revAt N i = N - i :=
   if_pos H
 #align polynomial.rev_at_le Polynomial.revAt_le
+-/
 
+#print Polynomial.revAt_add /-
 theorem revAt_add {N O n o : ℕ} (hn : n ≤ N) (ho : o ≤ O) :
     revAt (N + O) (n + o) = revAt N n + revAt O o :=
   by
@@ -92,11 +107,15 @@ theorem revAt_add {N O n o : ℕ} (hn : n ≤ N) (ho : o ≤ O) :
   rw [add_assoc, add_left_comm n' o, ← add_assoc, rev_at_le (le_add_right rfl.le)]
   repeat' rw [add_tsub_cancel_left]
 #align polynomial.rev_at_add Polynomial.revAt_add
+-/
 
+#print Polynomial.revAt_zero /-
 @[simp]
 theorem revAt_zero (N : ℕ) : revAt N 0 = N := by simp [rev_at]
 #align polynomial.rev_at_zero Polynomial.revAt_zero
+-/
 
+#print Polynomial.reflect /-
 /-- `reflect N f` is the polynomial such that `(reflect N f).coeff i = f.coeff (rev_at N i)`.
 In other words, the terms with exponent `[0, ..., N]` now have exponent `[N, ..., 0]`.
 
@@ -106,7 +125,9 @@ Eventually, it will be used with `N` exactly equal to the degree of `f`.  -/
 noncomputable def reflect (N : ℕ) : R[X] → R[X]
   | ⟨f⟩ => ⟨Finsupp.embDomain (revAt N) f⟩
 #align polynomial.reflect Polynomial.reflect
+-/
 
+#print Polynomial.reflect_support /-
 theorem reflect_support (N : ℕ) (f : R[X]) :
     (reflect N f).support = Finset.image (revAt N) f.support :=
   by
@@ -114,7 +135,9 @@ theorem reflect_support (N : ℕ) (f : R[X]) :
   ext1
   simp only [reflect, support_of_finsupp, support_emb_domain, Finset.mem_map, Finset.mem_image]
 #align polynomial.reflect_support Polynomial.reflect_support
+-/
 
+#print Polynomial.coeff_reflect /-
 @[simp]
 theorem coeff_reflect (N : ℕ) (f : R[X]) (i : ℕ) : coeff (reflect N f) i = f.coeff (revAt N i) :=
   by
@@ -126,35 +149,54 @@ theorem coeff_reflect (N : ℕ) (f : R[X]) (i : ℕ) : coeff (reflect N f) i = f
     _ = f (rev_at N i) := Finsupp.embDomain_apply _ _ _
     
 #align polynomial.coeff_reflect Polynomial.coeff_reflect
+-/
 
+#print Polynomial.reflect_zero /-
 @[simp]
 theorem reflect_zero {N : ℕ} : reflect N (0 : R[X]) = 0 :=
   rfl
 #align polynomial.reflect_zero Polynomial.reflect_zero
+-/
 
+#print Polynomial.reflect_eq_zero_iff /-
 @[simp]
 theorem reflect_eq_zero_iff {N : ℕ} {f : R[X]} : reflect N (f : R[X]) = 0 ↔ f = 0 :=
   by
   rcases f with ⟨⟩
   simp [reflect]
 #align polynomial.reflect_eq_zero_iff Polynomial.reflect_eq_zero_iff
+-/
 
+#print Polynomial.reflect_add /-
 @[simp]
 theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + reflect N g :=
   by
   ext
   simp only [coeff_add, coeff_reflect]
 #align polynomial.reflect_add Polynomial.reflect_add
+-/
 
+/- warning: polynomial.reflect_C_mul -> Polynomial.reflect_C_mul is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (f : Polynomial.{u1} R _inst_1) (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) f)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (Polynomial.reflect.{u1} R _inst_1 N f))
+Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul Polynomial.reflect_C_mulₓ'. -/
 @[simp]
-theorem reflect_c_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f :=
+theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f :=
   by
   ext
   simp only [coeff_reflect, coeff_C_mul]
-#align polynomial.reflect_C_mul Polynomial.reflect_c_mul
-
+#align polynomial.reflect_C_mul Polynomial.reflect_C_mul
+
+/- warning: polynomial.reflect_C_mul_X_pow -> Polynomial.reflect_C_mul_X_pow is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (coeFn.{1, 1} (Function.Embedding.{1, 1} Nat Nat) (fun (_x : Function.Embedding.{1, 1} Nat Nat) => Nat -> Nat) (Function.Embedding.hasCoeToFun.{1, 1} Nat Nat) (Polynomial.revAt N) n)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (N : Nat) (n : Nat) {c : R}, Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) n))) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) c) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) c) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) ((fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) n) (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) (FunLike.coe.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat (fun (_x : Nat) => (fun (x._@.Mathlib.Data.FunLike.Embedding._hyg.19 : Nat) => Nat) _x) (EmbeddingLike.toFunLike.{1, 1, 1} (Function.Embedding.{1, 1} Nat Nat) Nat Nat (Function.instEmbeddingLikeEmbedding.{1, 1} Nat Nat)) (Polynomial.revAt N) n)))
+Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_powₓ'. -/
 @[simp]
-theorem reflect_c_mul_x_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n :=
+theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n :=
   by
   ext
   rw [reflect_C_mul, coeff_C_mul, coeff_C_mul, coeff_X_pow, coeff_reflect]
@@ -165,18 +207,27 @@ theorem reflect_c_mul_x_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c
     rw [← one_mul (X ^ n), ← C_1] at a
     apply h
     rw [← mem_support_C_mul_X_pow a, rev_at_invol]
-#align polynomial.reflect_C_mul_X_pow Polynomial.reflect_c_mul_x_pow
-
+#align polynomial.reflect_C_mul_X_pow Polynomial.reflect_C_mul_X_pow
+
+/- warning: polynomial.reflect_C -> Polynomial.reflect_C is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (fun (_x : RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) => R -> (Polynomial.{u1} R _inst_1)) (RingHom.hasCoeToFun.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] (r : R) (N : Nat), Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reflect.{u1} R _inst_1 N (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r)) (HMul.hMul.{u1, u1, u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) r) (Polynomial.mul'.{u1} R _inst_1)) (FunLike.coe.{succ u1, succ u1, succ u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => Polynomial.{u1} R _inst_1) _x) (MulHomClass.toFunLike.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))) (NonUnitalNonAssocSemiring.toMul.{u1} (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))) (NonUnitalRingHomClass.toMulHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) (RingHomClass.toNonUnitalRingHomClass.{u1, u1, u1} (RingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))) R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)) (RingHom.instRingHomClassRingHom.{u1, u1} R (Polynomial.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1)))))) (Polynomial.C.{u1} R _inst_1) r) (HPow.hPow.{u1, 0, u1} (Polynomial.{u1} R _inst_1) Nat (Polynomial.{u1} R _inst_1) (instHPow.{u1, 0} (Polynomial.{u1} R _inst_1) Nat (Monoid.Pow.{u1} (Polynomial.{u1} R _inst_1) (MonoidWithZero.toMonoid.{u1} (Polynomial.{u1} R _inst_1) (Semiring.toMonoidWithZero.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.semiring.{u1} R _inst_1))))) (Polynomial.X.{u1} R _inst_1) N))
+Case conversion may be inaccurate. Consider using '#align polynomial.reflect_C Polynomial.reflect_Cₓ'. -/
 @[simp]
-theorem reflect_c (r : R) (N : ℕ) : reflect N (C r) = C r * X ^ N := by
+theorem reflect_C (r : R) (N : ℕ) : reflect N (C r) = C r * X ^ N := by
   conv_lhs => rw [← mul_one (C r), ← pow_zero X, reflect_C_mul_X_pow, rev_at_zero]
-#align polynomial.reflect_C Polynomial.reflect_c
+#align polynomial.reflect_C Polynomial.reflect_C
 
+#print Polynomial.reflect_monomial /-
 @[simp]
 theorem reflect_monomial (N n : ℕ) : reflect N ((X : R[X]) ^ n) = X ^ revAt N n := by
   rw [← one_mul (X ^ n), ← one_mul (X ^ rev_at N n), ← C_1, reflect_C_mul_X_pow]
 #align polynomial.reflect_monomial Polynomial.reflect_monomial
+-/
 
+#print Polynomial.reflect_mul_induction /-
 theorem reflect_mul_induction (cf cg : ℕ) :
     ∀ N O : ℕ,
       ∀ f g : R[X],
@@ -215,17 +266,26 @@ theorem reflect_mul_induction (cf cg : ℕ) :
     · exact nat.lt_succ_iff.mp (gt_of_ge_of_gt Cf (erase_lead_support_card_lt f0))
     · exact le_trans erase_lead_nat_degree_le_aux Nf
 #align polynomial.reflect_mul_induction Polynomial.reflect_mul_induction
+-/
 
+#print Polynomial.reflect_mul /-
 @[simp]
 theorem reflect_mul (f g : R[X]) {F G : ℕ} (Ff : f.natDegree ≤ F) (Gg : g.natDegree ≤ G) :
     reflect (F + G) (f * g) = reflect F f * reflect G g :=
   reflect_mul_induction _ _ F G f g f.support.card.le_succ g.support.card.le_succ Ff Gg
 #align polynomial.reflect_mul Polynomial.reflect_mul
+-/
 
 section Eval₂
 
 variable {S : Type _} [CommSemiring S]
 
+/- warning: polynomial.eval₂_reflect_mul_pow -> Polynomial.eval₂_reflect_mul_pow is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (N : Nat) (f : Polynomial.{u1} R _inst_1), (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} R _inst_1 f) N) -> (Eq.{succ u2} S (HMul.hMul.{u2, u2, u2} S S S (instHMul.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reflect.{u1} R _inst_1 N f)) (HPow.hPow.{u2, 0, u2} S Nat S (instHPow.{u2, 0} S Nat (Monoid.Pow.{u2} S (MonoidWithZero.toMonoid.{u2} S (Semiring.toMonoidWithZero.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x N)) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f))
+but is expected to have type
+  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (N : Nat) (f : Polynomial.{u2} R _inst_1), (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u2} R _inst_1 f) N) -> (Eq.{succ u1} S (HMul.hMul.{u1, u1, u1} S S S (instHMul.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reflect.{u2} R _inst_1 N f)) (HPow.hPow.{u1, 0, u1} S Nat S (instHPow.{u1, 0} S Nat (Monoid.Pow.{u1} S (MonoidWithZero.toMonoid.{u1} S (Semiring.toMonoidWithZero.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) x N)) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f))
+Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reflect_mul_pow Polynomial.eval₂_reflect_mul_powₓ'. -/
 theorem eval₂_reflect_mul_pow (i : R →+* S) (x : S) [Invertible x] (N : ℕ) (f : R[X])
     (hf : f.natDegree ≤ N) : eval₂ i (⅟ x) (reflect N f) * x ^ N = eval₂ i x f :=
   by
@@ -241,6 +301,12 @@ theorem eval₂_reflect_mul_pow (i : R →+* S) (x : S) [Invertible x] (N : ℕ)
     simp [*, add_mul]
 #align polynomial.eval₂_reflect_mul_pow Polynomial.eval₂_reflect_mul_pow
 
+/- warning: polynomial.eval₂_reflect_eq_zero_iff -> Polynomial.eval₂_reflect_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (N : Nat) (f : Polynomial.{u1} R _inst_1), (LE.le.{0} Nat Nat.hasLe (Polynomial.natDegree.{u1} R _inst_1 f) N) -> (Iff (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reflect.{u1} R _inst_1 N f)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))))) (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))))))
+but is expected to have type
+  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (N : Nat) (f : Polynomial.{u2} R _inst_1), (LE.le.{0} Nat instLENat (Polynomial.natDegree.{u2} R _inst_1 f) N) -> (Iff (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reflect.{u2} R _inst_1 N f)) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2))))) (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reflect_eq_zero_iff Polynomial.eval₂_reflect_eq_zero_iffₓ'. -/
 theorem eval₂_reflect_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (N : ℕ) (f : R[X])
     (hf : f.natDegree ≤ N) : eval₂ i (⅟ x) (reflect N f) = 0 ↔ eval₂ i x f = 0 :=
   by
@@ -255,30 +321,41 @@ theorem eval₂_reflect_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (N :
 
 end Eval₂
 
+#print Polynomial.reverse /-
 /-- The reverse of a polynomial f is the polynomial obtained by "reading f backwards".
 Even though this is not the actual definition, reverse f = f (1/X) * X ^ f.nat_degree. -/
 noncomputable def reverse (f : R[X]) : R[X] :=
   reflect f.natDegree f
 #align polynomial.reverse Polynomial.reverse
+-/
 
+#print Polynomial.coeff_reverse /-
 theorem coeff_reverse (f : R[X]) (n : ℕ) : f.reverse.coeff n = f.coeff (revAt f.natDegree n) := by
   rw [reverse, coeff_reflect]
 #align polynomial.coeff_reverse Polynomial.coeff_reverse
+-/
 
+#print Polynomial.coeff_zero_reverse /-
 @[simp]
 theorem coeff_zero_reverse (f : R[X]) : coeff (reverse f) 0 = leadingCoeff f := by
   rw [coeff_reverse, rev_at_le (zero_le f.nat_degree), tsub_zero, leading_coeff]
 #align polynomial.coeff_zero_reverse Polynomial.coeff_zero_reverse
+-/
 
+#print Polynomial.reverse_zero /-
 @[simp]
 theorem reverse_zero : reverse (0 : R[X]) = 0 :=
   rfl
 #align polynomial.reverse_zero Polynomial.reverse_zero
+-/
 
+#print Polynomial.reverse_eq_zero /-
 @[simp]
 theorem reverse_eq_zero : f.reverse = 0 ↔ f = 0 := by simp [reverse]
 #align polynomial.reverse_eq_zero Polynomial.reverse_eq_zero
+-/
 
+#print Polynomial.reverse_natDegree_le /-
 theorem reverse_natDegree_le (f : R[X]) : f.reverse.natDegree ≤ f.natDegree :=
   by
   rw [nat_degree_le_iff_degree_le, degree_le_iff_coeff_zero]
@@ -287,7 +364,9 @@ theorem reverse_natDegree_le (f : R[X]) : f.reverse.natDegree ≤ f.natDegree :=
   rw [coeff_reverse, rev_at, Function.Embedding.coeFn_mk, if_neg (not_le_of_gt hn),
     coeff_eq_zero_of_nat_degree_lt hn]
 #align polynomial.reverse_nat_degree_le Polynomial.reverse_natDegree_le
+-/
 
+#print Polynomial.natDegree_eq_reverse_natDegree_add_natTrailingDegree /-
 theorem natDegree_eq_reverse_natDegree_add_natTrailingDegree (f : R[X]) :
     f.natDegree = f.reverse.natDegree + f.natTrailingDegree :=
   by
@@ -303,16 +382,22 @@ theorem natDegree_eq_reverse_natDegree_add_natTrailingDegree (f : R[X]) :
     have key := mt leading_coeff_eq_zero.mp (mt reverse_eq_zero.mp hf)
     rwa [leading_coeff, coeff_reverse, rev_at_le f.reverse_nat_degree_le] at key
 #align polynomial.nat_degree_eq_reverse_nat_degree_add_nat_trailing_degree Polynomial.natDegree_eq_reverse_natDegree_add_natTrailingDegree
+-/
 
+#print Polynomial.reverse_natDegree /-
 theorem reverse_natDegree (f : R[X]) : f.reverse.natDegree = f.natDegree - f.natTrailingDegree := by
   rw [f.nat_degree_eq_reverse_nat_degree_add_nat_trailing_degree, add_tsub_cancel_right]
 #align polynomial.reverse_nat_degree Polynomial.reverse_natDegree
+-/
 
+#print Polynomial.reverse_leadingCoeff /-
 theorem reverse_leadingCoeff (f : R[X]) : f.reverse.leadingCoeff = f.trailingCoeff := by
   rw [leading_coeff, reverse_nat_degree, ← rev_at_le f.nat_trailing_degree_le_nat_degree,
     coeff_reverse, rev_at_invol, trailing_coeff]
 #align polynomial.reverse_leading_coeff Polynomial.reverse_leadingCoeff
+-/
 
+#print Polynomial.reverse_natTrailingDegree /-
 theorem reverse_natTrailingDegree (f : R[X]) : f.reverse.natTrailingDegree = 0 :=
   by
   by_cases hf : f = 0
@@ -322,11 +407,20 @@ theorem reverse_natTrailingDegree (f : R[X]) : f.reverse.natTrailingDegree = 0 :
     rw [coeff_zero_reverse]
     exact mt leading_coeff_eq_zero.mp hf
 #align polynomial.reverse_nat_trailing_degree Polynomial.reverse_natTrailingDegree
+-/
 
+#print Polynomial.reverse_trailingCoeff /-
 theorem reverse_trailingCoeff (f : R[X]) : f.reverse.trailingCoeff = f.leadingCoeff := by
   rw [trailing_coeff, reverse_nat_trailing_degree, coeff_zero_reverse]
 #align polynomial.reverse_trailing_coeff Polynomial.reverse_trailingCoeff
+-/
 
+/- warning: polynomial.reverse_mul -> Polynomial.reverse_mul is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {f : Polynomial.{u1} R _inst_1} {g : Polynomial.{u1} R _inst_1}, (Ne.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1))))) (Polynomial.leadingCoeff.{u1} R _inst_1 f) (Polynomial.leadingCoeff.{u1} R _inst_1 g)) (OfNat.ofNat.{u1} R 0 (OfNat.mk.{u1} R 0 (Zero.zero.{u1} R (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))))))) -> (Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reverse.{u1} R _inst_1 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (Polynomial.reverse.{u1} R _inst_1 f) (Polynomial.reverse.{u1} R _inst_1 g)))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {f : Polynomial.{u1} R _inst_1} {g : Polynomial.{u1} R _inst_1}, (Ne.{succ u1} R (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R _inst_1)))) (Polynomial.leadingCoeff.{u1} R _inst_1 f) (Polynomial.leadingCoeff.{u1} R _inst_1 g)) (OfNat.ofNat.{u1} R 0 (Zero.toOfNat0.{u1} R (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R _inst_1))))) -> (Eq.{succ u1} (Polynomial.{u1} R _inst_1) (Polynomial.reverse.{u1} R _inst_1 (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (Polynomial.{u1} R _inst_1) (instHMul.{u1} (Polynomial.{u1} R _inst_1) (Polynomial.mul'.{u1} R _inst_1)) (Polynomial.reverse.{u1} R _inst_1 f) (Polynomial.reverse.{u1} R _inst_1 g)))
+Case conversion may be inaccurate. Consider using '#align polynomial.reverse_mul Polynomial.reverse_mulₓ'. -/
 theorem reverse_mul {f g : R[X]} (fg : f.leadingCoeff * g.leadingCoeff ≠ 0) :
     reverse (f * g) = reverse f * reverse g :=
   by
@@ -334,6 +428,12 @@ theorem reverse_mul {f g : R[X]} (fg : f.leadingCoeff * g.leadingCoeff ≠ 0) :
   rw [nat_degree_mul' fg, reflect_mul f g rfl.le rfl.le]
 #align polynomial.reverse_mul Polynomial.reverse_mul
 
+/- warning: polynomial.reverse_mul_of_domain -> Polynomial.reverse_mul_of_domain is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_2)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))))] (f : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (g : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) f) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) g))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_2)))] (f : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (g : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) f g)) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) f) (Polynomial.reverse.{u1} R (Ring.toSemiring.{u1} R _inst_2) g))
+Case conversion may be inaccurate. Consider using '#align polynomial.reverse_mul_of_domain Polynomial.reverse_mul_of_domainₓ'. -/
 @[simp]
 theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[X]) :
     reverse (f * g) = reverse f * reverse g :=
@@ -345,12 +445,19 @@ theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[
   simp [reverse_mul, *]
 #align polynomial.reverse_mul_of_domain Polynomial.reverse_mul_of_domain
 
+/- warning: polynomial.trailing_coeff_mul -> Polynomial.trailingCoeff_mul is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_2)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))))] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} R (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_2))) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) p) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) q))
+but is expected to have type
+  forall {R : Type.{u1}} [_inst_2 : Ring.{u1} R] [_inst_3 : NoZeroDivisors.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_2)))] (p : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (q : Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)), Eq.{succ u1} R (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) (HMul.hMul.{u1, u1, u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (instHMul.{u1} (Polynomial.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Polynomial.mul'.{u1} R (Ring.toSemiring.{u1} R _inst_2))) p q)) (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) p) (Polynomial.trailingCoeff.{u1} R (Ring.toSemiring.{u1} R _inst_2) q))
+Case conversion may be inaccurate. Consider using '#align polynomial.trailing_coeff_mul Polynomial.trailingCoeff_mulₓ'. -/
 theorem trailingCoeff_mul {R : Type _} [Ring R] [NoZeroDivisors R] (p q : R[X]) :
     (p * q).trailingCoeff = p.trailingCoeff * q.trailingCoeff := by
   rw [← reverse_leading_coeff, reverse_mul_of_domain, leading_coeff_mul, reverse_leading_coeff,
     reverse_leading_coeff]
 #align polynomial.trailing_coeff_mul Polynomial.trailingCoeff_mul
 
+#print Polynomial.coeff_one_reverse /-
 @[simp]
 theorem coeff_one_reverse (f : R[X]) : coeff (reverse f) 1 = nextCoeff f :=
   by
@@ -361,16 +468,29 @@ theorem coeff_one_reverse (f : R[X]) : coeff (reverse f) 1 = nextCoeff f :=
   · rw [rev_at_le]
     exact Nat.succ_le_iff.2 (pos_iff_ne_zero.2 hf)
 #align polynomial.coeff_one_reverse Polynomial.coeff_one_reverse
+-/
 
 section Eval₂
 
 variable {S : Type _} [CommSemiring S]
 
+/- warning: polynomial.eval₂_reverse_mul_pow -> Polynomial.eval₂_reverse_mul_pow is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (f : Polynomial.{u1} R _inst_1), Eq.{succ u2} S (HMul.hMul.{u2, u2, u2} S S S (instHMul.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reverse.{u1} R _inst_1 f)) (HPow.hPow.{u2, 0, u2} S Nat S (instHPow.{u2, 0} S Nat (Monoid.Pow.{u2} S (MonoidWithZero.toMonoid.{u2} S (Semiring.toMonoidWithZero.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x (Polynomial.natDegree.{u1} R _inst_1 f))) (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f)
+but is expected to have type
+  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (f : Polynomial.{u2} R _inst_1), Eq.{succ u1} S (HMul.hMul.{u1, u1, u1} S S S (instHMul.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reverse.{u2} R _inst_1 f)) (HPow.hPow.{u1, 0, u1} S Nat S (instHPow.{u1, 0} S Nat (Monoid.Pow.{u1} S (MonoidWithZero.toMonoid.{u1} S (Semiring.toMonoidWithZero.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))))) x (Polynomial.natDegree.{u2} R _inst_1 f))) (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f)
+Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reverse_mul_pow Polynomial.eval₂_reverse_mul_powₓ'. -/
 theorem eval₂_reverse_mul_pow (i : R →+* S) (x : S) [Invertible x] (f : R[X]) :
     eval₂ i (⅟ x) (reverse f) * x ^ f.natDegree = eval₂ i x f :=
   eval₂_reflect_mul_pow i _ _ f le_rfl
 #align polynomial.eval₂_reverse_mul_pow Polynomial.eval₂_reverse_mul_pow
 
+/- warning: polynomial.eval₂_reverse_eq_zero_iff -> Polynomial.eval₂_reverse_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {R : Type.{u1}} [_inst_1 : Semiring.{u1} R] {S : Type.{u2}} [_inst_2 : CommSemiring.{u2} S] (i : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R _inst_1) (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))) (x : S) [_inst_3 : Invertible.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x] (f : Polynomial.{u1} R _inst_1), Iff (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i (Invertible.invOf.{u2} S (Distrib.toHasMul.{u2} S (NonUnitalNonAssocSemiring.toDistrib.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) (AddMonoidWithOne.toOne.{u2} S (AddCommMonoidWithOne.toAddMonoidWithOne.{u2} S (NonAssocSemiring.toAddCommMonoidWithOne.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))) x _inst_3) (Polynomial.reverse.{u1} R _inst_1 f)) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2))))))))) (Eq.{succ u2} S (Polynomial.eval₂.{u1, u2} R S _inst_1 (CommSemiring.toSemiring.{u2} S _inst_2) i x f) (OfNat.ofNat.{u2} S 0 (OfNat.mk.{u2} S 0 (Zero.zero.{u2} S (MulZeroClass.toHasZero.{u2} S (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (CommSemiring.toSemiring.{u2} S _inst_2)))))))))
+but is expected to have type
+  forall {R : Type.{u2}} [_inst_1 : Semiring.{u2} R] {S : Type.{u1}} [_inst_2 : CommSemiring.{u1} S] (i : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R _inst_1) (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2))) (x : S) [_inst_3 : Invertible.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x] (f : Polynomial.{u2} R _inst_1), Iff (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i (Invertible.invOf.{u1} S (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)))) (Semiring.toOne.{u1} S (CommSemiring.toSemiring.{u1} S _inst_2)) x _inst_3) (Polynomial.reverse.{u2} R _inst_1 f)) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2))))) (Eq.{succ u1} S (Polynomial.eval₂.{u2, u1} R S _inst_1 (CommSemiring.toSemiring.{u1} S _inst_2) i x f) (OfNat.ofNat.{u1} S 0 (Zero.toOfNat0.{u1} S (CommMonoidWithZero.toZero.{u1} S (CommSemiring.toCommMonoidWithZero.{u1} S _inst_2)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.eval₂_reverse_eq_zero_iff Polynomial.eval₂_reverse_eq_zero_iffₓ'. -/
 @[simp]
 theorem eval₂_reverse_eq_zero_iff (i : R →+* S) (x : S) [Invertible x] (f : R[X]) :
     eval₂ i (⅟ x) (reverse f) = 0 ↔ eval₂ i x f = 0 :=
@@ -385,20 +505,26 @@ section Ring
 
 variable {R : Type _} [Ring R]
 
+#print Polynomial.reflect_neg /-
 @[simp]
 theorem reflect_neg (f : R[X]) (N : ℕ) : reflect N (-f) = -reflect N f := by
   rw [neg_eq_neg_one_mul, ← C_1, ← C_neg, reflect_C_mul, C_neg, C_1, ← neg_eq_neg_one_mul]
 #align polynomial.reflect_neg Polynomial.reflect_neg
+-/
 
+#print Polynomial.reflect_sub /-
 @[simp]
 theorem reflect_sub (f g : R[X]) (N : ℕ) : reflect N (f - g) = reflect N f - reflect N g := by
   rw [sub_eq_add_neg, sub_eq_add_neg, reflect_add, reflect_neg]
 #align polynomial.reflect_sub Polynomial.reflect_sub
+-/
 
+#print Polynomial.reverse_neg /-
 @[simp]
 theorem reverse_neg (f : R[X]) : reverse (-f) = -reverse f := by
   rw [reverse, reverse, reflect_neg, nat_degree_neg]
 #align polynomial.reverse_neg Polynomial.reverse_neg
+-/
 
 end Ring
 
Diff
@@ -147,14 +147,14 @@ theorem reflect_add (f g : R[X]) (N : ℕ) : reflect N (f + g) = reflect N f + r
 #align polynomial.reflect_add Polynomial.reflect_add
 
 @[simp]
-theorem reflect_c_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (c r * f) = c r * reflect N f :=
+theorem reflect_c_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r * reflect N f :=
   by
   ext
   simp only [coeff_reflect, coeff_C_mul]
 #align polynomial.reflect_C_mul Polynomial.reflect_c_mul
 
 @[simp]
-theorem reflect_c_mul_x_pow (N n : ℕ) {c : R} : reflect N (c c * x ^ n) = c c * x ^ revAt N n :=
+theorem reflect_c_mul_x_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n :=
   by
   ext
   rw [reflect_C_mul, coeff_C_mul, coeff_C_mul, coeff_X_pow, coeff_reflect]
@@ -168,12 +168,12 @@ theorem reflect_c_mul_x_pow (N n : ℕ) {c : R} : reflect N (c c * x ^ n) = c c
 #align polynomial.reflect_C_mul_X_pow Polynomial.reflect_c_mul_x_pow
 
 @[simp]
-theorem reflect_c (r : R) (N : ℕ) : reflect N (c r) = c r * x ^ N := by
+theorem reflect_c (r : R) (N : ℕ) : reflect N (C r) = C r * X ^ N := by
   conv_lhs => rw [← mul_one (C r), ← pow_zero X, reflect_C_mul_X_pow, rev_at_zero]
 #align polynomial.reflect_C Polynomial.reflect_c
 
 @[simp]
-theorem reflect_monomial (N n : ℕ) : reflect N ((x : R[X]) ^ n) = x ^ revAt N n := by
+theorem reflect_monomial (N n : ℕ) : reflect N ((X : R[X]) ^ n) = X ^ revAt N n := by
   rw [← one_mul (X ^ n), ← one_mul (X ^ rev_at N n), ← C_1, reflect_C_mul_X_pow]
 #align polynomial.reflect_monomial Polynomial.reflect_monomial
 

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 3 (#12372)

A PR analogous to #12338 and #12361: reformatting proofs following the multiple goals linter of #12339.

Diff
@@ -357,7 +357,8 @@ theorem coeff_one_reverse (f : R[X]) : coeff (reverse f) 1 = nextCoeff f := by
   rw [commute_X p, reverse_mul_X]
 
 @[simp] lemma reverse_mul_X_pow (p : R[X]) (n : ℕ) : reverse (p * X ^ n) = reverse p := by
-  induction' n with n ih; simp
+  induction' n with n ih
+  · simp
   rw [pow_succ, ← mul_assoc, reverse_mul_X, ih]
 
 @[simp] lemma reverse_X_pow_mul (p : R[X]) (n : ℕ) : reverse (X ^ n * p) = reverse p := by
move(Polynomial): Move out of Data (#11751)

Polynomial and MvPolynomial are algebraic objects, hence should be under Algebra (or at least not under Data)

Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Damiano Testa. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Damiano Testa
 -/
-import Mathlib.Data.Polynomial.Degree.TrailingDegree
-import Mathlib.Data.Polynomial.EraseLead
-import Mathlib.Data.Polynomial.Eval
+import Mathlib.Algebra.Polynomial.Degree.TrailingDegree
+import Mathlib.Algebra.Polynomial.EraseLead
+import Mathlib.Algebra.Polynomial.Eval
 
 #align_import data.polynomial.reverse from "leanprover-community/mathlib"@"44de64f183393284a16016dfb2a48ac97382f2bd"
 
feat(Polynomial): When the trailing degree is zero (#11655)

Characterise when trailingDegree p = 0 and natTrailingDegree p = 0. Also fix a few names.

Diff
@@ -302,17 +302,13 @@ theorem reverse_leadingCoeff (f : R[X]) : f.reverse.leadingCoeff = f.trailingCoe
     coeff_reverse, revAt_invol, trailingCoeff]
 #align polynomial.reverse_leading_coeff Polynomial.reverse_leadingCoeff
 
-theorem reverse_natTrailingDegree (f : R[X]) : f.reverse.natTrailingDegree = 0 := by
-  by_cases hf : f = 0
-  · rw [hf, reverse_zero, natTrailingDegree_zero]
-  · rw [← Nat.le_zero]
-    apply natTrailingDegree_le_of_ne_zero
-    rw [coeff_zero_reverse]
-    exact mt leadingCoeff_eq_zero.mp hf
-#align polynomial.reverse_nat_trailing_degree Polynomial.reverse_natTrailingDegree
+theorem natTrailingDegree_reverse (f : R[X]) : f.reverse.natTrailingDegree = 0 := by
+  rw [natTrailingDegree_eq_zero, reverse_eq_zero, coeff_zero_reverse, leadingCoeff_ne_zero]
+  exact eq_or_ne _ _
+#align polynomial.reverse_nat_trailing_degree Polynomial.natTrailingDegree_reverse
 
 theorem reverse_trailingCoeff (f : R[X]) : f.reverse.trailingCoeff = f.leadingCoeff := by
-  rw [trailingCoeff, reverse_natTrailingDegree, coeff_zero_reverse]
+  rw [trailingCoeff, natTrailingDegree_reverse, coeff_zero_reverse]
 #align polynomial.reverse_trailing_coeff Polynomial.reverse_trailingCoeff
 
 theorem reverse_mul {f g : R[X]} (fg : f.leadingCoeff * g.leadingCoeff ≠ 0) :
chore: Reduce scope of LinearOrderedCommGroupWithZero (#11716)

Reconstitute the file Algebra.Order.Monoid.WithZero from three files:

  • Algebra.Order.Monoid.WithZero.Defs
  • Algebra.Order.Monoid.WithZero.Basic
  • Algebra.Order.WithZero

Avoid importing it in many files. Most uses were just to get le_zero_iff to work on Nat.

Before pre_11716

After post_11716

Diff
@@ -305,7 +305,7 @@ theorem reverse_leadingCoeff (f : R[X]) : f.reverse.leadingCoeff = f.trailingCoe
 theorem reverse_natTrailingDegree (f : R[X]) : f.reverse.natTrailingDegree = 0 := by
   by_cases hf : f = 0
   · rw [hf, reverse_zero, natTrailingDegree_zero]
-  · rw [← le_zero_iff]
+  · rw [← Nat.le_zero]
     apply natTrailingDegree_le_of_ne_zero
     rw [coeff_zero_reverse]
     exact mt leadingCoeff_eq_zero.mp hf
change the order of operation in zsmulRec and nsmulRec (#11451)

We change the following field in the definition of an additive commutative monoid:

 nsmul_succ : ∀ (n : ℕ) (x : G),
-  AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+  AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x

where the latter is more natural

We adjust the definitions of ^ in monoids, groups, etc. Originally there was a warning comment about why this natural order was preferred

use x * npowRec n x and not npowRec n x * x in the definition to make sure that definitional unfolding of npowRec is blocked, to avoid deep recursion issues.

but it seems to no longer apply.

Remarks on the PR :

  • pow_succ and pow_succ' have switched their meanings.
  • Most of the time, the proofs were adjusted by priming/unpriming one lemma, or exchanging left and right; a few proofs were more complicated to adjust.
  • In particular, [Mathlib/NumberTheory/RamificationInertia.lean] used Ideal.IsPrime.mul_mem_pow which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul.
  • the docstring for Cauchy condensation test in [Mathlib/Analysis/PSeries.lean] was mathematically incorrect, I added the mention that the function is antitone.
Diff
@@ -362,7 +362,7 @@ theorem coeff_one_reverse (f : R[X]) : coeff (reverse f) 1 = nextCoeff f := by
 
 @[simp] lemma reverse_mul_X_pow (p : R[X]) (n : ℕ) : reverse (p * X ^ n) = reverse p := by
   induction' n with n ih; simp
-  rw [pow_succ', ← mul_assoc, reverse_mul_X, ih]
+  rw [pow_succ, ← mul_assoc, reverse_mul_X, ih]
 
 @[simp] lemma reverse_X_pow_mul (p : R[X]) (n : ℕ) : reverse (X ^ n * p) = reverse p := by
   rw [commute_X_pow p, reverse_mul_X_pow]
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -89,7 +89,7 @@ theorem revAt_add {N O n o : ℕ} (hn : n ≤ N) (ho : o ≤ O) :
   repeat' rw [add_tsub_cancel_left]
 #align polynomial.rev_at_add Polynomial.revAt_add
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem revAt_zero (N : ℕ) : revAt N 0 = N := by simp
 #align polynomial.rev_at_zero Polynomial.revAt_zero
 
@@ -143,7 +143,7 @@ theorem reflect_C_mul (f : R[X]) (r : R) (N : ℕ) : reflect N (C r * f) = C r *
 set_option linter.uppercaseLean3 false in
 #align polynomial.reflect_C_mul Polynomial.reflect_C_mul
 
--- @[simp] -- Porting note: simp can prove this (once `reflect_monomial` is in simp scope)
+-- @[simp] -- Porting note (#10618): simp can prove this (once `reflect_monomial` is in simp scope)
 theorem reflect_C_mul_X_pow (N n : ℕ) {c : R} : reflect N (C c * X ^ n) = C c * X ^ revAt N n := by
   ext
   rw [reflect_C_mul, coeff_C_mul, coeff_C_mul, coeff_X_pow, coeff_reflect]
refactor(Data/Polynomial): remove open Classical (#7706)

This doesn't change any polynomial operations, but:

  • Makes some Decidable values computable (otherwise, they're pointless!)
  • Add a few missing arguments to lemmas here and there to make them more general

This is exhaustive, within the directories it touches.

Once again, the use of letI := Classical.decEq R instead of classical here is because of the weird style of proofs in these files, where if is preferred to by_cases.

Diff
@@ -24,7 +24,7 @@ namespace Polynomial
 
 open Polynomial Finsupp Finset
 
-open Classical Polynomial
+open Polynomial
 
 section Semiring
 
feat: WithTop.charZero (#6992)

Also WithBot.charZero

Diff
@@ -273,7 +273,7 @@ theorem reverse_eq_zero : f.reverse = 0 ↔ f = 0 := by simp [reverse]
 theorem reverse_natDegree_le (f : R[X]) : f.reverse.natDegree ≤ f.natDegree := by
   rw [natDegree_le_iff_degree_le, degree_le_iff_coeff_zero]
   intro n hn
-  rw [Nat.cast_withBot, Nat.cast_withBot, WithBot.coe_lt_coe] at hn
+  rw [Nat.cast_lt] at hn
   rw [coeff_reverse, revAt, Function.Embedding.coeFn_mk, if_neg (not_le_of_gt hn),
     coeff_eq_zero_of_natDegree_lt hn]
 #align polynomial.reverse_nat_degree_le Polynomial.reverse_natDegree_le
feat: characterise the reverse of the characteristic polynomial of a matrix (#6561)
Diff
@@ -168,6 +168,9 @@ theorem reflect_monomial (N n : ℕ) : reflect N ((X : R[X]) ^ n) = X ^ revAt N
   rw [← one_mul (X ^ n), ← one_mul (X ^ revAt N n), ← C_1, reflect_C_mul_X_pow]
 #align polynomial.reflect_monomial Polynomial.reflect_monomial
 
+@[simp] lemma reflect_one_X : reflect 1 (X : R[X]) = 1 := by
+  simpa using reflect_monomial 1 1 (R := R)
+
 theorem reflect_mul_induction (cf cg : ℕ) :
     ∀ N O : ℕ,
       ∀ f g : R[X],
@@ -344,6 +347,34 @@ theorem coeff_one_reverse (f : R[X]) : coeff (reverse f) 1 = nextCoeff f := by
     exact Nat.succ_le_iff.2 (pos_iff_ne_zero.2 hf)
 #align polynomial.coeff_one_reverse Polynomial.coeff_one_reverse
 
+@[simp] lemma reverse_C (t : R) :
+    reverse (C t) = C t := by
+  simp [reverse]
+
+@[simp] lemma reverse_mul_X (p : R[X]) : reverse (p * X) = reverse p := by
+  nontriviality R
+  rcases eq_or_ne p 0 with rfl | hp
+  · simp
+  · simp [reverse, hp]
+
+@[simp] lemma reverse_X_mul (p : R[X]) : reverse (X * p) = reverse p := by
+  rw [commute_X p, reverse_mul_X]
+
+@[simp] lemma reverse_mul_X_pow (p : R[X]) (n : ℕ) : reverse (p * X ^ n) = reverse p := by
+  induction' n with n ih; simp
+  rw [pow_succ', ← mul_assoc, reverse_mul_X, ih]
+
+@[simp] lemma reverse_X_pow_mul (p : R[X]) (n : ℕ) : reverse (X ^ n * p) = reverse p := by
+  rw [commute_X_pow p, reverse_mul_X_pow]
+
+@[simp] lemma reverse_add_C (p : R[X]) (t : R) :
+    reverse (p + C t) = reverse p + C t * X ^ p.natDegree := by
+  simp [reverse]
+
+@[simp] lemma reverse_C_add (p : R[X]) (t : R) :
+    reverse (C t + p) = C t * X ^ p.natDegree + reverse p := by
+  rw [add_comm, reverse_add_C, add_comm]
+
 section Eval₂
 
 variable {S : Type*} [CommSemiring S]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -28,7 +28,7 @@ open Classical Polynomial
 
 section Semiring
 
-variable {R : Type _} [Semiring R] {f : R[X]}
+variable {R : Type*} [Semiring R] {f : R[X]}
 
 /-- If `i ≤ N`, then `revAtFun N i` returns `N - i`, otherwise it returns `i`.
 This is the map used by the embedding `revAt`.
@@ -214,7 +214,7 @@ theorem reflect_mul (f g : R[X]) {F G : ℕ} (Ff : f.natDegree ≤ F) (Gg : g.na
 
 section Eval₂
 
-variable {S : Type _} [CommSemiring S]
+variable {S : Type*} [CommSemiring S]
 
 theorem eval₂_reflect_mul_pow (i : R →+* S) (x : S) [Invertible x] (N : ℕ) (f : R[X])
     (hf : f.natDegree ≤ N) : eval₂ i (⅟ x) (reflect N f) * x ^ N = eval₂ i x f := by
@@ -319,7 +319,7 @@ theorem reverse_mul {f g : R[X]} (fg : f.leadingCoeff * g.leadingCoeff ≠ 0) :
 #align polynomial.reverse_mul Polynomial.reverse_mul
 
 @[simp]
-theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[X]) :
+theorem reverse_mul_of_domain {R : Type*} [Ring R] [NoZeroDivisors R] (f g : R[X]) :
     reverse (f * g) = reverse f * reverse g := by
   by_cases f0 : f = 0
   · simp only [f0, zero_mul, reverse_zero]
@@ -328,7 +328,7 @@ theorem reverse_mul_of_domain {R : Type _} [Ring R] [NoZeroDivisors R] (f g : R[
   simp [reverse_mul, *]
 #align polynomial.reverse_mul_of_domain Polynomial.reverse_mul_of_domain
 
-theorem trailingCoeff_mul {R : Type _} [Ring R] [NoZeroDivisors R] (p q : R[X]) :
+theorem trailingCoeff_mul {R : Type*} [Ring R] [NoZeroDivisors R] (p q : R[X]) :
     (p * q).trailingCoeff = p.trailingCoeff * q.trailingCoeff := by
   rw [← reverse_leadingCoeff, reverse_mul_of_domain, leadingCoeff_mul, reverse_leadingCoeff,
     reverse_leadingCoeff]
@@ -346,7 +346,7 @@ theorem coeff_one_reverse (f : R[X]) : coeff (reverse f) 1 = nextCoeff f := by
 
 section Eval₂
 
-variable {S : Type _} [CommSemiring S]
+variable {S : Type*} [CommSemiring S]
 
 theorem eval₂_reverse_mul_pow (i : R →+* S) (x : S) [Invertible x] (f : R[X]) :
     eval₂ i (⅟ x) (reverse f) * x ^ f.natDegree = eval₂ i x f :=
@@ -365,7 +365,7 @@ end Semiring
 
 section Ring
 
-variable {R : Type _} [Ring R]
+variable {R : Type*} [Ring R]
 
 @[simp]
 theorem reflect_neg (f : R[X]) (N : ℕ) : reflect N (-f) = -reflect N f := by
feat: lemmas about nilpotency and polynomials (#6450)
Diff
@@ -78,6 +78,8 @@ theorem revAt_le {N i : ℕ} (H : i ≤ N) : revAt N i = N - i :=
   if_pos H
 #align polynomial.rev_at_le Polynomial.revAt_le
 
+lemma revAt_eq_self_of_lt {N i : ℕ} (h : N < i) : revAt N i = i := by simp [revAt, Nat.not_le.mpr h]
+
 theorem revAt_add {N O n o : ℕ} (hn : n ≤ N) (ho : o ≤ O) :
     revAt (N + O) (n + o) = revAt N n + revAt O o := by
   rcases Nat.le.dest hn with ⟨n', rfl⟩
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Damiano Testa. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Damiano Testa
-
-! This file was ported from Lean 3 source module data.polynomial.reverse
-! leanprover-community/mathlib commit 44de64f183393284a16016dfb2a48ac97382f2bd
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Polynomial.Degree.TrailingDegree
 import Mathlib.Data.Polynomial.EraseLead
 import Mathlib.Data.Polynomial.Eval
 
+#align_import data.polynomial.reverse from "leanprover-community/mathlib"@"44de64f183393284a16016dfb2a48ac97382f2bd"
+
 /-!
 # Reverse of a univariate polynomial
 
chore: fix many typos (#4983)

These are all doc fixes

Diff
@@ -65,7 +65,7 @@ def revAt (N : ℕ) : Function.Embedding ℕ ℕ
   inj' := revAtFun_inj
 #align polynomial.rev_at Polynomial.revAt
 
-/-- We prefer to use the bundled `revAt` over unbundled `revAtfun`. -/
+/-- We prefer to use the bundled `revAt` over unbundled `revAtFun`. -/
 @[simp]
 theorem revAtFun_eq (N i : ℕ) : revAtFun N i = revAt N i :=
   rfl
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -119,7 +119,6 @@ theorem coeff_reflect (N : ℕ) (f : R[X]) (i : ℕ) : coeff (reflect N f) i = f
     Finsupp.embDomain (revAt N) f i = Finsupp.embDomain (revAt N) f (revAt N (revAt N i)) := by
       rw [revAt_invol]
     _ = f (revAt N i) := Finsupp.embDomain_apply _ _ _
-
 #align polynomial.coeff_reflect Polynomial.coeff_reflect
 
 @[simp]
feat: port Data.Polynomial.Reverse (#2729)

Dependencies 8 + 408

409 files ported (98.1%)
167695 lines ported (98.2%)
Show graph

The unported dependencies are