data.real.basicMathlib.Data.Real.Basic

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(data/real/basic): add real.supr_nonneg etc (#19096)

Motivated by lemmas from the sphere eversion project

Diff
@@ -600,7 +600,7 @@ lemma infi_of_not_bdd_below  {α : Sort*} {f : α → ℝ} (hf : ¬ bdd_below (s
 
 /--
 As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
-suffices to show that `S` is bounded below by `0` to show that `0 ≤ Inf S`.
+suffices to show that `S` is bounded below by `0` to show that `0 ≤ Sup S`.
 -/
 lemma Sup_nonneg (S : set ℝ) (hS : ∀ x ∈ S, (0:ℝ) ≤ x) : 0 ≤ Sup S :=
 begin
@@ -610,15 +610,34 @@ begin
 end
 
 /--
-As `0` is the default value for `real.Sup` of the empty set, it suffices to show that `S` is
-bounded above by `0` to show that `Sup S ≤ 0`.
+As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
+suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
 -/
-lemma Sup_nonpos (S : set ℝ) (hS : ∀ x ∈ S, x ≤ (0:ℝ)) : Sup S ≤ 0 :=
+protected lemma supr_nonneg {ι : Sort*} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
+Sup_nonneg _ $ set.forall_range_iff.2 hf
+
+/--
+As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
+suffices to show that all elements of `S` are bounded by a nonnagative number to show that `Sup S`
+is bounded by this number.
+-/
+protected lemma Sup_le {S : set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (ha : 0 ≤ a) : Sup S ≤ a :=
 begin
   rcases S.eq_empty_or_nonempty with rfl | hS₂,
-  exacts [Sup_empty.le, cSup_le hS₂ hS],
+  exacts [Sup_empty.trans_le ha, cSup_le hS₂ hS],
 end
 
+protected lemma supr_le {ι : Sort*} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
+  (⨆ i, f i) ≤ a :=
+real.Sup_le (set.forall_range_iff.2 hS) ha
+
+/--
+As `0` is the default value for `real.Sup` of the empty set, it suffices to show that `S` is
+bounded above by `0` to show that `Sup S ≤ 0`.
+-/
+lemma Sup_nonpos (S : set ℝ) (hS : ∀ x ∈ S, x ≤ (0:ℝ)) : Sup S ≤ 0 :=
+real.Sup_le hS le_rfl
+
 /--
 As `0` is the default value for `real.Inf` of the empty set, it suffices to show that `S` is
 bounded below by `0` to show that `0 ≤ Inf S`.

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -647,7 +647,7 @@ noncomputable instance : LinearOrderedField ℝ :=
       exact CauSeq.Completion.inv_mul_cancel h
     inv_zero := by simp [← of_cauchy_zero, ← of_cauchy_inv]
     ratCast := coe
-    ratCast_mk := fun n d hd h2 => by
+    ratCast_def := fun n d hd h2 => by
       rw [← of_cauchy_rat_cast, Rat.cast_mk', of_cauchy_mul, of_cauchy_inv, of_cauchy_nat_cast,
         of_cauchy_int_cast] }
 
Diff
@@ -6,7 +6,7 @@ Authors: Mario Carneiro, Floris van Doorn
 import Algebra.Bounds
 import Algebra.Order.Archimedean
 import Algebra.Star.Basic
-import Data.Real.CauSeqCompletion
+import Algebra.Order.CauSeq.Completion
 
 #align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
 
@@ -763,7 +763,7 @@ theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ,
 #align real.exists_floor Real.exists_floor
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
 #print Real.exists_isLUB /-
 theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃ x, IsLUB S x :=
   by
Diff
@@ -697,7 +697,7 @@ theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j
   rw [mk_lt]
   refine' ⟨_, half_pos K0, i, fun j ij => _⟩
   have := add_le_add (H _ ij).2.1 (le_of_lt (abs_lt.1 <| (H _ le_rfl).2.2 _ ij).1)
-  rwa [← sub_eq_add_neg, sub_self_div_two, sub_apply, sub_add_sub_cancel] at this 
+  rwa [← sub_eq_add_neg, sub_self_div_two, sub_apply, sub_add_sub_cancel] at this
 #align real.le_mk_of_forall_le Real.le_mk_of_forall_le
 -/
 
@@ -1002,7 +1002,7 @@ As `0` is the default value for `real.Sup` of the empty set or sets which are no
 suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
 -/
 protected theorem iSup_nonneg {ι : Sort _} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
-  sSup_nonneg _ <| Set.forall_range_iff.2 hf
+  sSup_nonneg _ <| Set.forall_mem_range.2 hf
 #align real.supr_nonneg Real.iSup_nonneg
 -/
 
@@ -1022,7 +1022,7 @@ protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (h
 #print Real.iSup_le /-
 protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
     (⨆ i, f i) ≤ a :=
-  Real.sSup_le (Set.forall_range_iff.2 hS) ha
+  Real.sSup_le (Set.forall_mem_range.2 hS) ha
 #align real.supr_le Real.iSup_le
 -/
 
Diff
@@ -909,14 +909,14 @@ theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
 #align real.Sup_empty Real.sSup_empty
 -/
 
-#print Real.ciSup_empty /-
-theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 :=
+#print Real.iSup_of_isEmpty /-
+theorem iSup_of_isEmpty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 :=
   by
   dsimp [iSup]
   convert Real.sSup_empty
   rw [Set.range_eq_empty_iff]
   infer_instance
-#align real.csupr_empty Real.ciSup_empty
+#align real.csupr_empty Real.iSup_of_isEmpty
 -/
 
 #print Real.ciSup_const_zero /-
@@ -924,7 +924,7 @@ theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) =
 theorem ciSup_const_zero {α : Sort _} : (⨆ i : α, (0 : ℝ)) = 0 :=
   by
   cases isEmpty_or_nonempty α
-  · exact Real.ciSup_empty _
+  · exact Real.iSup_of_isEmpty _
   · exact ciSup_const
 #align real.csupr_const_zero Real.ciSup_const_zero
 -/
@@ -954,10 +954,10 @@ theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [Inf_def, sSup_empty]
 #align real.Inf_empty Real.sInf_empty
 -/
 
-#print Real.ciInf_empty /-
-theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
-  rw [iInf_of_empty', sInf_empty]
-#align real.cinfi_empty Real.ciInf_empty
+#print Real.iInf_of_isEmpty /-
+theorem iInf_of_isEmpty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
+  rw [iInf_of_isEmpty, sInf_empty]
+#align real.cinfi_empty Real.iInf_of_isEmpty
 -/
 
 #print Real.ciInf_const_zero /-
@@ -965,7 +965,7 @@ theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) =
 theorem ciInf_const_zero {α : Sort _} : (⨅ i : α, (0 : ℝ)) = 0 :=
   by
   cases isEmpty_or_nonempty α
-  · exact Real.ciInf_empty _
+  · exact Real.iInf_of_isEmpty _
   · exact ciInf_const
 #align real.cinfi_const_zero Real.ciInf_const_zero
 -/
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 -/
-import Mathbin.Algebra.Bounds
-import Mathbin.Algebra.Order.Archimedean
-import Mathbin.Algebra.Star.Basic
-import Mathbin.Data.Real.CauSeqCompletion
+import Algebra.Bounds
+import Algebra.Order.Archimedean
+import Algebra.Star.Basic
+import Data.Real.CauSeqCompletion
 
 #align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
 
@@ -455,7 +455,7 @@ instance : PartialOrder ℝ where
 
 instance : Preorder ℝ := by infer_instance
 
-/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
+/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:133:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
 #print Real.ratCast_lt /-
 theorem ratCast_lt {x y : ℚ} : (x : ℝ) < (y : ℝ) ↔ x < y :=
   by
@@ -683,7 +683,7 @@ converging to the same number may be printed differently.
 -/
 unsafe instance : Repr ℝ where repr r := "real.of_cauchy " ++ repr r.cauchy
 
-/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
+/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:133:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
 #print Real.le_mk_of_forall_le /-
 theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j) → x ≤ mk f :=
   by
@@ -763,7 +763,7 @@ theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ,
 #align real.exists_floor Real.exists_floor
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
 #print Real.exists_isLUB /-
 theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃ x, IsLUB S x :=
   by
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
-
-! This file was ported from Lean 3 source module data.real.basic
-! leanprover-community/mathlib commit cb42593171ba005beaaf4549fcfe0dece9ada4c9
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Bounds
 import Mathbin.Algebra.Order.Archimedean
 import Mathbin.Algebra.Star.Basic
 import Mathbin.Data.Real.CauSeqCompletion
 
+#align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
+
 /-!
 # Real numbers from Cauchy sequences
 
@@ -766,7 +763,7 @@ theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ,
 #align real.exists_floor Real.exists_floor
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
 #print Real.exists_isLUB /-
 theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃ x, IsLUB S x :=
   by
Diff
@@ -41,19 +41,20 @@ structure Real where ofCauchy ::
 #align real Real
 -/
 
--- mathport name: exprℝ
 notation "ℝ" => Real
 
 attribute [pp_using_anonymous_constructor] Real
 
 namespace CauSeq.Completion
 
+#print CauSeq.Completion.ofRat_rat /-
 -- this can't go in `data.real.cau_seq_completion` as the structure on `rat` isn't available
 @[simp]
 theorem ofRat_rat {abv : ℚ → ℚ} [IsAbsoluteValue abv] (q : ℚ) :
     ofRat (q : ℚ) = (q : @Cauchy _ _ _ _ abv _) :=
   rfl
 #align cau_seq.completion.of_rat_rat CauSeq.Completion.ofRat_rat
+-/
 
 end CauSeq.Completion
 
@@ -63,18 +64,24 @@ open CauSeq CauSeq.Completion
 
 variable {x y : ℝ}
 
+#print Real.ext_cauchy_iff /-
 theorem ext_cauchy_iff : ∀ {x y : Real}, x = y ↔ x.cauchy = y.cauchy
   | ⟨a⟩, ⟨b⟩ => by constructor <;> cc
 #align real.ext_cauchy_iff Real.ext_cauchy_iff
+-/
 
+#print Real.ext_cauchy /-
 theorem ext_cauchy {x y : Real} : x.cauchy = y.cauchy → x = y :=
   ext_cauchy_iff.2
 #align real.ext_cauchy Real.ext_cauchy
+-/
 
+#print Real.equivCauchy /-
 /-- The real numbers are isomorphic to the quotient of Cauchy sequences on the rationals. -/
 def equivCauchy : ℝ ≃ CauSeq.Completion.Cauchy abs :=
   ⟨Real.cauchy, Real.ofCauchy, fun ⟨_⟩ => rfl, fun _ => rfl⟩
 #align real.equiv_Cauchy Real.equivCauchy
+-/
 
 -- irreducible doesn't work for instances: https://github.com/leanprover-community/lean/issues/511
 private irreducible_def zero : ℝ :=
@@ -116,61 +123,89 @@ instance : Sub ℝ :=
 noncomputable instance : Inv ℝ :=
   ⟨inv'⟩
 
+#print Real.ofCauchy_zero /-
 theorem ofCauchy_zero : (⟨0⟩ : ℝ) = 0 :=
   show _ = zero by rw [zero]
 #align real.of_cauchy_zero Real.ofCauchy_zero
+-/
 
+#print Real.ofCauchy_one /-
 theorem ofCauchy_one : (⟨1⟩ : ℝ) = 1 :=
   show _ = one by rw [one]
 #align real.of_cauchy_one Real.ofCauchy_one
+-/
 
+#print Real.ofCauchy_add /-
 theorem ofCauchy_add (a b) : (⟨a + b⟩ : ℝ) = ⟨a⟩ + ⟨b⟩ :=
   show _ = add _ _ by rw [add]
 #align real.of_cauchy_add Real.ofCauchy_add
+-/
 
+#print Real.ofCauchy_neg /-
 theorem ofCauchy_neg (a) : (⟨-a⟩ : ℝ) = -⟨a⟩ :=
   show _ = neg _ by rw [neg]
 #align real.of_cauchy_neg Real.ofCauchy_neg
+-/
 
+#print Real.ofCauchy_sub /-
 theorem ofCauchy_sub (a b) : (⟨a - b⟩ : ℝ) = ⟨a⟩ - ⟨b⟩ := by
   rw [sub_eq_add_neg, of_cauchy_add, of_cauchy_neg]; rfl
 #align real.of_cauchy_sub Real.ofCauchy_sub
+-/
 
+#print Real.ofCauchy_mul /-
 theorem ofCauchy_mul (a b) : (⟨a * b⟩ : ℝ) = ⟨a⟩ * ⟨b⟩ :=
   show _ = mul _ _ by rw [mul]
 #align real.of_cauchy_mul Real.ofCauchy_mul
+-/
 
+#print Real.ofCauchy_inv /-
 theorem ofCauchy_inv {f} : (⟨f⁻¹⟩ : ℝ) = ⟨f⟩⁻¹ :=
   show _ = inv' _ by rw [inv']
 #align real.of_cauchy_inv Real.ofCauchy_inv
+-/
 
+#print Real.cauchy_zero /-
 theorem cauchy_zero : (0 : ℝ).cauchy = 0 :=
   show zero.cauchy = 0 by rw [zero]
 #align real.cauchy_zero Real.cauchy_zero
+-/
 
+#print Real.cauchy_one /-
 theorem cauchy_one : (1 : ℝ).cauchy = 1 :=
   show one.cauchy = 1 by rw [one]
 #align real.cauchy_one Real.cauchy_one
+-/
 
+#print Real.cauchy_add /-
 theorem cauchy_add : ∀ a b, (a + b : ℝ).cauchy = a.cauchy + b.cauchy
   | ⟨a⟩, ⟨b⟩ => show (add _ _).cauchy = _ by rw [add]
 #align real.cauchy_add Real.cauchy_add
+-/
 
+#print Real.cauchy_neg /-
 theorem cauchy_neg : ∀ a, (-a : ℝ).cauchy = -a.cauchy
   | ⟨a⟩ => show (neg _).cauchy = _ by rw [neg]
 #align real.cauchy_neg Real.cauchy_neg
+-/
 
+#print Real.cauchy_mul /-
 theorem cauchy_mul : ∀ a b, (a * b : ℝ).cauchy = a.cauchy * b.cauchy
   | ⟨a⟩, ⟨b⟩ => show (mul _ _).cauchy = _ by rw [mul]
 #align real.cauchy_mul Real.cauchy_mul
+-/
 
+#print Real.cauchy_sub /-
 theorem cauchy_sub : ∀ a b, (a - b : ℝ).cauchy = a.cauchy - b.cauchy
   | ⟨a⟩, ⟨b⟩ => by rw [sub_eq_add_neg, ← cauchy_neg, ← cauchy_add]; rfl
 #align real.cauchy_sub Real.cauchy_sub
+-/
 
+#print Real.cauchy_inv /-
 theorem cauchy_inv : ∀ f, (f⁻¹ : ℝ).cauchy = f.cauchy⁻¹
   | ⟨f⟩ => show (inv' _).cauchy = _ by rw [inv']
 #align real.cauchy_inv Real.cauchy_inv
+-/
 
 instance : NatCast ℝ where natCast n := ⟨n⟩
 
@@ -178,29 +213,41 @@ instance : IntCast ℝ where intCast z := ⟨z⟩
 
 instance : HasRatCast ℝ where ratCast q := ⟨q⟩
 
+#print Real.ofCauchy_natCast /-
 theorem ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n :=
   rfl
 #align real.of_cauchy_nat_cast Real.ofCauchy_natCast
+-/
 
+#print Real.ofCauchy_intCast /-
 theorem ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z :=
   rfl
 #align real.of_cauchy_int_cast Real.ofCauchy_intCast
+-/
 
+#print Real.ofCauchy_ratCast /-
 theorem ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q :=
   rfl
 #align real.of_cauchy_rat_cast Real.ofCauchy_ratCast
+-/
 
+#print Real.cauchy_natCast /-
 theorem cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n :=
   rfl
 #align real.cauchy_nat_cast Real.cauchy_natCast
+-/
 
+#print Real.cauchy_intCast /-
 theorem cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z :=
   rfl
 #align real.cauchy_int_cast Real.cauchy_intCast
+-/
 
+#print Real.cauchy_ratCast /-
 theorem cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q :=
   rfl
 #align real.cauchy_rat_cast Real.cauchy_ratCast
+-/
 
 instance : CommRing ℝ := by
   refine_struct
@@ -229,6 +276,7 @@ instance : CommRing ℝ := by
     | apply sub_eq_add_neg
     | skip
 
+#print Real.ringEquivCauchy /-
 /-- `real.equiv_Cauchy` as a ring equivalence. -/
 @[simps]
 def ringEquivCauchy : ℝ ≃+* CauSeq.Completion.Cauchy abs :=
@@ -238,6 +286,7 @@ def ringEquivCauchy : ℝ ≃+* CauSeq.Completion.Cauchy abs :=
     map_add' := cauchy_add
     map_mul' := cauchy_mul }
 #align real.ring_equiv_Cauchy Real.ringEquivCauchy
+-/
 
 /-! Extra instances to short-circuit type class resolution.
 
@@ -290,14 +339,18 @@ instance : StarRing ℝ :=
 instance : TrivialStar ℝ :=
   ⟨fun _ => rfl⟩
 
+#print Real.mk /-
 /-- Make a real number from a Cauchy sequence of rationals (by taking the equivalence class). -/
 def mk (x : CauSeq ℚ abs) : ℝ :=
   ⟨CauSeq.Completion.mk x⟩
 #align real.mk Real.mk
+-/
 
+#print Real.mk_eq /-
 theorem mk_eq {f g : CauSeq ℚ abs} : mk f = mk g ↔ f ≈ g :=
   ext_cauchy_iff.trans mk_eq
 #align real.mk_eq Real.mk_eq
+-/
 
 private irreducible_def lt : ℝ → ℝ → Prop
   | ⟨x⟩, ⟨y⟩ =>
@@ -309,34 +362,50 @@ private irreducible_def lt : ℝ → ℝ → Prop
 instance : LT ℝ :=
   ⟨Lt⟩
 
+#print Real.lt_cauchy /-
 theorem lt_cauchy {f g} : (⟨⟦f⟧⟩ : ℝ) < ⟨⟦g⟧⟩ ↔ f < g :=
   show Lt _ _ ↔ _ by rw [lt] <;> rfl
 #align real.lt_cauchy Real.lt_cauchy
+-/
 
+#print Real.mk_lt /-
 @[simp]
 theorem mk_lt {f g : CauSeq ℚ abs} : mk f < mk g ↔ f < g :=
   lt_cauchy
 #align real.mk_lt Real.mk_lt
+-/
 
+#print Real.mk_zero /-
 theorem mk_zero : mk 0 = 0 := by rw [← of_cauchy_zero] <;> rfl
 #align real.mk_zero Real.mk_zero
+-/
 
+#print Real.mk_one /-
 theorem mk_one : mk 1 = 1 := by rw [← of_cauchy_one] <;> rfl
 #align real.mk_one Real.mk_one
+-/
 
+#print Real.mk_add /-
 theorem mk_add {f g : CauSeq ℚ abs} : mk (f + g) = mk f + mk g := by simp [mk, ← of_cauchy_add]
 #align real.mk_add Real.mk_add
+-/
 
+#print Real.mk_mul /-
 theorem mk_mul {f g : CauSeq ℚ abs} : mk (f * g) = mk f * mk g := by simp [mk, ← of_cauchy_mul]
 #align real.mk_mul Real.mk_mul
+-/
 
+#print Real.mk_neg /-
 theorem mk_neg {f : CauSeq ℚ abs} : mk (-f) = -mk f := by simp [mk, ← of_cauchy_neg]
 #align real.mk_neg Real.mk_neg
+-/
 
+#print Real.mk_pos /-
 @[simp]
 theorem mk_pos {f : CauSeq ℚ abs} : 0 < mk f ↔ Pos f := by
   rw [← mk_zero, mk_lt] <;> exact iff_of_eq (congr_arg Pos (sub_zero f))
 #align real.mk_pos Real.mk_pos
+-/
 
 private irreducible_def le (x y : ℝ) : Prop :=
   x < y ∨ x = y
@@ -347,10 +416,13 @@ instance : LE ℝ :=
 private theorem le_def {x y : ℝ} : x ≤ y ↔ x < y ∨ x = y :=
   show Le _ _ ↔ _ by rw [le]
 
+#print Real.mk_le /-
 @[simp]
 theorem mk_le {f g : CauSeq ℚ abs} : mk f ≤ mk g ↔ f ≤ g := by simp [le_def, mk_eq] <;> rfl
 #align real.mk_le Real.mk_le
+-/
 
+#print Real.ind_mk /-
 @[elab_as_elim]
 protected theorem ind_mk {C : Real → Prop} (x : Real) (h : ∀ y, C (mk y)) : C x :=
   by
@@ -358,7 +430,9 @@ protected theorem ind_mk {C : Real → Prop} (x : Real) (h : ∀ y, C (mk y)) :
   induction' x using Quot.inductionOn with x
   exact h x
 #align real.ind_mk Real.ind_mk
+-/
 
+#print Real.add_lt_add_iff_left /-
 theorem add_lt_add_iff_left {a b : ℝ} (c : ℝ) : c + a < c + b ↔ a < b :=
   by
   induction a using Real.ind_mk
@@ -367,6 +441,7 @@ theorem add_lt_add_iff_left {a b : ℝ} (c : ℝ) : c + a < c + b ↔ a < b :=
   simp only [mk_lt, ← mk_add]
   show Pos _ ↔ Pos _; rw [add_sub_add_left_eq_sub]
 #align real.add_lt_add_iff_left Real.add_lt_add_iff_left
+-/
 
 instance : PartialOrder ℝ where
   le := (· ≤ ·)
@@ -384,26 +459,34 @@ instance : PartialOrder ℝ where
 instance : Preorder ℝ := by infer_instance
 
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
+#print Real.ratCast_lt /-
 theorem ratCast_lt {x y : ℚ} : (x : ℝ) < (y : ℝ) ↔ x < y :=
   by
   rw [mk_lt]
   exact const_lt
 #align real.rat_cast_lt Real.ratCast_lt
+-/
 
+#print Real.zero_lt_one /-
 protected theorem zero_lt_one : (0 : ℝ) < 1 := by
   convert rat_cast_lt.2 zero_lt_one <;> simp [← of_cauchy_rat_cast, of_cauchy_one, of_cauchy_zero]
 #align real.zero_lt_one Real.zero_lt_one
+-/
 
+#print Real.fact_zero_lt_one /-
 protected theorem fact_zero_lt_one : Fact ((0 : ℝ) < 1) :=
   ⟨Real.zero_lt_one⟩
 #align real.fact_zero_lt_one Real.fact_zero_lt_one
+-/
 
+#print Real.mul_pos /-
 protected theorem mul_pos {a b : ℝ} : 0 < a → 0 < b → 0 < a * b :=
   by
   induction' a using Real.ind_mk with a
   induction' b using Real.ind_mk with b
   simpa only [mk_lt, mk_pos, ← mk_mul] using CauSeq.mul_pos
 #align real.mul_pos Real.mul_pos
+-/
 
 instance : StrictOrderedCommRing ℝ :=
   { Real.commRing, Real.partialOrder,
@@ -450,14 +533,18 @@ private irreducible_def sup : ℝ → ℝ → ℝ
 instance : Sup ℝ :=
   ⟨sup⟩
 
+#print Real.ofCauchy_sup /-
 theorem ofCauchy_sup (a b) : (⟨⟦a ⊔ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊔ ⟨⟦b⟧⟩ :=
   show _ = sup _ _ by rw [sup]; rfl
 #align real.of_cauchy_sup Real.ofCauchy_sup
+-/
 
+#print Real.mk_sup /-
 @[simp]
 theorem mk_sup (a b) : (mk (a ⊔ b) : ℝ) = mk a ⊔ mk b :=
   ofCauchy_sup _ _
 #align real.mk_sup Real.mk_sup
+-/
 
 private irreducible_def inf : ℝ → ℝ → ℝ
   | ⟨x⟩, ⟨y⟩ => ⟨Quotient.map₂ (· ⊓ ·) (fun x₁ x₂ hx y₁ y₂ hy => inf_equiv_inf hx hy) x y⟩
@@ -465,14 +552,18 @@ private irreducible_def inf : ℝ → ℝ → ℝ
 instance : Inf ℝ :=
   ⟨inf⟩
 
+#print Real.ofCauchy_inf /-
 theorem ofCauchy_inf (a b) : (⟨⟦a ⊓ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊓ ⟨⟦b⟧⟩ :=
   show _ = inf _ _ by rw [inf]; rfl
 #align real.of_cauchy_inf Real.ofCauchy_inf
+-/
 
+#print Real.mk_inf /-
 @[simp]
 theorem mk_inf (a b) : (mk (a ⊓ b) : ℝ) = mk a ⊓ mk b :=
   ofCauchy_inf _ _
 #align real.mk_inf Real.mk_inf
+-/
 
 instance : DistribLattice ℝ :=
   { Real.partialOrder with
@@ -573,11 +664,15 @@ noncomputable instance field : Field ℝ := by infer_instance
 
 noncomputable instance : DivisionRing ℝ := by infer_instance
 
+#print Real.decidableLT /-
 noncomputable instance decidableLT (a b : ℝ) : Decidable (a < b) := by infer_instance
 #align real.decidable_lt Real.decidableLT
+-/
 
+#print Real.decidableLE /-
 noncomputable instance decidableLE (a b : ℝ) : Decidable (a ≤ b) := by infer_instance
 #align real.decidable_le Real.decidableLE
+-/
 
 #print Real.decidableEq /-
 noncomputable instance decidableEq (a b : ℝ) : Decidable (a = b) := by infer_instance
@@ -592,6 +687,7 @@ converging to the same number may be printed differently.
 unsafe instance : Repr ℝ where repr r := "real.of_cauchy " ++ repr r.cauchy
 
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
+#print Real.le_mk_of_forall_le /-
 theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j) → x ≤ mk f :=
   by
   intro h
@@ -606,14 +702,18 @@ theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j
   have := add_le_add (H _ ij).2.1 (le_of_lt (abs_lt.1 <| (H _ le_rfl).2.2 _ ij).1)
   rwa [← sub_eq_add_neg, sub_self_div_two, sub_apply, sub_add_sub_cancel] at this 
 #align real.le_mk_of_forall_le Real.le_mk_of_forall_le
+-/
 
+#print Real.mk_le_of_forall_le /-
 theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥ i, (f j : ℝ) ≤ x) :
     mk f ≤ x := by
   cases' h with i H
   rw [← neg_le_neg_iff, ← mk_neg]
   exact le_mk_of_forall_le ⟨i, fun j ij => by simp [H _ ij]⟩
 #align real.mk_le_of_forall_le Real.mk_le_of_forall_le
+-/
 
+#print Real.mk_near_of_forall_near /-
 theorem mk_near_of_forall_near {f : CauSeq ℚ abs} {x : ℝ} {ε : ℝ}
     (H : ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| ≤ ε) : |mk f - x| ≤ ε :=
   abs_sub_le_iff.2
@@ -623,6 +723,7 @@ theorem mk_near_of_forall_near {f : CauSeq ℚ abs} {x : ℝ} {ε : ℝ}
       sub_le_comm.1 <|
         le_mk_of_forall_le <| H.imp fun i h j ij => sub_le_comm.1 (abs_sub_le_iff.1 <| h j ij).2⟩
 #align real.mk_near_of_forall_near Real.mk_near_of_forall_near
+-/
 
 instance : Archimedean ℝ :=
   archimedean_iff_rat_le.2 fun x =>
@@ -633,6 +734,7 @@ instance : Archimedean ℝ :=
 noncomputable instance : FloorRing ℝ :=
   Archimedean.floorRing _
 
+#print Real.isCauSeq_iff_lift /-
 theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fun i => (f i : ℝ) :=
   ⟨fun H ε ε0 =>
     let ⟨δ, δ0, δε⟩ := exists_pos_rat_lt ε0
@@ -641,7 +743,9 @@ theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fu
     (H _ (Rat.cast_pos.2 ε0)).imp fun i hi j ij =>
       (@Rat.cast_lt ℝ _ _ _).1 <| by simpa using hi _ ij⟩
 #align real.is_cau_seq_iff_lift Real.isCauSeq_iff_lift
+-/
 
+#print Real.of_near /-
 theorem of_near (f : ℕ → ℚ) (x : ℝ) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| < ε) :
     ∃ h', Real.mk ⟨f, h'⟩ = x :=
   ⟨isCauSeq_iff_lift.2 (of_near _ (const abs x) h),
@@ -650,7 +754,9 @@ theorem of_near (f : ℕ → ℚ) (x : ℝ) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i,
         eq_of_le_of_forall_le_of_dense (abs_nonneg _) fun ε ε0 =>
           mk_near_of_forall_near <| (h _ ε0).imp fun i h j ij => le_of_lt (h j ij)⟩
 #align real.of_near Real.of_near
+-/
 
+#print Real.exists_floor /-
 theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ, (z : ℝ) ≤ x → z ≤ ub :=
   Int.exists_greatest_of_bdd
     (let ⟨n, hn⟩ := exists_int_gt x
@@ -658,6 +764,7 @@ theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ,
     (let ⟨n, hn⟩ := exists_int_lt x
     ⟨n, le_of_lt hn⟩)
 #align real.exists_floor Real.exists_floor
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
 #print Real.exists_isLUB /-
@@ -721,27 +828,35 @@ theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃
 noncomputable instance : SupSet ℝ :=
   ⟨fun S => if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0⟩
 
+#print Real.sSup_def /-
 theorem sSup_def (S : Set ℝ) :
     sSup S = if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0 :=
   rfl
 #align real.Sup_def Real.sSup_def
+-/
 
+#print Real.isLUB_sSup /-
 protected theorem isLUB_sSup (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) : IsLUB S (sSup S) :=
   by simp only [Sup_def, dif_pos (And.intro h₁ h₂)]; apply Classical.choose_spec
 #align real.is_lub_Sup Real.isLUB_sSup
+-/
 
 noncomputable instance : InfSet ℝ :=
   ⟨fun S => -sSup (-S)⟩
 
+#print Real.sInf_def /-
 theorem sInf_def (S : Set ℝ) : sInf S = -sSup (-S) :=
   rfl
 #align real.Inf_def Real.sInf_def
+-/
 
+#print Real.is_glb_sInf /-
 protected theorem is_glb_sInf (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddBelow S) : IsGLB S (sInf S) :=
   by
   rw [Inf_def, ← isLUB_neg', neg_neg]
   exact Real.isLUB_sSup _ h₁.neg h₂.neg
 #align real.is_glb_Inf Real.is_glb_sInf
+-/
 
 noncomputable instance : ConditionallyCompleteLinearOrder ℝ :=
   { Real.linearOrder, Real.lattice with
@@ -752,16 +867,21 @@ noncomputable instance : ConditionallyCompleteLinearOrder ℝ :=
     cInf_le := fun s a hs ha => (Real.is_glb_sInf s ⟨a, ha⟩ hs).1 ha
     le_cInf := fun s a hs ha => (Real.is_glb_sInf s hs ⟨a, ha⟩).2 ha }
 
+#print Real.lt_sInf_add_pos /-
 theorem lt_sInf_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
     ∃ a ∈ s, a < sInf s + ε :=
   exists_lt_of_csInf_lt h <| lt_add_of_pos_right _ hε
 #align real.lt_Inf_add_pos Real.lt_sInf_add_pos
+-/
 
+#print Real.add_neg_lt_sSup /-
 theorem add_neg_lt_sSup {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : ε < 0) :
     ∃ a ∈ s, sSup s + ε < a :=
   exists_lt_of_lt_csSup h <| add_lt_iff_neg_left.2 hε
 #align real.add_neg_lt_Sup Real.add_neg_lt_sSup
+-/
 
+#print Real.sInf_le_iff /-
 theorem sInf_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
     sInf s ≤ a ↔ ∀ ε, 0 < ε → ∃ x ∈ s, x < a + ε :=
   by
@@ -771,7 +891,9 @@ theorem sInf_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
   · rcases H ε ε_pos with ⟨x, x_in, hx⟩
     exact csInf_lt_of_lt h x_in hx
 #align real.Inf_le_iff Real.sInf_le_iff
+-/
 
+#print Real.le_sSup_iff /-
 theorem le_sSup_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
     a ≤ sSup s ↔ ∀ ε, ε < 0 → ∃ x ∈ s, a + ε < x :=
   by
@@ -781,12 +903,16 @@ theorem le_sSup_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
   · rcases H _ (neg_lt_zero.mpr ε_pos) with ⟨x, x_in, hx⟩
     exact sub_lt_iff_lt_add.mp (lt_csSup_of_lt h x_in hx)
 #align real.le_Sup_iff Real.le_sSup_iff
+-/
 
+#print Real.sSup_empty /-
 @[simp]
 theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
   dif_neg <| by simp
 #align real.Sup_empty Real.sSup_empty
+-/
 
+#print Real.ciSup_empty /-
 theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 :=
   by
   dsimp [iSup]
@@ -794,7 +920,9 @@ theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) =
   rw [Set.range_eq_empty_iff]
   infer_instance
 #align real.csupr_empty Real.ciSup_empty
+-/
 
+#print Real.ciSup_const_zero /-
 @[simp]
 theorem ciSup_const_zero {α : Sort _} : (⨆ i : α, (0 : ℝ)) = 0 :=
   by
@@ -802,28 +930,40 @@ theorem ciSup_const_zero {α : Sort _} : (⨆ i : α, (0 : ℝ)) = 0 :=
   · exact Real.ciSup_empty _
   · exact ciSup_const
 #align real.csupr_const_zero Real.ciSup_const_zero
+-/
 
+#print Real.sSup_of_not_bddAbove /-
 theorem sSup_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : sSup s = 0 :=
   dif_neg fun h => hs h.2
 #align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAbove
+-/
 
+#print Real.iSup_of_not_bddAbove /-
 theorem iSup_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
     (⨆ i, f i) = 0 :=
   sSup_of_not_bddAbove hf
 #align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
+-/
 
+#print Real.sSup_univ /-
 theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
   Real.sSup_of_not_bddAbove fun ⟨x, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
 #align real.Sup_univ Real.sSup_univ
+-/
 
+#print Real.sInf_empty /-
 @[simp]
 theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [Inf_def, sSup_empty]
 #align real.Inf_empty Real.sInf_empty
+-/
 
+#print Real.ciInf_empty /-
 theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
   rw [iInf_of_empty', sInf_empty]
 #align real.cinfi_empty Real.ciInf_empty
+-/
 
+#print Real.ciInf_const_zero /-
 @[simp]
 theorem ciInf_const_zero {α : Sort _} : (⨅ i : α, (0 : ℝ)) = 0 :=
   by
@@ -831,16 +971,22 @@ theorem ciInf_const_zero {α : Sort _} : (⨅ i : α, (0 : ℝ)) = 0 :=
   · exact Real.ciInf_empty _
   · exact ciInf_const
 #align real.cinfi_const_zero Real.ciInf_const_zero
+-/
 
+#print Real.sInf_of_not_bddBelow /-
 theorem sInf_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : sInf s = 0 :=
   neg_eq_zero.2 <| sSup_of_not_bddAbove <| mt bddAbove_neg.1 hs
 #align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelow
+-/
 
+#print Real.iInf_of_not_bddBelow /-
 theorem iInf_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
     (⨅ i, f i) = 0 :=
   sInf_of_not_bddBelow hf
 #align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelow
+-/
 
+#print Real.sSup_nonneg /-
 /--
 As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
 suffices to show that `S` is bounded below by `0` to show that `0 ≤ Sup S`.
@@ -851,7 +997,9 @@ theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sS
   · exact Sup_empty.ge
   · apply dite _ (fun h => le_csSup_of_le h hy <| hS y hy) fun h => (Sup_of_not_bdd_above h).ge
 #align real.Sup_nonneg Real.sSup_nonneg
+-/
 
+#print Real.iSup_nonneg /-
 /--
 As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
 suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
@@ -859,7 +1007,9 @@ suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
 protected theorem iSup_nonneg {ι : Sort _} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
   sSup_nonneg _ <| Set.forall_range_iff.2 hf
 #align real.supr_nonneg Real.iSup_nonneg
+-/
 
+#print Real.sSup_le /-
 /--
 As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
 suffices to show that all elements of `S` are bounded by a nonnagative number to show that `Sup S`
@@ -870,19 +1020,25 @@ protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (h
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
   exacts [Sup_empty.trans_le ha, csSup_le hS₂ hS]
 #align real.Sup_le Real.sSup_le
+-/
 
+#print Real.iSup_le /-
 protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
     (⨆ i, f i) ≤ a :=
   Real.sSup_le (Set.forall_range_iff.2 hS) ha
 #align real.supr_le Real.iSup_le
+-/
 
+#print Real.sSup_nonpos /-
 /-- As `0` is the default value for `real.Sup` of the empty set, it suffices to show that `S` is
 bounded above by `0` to show that `Sup S ≤ 0`.
 -/
 theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S ≤ 0 :=
   Real.sSup_le hS le_rfl
 #align real.Sup_nonpos Real.sSup_nonpos
+-/
 
+#print Real.sInf_nonneg /-
 /-- As `0` is the default value for `real.Inf` of the empty set, it suffices to show that `S` is
 bounded below by `0` to show that `0 ≤ Inf S`.
 -/
@@ -891,7 +1047,9 @@ theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sI
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
   exacts [Inf_empty.ge, le_csInf hS₂ hS]
 #align real.Inf_nonneg Real.sInf_nonneg
+-/
 
+#print Real.sInf_nonpos /-
 /--
 As `0` is the default value for `real.Inf` of the empty set or sets which are not bounded below, it
 suffices to show that `S` is bounded above by `0` to show that `Inf S ≤ 0`.
@@ -902,14 +1060,18 @@ theorem sInf_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sInf S 
   · exact Inf_empty.le
   · apply dite _ (fun h => csInf_le_of_le h hy <| hS y hy) fun h => (Inf_of_not_bdd_below h).le
 #align real.Inf_nonpos Real.sInf_nonpos
+-/
 
+#print Real.sInf_le_sSup /-
 theorem sInf_le_sSup (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : sInf s ≤ sSup s :=
   by
   rcases s.eq_empty_or_nonempty with (rfl | hne)
   · rw [sInf_empty, sSup_empty]
   · exact csInf_le_csSup h₁ h₂ hne
 #align real.Inf_le_Sup Real.sInf_le_sSup
+-/
 
+#print Real.cauSeq_converges /-
 theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x :=
   by
   let S := {x : ℝ | const abs x < f}
@@ -929,6 +1091,7 @@ theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x :=
     rw [sub_apply, const_apply, add_comm, ← sub_sub, le_sub_iff_add_le, add_halves]
     exact ih _ ij
 #align real.cau_seq_converges Real.cauSeq_converges
+-/
 
 instance : CauSeq.IsComplete ℝ abs :=
   ⟨cauSeq_converges⟩
Diff
@@ -659,7 +659,7 @@ theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ,
     ⟨n, le_of_lt hn⟩)
 #align real.exists_floor Real.exists_floor
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
 #print Real.exists_isLUB /-
 theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃ x, IsLUB S x :=
   by
Diff
@@ -664,7 +664,7 @@ theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ,
 theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃ x, IsLUB S x :=
   by
   rcases hne, hbdd with ⟨⟨L, hL⟩, ⟨U, hU⟩⟩
-  have : ∀ d : ℕ, BddAbove { m : ℤ | ∃ y ∈ S, (m : ℝ) ≤ y * d } :=
+  have : ∀ d : ℕ, BddAbove {m : ℤ | ∃ y ∈ S, (m : ℝ) ≤ y * d} :=
     by
     cases' exists_int_gt U with k hk
     refine' fun d => ⟨k * d, fun z h => _⟩
@@ -912,7 +912,7 @@ theorem sInf_le_sSup (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : sIn
 
 theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x :=
   by
-  let S := { x : ℝ | const abs x < f }
+  let S := {x : ℝ | const abs x < f}
   have lb : ∃ x, x ∈ S := exists_lt f
   have ub' : ∀ x, f < const abs x → ∀ y ∈ S, y ≤ x := fun x h y yS =>
     le_of_lt <| const_lt.1 <| CauSeq.lt_trans yS h
Diff
@@ -220,10 +220,14 @@ instance : CommRing ℝ := by
       simp [← of_cauchy_zero, ← of_cauchy_one, ← of_cauchy_add, ← of_cauchy_neg, ← of_cauchy_mul,
         fun n => show @coe ℕ ℝ ⟨_⟩ n = ⟨n⟩ from rfl, NatCast.natCast, IntCast.intCast] <;>
     first
-      |apply
-        add_assoc|apply
-        add_comm|apply
-        mul_assoc|apply mul_comm|apply left_distrib|apply right_distrib|apply sub_eq_add_neg|skip
+    | apply add_assoc
+    | apply add_comm
+    | apply mul_assoc
+    | apply mul_comm
+    | apply left_distrib
+    | apply right_distrib
+    | apply sub_eq_add_neg
+    | skip
 
 /-- `real.equiv_Cauchy` as a ring equivalence. -/
 @[simps]
@@ -600,7 +604,7 @@ theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j
   rw [mk_lt]
   refine' ⟨_, half_pos K0, i, fun j ij => _⟩
   have := add_le_add (H _ ij).2.1 (le_of_lt (abs_lt.1 <| (H _ le_rfl).2.2 _ ij).1)
-  rwa [← sub_eq_add_neg, sub_self_div_two, sub_apply, sub_add_sub_cancel] at this
+  rwa [← sub_eq_add_neg, sub_self_div_two, sub_apply, sub_add_sub_cancel] at this 
 #align real.le_mk_of_forall_le Real.le_mk_of_forall_le
 
 theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥ i, (f j : ℝ) ≤ x) :
@@ -864,7 +868,7 @@ is bounded by this number.
 protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (ha : 0 ≤ a) : sSup S ≤ a :=
   by
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[Sup_empty.trans_le ha, csSup_le hS₂ hS]
+  exacts [Sup_empty.trans_le ha, csSup_le hS₂ hS]
 #align real.Sup_le Real.sSup_le
 
 protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
@@ -885,7 +889,7 @@ bounded below by `0` to show that `0 ≤ Inf S`.
 theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sInf S :=
   by
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[Inf_empty.ge, le_csInf hS₂ hS]
+  exacts [Inf_empty.ge, le_csInf hS₂ hS]
 #align real.Inf_nonneg Real.sInf_nonneg
 
 /--
Diff
@@ -31,7 +31,7 @@ assert_not_exists Module
 
 assert_not_exists Submonoid
 
-open Pointwise
+open scoped Pointwise
 
 #print Real /-
 /-- The type `ℝ` of real numbers constructed as equivalence classes of Cauchy sequences of rational
@@ -526,7 +526,7 @@ instance : SemilatticeInf ℝ :=
 instance : SemilatticeSup ℝ :=
   inferInstance
 
-open Classical
+open scoped Classical
 
 instance : IsTotal ℝ (· ≤ ·) :=
   ⟨fun a => Real.ind_mk a fun a b => Real.ind_mk b fun b => by simpa using le_total a b⟩
Diff
@@ -48,12 +48,6 @@ attribute [pp_using_anonymous_constructor] Real
 
 namespace CauSeq.Completion
 
-/- warning: cau_seq.completion.of_rat_rat -> CauSeq.Completion.ofRat_rat is a dubious translation:
-lean 3 declaration is
-  forall {abv : Rat -> Rat} [_inst_1 : IsAbsoluteValue.{0, 0} Rat Rat.orderedSemiring Rat Rat.semiring abv] (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.ofRat.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1 q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing abv _inst_1)))) q)
-but is expected to have type
-  forall {abv : Rat -> Rat} [_inst_1 : IsAbsoluteValue.{0, 0} Rat Rat.instOrderedSemiringRat Rat Rat.semiring abv] (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.ofRat.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1 q) (Rat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing abv _inst_1) q)
-Case conversion may be inaccurate. Consider using '#align cau_seq.completion.of_rat_rat CauSeq.Completion.ofRat_ratₓ'. -/
 -- this can't go in `data.real.cau_seq_completion` as the structure on `rat` isn't available
 @[simp]
 theorem ofRat_rat {abv : ℚ → ℚ} [IsAbsoluteValue abv] (q : ℚ) :
@@ -69,32 +63,14 @@ open CauSeq CauSeq.Completion
 
 variable {x y : ℝ}
 
-/- warning: real.ext_cauchy_iff -> Real.ext_cauchy_iff is a dubious translation:
-lean 3 declaration is
-  forall {x : Real} {y : Real}, Iff (Eq.{1} Real x y) (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy x) (Real.cauchy y))
-but is expected to have type
-  forall {x : Real} {y : Real}, Iff (Eq.{1} Real x y) (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy x) (Real.cauchy y))
-Case conversion may be inaccurate. Consider using '#align real.ext_cauchy_iff Real.ext_cauchy_iffₓ'. -/
 theorem ext_cauchy_iff : ∀ {x y : Real}, x = y ↔ x.cauchy = y.cauchy
   | ⟨a⟩, ⟨b⟩ => by constructor <;> cc
 #align real.ext_cauchy_iff Real.ext_cauchy_iff
 
-/- warning: real.ext_cauchy -> Real.ext_cauchy is a dubious translation:
-lean 3 declaration is
-  forall {x : Real} {y : Real}, (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy x) (Real.cauchy y)) -> (Eq.{1} Real x y)
-but is expected to have type
-  forall {x : Real} {y : Real}, (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy x) (Real.cauchy y)) -> (Eq.{1} Real x y)
-Case conversion may be inaccurate. Consider using '#align real.ext_cauchy Real.ext_cauchyₓ'. -/
 theorem ext_cauchy {x y : Real} : x.cauchy = y.cauchy → x = y :=
   ext_cauchy_iff.2
 #align real.ext_cauchy Real.ext_cauchy
 
-/- warning: real.equiv_Cauchy -> Real.equivCauchy is a dubious translation:
-lean 3 declaration is
-  Equiv.{1, 1} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))
-but is expected to have type
-  Equiv.{1, 1} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))
-Case conversion may be inaccurate. Consider using '#align real.equiv_Cauchy Real.equivCauchyₓ'. -/
 /-- The real numbers are isomorphic to the quotient of Cauchy sequences on the rationals. -/
 def equivCauchy : ℝ ≃ CauSeq.Completion.Cauchy abs :=
   ⟨Real.cauchy, Real.ofCauchy, fun ⟨_⟩ => rfl, fun _ => rfl⟩
@@ -140,142 +116,58 @@ instance : Sub ℝ :=
 noncomputable instance : Inv ℝ :=
   ⟨inv'⟩
 
-/- warning: real.of_cauchy_zero -> Real.ofCauchy_zero is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (Zero.zero.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasZero.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 0 (Zero.toOfNat0.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instZeroCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_zero Real.ofCauchy_zeroₓ'. -/
 theorem ofCauchy_zero : (⟨0⟩ : ℝ) = 0 :=
   show _ = zero by rw [zero]
 #align real.of_cauchy_zero Real.ofCauchy_zero
 
-/- warning: real.of_cauchy_one -> Real.ofCauchy_one is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (One.one.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasOne.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
-  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 1 (One.toOfNat1.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instOneCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_one Real.ofCauchy_oneₓ'. -/
 theorem ofCauchy_one : (⟨1⟩ : ℝ) = 1 :=
   show _ = one by rw [one]
 #align real.of_cauchy_one Real.ofCauchy_one
 
-/- warning: real.of_cauchy_add -> Real.ofCauchy_add is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasAdd.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) a b)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (Real.ofCauchy a) (Real.ofCauchy b))
-but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Real.ofCauchy a) (Real.ofCauchy b))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_add Real.ofCauchy_addₓ'. -/
 theorem ofCauchy_add (a b) : (⟨a + b⟩ : ℝ) = ⟨a⟩ + ⟨b⟩ :=
   show _ = add _ _ by rw [add]
 #align real.of_cauchy_add Real.ofCauchy_add
 
-/- warning: real.of_cauchy_neg -> Real.ofCauchy_neg is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNeg.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Neg.neg.{0} Real Real.hasNeg (Real.ofCauchy a))
-but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNegCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Neg.neg.{0} Real Real.instNegReal (Real.ofCauchy a))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_neg Real.ofCauchy_negₓ'. -/
 theorem ofCauchy_neg (a) : (⟨-a⟩ : ℝ) = -⟨a⟩ :=
   show _ = neg _ by rw [neg]
 #align real.of_cauchy_neg Real.ofCauchy_neg
 
-/- warning: real.of_cauchy_sub -> Real.ofCauchy_sub is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasSub.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (Real.ofCauchy a) (Real.ofCauchy b))
-but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.ofCauchy a) (Real.ofCauchy b))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_sub Real.ofCauchy_subₓ'. -/
 theorem ofCauchy_sub (a b) : (⟨a - b⟩ : ℝ) = ⟨a⟩ - ⟨b⟩ := by
   rw [sub_eq_add_neg, of_cauchy_add, of_cauchy_neg]; rfl
 #align real.of_cauchy_sub Real.ofCauchy_sub
 
-/- warning: real.of_cauchy_mul -> Real.ofCauchy_mul is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasMul.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) a b)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Real.ofCauchy a) (Real.ofCauchy b))
-but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Real.ofCauchy a) (Real.ofCauchy b))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_mul Real.ofCauchy_mulₓ'. -/
 theorem ofCauchy_mul (a b) : (⟨a * b⟩ : ℝ) = ⟨a⟩ * ⟨b⟩ :=
   show _ = mul _ _ by rw [mul]
 #align real.of_cauchy_mul Real.ofCauchy_mul
 
-/- warning: real.of_cauchy_inv -> Real.ofCauchy_inv is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)}, Eq.{1} Real (Real.ofCauchy (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasInv.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) f)) (Inv.inv.{0} Real Real.hasInv (Real.ofCauchy f))
-but is expected to have type
-  forall {f : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)}, Eq.{1} Real (Real.ofCauchy (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instInvCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Inv.inv.{0} Real Real.instInvReal (Real.ofCauchy f))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_inv Real.ofCauchy_invₓ'. -/
 theorem ofCauchy_inv {f} : (⟨f⁻¹⟩ : ℝ) = ⟨f⟩⁻¹ :=
   show _ = inv' _ by rw [inv']
 #align real.of_cauchy_inv Real.ofCauchy_inv
 
-/- warning: real.cauchy_zero -> Real.cauchy_zero is a dubious translation:
-lean 3 declaration is
-  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (Zero.zero.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasZero.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))
-but is expected to have type
-  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 0 (Zero.toOfNat0.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instZeroCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))
-Case conversion may be inaccurate. Consider using '#align real.cauchy_zero Real.cauchy_zeroₓ'. -/
 theorem cauchy_zero : (0 : ℝ).cauchy = 0 :=
   show zero.cauchy = 0 by rw [zero]
 #align real.cauchy_zero Real.cauchy_zero
 
-/- warning: real.cauchy_one -> Real.cauchy_one is a dubious translation:
-lean 3 declaration is
-  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (One.one.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasOne.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))
-but is expected to have type
-  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 1 (One.toOfNat1.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instOneCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))
-Case conversion may be inaccurate. Consider using '#align real.cauchy_one Real.cauchy_oneₓ'. -/
 theorem cauchy_one : (1 : ℝ).cauchy = 1 :=
   show one.cauchy = 1 by rw [one]
 #align real.cauchy_one Real.cauchy_one
 
-/- warning: real.cauchy_add -> Real.cauchy_add is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a b)) (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasAdd.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) (Real.cauchy a) (Real.cauchy b))
-but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a b)) (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
-Case conversion may be inaccurate. Consider using '#align real.cauchy_add Real.cauchy_addₓ'. -/
 theorem cauchy_add : ∀ a b, (a + b : ℝ).cauchy = a.cauchy + b.cauchy
   | ⟨a⟩, ⟨b⟩ => show (add _ _).cauchy = _ by rw [add]
 #align real.cauchy_add Real.cauchy_add
 
-/- warning: real.cauchy_neg -> Real.cauchy_neg is a dubious translation:
-lean 3 declaration is
-  forall (a : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (Neg.neg.{0} Real Real.hasNeg a)) (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNeg.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy a))
-but is expected to have type
-  forall (a : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Neg.neg.{0} Real Real.instNegReal a)) (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNegCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy a))
-Case conversion may be inaccurate. Consider using '#align real.cauchy_neg Real.cauchy_negₓ'. -/
 theorem cauchy_neg : ∀ a, (-a : ℝ).cauchy = -a.cauchy
   | ⟨a⟩ => show (neg _).cauchy = _ by rw [neg]
 #align real.cauchy_neg Real.cauchy_neg
 
-/- warning: real.cauchy_mul -> Real.cauchy_mul is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) a b)) (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasMul.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) (Real.cauchy a) (Real.cauchy b))
-but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) a b)) (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
-Case conversion may be inaccurate. Consider using '#align real.cauchy_mul Real.cauchy_mulₓ'. -/
 theorem cauchy_mul : ∀ a b, (a * b : ℝ).cauchy = a.cauchy * b.cauchy
   | ⟨a⟩, ⟨b⟩ => show (mul _ _).cauchy = _ by rw [mul]
 #align real.cauchy_mul Real.cauchy_mul
 
-/- warning: real.cauchy_sub -> Real.cauchy_sub is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) a b)) (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasSub.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) (Real.cauchy a) (Real.cauchy b))
-but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) a b)) (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
-Case conversion may be inaccurate. Consider using '#align real.cauchy_sub Real.cauchy_subₓ'. -/
 theorem cauchy_sub : ∀ a b, (a - b : ℝ).cauchy = a.cauchy - b.cauchy
   | ⟨a⟩, ⟨b⟩ => by rw [sub_eq_add_neg, ← cauchy_neg, ← cauchy_add]; rfl
 #align real.cauchy_sub Real.cauchy_sub
 
-/- warning: real.cauchy_inv -> Real.cauchy_inv is a dubious translation:
-lean 3 declaration is
-  forall (f : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (Inv.inv.{0} Real Real.hasInv f)) (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasInv.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy f))
-but is expected to have type
-  forall (f : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Inv.inv.{0} Real Real.instInvReal f)) (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instInvCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy f))
-Case conversion may be inaccurate. Consider using '#align real.cauchy_inv Real.cauchy_invₓ'. -/
 theorem cauchy_inv : ∀ f, (f⁻¹ : ℝ).cauchy = f.cauchy⁻¹
   | ⟨f⟩ => show (inv' _).cauchy = _ by rw [inv']
 #align real.cauchy_inv Real.cauchy_inv
@@ -286,62 +178,26 @@ instance : IntCast ℝ where intCast z := ⟨z⟩
 
 instance : HasRatCast ℝ where ratCast q := ⟨q⟩
 
-/- warning: real.of_cauchy_nat_cast -> Real.ofCauchy_natCast is a dubious translation:
-lean 3 declaration is
-  forall (n : Nat), Eq.{1} Real (Real.ofCauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Nat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNatCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) n)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)
-but is expected to have type
-  forall (n : Nat), Eq.{1} Real (Real.ofCauchy (Nat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNatCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) n)) (Nat.cast.{0} Real Real.natCast n)
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_nat_cast Real.ofCauchy_natCastₓ'. -/
 theorem ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n :=
   rfl
 #align real.of_cauchy_nat_cast Real.ofCauchy_natCast
 
-/- warning: real.of_cauchy_int_cast -> Real.ofCauchy_intCast is a dubious translation:
-lean 3 declaration is
-  forall (z : Int), Eq.{1} Real (Real.ofCauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Int.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasIntCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) z)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Real (HasLiftT.mk.{1, 1} Int Real (CoeTCₓ.coe.{1, 1} Int Real (Int.castCoe.{0} Real Real.hasIntCast))) z)
-but is expected to have type
-  forall (z : Int), Eq.{1} Real (Real.ofCauchy (Int.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instIntCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) z)) (Int.cast.{0} Real Real.intCast z)
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_int_cast Real.ofCauchy_intCastₓ'. -/
 theorem ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z :=
   rfl
 #align real.of_cauchy_int_cast Real.ofCauchy_intCast
 
-/- warning: real.of_cauchy_rat_cast -> Real.ofCauchy_ratCast is a dubious translation:
-lean 3 declaration is
-  forall (q : Rat), Eq.{1} Real (Real.ofCauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) q)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) q)
-but is expected to have type
-  forall (q : Rat), Eq.{1} Real (Real.ofCauchy (Rat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)) (Rat.cast.{0} Real Real.ratCast q)
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_rat_cast Real.ofCauchy_ratCastₓ'. -/
 theorem ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q :=
   rfl
 #align real.of_cauchy_rat_cast Real.ofCauchy_ratCast
 
-/- warning: real.cauchy_nat_cast -> Real.cauchy_natCast is a dubious translation:
-lean 3 declaration is
-  forall (n : Nat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Nat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNatCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) n)
-but is expected to have type
-  forall (n : Nat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Nat.cast.{0} Real Real.natCast n)) (Nat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNatCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) n)
-Case conversion may be inaccurate. Consider using '#align real.cauchy_nat_cast Real.cauchy_natCastₓ'. -/
 theorem cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n :=
   rfl
 #align real.cauchy_nat_cast Real.cauchy_natCast
 
-/- warning: real.cauchy_int_cast -> Real.cauchy_intCast is a dubious translation:
-lean 3 declaration is
-  forall (z : Int), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Real (HasLiftT.mk.{1, 1} Int Real (CoeTCₓ.coe.{1, 1} Int Real (Int.castCoe.{0} Real Real.hasIntCast))) z)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Int.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasIntCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) z)
-but is expected to have type
-  forall (z : Int), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Int.cast.{0} Real Real.intCast z)) (Int.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instIntCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) z)
-Case conversion may be inaccurate. Consider using '#align real.cauchy_int_cast Real.cauchy_intCastₓ'. -/
 theorem cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z :=
   rfl
 #align real.cauchy_int_cast Real.cauchy_intCast
 
-/- warning: real.cauchy_rat_cast -> Real.cauchy_ratCast is a dubious translation:
-lean 3 declaration is
-  forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) q)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) q)
-but is expected to have type
-  forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Rat.cast.{0} Real Real.ratCast q)) (Rat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)
-Case conversion may be inaccurate. Consider using '#align real.cauchy_rat_cast Real.cauchy_ratCastₓ'. -/
 theorem cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q :=
   rfl
 #align real.cauchy_rat_cast Real.cauchy_ratCast
@@ -369,12 +225,6 @@ instance : CommRing ℝ := by
         add_comm|apply
         mul_assoc|apply mul_comm|apply left_distrib|apply right_distrib|apply sub_eq_add_neg|skip
 
-/- warning: real.ring_equiv_Cauchy -> Real.ringEquivCauchy is a dubious translation:
-lean 3 declaration is
-  RingEquiv.{0, 0} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) Real.hasMul Real.hasAdd (CauSeq.Completion.Cauchy.hasMul.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasAdd.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))
-but is expected to have type
-  RingEquiv.{0, 0} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) Real.instMulReal (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) Real.instAddReal (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))
-Case conversion may be inaccurate. Consider using '#align real.ring_equiv_Cauchy Real.ringEquivCauchyₓ'. -/
 /-- `real.equiv_Cauchy` as a ring equivalence. -/
 @[simps]
 def ringEquivCauchy : ℝ ≃+* CauSeq.Completion.Cauchy abs :=
@@ -436,23 +286,11 @@ instance : StarRing ℝ :=
 instance : TrivialStar ℝ :=
   ⟨fun _ => rfl⟩
 
-/- warning: real.mk -> Real.mk is a dubious translation:
-lean 3 declaration is
-  (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) -> Real
-but is expected to have type
-  (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) -> Real
-Case conversion may be inaccurate. Consider using '#align real.mk Real.mkₓ'. -/
 /-- Make a real number from a Cauchy sequence of rationals (by taking the equivalence class). -/
 def mk (x : CauSeq ℚ abs) : ℝ :=
   ⟨CauSeq.Completion.mk x⟩
 #align real.mk Real.mk
 
-/- warning: real.mk_eq -> Real.mk_eq is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (Eq.{1} Real (Real.mk f) (Real.mk g)) (HasEquivₓ.Equiv.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (setoidHasEquiv.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) f g)
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (Eq.{1} Real (Real.mk f) (Real.mk g)) (HasEquiv.Equiv.{1, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (instHasEquiv.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)
-Case conversion may be inaccurate. Consider using '#align real.mk_eq Real.mk_eqₓ'. -/
 theorem mk_eq {f g : CauSeq ℚ abs} : mk f = mk g ↔ f ≈ g :=
   ext_cauchy_iff.trans mk_eq
 #align real.mk_eq Real.mk_eq
@@ -467,78 +305,30 @@ private irreducible_def lt : ℝ → ℝ → Prop
 instance : LT ℝ :=
   ⟨Lt⟩
 
-/- warning: real.lt_cauchy -> Real.lt_cauchy is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LT.lt.{0} Real Real.hasLt (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) f)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) g))) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasLt.{0} Rat Rat.linearOrderedField) f g)
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) g))) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
-Case conversion may be inaccurate. Consider using '#align real.lt_cauchy Real.lt_cauchyₓ'. -/
 theorem lt_cauchy {f g} : (⟨⟦f⟧⟩ : ℝ) < ⟨⟦g⟧⟩ ↔ f < g :=
   show Lt _ _ ↔ _ by rw [lt] <;> rfl
 #align real.lt_cauchy Real.lt_cauchy
 
-/- warning: real.mk_lt -> Real.mk_lt is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LT.lt.{0} Real Real.hasLt (Real.mk f) (Real.mk g)) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasLt.{0} Rat Rat.linearOrderedField) f g)
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (Real.mk f) (Real.mk g)) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
-Case conversion may be inaccurate. Consider using '#align real.mk_lt Real.mk_ltₓ'. -/
 @[simp]
 theorem mk_lt {f g : CauSeq ℚ abs} : mk f < mk g ↔ f < g :=
   lt_cauchy
 #align real.mk_lt Real.mk_lt
 
-/- warning: real.mk_zero -> Real.mk_zero is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 0 (OfNat.mk.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 0 (Zero.zero.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasZero.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) 0 (Zero.toOfNat0.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instZeroCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.mk_zero Real.mk_zeroₓ'. -/
 theorem mk_zero : mk 0 = 0 := by rw [← of_cauchy_zero] <;> rfl
 #align real.mk_zero Real.mk_zero
 
-/- warning: real.mk_one -> Real.mk_one is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 1 (OfNat.mk.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 1 (One.one.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasOne.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
-  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) 1 (One.toOfNat1.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instOneCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
-Case conversion may be inaccurate. Consider using '#align real.mk_one Real.mk_oneₓ'. -/
 theorem mk_one : mk 1 = 1 := by rw [← of_cauchy_one] <;> rfl
 #align real.mk_one Real.mk_one
 
-/- warning: real.mk_add -> Real.mk_add is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Eq.{1} Real (Real.mk (HAdd.hAdd.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (instHAdd.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasAdd.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) f g)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (Real.mk f) (Real.mk g))
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Eq.{1} Real (Real.mk (HAdd.hAdd.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (instHAdd.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instAddCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Real.mk f) (Real.mk g))
-Case conversion may be inaccurate. Consider using '#align real.mk_add Real.mk_addₓ'. -/
 theorem mk_add {f g : CauSeq ℚ abs} : mk (f + g) = mk f + mk g := by simp [mk, ← of_cauchy_add]
 #align real.mk_add Real.mk_add
 
-/- warning: real.mk_mul -> Real.mk_mul is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Eq.{1} Real (Real.mk (HMul.hMul.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (instHMul.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasMul.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) f g)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Real.mk f) (Real.mk g))
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Eq.{1} Real (Real.mk (HMul.hMul.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (instHMul.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instMulCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Real.mk f) (Real.mk g))
-Case conversion may be inaccurate. Consider using '#align real.mk_mul Real.mk_mulₓ'. -/
 theorem mk_mul {f g : CauSeq ℚ abs} : mk (f * g) = mk f * mk g := by simp [mk, ← of_cauchy_mul]
 #align real.mk_mul Real.mk_mul
 
-/- warning: real.mk_neg -> Real.mk_neg is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Eq.{1} Real (Real.mk (Neg.neg.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasNeg.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) f)) (Neg.neg.{0} Real Real.hasNeg (Real.mk f))
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Eq.{1} Real (Real.mk (Neg.neg.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instNegCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Neg.neg.{0} Real Real.instNegReal (Real.mk f))
-Case conversion may be inaccurate. Consider using '#align real.mk_neg Real.mk_negₓ'. -/
 theorem mk_neg {f : CauSeq ℚ abs} : mk (-f) = -mk f := by simp [mk, ← of_cauchy_neg]
 #align real.mk_neg Real.mk_neg
 
-/- warning: real.mk_pos -> Real.mk_pos is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (Real.mk f)) (CauSeq.Pos.{0} Rat Rat.linearOrderedField f)
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (Real.mk f)) (CauSeq.Pos.{0} Rat Rat.instLinearOrderedFieldRat f)
-Case conversion may be inaccurate. Consider using '#align real.mk_pos Real.mk_posₓ'. -/
 @[simp]
 theorem mk_pos {f : CauSeq ℚ abs} : 0 < mk f ↔ Pos f := by
   rw [← mk_zero, mk_lt] <;> exact iff_of_eq (congr_arg Pos (sub_zero f))
@@ -553,22 +343,10 @@ instance : LE ℝ :=
 private theorem le_def {x y : ℝ} : x ≤ y ↔ x < y ∨ x = y :=
   show Le _ _ ↔ _ by rw [le]
 
-/- warning: real.mk_le -> Real.mk_le is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LE.le.{0} Real Real.hasLe (Real.mk f) (Real.mk g)) (LE.le.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasLe.{0} Rat Rat.linearOrderedField) f g)
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LE.le.{0} Real Real.instLEReal (Real.mk f) (Real.mk g)) (LE.le.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
-Case conversion may be inaccurate. Consider using '#align real.mk_le Real.mk_leₓ'. -/
 @[simp]
 theorem mk_le {f g : CauSeq ℚ abs} : mk f ≤ mk g ↔ f ≤ g := by simp [le_def, mk_eq] <;> rfl
 #align real.mk_le Real.mk_le
 
-/- warning: real.ind_mk -> Real.ind_mk is a dubious translation:
-lean 3 declaration is
-  forall {C : Real -> Prop} (x : Real), (forall (y : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), C (Real.mk y)) -> (C x)
-but is expected to have type
-  forall {C : Real -> Prop} (x : Real), (forall (y : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), C (Real.mk y)) -> (C x)
-Case conversion may be inaccurate. Consider using '#align real.ind_mk Real.ind_mkₓ'. -/
 @[elab_as_elim]
 protected theorem ind_mk {C : Real → Prop} (x : Real) (h : ∀ y, C (mk y)) : C x :=
   by
@@ -577,12 +355,6 @@ protected theorem ind_mk {C : Real → Prop} (x : Real) (h : ∀ y, C (mk y)) :
   exact h x
 #align real.ind_mk Real.ind_mk
 
-/- warning: real.add_lt_add_iff_left -> Real.add_lt_add_iff_left is a dubious translation:
-lean 3 declaration is
-  forall {a : Real} {b : Real} (c : Real), Iff (LT.lt.{0} Real Real.hasLt (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) c a) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) c b)) (LT.lt.{0} Real Real.hasLt a b)
-but is expected to have type
-  forall {a : Real} {b : Real} (c : Real), Iff (LT.lt.{0} Real Real.instLTReal (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) c a) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) c b)) (LT.lt.{0} Real Real.instLTReal a b)
-Case conversion may be inaccurate. Consider using '#align real.add_lt_add_iff_left Real.add_lt_add_iff_leftₓ'. -/
 theorem add_lt_add_iff_left {a b : ℝ} (c : ℝ) : c + a < c + b ↔ a < b :=
   by
   induction a using Real.ind_mk
@@ -607,12 +379,6 @@ instance : PartialOrder ℝ where
 
 instance : Preorder ℝ := by infer_instance
 
-/- warning: real.rat_cast_lt -> Real.ratCast_lt is a dubious translation:
-lean 3 declaration is
-  forall {x : Rat} {y : Rat}, Iff (LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) y)) (LT.lt.{0} Rat Rat.hasLt x y)
-but is expected to have type
-  forall {x : Rat} {y : Rat}, Iff (LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast x) (Rat.cast.{0} Real Real.ratCast y)) (LT.lt.{0} Rat Rat.instLTRat_1 x y)
-Case conversion may be inaccurate. Consider using '#align real.rat_cast_lt Real.ratCast_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
 theorem ratCast_lt {x y : ℚ} : (x : ℝ) < (y : ℝ) ↔ x < y :=
   by
@@ -620,32 +386,14 @@ theorem ratCast_lt {x y : ℚ} : (x : ℝ) < (y : ℝ) ↔ x < y :=
   exact const_lt
 #align real.rat_cast_lt Real.ratCast_lt
 
-/- warning: real.zero_lt_one -> Real.zero_lt_one is a dubious translation:
-lean 3 declaration is
-  LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
-  LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
-Case conversion may be inaccurate. Consider using '#align real.zero_lt_one Real.zero_lt_oneₓ'. -/
 protected theorem zero_lt_one : (0 : ℝ) < 1 := by
   convert rat_cast_lt.2 zero_lt_one <;> simp [← of_cauchy_rat_cast, of_cauchy_one, of_cauchy_zero]
 #align real.zero_lt_one Real.zero_lt_one
 
-/- warning: real.fact_zero_lt_one -> Real.fact_zero_lt_one is a dubious translation:
-lean 3 declaration is
-  Fact (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))
-but is expected to have type
-  Fact (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))
-Case conversion may be inaccurate. Consider using '#align real.fact_zero_lt_one Real.fact_zero_lt_oneₓ'. -/
 protected theorem fact_zero_lt_one : Fact ((0 : ℝ) < 1) :=
   ⟨Real.zero_lt_one⟩
 #align real.fact_zero_lt_one Real.fact_zero_lt_one
 
-/- warning: real.mul_pos -> Real.mul_pos is a dubious translation:
-lean 3 declaration is
-  forall {a : Real} {b : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) a) -> (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) b) -> (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) a b))
-but is expected to have type
-  forall {a : Real} {b : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) a) -> (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) b) -> (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) a b))
-Case conversion may be inaccurate. Consider using '#align real.mul_pos Real.mul_posₓ'. -/
 protected theorem mul_pos {a b : ℝ} : 0 < a → 0 < b → 0 < a * b :=
   by
   induction' a using Real.ind_mk with a
@@ -698,22 +446,10 @@ private irreducible_def sup : ℝ → ℝ → ℝ
 instance : Sup ℝ :=
   ⟨sup⟩
 
-/- warning: real.of_cauchy_sup -> Real.ofCauchy_sup is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasSup.{0} Rat Rat.linearOrderedField) a b))) (Sup.sup.{0} Real Real.hasSup (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) b)))
-but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (Sup.sup.{0} Real Real.instSupReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_sup Real.ofCauchy_supₓ'. -/
 theorem ofCauchy_sup (a b) : (⟨⟦a ⊔ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊔ ⟨⟦b⟧⟩ :=
   show _ = sup _ _ by rw [sup]; rfl
 #align real.of_cauchy_sup Real.ofCauchy_sup
 
-/- warning: real.mk_sup -> Real.mk_sup is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.mk (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasSup.{0} Rat Rat.linearOrderedField) a b)) (Sup.sup.{0} Real Real.hasSup (Real.mk a) (Real.mk b))
-but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.mk (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b)) (Sup.sup.{0} Real Real.instSupReal (Real.mk a) (Real.mk b))
-Case conversion may be inaccurate. Consider using '#align real.mk_sup Real.mk_supₓ'. -/
 @[simp]
 theorem mk_sup (a b) : (mk (a ⊔ b) : ℝ) = mk a ⊔ mk b :=
   ofCauchy_sup _ _
@@ -725,22 +461,10 @@ private irreducible_def inf : ℝ → ℝ → ℝ
 instance : Inf ℝ :=
   ⟨inf⟩
 
-/- warning: real.of_cauchy_inf -> Real.ofCauchy_inf is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasInf.{0} Rat Rat.linearOrderedField) a b))) (Inf.inf.{0} Real Real.hasInf (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) b)))
-but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (Inf.inf.{0} Real Real.instInfReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
-Case conversion may be inaccurate. Consider using '#align real.of_cauchy_inf Real.ofCauchy_infₓ'. -/
 theorem ofCauchy_inf (a b) : (⟨⟦a ⊓ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊓ ⟨⟦b⟧⟩ :=
   show _ = inf _ _ by rw [inf]; rfl
 #align real.of_cauchy_inf Real.ofCauchy_inf
 
-/- warning: real.mk_inf -> Real.mk_inf is a dubious translation:
-lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.mk (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasInf.{0} Rat Rat.linearOrderedField) a b)) (Inf.inf.{0} Real Real.hasInf (Real.mk a) (Real.mk b))
-but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.mk (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b)) (Inf.inf.{0} Real Real.instInfReal (Real.mk a) (Real.mk b))
-Case conversion may be inaccurate. Consider using '#align real.mk_inf Real.mk_infₓ'. -/
 @[simp]
 theorem mk_inf (a b) : (mk (a ⊓ b) : ℝ) = mk a ⊓ mk b :=
   ofCauchy_inf _ _
@@ -845,21 +569,9 @@ noncomputable instance field : Field ℝ := by infer_instance
 
 noncomputable instance : DivisionRing ℝ := by infer_instance
 
-/- warning: real.decidable_lt -> Real.decidableLT is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Decidable (LT.lt.{0} Real Real.hasLt a b)
-but is expected to have type
-  forall (a : Real) (b : Real), Decidable (LT.lt.{0} Real Real.instLTReal a b)
-Case conversion may be inaccurate. Consider using '#align real.decidable_lt Real.decidableLTₓ'. -/
 noncomputable instance decidableLT (a b : ℝ) : Decidable (a < b) := by infer_instance
 #align real.decidable_lt Real.decidableLT
 
-/- warning: real.decidable_le -> Real.decidableLE is a dubious translation:
-lean 3 declaration is
-  forall (a : Real) (b : Real), Decidable (LE.le.{0} Real Real.hasLe a b)
-but is expected to have type
-  forall (a : Real) (b : Real), Decidable (LE.le.{0} Real Real.instLEReal a b)
-Case conversion may be inaccurate. Consider using '#align real.decidable_le Real.decidableLEₓ'. -/
 noncomputable instance decidableLE (a b : ℝ) : Decidable (a ≤ b) := by infer_instance
 #align real.decidable_le Real.decidableLE
 
@@ -875,12 +587,6 @@ converging to the same number may be printed differently.
 -/
 unsafe instance : Repr ℝ where repr r := "real.of_cauchy " ++ repr r.cauchy
 
-/- warning: real.le_mk_of_forall_le -> Real.le_mk_of_forall_le is a dubious translation:
-lean 3 declaration is
-  forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j))))) -> (LE.le.{0} Real Real.hasLe x (Real.mk f))
-but is expected to have type
-  forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal x (Rat.cast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j))))) -> (LE.le.{0} Real Real.instLEReal x (Real.mk f))
-Case conversion may be inaccurate. Consider using '#align real.le_mk_of_forall_le Real.le_mk_of_forall_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
 theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j) → x ≤ mk f :=
   by
@@ -897,12 +603,6 @@ theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j
   rwa [← sub_eq_add_neg, sub_self_div_two, sub_apply, sub_add_sub_cancel] at this
 #align real.le_mk_of_forall_le Real.le_mk_of_forall_le
 
-/- warning: real.mk_le_of_forall_le -> Real.mk_le_of_forall_le is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j)) x))) -> (LE.le.{0} Real Real.hasLe (Real.mk f) x)
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (Rat.cast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x))) -> (LE.le.{0} Real Real.instLEReal (Real.mk f) x)
-Case conversion may be inaccurate. Consider using '#align real.mk_le_of_forall_le Real.mk_le_of_forall_leₓ'. -/
 theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥ i, (f j : ℝ) ≤ x) :
     mk f ≤ x := by
   cases' h with i H
@@ -910,12 +610,6 @@ theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥
   exact le_mk_of_forall_le ⟨i, fun j ij => by simp [H _ ij]⟩
 #align real.mk_le_of_forall_le Real.mk_le_of_forall_le
 
-/- warning: real.mk_near_of_forall_near -> Real.mk_near_of_forall_near is a dubious translation:
-lean 3 declaration is
-  forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j)) x)) ε))) -> (LE.le.{0} Real Real.hasLe (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (Real.mk f) x)) ε)
-but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Rat.cast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x)) ε))) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.mk f) x)) ε)
-Case conversion may be inaccurate. Consider using '#align real.mk_near_of_forall_near Real.mk_near_of_forall_nearₓ'. -/
 theorem mk_near_of_forall_near {f : CauSeq ℚ abs} {x : ℝ} {ε : ℝ}
     (H : ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| ≤ ε) : |mk f - x| ≤ ε :=
   abs_sub_le_iff.2
@@ -935,12 +629,6 @@ instance : Archimedean ℝ :=
 noncomputable instance : FloorRing ℝ :=
   Archimedean.floorRing _
 
-/- warning: real.is_cau_seq_iff_lift -> Real.isCauSeq_iff_lift is a dubious translation:
-lean 3 declaration is
-  forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) (IsCauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup)) (fun (i : Nat) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (f i)))
-but is expected to have type
-  forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (IsCauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (fun (i : Nat) => Rat.cast.{0} Real Real.ratCast (f i)))
-Case conversion may be inaccurate. Consider using '#align real.is_cau_seq_iff_lift Real.isCauSeq_iff_liftₓ'. -/
 theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fun i => (f i : ℝ) :=
   ⟨fun H ε ε0 =>
     let ⟨δ, δ0, δε⟩ := exists_pos_rat_lt ε0
@@ -950,12 +638,6 @@ theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fu
       (@Rat.cast_lt ℝ _ _ _).1 <| by simpa using hi _ ij⟩
 #align real.is_cau_seq_iff_lift Real.isCauSeq_iff_lift
 
-/- warning: real.of_near -> Real.of_near is a dubious translation:
-lean 3 declaration is
-  forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{0} Real Real.hasLt (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) f h')) x))
-but is expected to have type
-  forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{0} Real Real.instLTReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Rat.cast.{0} Real Real.ratCast (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f h')) x))
-Case conversion may be inaccurate. Consider using '#align real.of_near Real.of_nearₓ'. -/
 theorem of_near (f : ℕ → ℚ) (x : ℝ) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| < ε) :
     ∃ h', Real.mk ⟨f, h'⟩ = x :=
   ⟨isCauSeq_iff_lift.2 (of_near _ (const abs x) h),
@@ -965,12 +647,6 @@ theorem of_near (f : ℕ → ℚ) (x : ℝ) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i,
           mk_near_of_forall_near <| (h _ ε0).imp fun i h j ij => le_of_lt (h j ij)⟩
 #align real.of_near Real.of_near
 
-/- warning: real.exists_floor -> Real.exists_floor is a dubious translation:
-lean 3 declaration is
-  forall (x : Real), Exists.{1} Int (fun (ub : Int) => And (LE.le.{0} Real Real.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Real (HasLiftT.mk.{1, 1} Int Real (CoeTCₓ.coe.{1, 1} Int Real (Int.castCoe.{0} Real Real.hasIntCast))) ub) x) (forall (z : Int), (LE.le.{0} Real Real.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Real (HasLiftT.mk.{1, 1} Int Real (CoeTCₓ.coe.{1, 1} Int Real (Int.castCoe.{0} Real Real.hasIntCast))) z) x) -> (LE.le.{0} Int Int.hasLe z ub)))
-but is expected to have type
-  forall (x : Real), Exists.{1} Int (fun (ub : Int) => And (LE.le.{0} Real Real.instLEReal (Int.cast.{0} Real Real.intCast ub) x) (forall (z : Int), (LE.le.{0} Real Real.instLEReal (Int.cast.{0} Real Real.intCast z) x) -> (LE.le.{0} Int Int.instLEInt z ub)))
-Case conversion may be inaccurate. Consider using '#align real.exists_floor Real.exists_floorₓ'. -/
 theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ, (z : ℝ) ≤ x → z ≤ ub :=
   Int.exists_greatest_of_bdd
     (let ⟨n, hn⟩ := exists_int_gt x
@@ -1041,23 +717,11 @@ theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃
 noncomputable instance : SupSet ℝ :=
   ⟨fun S => if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0⟩
 
-/- warning: real.Sup_def -> Real.sSup_def is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup S) (dite.{1} Real (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S)) (And.decidable (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) (Classical.propDecidable (Set.Nonempty.{0} Real S)) (Classical.propDecidable (BddAbove.{0} Real Real.preorder S))) (fun (h : And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S)) => Classical.choose.{1} Real (fun (x : Real) => IsLUB.{0} Real Real.preorder S x) (Real.exists_isLUB S (And.left (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) h) (And.right (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) h))) (fun (h : Not (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S))) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
-but is expected to have type
-  forall (S : Set.{0} Real), Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal S) (dite.{1} Real (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S)) (instDecidableAnd (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) (Classical.propDecidable (Set.Nonempty.{0} Real S)) (Classical.propDecidable (BddAbove.{0} Real Real.instPreorderReal S))) (fun (h : And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S)) => Classical.choose.{1} Real (fun (x : Real) => IsLUB.{0} Real Real.instPreorderReal S x) (Real.exists_isLUB S (And.left (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) h) (And.right (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) h))) (fun (h : Not (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S))) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Sup_def Real.sSup_defₓ'. -/
 theorem sSup_def (S : Set ℝ) :
     sSup S = if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0 :=
   rfl
 #align real.Sup_def Real.sSup_def
 
-/- warning: real.is_lub_Sup -> Real.isLUB_sSup is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddAbove.{0} Real Real.preorder S) -> (IsLUB.{0} Real Real.preorder S (SupSet.sSup.{0} Real Real.hasSup S))
-but is expected to have type
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddAbove.{0} Real Real.instPreorderReal S) -> (IsLUB.{0} Real Real.instPreorderReal S (SupSet.sSup.{0} Real Real.instSupSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.is_lub_Sup Real.isLUB_sSupₓ'. -/
 protected theorem isLUB_sSup (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) : IsLUB S (sSup S) :=
   by simp only [Sup_def, dif_pos (And.intro h₁ h₂)]; apply Classical.choose_spec
 #align real.is_lub_Sup Real.isLUB_sSup
@@ -1065,22 +729,10 @@ protected theorem isLUB_sSup (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove
 noncomputable instance : InfSet ℝ :=
   ⟨fun S => -sSup (-S)⟩
 
-/- warning: real.Inf_def -> Real.sInf_def is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), Eq.{1} Real (InfSet.sInf.{0} Real Real.hasInf S) (Neg.neg.{0} Real Real.hasNeg (SupSet.sSup.{0} Real Real.hasSup (Neg.neg.{0} (Set.{0} Real) (Set.neg.{0} Real Real.hasNeg) S)))
-but is expected to have type
-  forall (S : Set.{0} Real), Eq.{1} Real (InfSet.sInf.{0} Real Real.instInfSetReal S) (Neg.neg.{0} Real Real.instNegReal (SupSet.sSup.{0} Real Real.instSupSetReal (Neg.neg.{0} (Set.{0} Real) (Set.neg.{0} Real Real.instNegReal) S)))
-Case conversion may be inaccurate. Consider using '#align real.Inf_def Real.sInf_defₓ'. -/
 theorem sInf_def (S : Set ℝ) : sInf S = -sSup (-S) :=
   rfl
 #align real.Inf_def Real.sInf_def
 
-/- warning: real.is_glb_Inf -> Real.is_glb_sInf is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddBelow.{0} Real Real.preorder S) -> (IsGLB.{0} Real Real.preorder S (InfSet.sInf.{0} Real Real.hasInf S))
-but is expected to have type
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddBelow.{0} Real Real.instPreorderReal S) -> (IsGLB.{0} Real Real.instPreorderReal S (InfSet.sInf.{0} Real Real.instInfSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.is_glb_Inf Real.is_glb_sInfₓ'. -/
 protected theorem is_glb_sInf (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddBelow S) : IsGLB S (sInf S) :=
   by
   rw [Inf_def, ← isLUB_neg', neg_neg]
@@ -1096,34 +748,16 @@ noncomputable instance : ConditionallyCompleteLinearOrder ℝ :=
     cInf_le := fun s a hs ha => (Real.is_glb_sInf s ⟨a, ha⟩ hs).1 ha
     le_cInf := fun s a hs ha => (Real.is_glb_sInf s hs ⟨a, ha⟩).2 ha }
 
-/- warning: real.lt_Inf_add_pos -> Real.lt_sInf_add_pos is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) ε) -> (Exists.{1} Real (fun (a : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) => LT.lt.{0} Real Real.hasLt a (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (InfSet.sInf.{0} Real Real.hasInf s) ε)))))
-but is expected to have type
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) ε) -> (Exists.{1} Real (fun (a : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) a s) (LT.lt.{0} Real Real.instLTReal a (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (InfSet.sInf.{0} Real Real.instInfSetReal s) ε)))))
-Case conversion may be inaccurate. Consider using '#align real.lt_Inf_add_pos Real.lt_sInf_add_posₓ'. -/
 theorem lt_sInf_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
     ∃ a ∈ s, a < sInf s + ε :=
   exists_lt_of_csInf_lt h <| lt_add_of_pos_right _ hε
 #align real.lt_Inf_add_pos Real.lt_sInf_add_pos
 
-/- warning: real.add_neg_lt_Sup -> Real.add_neg_lt_sSup is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Real (fun (a : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) => LT.lt.{0} Real Real.hasLt (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (SupSet.sSup.{0} Real Real.hasSup s) ε) a))))
-but is expected to have type
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Real (fun (a : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) a s) (LT.lt.{0} Real Real.instLTReal (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (SupSet.sSup.{0} Real Real.instSupSetReal s) ε) a))))
-Case conversion may be inaccurate. Consider using '#align real.add_neg_lt_Sup Real.add_neg_lt_sSupₓ'. -/
 theorem add_neg_lt_sSup {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : ε < 0) :
     ∃ a ∈ s, sSup s + ε < a :=
   exists_lt_of_lt_csSup h <| add_lt_iff_neg_left.2 hε
 #align real.add_neg_lt_Sup Real.add_neg_lt_sSup
 
-/- warning: real.Inf_le_iff -> Real.sInf_le_iff is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (BddBelow.{0} Real Real.preorder s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.hasLe (InfSet.sInf.{0} Real Real.hasInf s) a) (forall (ε : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) ε) -> (Exists.{1} Real (fun (x : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) => LT.lt.{0} Real Real.hasLt x (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a ε))))))
-but is expected to have type
-  forall {s : Set.{0} Real}, (BddBelow.{0} Real Real.instPreorderReal s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.instLEReal (InfSet.sInf.{0} Real Real.instInfSetReal s) a) (forall (ε : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) ε) -> (Exists.{1} Real (fun (x : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x s) (LT.lt.{0} Real Real.instLTReal x (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a ε))))))
-Case conversion may be inaccurate. Consider using '#align real.Inf_le_iff Real.sInf_le_iffₓ'. -/
 theorem sInf_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
     sInf s ≤ a ↔ ∀ ε, 0 < ε → ∃ x ∈ s, x < a + ε :=
   by
@@ -1134,12 +768,6 @@ theorem sInf_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
     exact csInf_lt_of_lt h x_in hx
 #align real.Inf_le_iff Real.sInf_le_iff
 
-/- warning: real.le_Sup_iff -> Real.le_sSup_iff is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (BddAbove.{0} Real Real.preorder s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.hasLe a (SupSet.sSup.{0} Real Real.hasSup s)) (forall (ε : Real), (LT.lt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Real (fun (x : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) => LT.lt.{0} Real Real.hasLt (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a ε) x)))))
-but is expected to have type
-  forall {s : Set.{0} Real}, (BddAbove.{0} Real Real.instPreorderReal s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.instLEReal a (SupSet.sSup.{0} Real Real.instSupSetReal s)) (forall (ε : Real), (LT.lt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Real (fun (x : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x s) (LT.lt.{0} Real Real.instLTReal (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a ε) x)))))
-Case conversion may be inaccurate. Consider using '#align real.le_Sup_iff Real.le_sSup_iffₓ'. -/
 theorem le_sSup_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
     a ≤ sSup s ↔ ∀ ε, ε < 0 → ∃ x ∈ s, a + ε < x :=
   by
@@ -1150,23 +778,11 @@ theorem le_sSup_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
     exact sub_lt_iff_lt_add.mp (lt_csSup_of_lt h x_in hx)
 #align real.le_Sup_iff Real.le_sSup_iff
 
-/- warning: real.Sup_empty -> Real.sSup_empty is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.hasEmptyc.{0} Real))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.instEmptyCollectionSet.{0} Real))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.Sup_empty Real.sSup_emptyₓ'. -/
 @[simp]
 theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
   dif_neg <| by simp
 #align real.Sup_empty Real.sSup_empty
 
-/- warning: real.csupr_empty -> Real.ciSup_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iSup.{0, u1} Real Real.hasSup α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iSup.{0, u1} Real Real.instSupSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.csupr_empty Real.ciSup_emptyₓ'. -/
 theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 :=
   by
   dsimp [iSup]
@@ -1175,12 +791,6 @@ theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) =
   infer_instance
 #align real.csupr_empty Real.ciSup_empty
 
-/- warning: real.csupr_const_zero -> Real.ciSup_const_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Sort.{u1}}, Eq.{1} Real (iSup.{0, u1} Real Real.hasSup α (fun (i : α) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  forall {α : Sort.{u1}}, Eq.{1} Real (iSup.{0, u1} Real Real.instSupSetReal α (fun (i : α) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.csupr_const_zero Real.ciSup_const_zeroₓ'. -/
 @[simp]
 theorem ciSup_const_zero {α : Sort _} : (⨆ i : α, (0 : ℝ)) = 0 :=
   by
@@ -1189,63 +799,27 @@ theorem ciSup_const_zero {α : Sort _} : (⨆ i : α, (0 : ℝ)) = 0 :=
   · exact ciSup_const
 #align real.csupr_const_zero Real.ciSup_const_zero
 
-/- warning: real.Sup_of_not_bdd_above -> Real.sSup_of_not_bddAbove is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (Not (BddAbove.{0} Real Real.preorder s)) -> (Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup s) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
-but is expected to have type
-  forall {s : Set.{0} Real}, (Not (BddAbove.{0} Real Real.instPreorderReal s)) -> (Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal s) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAboveₓ'. -/
 theorem sSup_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : sSup s = 0 :=
   dif_neg fun h => hs h.2
 #align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAbove
 
-/- warning: real.supr_of_not_bdd_above -> Real.iSup_of_not_bddAbove is a dubious translation:
-lean 3 declaration is
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddAbove.{0} Real Real.preorder (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iSup.{0, u1} Real Real.hasSup α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
-but is expected to have type
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddAbove.{0} Real Real.instPreorderReal (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iSup.{0, u1} Real Real.instSupSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.supr_of_not_bdd_above Real.iSup_of_not_bddAboveₓ'. -/
 theorem iSup_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
     (⨆ i, f i) = 0 :=
   sSup_of_not_bddAbove hf
 #align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
 
-/- warning: real.Sup_univ -> Real.sSup_univ is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup (Set.univ.{0} Real)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal (Set.univ.{0} Real)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.Sup_univ Real.sSup_univₓ'. -/
 theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
   Real.sSup_of_not_bddAbove fun ⟨x, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
 #align real.Sup_univ Real.sSup_univ
 
-/- warning: real.Inf_empty -> Real.sInf_empty is a dubious translation:
-lean 3 declaration is
-  Eq.{1} Real (InfSet.sInf.{0} Real Real.hasInf (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.hasEmptyc.{0} Real))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  Eq.{1} Real (InfSet.sInf.{0} Real Real.instInfSetReal (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.instEmptyCollectionSet.{0} Real))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.Inf_empty Real.sInf_emptyₓ'. -/
 @[simp]
 theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [Inf_def, sSup_empty]
 #align real.Inf_empty Real.sInf_empty
 
-/- warning: real.cinfi_empty -> Real.ciInf_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iInf.{0, u1} Real Real.hasInf α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iInf.{0, u1} Real Real.instInfSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.cinfi_empty Real.ciInf_emptyₓ'. -/
 theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
   rw [iInf_of_empty', sInf_empty]
 #align real.cinfi_empty Real.ciInf_empty
 
-/- warning: real.cinfi_const_zero -> Real.ciInf_const_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Sort.{u1}}, Eq.{1} Real (iInf.{0, u1} Real Real.hasInf α (fun (i : α) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
-but is expected to have type
-  forall {α : Sort.{u1}}, Eq.{1} Real (iInf.{0, u1} Real Real.instInfSetReal α (fun (i : α) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.cinfi_const_zero Real.ciInf_const_zeroₓ'. -/
 @[simp]
 theorem ciInf_const_zero {α : Sort _} : (⨅ i : α, (0 : ℝ)) = 0 :=
   by
@@ -1254,33 +828,15 @@ theorem ciInf_const_zero {α : Sort _} : (⨅ i : α, (0 : ℝ)) = 0 :=
   · exact ciInf_const
 #align real.cinfi_const_zero Real.ciInf_const_zero
 
-/- warning: real.Inf_of_not_bdd_below -> Real.sInf_of_not_bddBelow is a dubious translation:
-lean 3 declaration is
-  forall {s : Set.{0} Real}, (Not (BddBelow.{0} Real Real.preorder s)) -> (Eq.{1} Real (InfSet.sInf.{0} Real Real.hasInf s) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
-but is expected to have type
-  forall {s : Set.{0} Real}, (Not (BddBelow.{0} Real Real.instPreorderReal s)) -> (Eq.{1} Real (InfSet.sInf.{0} Real Real.instInfSetReal s) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelowₓ'. -/
 theorem sInf_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : sInf s = 0 :=
   neg_eq_zero.2 <| sSup_of_not_bddAbove <| mt bddAbove_neg.1 hs
 #align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelow
 
-/- warning: real.infi_of_not_bdd_below -> Real.iInf_of_not_bddBelow is a dubious translation:
-lean 3 declaration is
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddBelow.{0} Real Real.preorder (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iInf.{0, u1} Real Real.hasInf α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
-but is expected to have type
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddBelow.{0} Real Real.instPreorderReal (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iInf.{0, u1} Real Real.instInfSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelowₓ'. -/
 theorem iInf_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
     (⨅ i, f i) = 0 :=
   sInf_of_not_bddBelow hf
 #align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelow
 
-/- warning: real.Sup_nonneg -> Real.sSup_nonneg is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) x)) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (SupSet.sSup.{0} Real Real.hasSup S))
-but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) x)) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (SupSet.sSup.{0} Real Real.instSupSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.Sup_nonneg Real.sSup_nonnegₓ'. -/
 /--
 As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
 suffices to show that `S` is bounded below by `0` to show that `0 ≤ Sup S`.
@@ -1316,12 +872,6 @@ protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i,
   Real.sSup_le (Set.forall_range_iff.2 hS) ha
 #align real.supr_le Real.iSup_le
 
-/- warning: real.Sup_nonpos -> Real.sSup_nonpos is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe x (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (LE.le.{0} Real Real.hasLe (SupSet.sSup.{0} Real Real.hasSup S) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
-but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal x (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (LE.le.{0} Real Real.instLEReal (SupSet.sSup.{0} Real Real.instSupSetReal S) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Sup_nonpos Real.sSup_nonposₓ'. -/
 /-- As `0` is the default value for `real.Sup` of the empty set, it suffices to show that `S` is
 bounded above by `0` to show that `Sup S ≤ 0`.
 -/
@@ -1329,12 +879,6 @@ theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S 
   Real.sSup_le hS le_rfl
 #align real.Sup_nonpos Real.sSup_nonpos
 
-/- warning: real.Inf_nonneg -> Real.sInf_nonneg is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) x)) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (InfSet.sInf.{0} Real Real.hasInf S))
-but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) x)) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (InfSet.sInf.{0} Real Real.instInfSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.Inf_nonneg Real.sInf_nonnegₓ'. -/
 /-- As `0` is the default value for `real.Inf` of the empty set, it suffices to show that `S` is
 bounded below by `0` to show that `0 ≤ Inf S`.
 -/
@@ -1344,12 +888,6 @@ theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sI
   exacts[Inf_empty.ge, le_csInf hS₂ hS]
 #align real.Inf_nonneg Real.sInf_nonneg
 
-/- warning: real.Inf_nonpos -> Real.sInf_nonpos is a dubious translation:
-lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe x (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (LE.le.{0} Real Real.hasLe (InfSet.sInf.{0} Real Real.hasInf S) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
-but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal x (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (LE.le.{0} Real Real.instLEReal (InfSet.sInf.{0} Real Real.instInfSetReal S) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Inf_nonpos Real.sInf_nonposₓ'. -/
 /--
 As `0` is the default value for `real.Inf` of the empty set or sets which are not bounded below, it
 suffices to show that `S` is bounded above by `0` to show that `Inf S ≤ 0`.
@@ -1361,12 +899,6 @@ theorem sInf_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sInf S 
   · apply dite _ (fun h => csInf_le_of_le h hy <| hS y hy) fun h => (Inf_of_not_bdd_below h).le
 #align real.Inf_nonpos Real.sInf_nonpos
 
-/- warning: real.Inf_le_Sup -> Real.sInf_le_sSup is a dubious translation:
-lean 3 declaration is
-  forall (s : Set.{0} Real), (BddBelow.{0} Real Real.preorder s) -> (BddAbove.{0} Real Real.preorder s) -> (LE.le.{0} Real Real.hasLe (InfSet.sInf.{0} Real Real.hasInf s) (SupSet.sSup.{0} Real Real.hasSup s))
-but is expected to have type
-  forall (s : Set.{0} Real), (BddBelow.{0} Real Real.instPreorderReal s) -> (BddAbove.{0} Real Real.instPreorderReal s) -> (LE.le.{0} Real Real.instLEReal (InfSet.sInf.{0} Real Real.instInfSetReal s) (SupSet.sSup.{0} Real Real.instSupSetReal s))
-Case conversion may be inaccurate. Consider using '#align real.Inf_le_Sup Real.sInf_le_sSupₓ'. -/
 theorem sInf_le_sSup (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : sInf s ≤ sSup s :=
   by
   rcases s.eq_empty_or_nonempty with (rfl | hne)
@@ -1374,12 +906,6 @@ theorem sInf_le_sSup (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : sIn
   · exact csInf_le_csSup h₁ h₂ hne
 #align real.Inf_le_Sup Real.sInf_le_sSup
 
-/- warning: real.cau_seq_converges -> Real.cauSeq_converges is a dubious translation:
-lean 3 declaration is
-  forall (f : CauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup))), Exists.{1} Real (fun (x : Real) => HasEquivₓ.Equiv.{1} (CauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup))) (setoidHasEquiv.{1} (CauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup))) (CauSeq.equiv.{0, 0} Real Real Real.linearOrderedField Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.linearOrderedRing))) f (CauSeq.const.{0, 0} Real Real Real.linearOrderedField Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.linearOrderedRing) x))
-but is expected to have type
-  forall (f : CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal))), Exists.{1} Real (fun (x : Real) => HasEquiv.Equiv.{1, 0} (CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal))) (instHasEquiv.{1} (CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal))) (CauSeq.equiv.{0, 0} Real Real Real.instLinearOrderedFieldReal Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.instLinearOrderedRingReal))) f (CauSeq.const.{0, 0} Real Real Real.instLinearOrderedFieldReal Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.instLinearOrderedRingReal) x))
-Case conversion may be inaccurate. Consider using '#align real.cau_seq_converges Real.cauSeq_convergesₓ'. -/
 theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x :=
   by
   let S := { x : ℝ | const abs x < f }
Diff
@@ -186,10 +186,8 @@ lean 3 declaration is
 but is expected to have type
   forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.ofCauchy a) (Real.ofCauchy b))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_sub Real.ofCauchy_subₓ'. -/
-theorem ofCauchy_sub (a b) : (⟨a - b⟩ : ℝ) = ⟨a⟩ - ⟨b⟩ :=
-  by
-  rw [sub_eq_add_neg, of_cauchy_add, of_cauchy_neg]
-  rfl
+theorem ofCauchy_sub (a b) : (⟨a - b⟩ : ℝ) = ⟨a⟩ - ⟨b⟩ := by
+  rw [sub_eq_add_neg, of_cauchy_add, of_cauchy_neg]; rfl
 #align real.of_cauchy_sub Real.ofCauchy_sub
 
 /- warning: real.of_cauchy_mul -> Real.ofCauchy_mul is a dubious translation:
@@ -269,9 +267,7 @@ but is expected to have type
   forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) a b)) (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_sub Real.cauchy_subₓ'. -/
 theorem cauchy_sub : ∀ a b, (a - b : ℝ).cauchy = a.cauchy - b.cauchy
-  | ⟨a⟩, ⟨b⟩ => by
-    rw [sub_eq_add_neg, ← cauchy_neg, ← cauchy_add]
-    rfl
+  | ⟨a⟩, ⟨b⟩ => by rw [sub_eq_add_neg, ← cauchy_neg, ← cauchy_add]; rfl
 #align real.cauchy_sub Real.cauchy_sub
 
 /- warning: real.cauchy_inv -> Real.cauchy_inv is a dubious translation:
@@ -709,9 +705,7 @@ but is expected to have type
   forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (Sup.sup.{0} Real Real.instSupReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_sup Real.ofCauchy_supₓ'. -/
 theorem ofCauchy_sup (a b) : (⟨⟦a ⊔ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊔ ⟨⟦b⟧⟩ :=
-  show _ = sup _ _ by
-    rw [sup]
-    rfl
+  show _ = sup _ _ by rw [sup]; rfl
 #align real.of_cauchy_sup Real.ofCauchy_sup
 
 /- warning: real.mk_sup -> Real.mk_sup is a dubious translation:
@@ -738,9 +732,7 @@ but is expected to have type
   forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (Inf.inf.{0} Real Real.instInfReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_inf Real.ofCauchy_infₓ'. -/
 theorem ofCauchy_inf (a b) : (⟨⟦a ⊓ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊓ ⟨⟦b⟧⟩ :=
-  show _ = inf _ _ by
-    rw [inf]
-    rfl
+  show _ = inf _ _ by rw [inf]; rfl
 #align real.of_cauchy_inf Real.ofCauchy_inf
 
 /- warning: real.mk_inf -> Real.mk_inf is a dubious translation:
@@ -1018,8 +1010,7 @@ theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃
     suffices ∀ (j) (_ : j ≥ ⌈ε⁻¹⌉₊) (k) (_ : k ≥ ⌈ε⁻¹⌉₊), (f j / j - f k / k : ℚ) < ε
       by
       refine' ⟨_, fun j ij => abs_lt.2 ⟨_, this _ ij _ le_rfl⟩⟩
-      rw [neg_lt, neg_sub]
-      exact this _ le_rfl _ ij
+      rw [neg_lt, neg_sub]; exact this _ le_rfl _ ij
     intro j ij k ik
     replace ij := le_trans (Nat.le_ceil _) (Nat.cast_le.2 ij)
     replace ik := le_trans (Nat.le_ceil _) (Nat.cast_le.2 ik)
@@ -1068,9 +1059,7 @@ but is expected to have type
   forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddAbove.{0} Real Real.instPreorderReal S) -> (IsLUB.{0} Real Real.instPreorderReal S (SupSet.sSup.{0} Real Real.instSupSetReal S))
 Case conversion may be inaccurate. Consider using '#align real.is_lub_Sup Real.isLUB_sSupₓ'. -/
 protected theorem isLUB_sSup (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) : IsLUB S (sSup S) :=
-  by
-  simp only [Sup_def, dif_pos (And.intro h₁ h₂)]
-  apply Classical.choose_spec
+  by simp only [Sup_def, dif_pos (And.intro h₁ h₂)]; apply Classical.choose_spec
 #align real.is_lub_Sup Real.isLUB_sSup
 
 noncomputable instance : InfSet ℝ :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 
 ! This file was ported from Lean 3 source module data.real.basic
-! leanprover-community/mathlib commit cc70d9141824ea8982d1562ce009952f2c3ece30
+! leanprover-community/mathlib commit cb42593171ba005beaaf4549fcfe0dece9ada4c9
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -103,27 +103,21 @@ def equivCauchy : ℝ ≃ CauSeq.Completion.Cauchy abs :=
 -- irreducible doesn't work for instances: https://github.com/leanprover-community/lean/issues/511
 private irreducible_def zero : ℝ :=
   ⟨0⟩
-#align real.zero real.zero
 
 private irreducible_def one : ℝ :=
   ⟨1⟩
-#align real.one real.one
 
 private irreducible_def add : ℝ → ℝ → ℝ
   | ⟨a⟩, ⟨b⟩ => ⟨a + b⟩
-#align real.add real.add
 
 private irreducible_def neg : ℝ → ℝ
   | ⟨a⟩ => ⟨-a⟩
-#align real.neg real.neg
 
 private irreducible_def mul : ℝ → ℝ → ℝ
   | ⟨a⟩, ⟨b⟩ => ⟨a * b⟩
-#align real.mul real.mul
 
 private noncomputable irreducible_def inv' : ℝ → ℝ
   | ⟨a⟩ => ⟨a⁻¹⟩
-#align real.inv' real.inv'
 
 instance : Zero ℝ :=
   ⟨zero⟩
@@ -473,7 +467,6 @@ private irreducible_def lt : ℝ → ℝ → Prop
       propext <|
         ⟨fun h => lt_of_eq_of_lt (Setoid.symm hf) (lt_of_lt_of_eq h hg), fun h =>
           lt_of_eq_of_lt hf (lt_of_lt_of_eq h (Setoid.symm hg))⟩
-#align real.lt real.lt
 
 instance : LT ℝ :=
   ⟨Lt⟩
@@ -557,14 +550,12 @@ theorem mk_pos {f : CauSeq ℚ abs} : 0 < mk f ↔ Pos f := by
 
 private irreducible_def le (x y : ℝ) : Prop :=
   x < y ∨ x = y
-#align real.le real.le
 
 instance : LE ℝ :=
   ⟨Le⟩
 
 private theorem le_def {x y : ℝ} : x ≤ y ↔ x < y ∨ x = y :=
   show Le _ _ ↔ _ by rw [le]
-#align real.le_def real.le_def
 
 /- warning: real.mk_le -> Real.mk_le is a dubious translation:
 lean 3 declaration is
@@ -707,7 +698,6 @@ instance : Nontrivial ℝ :=
 
 private irreducible_def sup : ℝ → ℝ → ℝ
   | ⟨x⟩, ⟨y⟩ => ⟨Quotient.map₂ (· ⊔ ·) (fun x₁ x₂ hx y₁ y₂ hy => sup_equiv_sup hx hy) x y⟩
-#align real.sup real.sup
 
 instance : Sup ℝ :=
   ⟨sup⟩
@@ -737,7 +727,6 @@ theorem mk_sup (a b) : (mk (a ⊔ b) : ℝ) = mk a ⊔ mk b :=
 
 private irreducible_def inf : ℝ → ℝ → ℝ
   | ⟨x⟩, ⟨y⟩ => ⟨Quotient.map₂ (· ⊓ ·) (fun x₁ x₂ hx y₁ y₂ hy => inf_equiv_inf hx hy) x y⟩
-#align real.inf real.inf
 
 instance : Inf ℝ :=
   ⟨inf⟩
@@ -1305,7 +1294,7 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align real.Sup_nonneg Real.sSup_nonnegₓ'. -/
 /--
 As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
-suffices to show that `S` is bounded below by `0` to show that `0 ≤ Inf S`.
+suffices to show that `S` is bounded below by `0` to show that `0 ≤ Sup S`.
 -/
 theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sSup S :=
   by
@@ -1314,6 +1303,30 @@ theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sS
   · apply dite _ (fun h => le_csSup_of_le h hy <| hS y hy) fun h => (Sup_of_not_bdd_above h).ge
 #align real.Sup_nonneg Real.sSup_nonneg
 
+/--
+As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
+suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
+-/
+protected theorem iSup_nonneg {ι : Sort _} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
+  sSup_nonneg _ <| Set.forall_range_iff.2 hf
+#align real.supr_nonneg Real.iSup_nonneg
+
+/--
+As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
+suffices to show that all elements of `S` are bounded by a nonnagative number to show that `Sup S`
+is bounded by this number.
+-/
+protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (ha : 0 ≤ a) : sSup S ≤ a :=
+  by
+  rcases S.eq_empty_or_nonempty with (rfl | hS₂)
+  exacts[Sup_empty.trans_le ha, csSup_le hS₂ hS]
+#align real.Sup_le Real.sSup_le
+
+protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
+    (⨆ i, f i) ≤ a :=
+  Real.sSup_le (Set.forall_range_iff.2 hS) ha
+#align real.supr_le Real.iSup_le
+
 /- warning: real.Sup_nonpos -> Real.sSup_nonpos is a dubious translation:
 lean 3 declaration is
   forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe x (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (LE.le.{0} Real Real.hasLe (SupSet.sSup.{0} Real Real.hasSup S) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
@@ -1324,9 +1337,7 @@ Case conversion may be inaccurate. Consider using '#align real.Sup_nonpos Real.s
 bounded above by `0` to show that `Sup S ≤ 0`.
 -/
 theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S ≤ 0 :=
-  by
-  rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[Sup_empty.le, csSup_le hS₂ hS]
+  Real.sSup_le hS le_rfl
 #align real.Sup_nonpos Real.sSup_nonpos
 
 /- warning: real.Inf_nonneg -> Real.sInf_nonneg is a dubious translation:
Diff
@@ -1061,318 +1061,318 @@ theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃
 noncomputable instance : SupSet ℝ :=
   ⟨fun S => if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0⟩
 
-/- warning: real.Sup_def -> Real.supₛ_def is a dubious translation:
+/- warning: real.Sup_def -> Real.sSup_def is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), Eq.{1} Real (SupSet.supₛ.{0} Real Real.hasSup S) (dite.{1} Real (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S)) (And.decidable (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) (Classical.propDecidable (Set.Nonempty.{0} Real S)) (Classical.propDecidable (BddAbove.{0} Real Real.preorder S))) (fun (h : And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S)) => Classical.choose.{1} Real (fun (x : Real) => IsLUB.{0} Real Real.preorder S x) (Real.exists_isLUB S (And.left (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) h) (And.right (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) h))) (fun (h : Not (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S))) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
+  forall (S : Set.{0} Real), Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup S) (dite.{1} Real (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S)) (And.decidable (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) (Classical.propDecidable (Set.Nonempty.{0} Real S)) (Classical.propDecidable (BddAbove.{0} Real Real.preorder S))) (fun (h : And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S)) => Classical.choose.{1} Real (fun (x : Real) => IsLUB.{0} Real Real.preorder S x) (Real.exists_isLUB S (And.left (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) h) (And.right (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S) h))) (fun (h : Not (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.preorder S))) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
 but is expected to have type
-  forall (S : Set.{0} Real), Eq.{1} Real (SupSet.supₛ.{0} Real Real.instSupSetReal S) (dite.{1} Real (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S)) (instDecidableAnd (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) (Classical.propDecidable (Set.Nonempty.{0} Real S)) (Classical.propDecidable (BddAbove.{0} Real Real.instPreorderReal S))) (fun (h : And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S)) => Classical.choose.{1} Real (fun (x : Real) => IsLUB.{0} Real Real.instPreorderReal S x) (Real.exists_isLUB S (And.left (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) h) (And.right (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) h))) (fun (h : Not (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S))) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Sup_def Real.supₛ_defₓ'. -/
-theorem supₛ_def (S : Set ℝ) :
-    supₛ S = if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0 :=
+  forall (S : Set.{0} Real), Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal S) (dite.{1} Real (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S)) (instDecidableAnd (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) (Classical.propDecidable (Set.Nonempty.{0} Real S)) (Classical.propDecidable (BddAbove.{0} Real Real.instPreorderReal S))) (fun (h : And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S)) => Classical.choose.{1} Real (fun (x : Real) => IsLUB.{0} Real Real.instPreorderReal S x) (Real.exists_isLUB S (And.left (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) h) (And.right (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S) h))) (fun (h : Not (And (Set.Nonempty.{0} Real S) (BddAbove.{0} Real Real.instPreorderReal S))) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
+Case conversion may be inaccurate. Consider using '#align real.Sup_def Real.sSup_defₓ'. -/
+theorem sSup_def (S : Set ℝ) :
+    sSup S = if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0 :=
   rfl
-#align real.Sup_def Real.supₛ_def
+#align real.Sup_def Real.sSup_def
 
-/- warning: real.is_lub_Sup -> Real.isLUB_supₛ is a dubious translation:
+/- warning: real.is_lub_Sup -> Real.isLUB_sSup is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddAbove.{0} Real Real.preorder S) -> (IsLUB.{0} Real Real.preorder S (SupSet.supₛ.{0} Real Real.hasSup S))
+  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddAbove.{0} Real Real.preorder S) -> (IsLUB.{0} Real Real.preorder S (SupSet.sSup.{0} Real Real.hasSup S))
 but is expected to have type
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddAbove.{0} Real Real.instPreorderReal S) -> (IsLUB.{0} Real Real.instPreorderReal S (SupSet.supₛ.{0} Real Real.instSupSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.is_lub_Sup Real.isLUB_supₛₓ'. -/
-protected theorem isLUB_supₛ (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) : IsLUB S (supₛ S) :=
+  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddAbove.{0} Real Real.instPreorderReal S) -> (IsLUB.{0} Real Real.instPreorderReal S (SupSet.sSup.{0} Real Real.instSupSetReal S))
+Case conversion may be inaccurate. Consider using '#align real.is_lub_Sup Real.isLUB_sSupₓ'. -/
+protected theorem isLUB_sSup (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) : IsLUB S (sSup S) :=
   by
   simp only [Sup_def, dif_pos (And.intro h₁ h₂)]
   apply Classical.choose_spec
-#align real.is_lub_Sup Real.isLUB_supₛ
+#align real.is_lub_Sup Real.isLUB_sSup
 
 noncomputable instance : InfSet ℝ :=
-  ⟨fun S => -supₛ (-S)⟩
+  ⟨fun S => -sSup (-S)⟩
 
-/- warning: real.Inf_def -> Real.infₛ_def is a dubious translation:
+/- warning: real.Inf_def -> Real.sInf_def is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), Eq.{1} Real (InfSet.infₛ.{0} Real Real.hasInf S) (Neg.neg.{0} Real Real.hasNeg (SupSet.supₛ.{0} Real Real.hasSup (Neg.neg.{0} (Set.{0} Real) (Set.neg.{0} Real Real.hasNeg) S)))
+  forall (S : Set.{0} Real), Eq.{1} Real (InfSet.sInf.{0} Real Real.hasInf S) (Neg.neg.{0} Real Real.hasNeg (SupSet.sSup.{0} Real Real.hasSup (Neg.neg.{0} (Set.{0} Real) (Set.neg.{0} Real Real.hasNeg) S)))
 but is expected to have type
-  forall (S : Set.{0} Real), Eq.{1} Real (InfSet.infₛ.{0} Real Real.instInfSetReal S) (Neg.neg.{0} Real Real.instNegReal (SupSet.supₛ.{0} Real Real.instSupSetReal (Neg.neg.{0} (Set.{0} Real) (Set.neg.{0} Real Real.instNegReal) S)))
-Case conversion may be inaccurate. Consider using '#align real.Inf_def Real.infₛ_defₓ'. -/
-theorem infₛ_def (S : Set ℝ) : infₛ S = -supₛ (-S) :=
+  forall (S : Set.{0} Real), Eq.{1} Real (InfSet.sInf.{0} Real Real.instInfSetReal S) (Neg.neg.{0} Real Real.instNegReal (SupSet.sSup.{0} Real Real.instSupSetReal (Neg.neg.{0} (Set.{0} Real) (Set.neg.{0} Real Real.instNegReal) S)))
+Case conversion may be inaccurate. Consider using '#align real.Inf_def Real.sInf_defₓ'. -/
+theorem sInf_def (S : Set ℝ) : sInf S = -sSup (-S) :=
   rfl
-#align real.Inf_def Real.infₛ_def
+#align real.Inf_def Real.sInf_def
 
-/- warning: real.is_glb_Inf -> Real.is_glb_infₛ is a dubious translation:
+/- warning: real.is_glb_Inf -> Real.is_glb_sInf is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddBelow.{0} Real Real.preorder S) -> (IsGLB.{0} Real Real.preorder S (InfSet.infₛ.{0} Real Real.hasInf S))
+  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddBelow.{0} Real Real.preorder S) -> (IsGLB.{0} Real Real.preorder S (InfSet.sInf.{0} Real Real.hasInf S))
 but is expected to have type
-  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddBelow.{0} Real Real.instPreorderReal S) -> (IsGLB.{0} Real Real.instPreorderReal S (InfSet.infₛ.{0} Real Real.instInfSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.is_glb_Inf Real.is_glb_infₛₓ'. -/
-protected theorem is_glb_infₛ (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddBelow S) : IsGLB S (infₛ S) :=
+  forall (S : Set.{0} Real), (Set.Nonempty.{0} Real S) -> (BddBelow.{0} Real Real.instPreorderReal S) -> (IsGLB.{0} Real Real.instPreorderReal S (InfSet.sInf.{0} Real Real.instInfSetReal S))
+Case conversion may be inaccurate. Consider using '#align real.is_glb_Inf Real.is_glb_sInfₓ'. -/
+protected theorem is_glb_sInf (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddBelow S) : IsGLB S (sInf S) :=
   by
   rw [Inf_def, ← isLUB_neg', neg_neg]
-  exact Real.isLUB_supₛ _ h₁.neg h₂.neg
-#align real.is_glb_Inf Real.is_glb_infₛ
+  exact Real.isLUB_sSup _ h₁.neg h₂.neg
+#align real.is_glb_Inf Real.is_glb_sInf
 
 noncomputable instance : ConditionallyCompleteLinearOrder ℝ :=
   { Real.linearOrder, Real.lattice with
-    supₛ := SupSet.supₛ
-    infₛ := InfSet.infₛ
-    le_cSup := fun s a hs ha => (Real.isLUB_supₛ s ⟨a, ha⟩ hs).1 ha
-    cSup_le := fun s a hs ha => (Real.isLUB_supₛ s hs ⟨a, ha⟩).2 ha
-    cInf_le := fun s a hs ha => (Real.is_glb_infₛ s ⟨a, ha⟩ hs).1 ha
-    le_cInf := fun s a hs ha => (Real.is_glb_infₛ s hs ⟨a, ha⟩).2 ha }
+    sSup := SupSet.sSup
+    sInf := InfSet.sInf
+    le_cSup := fun s a hs ha => (Real.isLUB_sSup s ⟨a, ha⟩ hs).1 ha
+    cSup_le := fun s a hs ha => (Real.isLUB_sSup s hs ⟨a, ha⟩).2 ha
+    cInf_le := fun s a hs ha => (Real.is_glb_sInf s ⟨a, ha⟩ hs).1 ha
+    le_cInf := fun s a hs ha => (Real.is_glb_sInf s hs ⟨a, ha⟩).2 ha }
 
-/- warning: real.lt_Inf_add_pos -> Real.lt_infₛ_add_pos is a dubious translation:
+/- warning: real.lt_Inf_add_pos -> Real.lt_sInf_add_pos is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) ε) -> (Exists.{1} Real (fun (a : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) => LT.lt.{0} Real Real.hasLt a (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (InfSet.infₛ.{0} Real Real.hasInf s) ε)))))
+  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) ε) -> (Exists.{1} Real (fun (a : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) => LT.lt.{0} Real Real.hasLt a (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (InfSet.sInf.{0} Real Real.hasInf s) ε)))))
 but is expected to have type
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) ε) -> (Exists.{1} Real (fun (a : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) a s) (LT.lt.{0} Real Real.instLTReal a (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (InfSet.infₛ.{0} Real Real.instInfSetReal s) ε)))))
-Case conversion may be inaccurate. Consider using '#align real.lt_Inf_add_pos Real.lt_infₛ_add_posₓ'. -/
-theorem lt_infₛ_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
-    ∃ a ∈ s, a < infₛ s + ε :=
-  exists_lt_of_cinfₛ_lt h <| lt_add_of_pos_right _ hε
-#align real.lt_Inf_add_pos Real.lt_infₛ_add_pos
+  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) ε) -> (Exists.{1} Real (fun (a : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) a s) (LT.lt.{0} Real Real.instLTReal a (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (InfSet.sInf.{0} Real Real.instInfSetReal s) ε)))))
+Case conversion may be inaccurate. Consider using '#align real.lt_Inf_add_pos Real.lt_sInf_add_posₓ'. -/
+theorem lt_sInf_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
+    ∃ a ∈ s, a < sInf s + ε :=
+  exists_lt_of_csInf_lt h <| lt_add_of_pos_right _ hε
+#align real.lt_Inf_add_pos Real.lt_sInf_add_pos
 
-/- warning: real.add_neg_lt_Sup -> Real.add_neg_lt_supₛ is a dubious translation:
+/- warning: real.add_neg_lt_Sup -> Real.add_neg_lt_sSup is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Real (fun (a : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) => LT.lt.{0} Real Real.hasLt (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (SupSet.supₛ.{0} Real Real.hasSup s) ε) a))))
+  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Real (fun (a : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) a s) => LT.lt.{0} Real Real.hasLt (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (SupSet.sSup.{0} Real Real.hasSup s) ε) a))))
 but is expected to have type
-  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Real (fun (a : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) a s) (LT.lt.{0} Real Real.instLTReal (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (SupSet.supₛ.{0} Real Real.instSupSetReal s) ε) a))))
-Case conversion may be inaccurate. Consider using '#align real.add_neg_lt_Sup Real.add_neg_lt_supₛₓ'. -/
-theorem add_neg_lt_supₛ {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : ε < 0) :
-    ∃ a ∈ s, supₛ s + ε < a :=
-  exists_lt_of_lt_csupₛ h <| add_lt_iff_neg_left.2 hε
-#align real.add_neg_lt_Sup Real.add_neg_lt_supₛ
+  forall {s : Set.{0} Real}, (Set.Nonempty.{0} Real s) -> (forall {ε : Real}, (LT.lt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Real (fun (a : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) a s) (LT.lt.{0} Real Real.instLTReal (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (SupSet.sSup.{0} Real Real.instSupSetReal s) ε) a))))
+Case conversion may be inaccurate. Consider using '#align real.add_neg_lt_Sup Real.add_neg_lt_sSupₓ'. -/
+theorem add_neg_lt_sSup {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : ε < 0) :
+    ∃ a ∈ s, sSup s + ε < a :=
+  exists_lt_of_lt_csSup h <| add_lt_iff_neg_left.2 hε
+#align real.add_neg_lt_Sup Real.add_neg_lt_sSup
 
-/- warning: real.Inf_le_iff -> Real.infₛ_le_iff is a dubious translation:
+/- warning: real.Inf_le_iff -> Real.sInf_le_iff is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (BddBelow.{0} Real Real.preorder s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.hasLe (InfSet.infₛ.{0} Real Real.hasInf s) a) (forall (ε : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) ε) -> (Exists.{1} Real (fun (x : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) => LT.lt.{0} Real Real.hasLt x (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a ε))))))
+  forall {s : Set.{0} Real}, (BddBelow.{0} Real Real.preorder s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.hasLe (InfSet.sInf.{0} Real Real.hasInf s) a) (forall (ε : Real), (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) ε) -> (Exists.{1} Real (fun (x : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) => LT.lt.{0} Real Real.hasLt x (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a ε))))))
 but is expected to have type
-  forall {s : Set.{0} Real}, (BddBelow.{0} Real Real.instPreorderReal s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.instLEReal (InfSet.infₛ.{0} Real Real.instInfSetReal s) a) (forall (ε : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) ε) -> (Exists.{1} Real (fun (x : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x s) (LT.lt.{0} Real Real.instLTReal x (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a ε))))))
-Case conversion may be inaccurate. Consider using '#align real.Inf_le_iff Real.infₛ_le_iffₓ'. -/
-theorem infₛ_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
-    infₛ s ≤ a ↔ ∀ ε, 0 < ε → ∃ x ∈ s, x < a + ε :=
+  forall {s : Set.{0} Real}, (BddBelow.{0} Real Real.instPreorderReal s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.instLEReal (InfSet.sInf.{0} Real Real.instInfSetReal s) a) (forall (ε : Real), (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) ε) -> (Exists.{1} Real (fun (x : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x s) (LT.lt.{0} Real Real.instLTReal x (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a ε))))))
+Case conversion may be inaccurate. Consider using '#align real.Inf_le_iff Real.sInf_le_iffₓ'. -/
+theorem sInf_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
+    sInf s ≤ a ↔ ∀ ε, 0 < ε → ∃ x ∈ s, x < a + ε :=
   by
   rw [le_iff_forall_pos_lt_add]
   constructor <;> intro H ε ε_pos
-  · exact exists_lt_of_cinfₛ_lt h' (H ε ε_pos)
+  · exact exists_lt_of_csInf_lt h' (H ε ε_pos)
   · rcases H ε ε_pos with ⟨x, x_in, hx⟩
-    exact cinfₛ_lt_of_lt h x_in hx
-#align real.Inf_le_iff Real.infₛ_le_iff
+    exact csInf_lt_of_lt h x_in hx
+#align real.Inf_le_iff Real.sInf_le_iff
 
-/- warning: real.le_Sup_iff -> Real.le_supₛ_iff is a dubious translation:
+/- warning: real.le_Sup_iff -> Real.le_sSup_iff is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (BddAbove.{0} Real Real.preorder s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.hasLe a (SupSet.supₛ.{0} Real Real.hasSup s)) (forall (ε : Real), (LT.lt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Real (fun (x : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) => LT.lt.{0} Real Real.hasLt (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a ε) x)))))
+  forall {s : Set.{0} Real}, (BddAbove.{0} Real Real.preorder s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.hasLe a (SupSet.sSup.{0} Real Real.hasSup s)) (forall (ε : Real), (LT.lt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Real (fun (x : Real) => Exists.{0} (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) (fun (H : Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x s) => LT.lt.{0} Real Real.hasLt (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a ε) x)))))
 but is expected to have type
-  forall {s : Set.{0} Real}, (BddAbove.{0} Real Real.instPreorderReal s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.instLEReal a (SupSet.supₛ.{0} Real Real.instSupSetReal s)) (forall (ε : Real), (LT.lt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Real (fun (x : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x s) (LT.lt.{0} Real Real.instLTReal (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a ε) x)))))
-Case conversion may be inaccurate. Consider using '#align real.le_Sup_iff Real.le_supₛ_iffₓ'. -/
-theorem le_supₛ_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
-    a ≤ supₛ s ↔ ∀ ε, ε < 0 → ∃ x ∈ s, a + ε < x :=
+  forall {s : Set.{0} Real}, (BddAbove.{0} Real Real.instPreorderReal s) -> (Set.Nonempty.{0} Real s) -> (forall {a : Real}, Iff (LE.le.{0} Real Real.instLEReal a (SupSet.sSup.{0} Real Real.instSupSetReal s)) (forall (ε : Real), (LT.lt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Real (fun (x : Real) => And (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x s) (LT.lt.{0} Real Real.instLTReal (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a ε) x)))))
+Case conversion may be inaccurate. Consider using '#align real.le_Sup_iff Real.le_sSup_iffₓ'. -/
+theorem le_sSup_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
+    a ≤ sSup s ↔ ∀ ε, ε < 0 → ∃ x ∈ s, a + ε < x :=
   by
   rw [le_iff_forall_pos_lt_add]
   refine' ⟨fun H ε ε_neg => _, fun H ε ε_pos => _⟩
-  · exact exists_lt_of_lt_csupₛ h' (lt_sub_iff_add_lt.mp (H _ (neg_pos.mpr ε_neg)))
+  · exact exists_lt_of_lt_csSup h' (lt_sub_iff_add_lt.mp (H _ (neg_pos.mpr ε_neg)))
   · rcases H _ (neg_lt_zero.mpr ε_pos) with ⟨x, x_in, hx⟩
-    exact sub_lt_iff_lt_add.mp (lt_csupₛ_of_lt h x_in hx)
-#align real.le_Sup_iff Real.le_supₛ_iff
+    exact sub_lt_iff_lt_add.mp (lt_csSup_of_lt h x_in hx)
+#align real.le_Sup_iff Real.le_sSup_iff
 
-/- warning: real.Sup_empty -> Real.supₛ_empty is a dubious translation:
+/- warning: real.Sup_empty -> Real.sSup_empty is a dubious translation:
 lean 3 declaration is
-  Eq.{1} Real (SupSet.supₛ.{0} Real Real.hasSup (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.hasEmptyc.{0} Real))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
+  Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.hasEmptyc.{0} Real))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  Eq.{1} Real (SupSet.supₛ.{0} Real Real.instSupSetReal (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.instEmptyCollectionSet.{0} Real))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.Sup_empty Real.supₛ_emptyₓ'. -/
+  Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.instEmptyCollectionSet.{0} Real))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+Case conversion may be inaccurate. Consider using '#align real.Sup_empty Real.sSup_emptyₓ'. -/
 @[simp]
-theorem supₛ_empty : supₛ (∅ : Set ℝ) = 0 :=
+theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
   dif_neg <| by simp
-#align real.Sup_empty Real.supₛ_empty
+#align real.Sup_empty Real.sSup_empty
 
-/- warning: real.csupr_empty -> Real.csupᵢ_empty is a dubious translation:
+/- warning: real.csupr_empty -> Real.ciSup_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (supᵢ.{0, u1} Real Real.hasSup α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
+  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iSup.{0, u1} Real Real.hasSup α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (supᵢ.{0, u1} Real Real.instSupSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.csupr_empty Real.csupᵢ_emptyₓ'. -/
-theorem csupᵢ_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 :=
+  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iSup.{0, u1} Real Real.instSupSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+Case conversion may be inaccurate. Consider using '#align real.csupr_empty Real.ciSup_emptyₓ'. -/
+theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 :=
   by
-  dsimp [supᵢ]
-  convert Real.supₛ_empty
+  dsimp [iSup]
+  convert Real.sSup_empty
   rw [Set.range_eq_empty_iff]
   infer_instance
-#align real.csupr_empty Real.csupᵢ_empty
+#align real.csupr_empty Real.ciSup_empty
 
-/- warning: real.csupr_const_zero -> Real.csupᵢ_const_zero is a dubious translation:
+/- warning: real.csupr_const_zero -> Real.ciSup_const_zero is a dubious translation:
 lean 3 declaration is
-  forall {α : Sort.{u1}}, Eq.{1} Real (supᵢ.{0, u1} Real Real.hasSup α (fun (i : α) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
+  forall {α : Sort.{u1}}, Eq.{1} Real (iSup.{0, u1} Real Real.hasSup α (fun (i : α) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  forall {α : Sort.{u1}}, Eq.{1} Real (supᵢ.{0, u1} Real Real.instSupSetReal α (fun (i : α) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.csupr_const_zero Real.csupᵢ_const_zeroₓ'. -/
+  forall {α : Sort.{u1}}, Eq.{1} Real (iSup.{0, u1} Real Real.instSupSetReal α (fun (i : α) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+Case conversion may be inaccurate. Consider using '#align real.csupr_const_zero Real.ciSup_const_zeroₓ'. -/
 @[simp]
-theorem csupᵢ_const_zero {α : Sort _} : (⨆ i : α, (0 : ℝ)) = 0 :=
+theorem ciSup_const_zero {α : Sort _} : (⨆ i : α, (0 : ℝ)) = 0 :=
   by
   cases isEmpty_or_nonempty α
-  · exact Real.csupᵢ_empty _
-  · exact csupᵢ_const
-#align real.csupr_const_zero Real.csupᵢ_const_zero
+  · exact Real.ciSup_empty _
+  · exact ciSup_const
+#align real.csupr_const_zero Real.ciSup_const_zero
 
-/- warning: real.Sup_of_not_bdd_above -> Real.supₛ_of_not_bddAbove is a dubious translation:
+/- warning: real.Sup_of_not_bdd_above -> Real.sSup_of_not_bddAbove is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (Not (BddAbove.{0} Real Real.preorder s)) -> (Eq.{1} Real (SupSet.supₛ.{0} Real Real.hasSup s) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
+  forall {s : Set.{0} Real}, (Not (BddAbove.{0} Real Real.preorder s)) -> (Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup s) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
 but is expected to have type
-  forall {s : Set.{0} Real}, (Not (BddAbove.{0} Real Real.instPreorderReal s)) -> (Eq.{1} Real (SupSet.supₛ.{0} Real Real.instSupSetReal s) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Sup_of_not_bdd_above Real.supₛ_of_not_bddAboveₓ'. -/
-theorem supₛ_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : supₛ s = 0 :=
+  forall {s : Set.{0} Real}, (Not (BddAbove.{0} Real Real.instPreorderReal s)) -> (Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal s) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
+Case conversion may be inaccurate. Consider using '#align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAboveₓ'. -/
+theorem sSup_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : sSup s = 0 :=
   dif_neg fun h => hs h.2
-#align real.Sup_of_not_bdd_above Real.supₛ_of_not_bddAbove
+#align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAbove
 
-/- warning: real.supr_of_not_bdd_above -> Real.supᵢ_of_not_bddAbove is a dubious translation:
+/- warning: real.supr_of_not_bdd_above -> Real.iSup_of_not_bddAbove is a dubious translation:
 lean 3 declaration is
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddAbove.{0} Real Real.preorder (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (supᵢ.{0, u1} Real Real.hasSup α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
+  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddAbove.{0} Real Real.preorder (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iSup.{0, u1} Real Real.hasSup α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
 but is expected to have type
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddAbove.{0} Real Real.instPreorderReal (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (supᵢ.{0, u1} Real Real.instSupSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.supr_of_not_bdd_above Real.supᵢ_of_not_bddAboveₓ'. -/
-theorem supᵢ_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
+  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddAbove.{0} Real Real.instPreorderReal (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iSup.{0, u1} Real Real.instSupSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
+Case conversion may be inaccurate. Consider using '#align real.supr_of_not_bdd_above Real.iSup_of_not_bddAboveₓ'. -/
+theorem iSup_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
     (⨆ i, f i) = 0 :=
-  supₛ_of_not_bddAbove hf
-#align real.supr_of_not_bdd_above Real.supᵢ_of_not_bddAbove
+  sSup_of_not_bddAbove hf
+#align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
 
-/- warning: real.Sup_univ -> Real.supₛ_univ is a dubious translation:
+/- warning: real.Sup_univ -> Real.sSup_univ is a dubious translation:
 lean 3 declaration is
-  Eq.{1} Real (SupSet.supₛ.{0} Real Real.hasSup (Set.univ.{0} Real)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
+  Eq.{1} Real (SupSet.sSup.{0} Real Real.hasSup (Set.univ.{0} Real)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  Eq.{1} Real (SupSet.supₛ.{0} Real Real.instSupSetReal (Set.univ.{0} Real)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.Sup_univ Real.supₛ_univₓ'. -/
-theorem supₛ_univ : supₛ (@Set.univ ℝ) = 0 :=
-  Real.supₛ_of_not_bddAbove fun ⟨x, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
-#align real.Sup_univ Real.supₛ_univ
+  Eq.{1} Real (SupSet.sSup.{0} Real Real.instSupSetReal (Set.univ.{0} Real)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+Case conversion may be inaccurate. Consider using '#align real.Sup_univ Real.sSup_univₓ'. -/
+theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
+  Real.sSup_of_not_bddAbove fun ⟨x, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
+#align real.Sup_univ Real.sSup_univ
 
-/- warning: real.Inf_empty -> Real.infₛ_empty is a dubious translation:
+/- warning: real.Inf_empty -> Real.sInf_empty is a dubious translation:
 lean 3 declaration is
-  Eq.{1} Real (InfSet.infₛ.{0} Real Real.hasInf (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.hasEmptyc.{0} Real))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
+  Eq.{1} Real (InfSet.sInf.{0} Real Real.hasInf (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.hasEmptyc.{0} Real))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  Eq.{1} Real (InfSet.infₛ.{0} Real Real.instInfSetReal (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.instEmptyCollectionSet.{0} Real))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.Inf_empty Real.infₛ_emptyₓ'. -/
+  Eq.{1} Real (InfSet.sInf.{0} Real Real.instInfSetReal (EmptyCollection.emptyCollection.{0} (Set.{0} Real) (Set.instEmptyCollectionSet.{0} Real))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+Case conversion may be inaccurate. Consider using '#align real.Inf_empty Real.sInf_emptyₓ'. -/
 @[simp]
-theorem infₛ_empty : infₛ (∅ : Set ℝ) = 0 := by simp [Inf_def, supₛ_empty]
-#align real.Inf_empty Real.infₛ_empty
+theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [Inf_def, sSup_empty]
+#align real.Inf_empty Real.sInf_empty
 
-/- warning: real.cinfi_empty -> Real.cinfᵢ_empty is a dubious translation:
+/- warning: real.cinfi_empty -> Real.ciInf_empty is a dubious translation:
 lean 3 declaration is
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (infᵢ.{0, u1} Real Real.hasInf α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
+  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iInf.{0, u1} Real Real.hasInf α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (infᵢ.{0, u1} Real Real.instInfSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.cinfi_empty Real.cinfᵢ_emptyₓ'. -/
-theorem cinfᵢ_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
-  rw [infᵢ_of_empty', infₛ_empty]
-#align real.cinfi_empty Real.cinfᵢ_empty
+  forall {α : Sort.{u1}} [_inst_1 : IsEmpty.{u1} α] (f : α -> Real), Eq.{1} Real (iInf.{0, u1} Real Real.instInfSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+Case conversion may be inaccurate. Consider using '#align real.cinfi_empty Real.ciInf_emptyₓ'. -/
+theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
+  rw [iInf_of_empty', sInf_empty]
+#align real.cinfi_empty Real.ciInf_empty
 
-/- warning: real.cinfi_const_zero -> Real.cinfᵢ_const_zero is a dubious translation:
+/- warning: real.cinfi_const_zero -> Real.ciInf_const_zero is a dubious translation:
 lean 3 declaration is
-  forall {α : Sort.{u1}}, Eq.{1} Real (infᵢ.{0, u1} Real Real.hasInf α (fun (i : α) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
+  forall {α : Sort.{u1}}, Eq.{1} Real (iInf.{0, u1} Real Real.hasInf α (fun (i : α) => OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  forall {α : Sort.{u1}}, Eq.{1} Real (infᵢ.{0, u1} Real Real.instInfSetReal α (fun (i : α) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
-Case conversion may be inaccurate. Consider using '#align real.cinfi_const_zero Real.cinfᵢ_const_zeroₓ'. -/
+  forall {α : Sort.{u1}}, Eq.{1} Real (iInf.{0, u1} Real Real.instInfSetReal α (fun (i : α) => OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+Case conversion may be inaccurate. Consider using '#align real.cinfi_const_zero Real.ciInf_const_zeroₓ'. -/
 @[simp]
-theorem cinfᵢ_const_zero {α : Sort _} : (⨅ i : α, (0 : ℝ)) = 0 :=
+theorem ciInf_const_zero {α : Sort _} : (⨅ i : α, (0 : ℝ)) = 0 :=
   by
   cases isEmpty_or_nonempty α
-  · exact Real.cinfᵢ_empty _
-  · exact cinfᵢ_const
-#align real.cinfi_const_zero Real.cinfᵢ_const_zero
+  · exact Real.ciInf_empty _
+  · exact ciInf_const
+#align real.cinfi_const_zero Real.ciInf_const_zero
 
-/- warning: real.Inf_of_not_bdd_below -> Real.infₛ_of_not_bddBelow is a dubious translation:
+/- warning: real.Inf_of_not_bdd_below -> Real.sInf_of_not_bddBelow is a dubious translation:
 lean 3 declaration is
-  forall {s : Set.{0} Real}, (Not (BddBelow.{0} Real Real.preorder s)) -> (Eq.{1} Real (InfSet.infₛ.{0} Real Real.hasInf s) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
+  forall {s : Set.{0} Real}, (Not (BddBelow.{0} Real Real.preorder s)) -> (Eq.{1} Real (InfSet.sInf.{0} Real Real.hasInf s) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
 but is expected to have type
-  forall {s : Set.{0} Real}, (Not (BddBelow.{0} Real Real.instPreorderReal s)) -> (Eq.{1} Real (InfSet.infₛ.{0} Real Real.instInfSetReal s) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Inf_of_not_bdd_below Real.infₛ_of_not_bddBelowₓ'. -/
-theorem infₛ_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : infₛ s = 0 :=
-  neg_eq_zero.2 <| supₛ_of_not_bddAbove <| mt bddAbove_neg.1 hs
-#align real.Inf_of_not_bdd_below Real.infₛ_of_not_bddBelow
+  forall {s : Set.{0} Real}, (Not (BddBelow.{0} Real Real.instPreorderReal s)) -> (Eq.{1} Real (InfSet.sInf.{0} Real Real.instInfSetReal s) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
+Case conversion may be inaccurate. Consider using '#align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelowₓ'. -/
+theorem sInf_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : sInf s = 0 :=
+  neg_eq_zero.2 <| sSup_of_not_bddAbove <| mt bddAbove_neg.1 hs
+#align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelow
 
-/- warning: real.infi_of_not_bdd_below -> Real.infᵢ_of_not_bddBelow is a dubious translation:
+/- warning: real.infi_of_not_bdd_below -> Real.iInf_of_not_bddBelow is a dubious translation:
 lean 3 declaration is
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddBelow.{0} Real Real.preorder (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (infᵢ.{0, u1} Real Real.hasInf α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
+  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddBelow.{0} Real Real.preorder (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iInf.{0, u1} Real Real.hasInf α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
 but is expected to have type
-  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddBelow.{0} Real Real.instPreorderReal (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (infᵢ.{0, u1} Real Real.instInfSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.infi_of_not_bdd_below Real.infᵢ_of_not_bddBelowₓ'. -/
-theorem infᵢ_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
+  forall {α : Sort.{u1}} {f : α -> Real}, (Not (BddBelow.{0} Real Real.instPreorderReal (Set.range.{0, u1} Real α f))) -> (Eq.{1} Real (iInf.{0, u1} Real Real.instInfSetReal α (fun (i : α) => f i)) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
+Case conversion may be inaccurate. Consider using '#align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelowₓ'. -/
+theorem iInf_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
     (⨅ i, f i) = 0 :=
-  infₛ_of_not_bddBelow hf
-#align real.infi_of_not_bdd_below Real.infᵢ_of_not_bddBelow
+  sInf_of_not_bddBelow hf
+#align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelow
 
-/- warning: real.Sup_nonneg -> Real.supₛ_nonneg is a dubious translation:
+/- warning: real.Sup_nonneg -> Real.sSup_nonneg is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) x)) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (SupSet.supₛ.{0} Real Real.hasSup S))
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) x)) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (SupSet.sSup.{0} Real Real.hasSup S))
 but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) x)) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (SupSet.supₛ.{0} Real Real.instSupSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.Sup_nonneg Real.supₛ_nonnegₓ'. -/
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) x)) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (SupSet.sSup.{0} Real Real.instSupSetReal S))
+Case conversion may be inaccurate. Consider using '#align real.Sup_nonneg Real.sSup_nonnegₓ'. -/
 /--
 As `0` is the default value for `real.Sup` of the empty set or sets which are not bounded above, it
 suffices to show that `S` is bounded below by `0` to show that `0 ≤ Inf S`.
 -/
-theorem supₛ_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ supₛ S :=
+theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sSup S :=
   by
   rcases S.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
   · exact Sup_empty.ge
-  · apply dite _ (fun h => le_csupₛ_of_le h hy <| hS y hy) fun h => (Sup_of_not_bdd_above h).ge
-#align real.Sup_nonneg Real.supₛ_nonneg
+  · apply dite _ (fun h => le_csSup_of_le h hy <| hS y hy) fun h => (Sup_of_not_bdd_above h).ge
+#align real.Sup_nonneg Real.sSup_nonneg
 
-/- warning: real.Sup_nonpos -> Real.supₛ_nonpos is a dubious translation:
+/- warning: real.Sup_nonpos -> Real.sSup_nonpos is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe x (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (LE.le.{0} Real Real.hasLe (SupSet.supₛ.{0} Real Real.hasSup S) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe x (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (LE.le.{0} Real Real.hasLe (SupSet.sSup.{0} Real Real.hasSup S) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
 but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal x (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (LE.le.{0} Real Real.instLEReal (SupSet.supₛ.{0} Real Real.instSupSetReal S) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Sup_nonpos Real.supₛ_nonposₓ'. -/
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal x (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (LE.le.{0} Real Real.instLEReal (SupSet.sSup.{0} Real Real.instSupSetReal S) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
+Case conversion may be inaccurate. Consider using '#align real.Sup_nonpos Real.sSup_nonposₓ'. -/
 /-- As `0` is the default value for `real.Sup` of the empty set, it suffices to show that `S` is
 bounded above by `0` to show that `Sup S ≤ 0`.
 -/
-theorem supₛ_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : supₛ S ≤ 0 :=
+theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S ≤ 0 :=
   by
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[Sup_empty.le, csupₛ_le hS₂ hS]
-#align real.Sup_nonpos Real.supₛ_nonpos
+  exacts[Sup_empty.le, csSup_le hS₂ hS]
+#align real.Sup_nonpos Real.sSup_nonpos
 
-/- warning: real.Inf_nonneg -> Real.infₛ_nonneg is a dubious translation:
+/- warning: real.Inf_nonneg -> Real.sInf_nonneg is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) x)) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (InfSet.infₛ.{0} Real Real.hasInf S))
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) x)) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (InfSet.sInf.{0} Real Real.hasInf S))
 but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) x)) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (InfSet.infₛ.{0} Real Real.instInfSetReal S))
-Case conversion may be inaccurate. Consider using '#align real.Inf_nonneg Real.infₛ_nonnegₓ'. -/
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) x)) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (InfSet.sInf.{0} Real Real.instInfSetReal S))
+Case conversion may be inaccurate. Consider using '#align real.Inf_nonneg Real.sInf_nonnegₓ'. -/
 /-- As `0` is the default value for `real.Inf` of the empty set, it suffices to show that `S` is
 bounded below by `0` to show that `0 ≤ Inf S`.
 -/
-theorem infₛ_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ infₛ S :=
+theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sInf S :=
   by
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[Inf_empty.ge, le_cinfₛ hS₂ hS]
-#align real.Inf_nonneg Real.infₛ_nonneg
+  exacts[Inf_empty.ge, le_csInf hS₂ hS]
+#align real.Inf_nonneg Real.sInf_nonneg
 
-/- warning: real.Inf_nonpos -> Real.infₛ_nonpos is a dubious translation:
+/- warning: real.Inf_nonpos -> Real.sInf_nonpos is a dubious translation:
 lean 3 declaration is
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe x (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (LE.le.{0} Real Real.hasLe (InfSet.infₛ.{0} Real Real.hasInf S) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.Mem.{0, 0} Real (Set.{0} Real) (Set.hasMem.{0} Real) x S) -> (LE.le.{0} Real Real.hasLe x (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))) -> (LE.le.{0} Real Real.hasLe (InfSet.sInf.{0} Real Real.hasInf S) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))))
 but is expected to have type
-  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal x (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (LE.le.{0} Real Real.instLEReal (InfSet.infₛ.{0} Real Real.instInfSetReal S) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
-Case conversion may be inaccurate. Consider using '#align real.Inf_nonpos Real.infₛ_nonposₓ'. -/
+  forall (S : Set.{0} Real), (forall (x : Real), (Membership.mem.{0, 0} Real (Set.{0} Real) (Set.instMembershipSet.{0} Real) x S) -> (LE.le.{0} Real Real.instLEReal x (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))) -> (LE.le.{0} Real Real.instLEReal (InfSet.sInf.{0} Real Real.instInfSetReal S) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)))
+Case conversion may be inaccurate. Consider using '#align real.Inf_nonpos Real.sInf_nonposₓ'. -/
 /--
 As `0` is the default value for `real.Inf` of the empty set or sets which are not bounded below, it
 suffices to show that `S` is bounded above by `0` to show that `Inf S ≤ 0`.
 -/
-theorem infₛ_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : infₛ S ≤ 0 :=
+theorem sInf_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sInf S ≤ 0 :=
   by
   rcases S.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
   · exact Inf_empty.le
-  · apply dite _ (fun h => cinfₛ_le_of_le h hy <| hS y hy) fun h => (Inf_of_not_bdd_below h).le
-#align real.Inf_nonpos Real.infₛ_nonpos
+  · apply dite _ (fun h => csInf_le_of_le h hy <| hS y hy) fun h => (Inf_of_not_bdd_below h).le
+#align real.Inf_nonpos Real.sInf_nonpos
 
-/- warning: real.Inf_le_Sup -> Real.infₛ_le_supₛ is a dubious translation:
+/- warning: real.Inf_le_Sup -> Real.sInf_le_sSup is a dubious translation:
 lean 3 declaration is
-  forall (s : Set.{0} Real), (BddBelow.{0} Real Real.preorder s) -> (BddAbove.{0} Real Real.preorder s) -> (LE.le.{0} Real Real.hasLe (InfSet.infₛ.{0} Real Real.hasInf s) (SupSet.supₛ.{0} Real Real.hasSup s))
+  forall (s : Set.{0} Real), (BddBelow.{0} Real Real.preorder s) -> (BddAbove.{0} Real Real.preorder s) -> (LE.le.{0} Real Real.hasLe (InfSet.sInf.{0} Real Real.hasInf s) (SupSet.sSup.{0} Real Real.hasSup s))
 but is expected to have type
-  forall (s : Set.{0} Real), (BddBelow.{0} Real Real.instPreorderReal s) -> (BddAbove.{0} Real Real.instPreorderReal s) -> (LE.le.{0} Real Real.instLEReal (InfSet.infₛ.{0} Real Real.instInfSetReal s) (SupSet.supₛ.{0} Real Real.instSupSetReal s))
-Case conversion may be inaccurate. Consider using '#align real.Inf_le_Sup Real.infₛ_le_supₛₓ'. -/
-theorem infₛ_le_supₛ (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : infₛ s ≤ supₛ s :=
+  forall (s : Set.{0} Real), (BddBelow.{0} Real Real.instPreorderReal s) -> (BddAbove.{0} Real Real.instPreorderReal s) -> (LE.le.{0} Real Real.instLEReal (InfSet.sInf.{0} Real Real.instInfSetReal s) (SupSet.sSup.{0} Real Real.instSupSetReal s))
+Case conversion may be inaccurate. Consider using '#align real.Inf_le_Sup Real.sInf_le_sSupₓ'. -/
+theorem sInf_le_sSup (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : sInf s ≤ sSup s :=
   by
   rcases s.eq_empty_or_nonempty with (rfl | hne)
-  · rw [infₛ_empty, supₛ_empty]
-  · exact cinfₛ_le_csupₛ h₁ h₂ hne
-#align real.Inf_le_Sup Real.infₛ_le_supₛ
+  · rw [sInf_empty, sSup_empty]
+  · exact csInf_le_csSup h₁ h₂ hne
+#align real.Inf_le_Sup Real.sInf_le_sSup
 
 /- warning: real.cau_seq_converges -> Real.cauSeq_converges is a dubious translation:
 lean 3 declaration is
@@ -1389,12 +1389,12 @@ theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x :=
   have ub : ∃ x, ∀ y ∈ S, y ≤ x := (exists_gt f).imp ub'
   refine' ⟨Sup S, ((lt_total _ _).resolve_left fun h => _).resolve_right fun h => _⟩
   · rcases h with ⟨ε, ε0, i, ih⟩
-    refine' (csupₛ_le lb (ub' _ _)).not_lt (sub_lt_self _ (half_pos ε0))
+    refine' (csSup_le lb (ub' _ _)).not_lt (sub_lt_self _ (half_pos ε0))
     refine' ⟨_, half_pos ε0, i, fun j ij => _⟩
     rw [sub_apply, const_apply, sub_right_comm, le_sub_iff_add_le, add_halves]
     exact ih _ ij
   · rcases h with ⟨ε, ε0, i, ih⟩
-    refine' (le_csupₛ ub _).not_lt ((lt_add_iff_pos_left _).2 (half_pos ε0))
+    refine' (le_csSup ub _).not_lt ((lt_add_iff_pos_left _).2 (half_pos ε0))
     refine' ⟨_, half_pos ε0, i, fun j ij => _⟩
     rw [sub_apply, const_apply, add_comm, ← sub_sub, le_sub_iff_add_le, add_halves]
     exact ih _ ij
Diff
@@ -52,7 +52,7 @@ namespace CauSeq.Completion
 lean 3 declaration is
   forall {abv : Rat -> Rat} [_inst_1 : IsAbsoluteValue.{0, 0} Rat Rat.orderedSemiring Rat Rat.semiring abv] (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.ofRat.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1 q) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing abv _inst_1)))) q)
 but is expected to have type
-  forall {abv : Rat -> Rat} [_inst_1 : IsAbsoluteValue.{0, 0} Rat Rat.instOrderedSemiringRat Rat Rat.semiring abv] (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.ofRat.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1 q) (RatCast.ratCast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing abv _inst_1) q)
+  forall {abv : Rat -> Rat} [_inst_1 : IsAbsoluteValue.{0, 0} Rat Rat.instOrderedSemiringRat Rat Rat.semiring abv] (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.ofRat.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1 q) (Rat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) abv _inst_1) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing abv _inst_1) q)
 Case conversion may be inaccurate. Consider using '#align cau_seq.completion.of_rat_rat CauSeq.Completion.ofRat_ratₓ'. -/
 -- this can't go in `data.real.cau_seq_completion` as the structure on `rat` isn't available
 @[simp]
@@ -294,7 +294,7 @@ instance : NatCast ℝ where natCast n := ⟨n⟩
 
 instance : IntCast ℝ where intCast z := ⟨z⟩
 
-instance : RatCast ℝ where ratCast q := ⟨q⟩
+instance : HasRatCast ℝ where ratCast q := ⟨q⟩
 
 /- warning: real.of_cauchy_nat_cast -> Real.ofCauchy_natCast is a dubious translation:
 lean 3 declaration is
@@ -320,7 +320,7 @@ theorem ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z :=
 lean 3 declaration is
   forall (q : Rat), Eq.{1} Real (Real.ofCauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) q)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) q)
 but is expected to have type
-  forall (q : Rat), Eq.{1} Real (Real.ofCauchy (RatCast.ratCast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)) (RatCast.ratCast.{0} Real Real.ratCast q)
+  forall (q : Rat), Eq.{1} Real (Real.ofCauchy (Rat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)) (Rat.cast.{0} Real Real.ratCast q)
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_rat_cast Real.ofCauchy_ratCastₓ'. -/
 theorem ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q :=
   rfl
@@ -350,7 +350,7 @@ theorem cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z :=
 lean 3 declaration is
   forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) q)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) q)
 but is expected to have type
-  forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (RatCast.ratCast.{0} Real Real.ratCast q)) (RatCast.ratCast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)
+  forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Rat.cast.{0} Real Real.ratCast q)) (Rat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)
 Case conversion may be inaccurate. Consider using '#align real.cauchy_rat_cast Real.cauchy_ratCastₓ'. -/
 theorem cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q :=
   rfl
@@ -624,7 +624,7 @@ instance : Preorder ℝ := by infer_instance
 lean 3 declaration is
   forall {x : Rat} {y : Rat}, Iff (LT.lt.{0} Real Real.hasLt ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) y)) (LT.lt.{0} Rat Rat.hasLt x y)
 but is expected to have type
-  forall {x : Rat} {y : Rat}, Iff (LT.lt.{0} Real Real.instLTReal (RatCast.ratCast.{0} Real Real.ratCast x) (RatCast.ratCast.{0} Real Real.ratCast y)) (LT.lt.{0} Rat Rat.instLTRat_1 x y)
+  forall {x : Rat} {y : Rat}, Iff (LT.lt.{0} Real Real.instLTReal (Rat.cast.{0} Real Real.ratCast x) (Rat.cast.{0} Real Real.ratCast y)) (LT.lt.{0} Rat Rat.instLTRat_1 x y)
 Case conversion may be inaccurate. Consider using '#align real.rat_cast_lt Real.ratCast_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
 theorem ratCast_lt {x y : ℚ} : (x : ℝ) < (y : ℝ) ↔ x < y :=
@@ -898,7 +898,7 @@ unsafe instance : Repr ℝ where repr r := "real.of_cauchy " ++ repr r.cauchy
 lean 3 declaration is
   forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j))))) -> (LE.le.{0} Real Real.hasLe x (Real.mk f))
 but is expected to have type
-  forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal x (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j))))) -> (LE.le.{0} Real Real.instLEReal x (Real.mk f))
+  forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal x (Rat.cast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j))))) -> (LE.le.{0} Real Real.instLEReal x (Real.mk f))
 Case conversion may be inaccurate. Consider using '#align real.le_mk_of_forall_le Real.le_mk_of_forall_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
 theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j) → x ≤ mk f :=
@@ -920,7 +920,7 @@ theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j)) x))) -> (LE.le.{0} Real Real.hasLe (Real.mk f) x)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x))) -> (LE.le.{0} Real Real.instLEReal (Real.mk f) x)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (Rat.cast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x))) -> (LE.le.{0} Real Real.instLEReal (Real.mk f) x)
 Case conversion may be inaccurate. Consider using '#align real.mk_le_of_forall_le Real.mk_le_of_forall_leₓ'. -/
 theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥ i, (f j : ℝ) ≤ x) :
     mk f ≤ x := by
@@ -933,7 +933,7 @@ theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j)) x)) ε))) -> (LE.le.{0} Real Real.hasLe (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (Real.mk f) x)) ε)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x)) ε))) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.mk f) x)) ε)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Rat.cast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x)) ε))) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.mk f) x)) ε)
 Case conversion may be inaccurate. Consider using '#align real.mk_near_of_forall_near Real.mk_near_of_forall_nearₓ'. -/
 theorem mk_near_of_forall_near {f : CauSeq ℚ abs} {x : ℝ} {ε : ℝ}
     (H : ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| ≤ ε) : |mk f - x| ≤ ε :=
@@ -958,7 +958,7 @@ noncomputable instance : FloorRing ℝ :=
 lean 3 declaration is
   forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) (IsCauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup)) (fun (i : Nat) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (f i)))
 but is expected to have type
-  forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (IsCauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (fun (i : Nat) => RatCast.ratCast.{0} Real Real.ratCast (f i)))
+  forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (IsCauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (fun (i : Nat) => Rat.cast.{0} Real Real.ratCast (f i)))
 Case conversion may be inaccurate. Consider using '#align real.is_cau_seq_iff_lift Real.isCauSeq_iff_liftₓ'. -/
 theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fun i => (f i : ℝ) :=
   ⟨fun H ε ε0 =>
@@ -973,7 +973,7 @@ theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fu
 lean 3 declaration is
   forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{0} Real Real.hasLt (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) f h')) x))
 but is expected to have type
-  forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{0} Real Real.instLTReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (RatCast.ratCast.{0} Real Real.ratCast (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f h')) x))
+  forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{0} Real Real.instLTReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Rat.cast.{0} Real Real.ratCast (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f h')) x))
 Case conversion may be inaccurate. Consider using '#align real.of_near Real.of_nearₓ'. -/
 theorem of_near (f : ℕ → ℚ) (x : ℝ) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| < ε) :
     ∃ h', Real.mk ⟨f, h'⟩ = x :=
Diff
@@ -998,7 +998,7 @@ theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ,
     ⟨n, le_of_lt hn⟩)
 #align real.exists_floor Real.exists_floor
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » «expr⌈ ⌉₊»(«expr ⁻¹»(ε))) -/
 #print Real.exists_isLUB /-
 theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃ x, IsLUB S x :=
   by
Diff
@@ -73,7 +73,7 @@ variable {x y : ℝ}
 lean 3 declaration is
   forall {x : Real} {y : Real}, Iff (Eq.{1} Real x y) (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy x) (Real.cauchy y))
 but is expected to have type
-  forall {x : Real} {y : Real}, Iff (Eq.{1} Real x y) (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy x) (Real.cauchy y))
+  forall {x : Real} {y : Real}, Iff (Eq.{1} Real x y) (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy x) (Real.cauchy y))
 Case conversion may be inaccurate. Consider using '#align real.ext_cauchy_iff Real.ext_cauchy_iffₓ'. -/
 theorem ext_cauchy_iff : ∀ {x y : Real}, x = y ↔ x.cauchy = y.cauchy
   | ⟨a⟩, ⟨b⟩ => by constructor <;> cc
@@ -83,7 +83,7 @@ theorem ext_cauchy_iff : ∀ {x y : Real}, x = y ↔ x.cauchy = y.cauchy
 lean 3 declaration is
   forall {x : Real} {y : Real}, (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy x) (Real.cauchy y)) -> (Eq.{1} Real x y)
 but is expected to have type
-  forall {x : Real} {y : Real}, (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy x) (Real.cauchy y)) -> (Eq.{1} Real x y)
+  forall {x : Real} {y : Real}, (Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy x) (Real.cauchy y)) -> (Eq.{1} Real x y)
 Case conversion may be inaccurate. Consider using '#align real.ext_cauchy Real.ext_cauchyₓ'. -/
 theorem ext_cauchy {x y : Real} : x.cauchy = y.cauchy → x = y :=
   ext_cauchy_iff.2
@@ -93,7 +93,7 @@ theorem ext_cauchy {x y : Real} : x.cauchy = y.cauchy → x = y :=
 lean 3 declaration is
   Equiv.{1, 1} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))
 but is expected to have type
-  Equiv.{1, 1} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))
+  Equiv.{1, 1} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))
 Case conversion may be inaccurate. Consider using '#align real.equiv_Cauchy Real.equivCauchyₓ'. -/
 /-- The real numbers are isomorphic to the quotient of Cauchy sequences on the rationals. -/
 def equivCauchy : ℝ ≃ CauSeq.Completion.Cauchy abs :=
@@ -150,7 +150,7 @@ noncomputable instance : Inv ℝ :=
 lean 3 declaration is
   Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (Zero.zero.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasZero.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 0 (Zero.toOfNat0.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instZeroCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 0 (Zero.toOfNat0.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instZeroCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_zero Real.ofCauchy_zeroₓ'. -/
 theorem ofCauchy_zero : (⟨0⟩ : ℝ) = 0 :=
   show _ = zero by rw [zero]
@@ -160,7 +160,7 @@ theorem ofCauchy_zero : (⟨0⟩ : ℝ) = 0 :=
 lean 3 declaration is
   Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (One.one.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasOne.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
 but is expected to have type
-  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 1 (One.toOfNat1.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instOneCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+  Eq.{1} Real (Real.ofCauchy (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 1 (One.toOfNat1.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instOneCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_one Real.ofCauchy_oneₓ'. -/
 theorem ofCauchy_one : (⟨1⟩ : ℝ) = 1 :=
   show _ = one by rw [one]
@@ -170,7 +170,7 @@ theorem ofCauchy_one : (⟨1⟩ : ℝ) = 1 :=
 lean 3 declaration is
   forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasAdd.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) a b)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (Real.ofCauchy a) (Real.ofCauchy b))
 but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Real.ofCauchy a) (Real.ofCauchy b))
+  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Real.ofCauchy a) (Real.ofCauchy b))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_add Real.ofCauchy_addₓ'. -/
 theorem ofCauchy_add (a b) : (⟨a + b⟩ : ℝ) = ⟨a⟩ + ⟨b⟩ :=
   show _ = add _ _ by rw [add]
@@ -180,7 +180,7 @@ theorem ofCauchy_add (a b) : (⟨a + b⟩ : ℝ) = ⟨a⟩ + ⟨b⟩ :=
 lean 3 declaration is
   forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNeg.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Neg.neg.{0} Real Real.hasNeg (Real.ofCauchy a))
 but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNegCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Neg.neg.{0} Real Real.instNegReal (Real.ofCauchy a))
+  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNegCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Neg.neg.{0} Real Real.instNegReal (Real.ofCauchy a))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_neg Real.ofCauchy_negₓ'. -/
 theorem ofCauchy_neg (a) : (⟨-a⟩ : ℝ) = -⟨a⟩ :=
   show _ = neg _ by rw [neg]
@@ -190,7 +190,7 @@ theorem ofCauchy_neg (a) : (⟨-a⟩ : ℝ) = -⟨a⟩ :=
 lean 3 declaration is
   forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasSub.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (Real.ofCauchy a) (Real.ofCauchy b))
 but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.ofCauchy a) (Real.ofCauchy b))
+  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.ofCauchy a) (Real.ofCauchy b))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_sub Real.ofCauchy_subₓ'. -/
 theorem ofCauchy_sub (a b) : (⟨a - b⟩ : ℝ) = ⟨a⟩ - ⟨b⟩ :=
   by
@@ -202,7 +202,7 @@ theorem ofCauchy_sub (a b) : (⟨a - b⟩ : ℝ) = ⟨a⟩ - ⟨b⟩ :=
 lean 3 declaration is
   forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)), Eq.{1} Real (Real.ofCauchy (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasMul.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) a b)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Real.ofCauchy a) (Real.ofCauchy b))
 but is expected to have type
-  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Real.ofCauchy a) (Real.ofCauchy b))
+  forall (a : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (b : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)), Eq.{1} Real (Real.ofCauchy (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) a b)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Real.ofCauchy a) (Real.ofCauchy b))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_mul Real.ofCauchy_mulₓ'. -/
 theorem ofCauchy_mul (a b) : (⟨a * b⟩ : ℝ) = ⟨a⟩ * ⟨b⟩ :=
   show _ = mul _ _ by rw [mul]
@@ -212,7 +212,7 @@ theorem ofCauchy_mul (a b) : (⟨a * b⟩ : ℝ) = ⟨a⟩ * ⟨b⟩ :=
 lean 3 declaration is
   forall {f : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)}, Eq.{1} Real (Real.ofCauchy (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasInv.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) f)) (Inv.inv.{0} Real Real.hasInv (Real.ofCauchy f))
 but is expected to have type
-  forall {f : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)}, Eq.{1} Real (Real.ofCauchy (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instInvCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Inv.inv.{0} Real Real.instInvReal (Real.ofCauchy f))
+  forall {f : CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)}, Eq.{1} Real (Real.ofCauchy (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instInvCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Inv.inv.{0} Real Real.instInvReal (Real.ofCauchy f))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_inv Real.ofCauchy_invₓ'. -/
 theorem ofCauchy_inv {f} : (⟨f⁻¹⟩ : ℝ) = ⟨f⟩⁻¹ :=
   show _ = inv' _ by rw [inv']
@@ -222,7 +222,7 @@ theorem ofCauchy_inv {f} : (⟨f⁻¹⟩ : ℝ) = ⟨f⟩⁻¹ :=
 lean 3 declaration is
   Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 0 (Zero.zero.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasZero.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))
 but is expected to have type
-  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 0 (Zero.toOfNat0.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instZeroCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))
+  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 0 (Zero.toOfNat0.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instZeroCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_zero Real.cauchy_zeroₓ'. -/
 theorem cauchy_zero : (0 : ℝ).cauchy = 0 :=
   show zero.cauchy = 0 by rw [zero]
@@ -232,7 +232,7 @@ theorem cauchy_zero : (0 : ℝ).cauchy = 0 :=
 lean 3 declaration is
   Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (OfNat.mk.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) 1 (One.one.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasOne.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))
 but is expected to have type
-  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 1 (One.toOfNat1.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instOneCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))
+  Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) (OfNat.ofNat.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) 1 (One.toOfNat1.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instOneCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_one Real.cauchy_oneₓ'. -/
 theorem cauchy_one : (1 : ℝ).cauchy = 1 :=
   show one.cauchy = 1 by rw [one]
@@ -242,7 +242,7 @@ theorem cauchy_one : (1 : ℝ).cauchy = 1 :=
 lean 3 declaration is
   forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) a b)) (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasAdd.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) (Real.cauchy a) (Real.cauchy b))
 but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a b)) (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
+  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) a b)) (HAdd.hAdd.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHAdd.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_add Real.cauchy_addₓ'. -/
 theorem cauchy_add : ∀ a b, (a + b : ℝ).cauchy = a.cauchy + b.cauchy
   | ⟨a⟩, ⟨b⟩ => show (add _ _).cauchy = _ by rw [add]
@@ -252,7 +252,7 @@ theorem cauchy_add : ∀ a b, (a + b : ℝ).cauchy = a.cauchy + b.cauchy
 lean 3 declaration is
   forall (a : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (Neg.neg.{0} Real Real.hasNeg a)) (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNeg.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy a))
 but is expected to have type
-  forall (a : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Neg.neg.{0} Real Real.instNegReal a)) (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNegCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy a))
+  forall (a : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Neg.neg.{0} Real Real.instNegReal a)) (Neg.neg.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNegCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy a))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_neg Real.cauchy_negₓ'. -/
 theorem cauchy_neg : ∀ a, (-a : ℝ).cauchy = -a.cauchy
   | ⟨a⟩ => show (neg _).cauchy = _ by rw [neg]
@@ -262,7 +262,7 @@ theorem cauchy_neg : ∀ a, (-a : ℝ).cauchy = -a.cauchy
 lean 3 declaration is
   forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) a b)) (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasMul.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) (Real.cauchy a) (Real.cauchy b))
 but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) a b)) (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
+  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) a b)) (HMul.hMul.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHMul.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_mul Real.cauchy_mulₓ'. -/
 theorem cauchy_mul : ∀ a b, (a * b : ℝ).cauchy = a.cauchy * b.cauchy
   | ⟨a⟩, ⟨b⟩ => show (mul _ _).cauchy = _ by rw [mul]
@@ -272,7 +272,7 @@ theorem cauchy_mul : ∀ a b, (a * b : ℝ).cauchy = a.cauchy * b.cauchy
 lean 3 declaration is
   forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) a b)) (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasSub.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) (Real.cauchy a) (Real.cauchy b))
 but is expected to have type
-  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) a b)) (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
+  forall (a : Real) (b : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) a b)) (HSub.hSub.{0, 0, 0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (instHSub.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instSubCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) (Real.cauchy a) (Real.cauchy b))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_sub Real.cauchy_subₓ'. -/
 theorem cauchy_sub : ∀ a b, (a - b : ℝ).cauchy = a.cauchy - b.cauchy
   | ⟨a⟩, ⟨b⟩ => by
@@ -284,7 +284,7 @@ theorem cauchy_sub : ∀ a b, (a - b : ℝ).cauchy = a.cauchy - b.cauchy
 lean 3 declaration is
   forall (f : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy (Inv.inv.{0} Real Real.hasInv f)) (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasInv.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy f))
 but is expected to have type
-  forall (f : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Inv.inv.{0} Real Real.instInvReal f)) (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instInvCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy f))
+  forall (f : Real), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Inv.inv.{0} Real Real.instInvReal f)) (Inv.inv.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instInvCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy f))
 Case conversion may be inaccurate. Consider using '#align real.cauchy_inv Real.cauchy_invₓ'. -/
 theorem cauchy_inv : ∀ f, (f⁻¹ : ℝ).cauchy = f.cauchy⁻¹
   | ⟨f⟩ => show (inv' _).cauchy = _ by rw [inv']
@@ -300,7 +300,7 @@ instance : RatCast ℝ where ratCast q := ⟨q⟩
 lean 3 declaration is
   forall (n : Nat), Eq.{1} Real (Real.ofCauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Nat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNatCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) n)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)
 but is expected to have type
-  forall (n : Nat), Eq.{1} Real (Real.ofCauchy (Nat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNatCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) n)) (Nat.cast.{0} Real Real.natCast n)
+  forall (n : Nat), Eq.{1} Real (Real.ofCauchy (Nat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNatCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) n)) (Nat.cast.{0} Real Real.natCast n)
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_nat_cast Real.ofCauchy_natCastₓ'. -/
 theorem ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n :=
   rfl
@@ -310,7 +310,7 @@ theorem ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n :=
 lean 3 declaration is
   forall (z : Int), Eq.{1} Real (Real.ofCauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Int.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasIntCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) z)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Real (HasLiftT.mk.{1, 1} Int Real (CoeTCₓ.coe.{1, 1} Int Real (Int.castCoe.{0} Real Real.hasIntCast))) z)
 but is expected to have type
-  forall (z : Int), Eq.{1} Real (Real.ofCauchy (Int.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instIntCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) z)) (Int.cast.{0} Real Real.intCast z)
+  forall (z : Int), Eq.{1} Real (Real.ofCauchy (Int.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instIntCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) z)) (Int.cast.{0} Real Real.intCast z)
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_int_cast Real.ofCauchy_intCastₓ'. -/
 theorem ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z :=
   rfl
@@ -320,7 +320,7 @@ theorem ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z :=
 lean 3 declaration is
   forall (q : Rat), Eq.{1} Real (Real.ofCauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) q)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) q)
 but is expected to have type
-  forall (q : Rat), Eq.{1} Real (Real.ofCauchy (RatCast.ratCast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)) (RatCast.ratCast.{0} Real Real.ratCast q)
+  forall (q : Rat), Eq.{1} Real (Real.ofCauchy (RatCast.ratCast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)) (RatCast.ratCast.{0} Real Real.ratCast q)
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_rat_cast Real.ofCauchy_ratCastₓ'. -/
 theorem ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q :=
   rfl
@@ -330,7 +330,7 @@ theorem ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q :=
 lean 3 declaration is
   forall (n : Nat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Nat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Nat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasNatCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) n)
 but is expected to have type
-  forall (n : Nat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Nat.cast.{0} Real Real.natCast n)) (Nat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNatCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) n)
+  forall (n : Nat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Nat.cast.{0} Real Real.natCast n)) (Nat.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instNatCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) n)
 Case conversion may be inaccurate. Consider using '#align real.cauchy_nat_cast Real.cauchy_natCastₓ'. -/
 theorem cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n :=
   rfl
@@ -340,7 +340,7 @@ theorem cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n :=
 lean 3 declaration is
   forall (z : Int), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int Real (HasLiftT.mk.{1, 1} Int Real (CoeTCₓ.coe.{1, 1} Int Real (Int.castCoe.{0} Real Real.hasIntCast))) z)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Int (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Int.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasIntCast.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) z)
 but is expected to have type
-  forall (z : Int), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Int.cast.{0} Real Real.intCast z)) (Int.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instIntCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) z)
+  forall (z : Int), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (Int.cast.{0} Real Real.intCast z)) (Int.cast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instIntCastCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) z)
 Case conversion may be inaccurate. Consider using '#align real.cauchy_int_cast Real.cauchy_intCastₓ'. -/
 theorem cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z :=
   rfl
@@ -350,7 +350,7 @@ theorem cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z :=
 lean 3 declaration is
   forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Real.cauchy ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) q)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasLiftT.mk.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CoeTCₓ.coe.{1, 1} Rat (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Rat.castCoe.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasRatCast.{0, 0} Rat Rat.linearOrderedField Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))))) q)
 but is expected to have type
-  forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (RatCast.ratCast.{0} Real Real.ratCast q)) (RatCast.ratCast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)
+  forall (q : Rat), Eq.{1} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Real.cauchy (RatCast.ratCast.{0} Real Real.ratCast q)) (RatCast.ratCast.{0} (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (CauSeq.Completion.instRatCastCauchyToRing.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat Rat.divisionRing (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) q)
 Case conversion may be inaccurate. Consider using '#align real.cauchy_rat_cast Real.cauchy_ratCastₓ'. -/
 theorem cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q :=
   rfl
@@ -383,7 +383,7 @@ instance : CommRing ℝ := by
 lean 3 declaration is
   RingEquiv.{0, 0} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) Real.hasMul Real.hasAdd (CauSeq.Completion.Cauchy.hasMul.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (CauSeq.Completion.Cauchy.hasAdd.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))
 but is expected to have type
-  RingEquiv.{0, 0} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) Real.instMulReal (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) Real.instAddReal (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))
+  RingEquiv.{0, 0} Real (CauSeq.Completion.Cauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) Real.instMulReal (CauSeq.Completion.instMulCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) Real.instAddReal (CauSeq.Completion.instAddCauchy.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))
 Case conversion may be inaccurate. Consider using '#align real.ring_equiv_Cauchy Real.ringEquivCauchyₓ'. -/
 /-- `real.equiv_Cauchy` as a ring equivalence. -/
 @[simps]
@@ -450,7 +450,7 @@ instance : TrivialStar ℝ :=
 lean 3 declaration is
   (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) -> Real
 but is expected to have type
-  (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) -> Real
+  (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) -> Real
 Case conversion may be inaccurate. Consider using '#align real.mk Real.mkₓ'. -/
 /-- Make a real number from a Cauchy sequence of rationals (by taking the equivalence class). -/
 def mk (x : CauSeq ℚ abs) : ℝ :=
@@ -461,7 +461,7 @@ def mk (x : CauSeq ℚ abs) : ℝ :=
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (Eq.{1} Real (Real.mk f) (Real.mk g)) (HasEquivₓ.Equiv.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (setoidHasEquiv.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) f g)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Iff (Eq.{1} Real (Real.mk f) (Real.mk g)) (HasEquiv.Equiv.{1, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (instHasEquiv.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (Eq.{1} Real (Real.mk f) (Real.mk g)) (HasEquiv.Equiv.{1, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (instHasEquiv.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)
 Case conversion may be inaccurate. Consider using '#align real.mk_eq Real.mk_eqₓ'. -/
 theorem mk_eq {f g : CauSeq ℚ abs} : mk f = mk g ↔ f ≈ g :=
   ext_cauchy_iff.trans mk_eq
@@ -482,7 +482,7 @@ instance : LT ℝ :=
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LT.lt.{0} Real Real.hasLt (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) f)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) g))) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasLt.{0} Rat Rat.linearOrderedField) f g)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) g))) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) g))) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
 Case conversion may be inaccurate. Consider using '#align real.lt_cauchy Real.lt_cauchyₓ'. -/
 theorem lt_cauchy {f g} : (⟨⟦f⟧⟩ : ℝ) < ⟨⟦g⟧⟩ ↔ f < g :=
   show Lt _ _ ↔ _ by rw [lt] <;> rfl
@@ -492,7 +492,7 @@ theorem lt_cauchy {f g} : (⟨⟦f⟧⟩ : ℝ) < ⟨⟦g⟧⟩ ↔ f < g :=
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LT.lt.{0} Real Real.hasLt (Real.mk f) (Real.mk g)) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasLt.{0} Rat Rat.linearOrderedField) f g)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (Real.mk f) (Real.mk g)) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (Real.mk f) (Real.mk g)) (LT.lt.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
 Case conversion may be inaccurate. Consider using '#align real.mk_lt Real.mk_ltₓ'. -/
 @[simp]
 theorem mk_lt {f g : CauSeq ℚ abs} : mk f < mk g ↔ f < g :=
@@ -503,7 +503,7 @@ theorem mk_lt {f g : CauSeq ℚ abs} : mk f < mk g ↔ f < g :=
 lean 3 declaration is
   Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 0 (OfNat.mk.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 0 (Zero.zero.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasZero.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))
 but is expected to have type
-  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) 0 (Zero.toOfNat0.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instZeroCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
+  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) 0 (Zero.toOfNat0.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instZeroCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))
 Case conversion may be inaccurate. Consider using '#align real.mk_zero Real.mk_zeroₓ'. -/
 theorem mk_zero : mk 0 = 0 := by rw [← of_cauchy_zero] <;> rfl
 #align real.mk_zero Real.mk_zero
@@ -512,7 +512,7 @@ theorem mk_zero : mk 0 = 0 := by rw [← of_cauchy_zero] <;> rfl
 lean 3 declaration is
   Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 1 (OfNat.mk.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) 1 (One.one.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasOne.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
 but is expected to have type
-  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) 1 (One.toOfNat1.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instOneCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+  Eq.{1} Real (Real.mk (OfNat.ofNat.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) 1 (One.toOfNat1.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instOneCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
 Case conversion may be inaccurate. Consider using '#align real.mk_one Real.mk_oneₓ'. -/
 theorem mk_one : mk 1 = 1 := by rw [← of_cauchy_one] <;> rfl
 #align real.mk_one Real.mk_one
@@ -521,7 +521,7 @@ theorem mk_one : mk 1 = 1 := by rw [← of_cauchy_one] <;> rfl
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Eq.{1} Real (Real.mk (HAdd.hAdd.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (instHAdd.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasAdd.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) f g)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (Real.mk f) (Real.mk g))
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Eq.{1} Real (Real.mk (HAdd.hAdd.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (instHAdd.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instAddCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Real.mk f) (Real.mk g))
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Eq.{1} Real (Real.mk (HAdd.hAdd.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (instHAdd.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instAddCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Real.mk f) (Real.mk g))
 Case conversion may be inaccurate. Consider using '#align real.mk_add Real.mk_addₓ'. -/
 theorem mk_add {f g : CauSeq ℚ abs} : mk (f + g) = mk f + mk g := by simp [mk, ← of_cauchy_add]
 #align real.mk_add Real.mk_add
@@ -530,7 +530,7 @@ theorem mk_add {f g : CauSeq ℚ abs} : mk (f + g) = mk f + mk g := by simp [mk,
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Eq.{1} Real (Real.mk (HMul.hMul.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (instHMul.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasMul.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing))) f g)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Real.mk f) (Real.mk g))
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Eq.{1} Real (Real.mk (HMul.hMul.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (instHMul.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instMulCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Real.mk f) (Real.mk g))
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Eq.{1} Real (Real.mk (HMul.hMul.{0, 0, 0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (instHMul.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instMulCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat))) f g)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Real.mk f) (Real.mk g))
 Case conversion may be inaccurate. Consider using '#align real.mk_mul Real.mk_mulₓ'. -/
 theorem mk_mul {f g : CauSeq ℚ abs} : mk (f * g) = mk f * mk g := by simp [mk, ← of_cauchy_mul]
 #align real.mk_mul Real.mk_mul
@@ -539,7 +539,7 @@ theorem mk_mul {f g : CauSeq ℚ abs} : mk (f * g) = mk f * mk g := by simp [mk,
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Eq.{1} Real (Real.mk (Neg.neg.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasNeg.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) f)) (Neg.neg.{0} Real Real.hasNeg (Real.mk f))
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Eq.{1} Real (Real.mk (Neg.neg.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instNegCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Neg.neg.{0} Real Real.instNegReal (Real.mk f))
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Eq.{1} Real (Real.mk (Neg.neg.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instNegCauSeq.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) f)) (Neg.neg.{0} Real Real.instNegReal (Real.mk f))
 Case conversion may be inaccurate. Consider using '#align real.mk_neg Real.mk_negₓ'. -/
 theorem mk_neg {f : CauSeq ℚ abs} : mk (-f) = -mk f := by simp [mk, ← of_cauchy_neg]
 #align real.mk_neg Real.mk_neg
@@ -548,7 +548,7 @@ theorem mk_neg {f : CauSeq ℚ abs} : mk (-f) = -mk f := by simp [mk, ← of_cau
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) (Real.mk f)) (CauSeq.Pos.{0} Rat Rat.linearOrderedField f)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (Real.mk f)) (CauSeq.Pos.{0} Rat Rat.instLinearOrderedFieldRat f)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) (Real.mk f)) (CauSeq.Pos.{0} Rat Rat.instLinearOrderedFieldRat f)
 Case conversion may be inaccurate. Consider using '#align real.mk_pos Real.mk_posₓ'. -/
 @[simp]
 theorem mk_pos {f : CauSeq ℚ abs} : 0 < mk f ↔ Pos f := by
@@ -570,7 +570,7 @@ private theorem le_def {x y : ℝ} : x ≤ y ↔ x < y ∨ x = y :=
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {g : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, Iff (LE.le.{0} Real Real.hasLe (Real.mk f) (Real.mk g)) (LE.le.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasLe.{0} Rat Rat.linearOrderedField) f g)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, Iff (LE.le.{0} Real Real.instLEReal (Real.mk f) (Real.mk g)) (LE.le.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {g : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, Iff (LE.le.{0} Real Real.instLEReal (Real.mk f) (Real.mk g)) (LE.le.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) f g)
 Case conversion may be inaccurate. Consider using '#align real.mk_le Real.mk_leₓ'. -/
 @[simp]
 theorem mk_le {f g : CauSeq ℚ abs} : mk f ≤ mk g ↔ f ≤ g := by simp [le_def, mk_eq] <;> rfl
@@ -580,7 +580,7 @@ theorem mk_le {f g : CauSeq ℚ abs} : mk f ≤ mk g ↔ f ≤ g := by simp [le_
 lean 3 declaration is
   forall {C : Real -> Prop} (x : Real), (forall (y : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), C (Real.mk y)) -> (C x)
 but is expected to have type
-  forall {C : Real -> Prop} (x : Real), (forall (y : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))), C (Real.mk y)) -> (C x)
+  forall {C : Real -> Prop} (x : Real), (forall (y : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), C (Real.mk y)) -> (C x)
 Case conversion may be inaccurate. Consider using '#align real.ind_mk Real.ind_mkₓ'. -/
 @[elab_as_elim]
 protected theorem ind_mk {C : Real → Prop} (x : Real) (h : ∀ y, C (mk y)) : C x :=
@@ -709,14 +709,14 @@ private irreducible_def sup : ℝ → ℝ → ℝ
   | ⟨x⟩, ⟨y⟩ => ⟨Quotient.map₂ (· ⊔ ·) (fun x₁ x₂ hx y₁ y₂ hy => sup_equiv_sup hx hy) x y⟩
 #align real.sup real.sup
 
-instance : HasSup ℝ :=
+instance : Sup ℝ :=
   ⟨sup⟩
 
 /- warning: real.of_cauchy_sup -> Real.ofCauchy_sup is a dubious translation:
 lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasSup.sup.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasSup.{0} Rat Rat.linearOrderedField) a b))) (HasSup.sup.{0} Real Real.hasSup (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) b)))
+  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasSup.{0} Rat Rat.linearOrderedField) a b))) (Sup.sup.{0} Real Real.hasSup (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) b)))
 but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (HasSup.sup.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (HasSup.sup.{0} Real Real.instHasSupReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
+  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (Sup.sup.{0} Real Real.instSupReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_sup Real.ofCauchy_supₓ'. -/
 theorem ofCauchy_sup (a b) : (⟨⟦a ⊔ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊔ ⟨⟦b⟧⟩ :=
   show _ = sup _ _ by
@@ -726,9 +726,9 @@ theorem ofCauchy_sup (a b) : (⟨⟦a ⊔ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊔ ⟨
 
 /- warning: real.mk_sup -> Real.mk_sup is a dubious translation:
 lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.mk (HasSup.sup.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasSup.{0} Rat Rat.linearOrderedField) a b)) (HasSup.sup.{0} Real Real.hasSup (Real.mk a) (Real.mk b))
+  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.mk (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasSup.{0} Rat Rat.linearOrderedField) a b)) (Sup.sup.{0} Real Real.hasSup (Real.mk a) (Real.mk b))
 but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))), Eq.{1} Real (Real.mk (HasSup.sup.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b)) (HasSup.sup.{0} Real Real.instHasSupReal (Real.mk a) (Real.mk b))
+  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.mk (Sup.sup.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b)) (Sup.sup.{0} Real Real.instSupReal (Real.mk a) (Real.mk b))
 Case conversion may be inaccurate. Consider using '#align real.mk_sup Real.mk_supₓ'. -/
 @[simp]
 theorem mk_sup (a b) : (mk (a ⊔ b) : ℝ) = mk a ⊔ mk b :=
@@ -739,14 +739,14 @@ private irreducible_def inf : ℝ → ℝ → ℝ
   | ⟨x⟩, ⟨y⟩ => ⟨Quotient.map₂ (· ⊓ ·) (fun x₁ x₂ hx y₁ y₂ hy => inf_equiv_inf hx hy) x y⟩
 #align real.inf real.inf
 
-instance : HasInf ℝ :=
+instance : Inf ℝ :=
   ⟨inf⟩
 
 /- warning: real.of_cauchy_inf -> Real.ofCauchy_inf is a dubious translation:
 lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (HasInf.inf.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasInf.{0} Rat Rat.linearOrderedField) a b))) (HasInf.inf.{0} Real Real.hasInf (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) b)))
+  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasInf.{0} Rat Rat.linearOrderedField) a b))) (Inf.inf.{0} Real Real.hasInf (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) a)) (Real.ofCauchy (Quotient.mk'.{1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.equiv.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.linearOrderedRing)) b)))
 but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (HasInf.inf.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (HasInf.inf.{0} Real Real.instHasInfReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
+  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b))) (Inf.inf.{0} Real Real.instInfReal (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) a)) (Real.ofCauchy (Quotient.mk.{1} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.equiv.{0, 0} Rat Rat Rat.instLinearOrderedFieldRat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Rat Rat.instLinearOrderedRingRat)) b)))
 Case conversion may be inaccurate. Consider using '#align real.of_cauchy_inf Real.ofCauchy_infₓ'. -/
 theorem ofCauchy_inf (a b) : (⟨⟦a ⊓ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊓ ⟨⟦b⟧⟩ :=
   show _ = inf _ _ by
@@ -756,9 +756,9 @@ theorem ofCauchy_inf (a b) : (⟨⟦a ⊓ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊓ ⟨
 
 /- warning: real.mk_inf -> Real.mk_inf is a dubious translation:
 lean 3 declaration is
-  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.mk (HasInf.inf.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasInf.{0} Rat Rat.linearOrderedField) a b)) (HasInf.inf.{0} Real Real.hasInf (Real.mk a) (Real.mk b))
+  forall (a : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (b : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))), Eq.{1} Real (Real.mk (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (CauSeq.hasInf.{0} Rat Rat.linearOrderedField) a b)) (Inf.inf.{0} Real Real.hasInf (Real.mk a) (Real.mk b))
 but is expected to have type
-  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))), Eq.{1} Real (Real.mk (HasInf.inf.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b)) (HasInf.inf.{0} Real Real.instHasInfReal (Real.mk a) (Real.mk b))
+  forall (a : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (b : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))), Eq.{1} Real (Real.mk (Inf.inf.{0} (CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{0} Rat Rat.instLinearOrderedFieldRat) a b)) (Inf.inf.{0} Real Real.instInfReal (Real.mk a) (Real.mk b))
 Case conversion may be inaccurate. Consider using '#align real.mk_inf Real.mk_infₓ'. -/
 @[simp]
 theorem mk_inf (a b) : (mk (a ⊓ b) : ℝ) = mk a ⊓ mk b :=
@@ -898,7 +898,7 @@ unsafe instance : Repr ℝ where repr r := "real.of_cauchy " ++ repr r.cauchy
 lean 3 declaration is
   forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe x ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j))))) -> (LE.le.{0} Real Real.hasLe x (Real.mk f))
 but is expected to have type
-  forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal x (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) f) f j))))) -> (LE.le.{0} Real Real.instLEReal x (Real.mk f))
+  forall {x : Real} {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal x (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j))))) -> (LE.le.{0} Real Real.instLEReal x (Real.mk f))
 Case conversion may be inaccurate. Consider using '#align real.le_mk_of_forall_le Real.le_mk_of_forall_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { md := tactic.transparency.semireducible[tactic.transparency.semireducible] } -/
 theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j) → x ≤ mk f :=
@@ -920,7 +920,7 @@ theorem le_mk_of_forall_le {f : CauSeq ℚ abs} : (∃ i, ∀ j ≥ i, x ≤ f j
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j)) x))) -> (LE.le.{0} Real Real.hasLe (Real.mk f) x)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) f) f j)) x))) -> (LE.le.{0} Real Real.instLEReal (Real.mk f) x)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x))) -> (LE.le.{0} Real Real.instLEReal (Real.mk f) x)
 Case conversion may be inaccurate. Consider using '#align real.mk_le_of_forall_le Real.mk_le_of_forall_leₓ'. -/
 theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥ i, (f j : ℝ) ≤ x) :
     mk f ≤ x := by
@@ -933,7 +933,7 @@ theorem mk_le_of_forall_le {f : CauSeq ℚ abs} {x : ℝ} (h : ∃ i, ∀ j ≥
 lean 3 declaration is
   forall {f : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{0} Real Real.hasLe (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (coeFn.{1, 1} (CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) (fun (_x : CauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) => Nat -> Rat) (CauSeq.hasCoeToFun.{0, 0} Rat Rat Rat.linearOrderedField (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup))) f j)) x)) ε))) -> (LE.le.{0} Real Real.hasLe (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (Real.mk f) x)) ε)
 but is expected to have type
-  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) f) f j)) x)) ε))) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.mk f) x)) ε)
+  forall {f : CauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat))} {x : Real} {ε : Real}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (RatCast.ratCast.{0} Real Real.ratCast (Subtype.val.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f j)) x)) ε))) -> (LE.le.{0} Real Real.instLEReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (Real.mk f) x)) ε)
 Case conversion may be inaccurate. Consider using '#align real.mk_near_of_forall_near Real.mk_near_of_forall_nearₓ'. -/
 theorem mk_near_of_forall_near {f : CauSeq ℚ abs} {x : ℝ} {ε : ℝ}
     (H : ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| ≤ ε) : |mk f - x| ≤ ε :=
@@ -958,7 +958,7 @@ noncomputable instance : FloorRing ℝ :=
 lean 3 declaration is
   forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) (IsCauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup)) (fun (i : Nat) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (f i)))
 but is expected to have type
-  forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) f) (IsCauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal)) (fun (i : Nat) => RatCast.ratCast.{0} Real Real.ratCast (f i)))
+  forall {f : Nat -> Rat}, Iff (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (IsCauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (fun (i : Nat) => RatCast.ratCast.{0} Real Real.ratCast (f i)))
 Case conversion may be inaccurate. Consider using '#align real.is_cau_seq_iff_lift Real.isCauSeq_iff_liftₓ'. -/
 theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fun i => (f i : ℝ) :=
   ⟨fun H ε ε0 =>
@@ -973,7 +973,7 @@ theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fu
 lean 3 declaration is
   forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.hasLt ε (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{0} Real Real.hasLt (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Rat Real (HasLiftT.mk.{1, 1} Rat Real (CoeTCₓ.coe.{1, 1} Rat Real (Rat.castCoe.{0} Real Real.hasRatCast))) (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.linearOrderedField Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.hasNeg Rat.hasSup)) f) f h')) x))
 but is expected to have type
-  forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{0} Real Real.instLTReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (RatCast.ratCast.{0} Real Real.ratCast (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instHasSupRat)) f) f h')) x))
+  forall (f : Nat -> Rat) (x : Real), (forall (ε : Real), (GT.gt.{0} Real Real.instLTReal ε (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{0} Real Real.instLTReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (RatCast.ratCast.{0} Real Real.ratCast (f j)) x)) ε)))) -> (Exists.{0} (IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) (fun (h' : IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) => Eq.{1} Real (Real.mk (Subtype.mk.{1} (Nat -> Rat) (fun (f : Nat -> Rat) => IsCauSeq.{0, 0} Rat Rat.instLinearOrderedFieldRat Rat (DivisionRing.toRing.{0} Rat Rat.divisionRing) (Abs.abs.{0} Rat (Neg.toHasAbs.{0} Rat Rat.instNegRat Rat.instSupRat)) f) f h')) x))
 Case conversion may be inaccurate. Consider using '#align real.of_near Real.of_nearₓ'. -/
 theorem of_near (f : ℕ → ℚ) (x : ℝ) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| < ε) :
     ∃ h', Real.mk ⟨f, h'⟩ = x :=
@@ -1378,7 +1378,7 @@ theorem infₛ_le_supₛ (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) :
 lean 3 declaration is
   forall (f : CauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup))), Exists.{1} Real (fun (x : Real) => HasEquivₓ.Equiv.{1} (CauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup))) (setoidHasEquiv.{1} (CauSeq.{0, 0} Real Real.linearOrderedField Real Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup))) (CauSeq.equiv.{0, 0} Real Real Real.linearOrderedField Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.linearOrderedRing))) f (CauSeq.const.{0, 0} Real Real Real.linearOrderedField Real.ring (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.hasNeg Real.hasSup)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.linearOrderedRing) x))
 but is expected to have type
-  forall (f : CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal))), Exists.{1} Real (fun (x : Real) => HasEquiv.Equiv.{1, 0} (CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal))) (instHasEquiv.{1} (CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal))) (CauSeq.equiv.{0, 0} Real Real Real.instLinearOrderedFieldReal Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.instLinearOrderedRingReal))) f (CauSeq.const.{0, 0} Real Real Real.instLinearOrderedFieldReal Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instHasSupReal)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.instLinearOrderedRingReal) x))
+  forall (f : CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal))), Exists.{1} Real (fun (x : Real) => HasEquiv.Equiv.{1, 0} (CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal))) (instHasEquiv.{1} (CauSeq.{0, 0} Real Real.instLinearOrderedFieldReal Real Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal))) (CauSeq.equiv.{0, 0} Real Real Real.instLinearOrderedFieldReal Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.instLinearOrderedRingReal))) f (CauSeq.const.{0, 0} Real Real Real.instLinearOrderedFieldReal Real.instRingReal (Abs.abs.{0} Real (Neg.toHasAbs.{0} Real Real.instNegReal Real.instSupReal)) (IsAbsoluteValue.abs_isAbsoluteValue.{0} Real Real.instLinearOrderedRingReal) x))
 Case conversion may be inaccurate. Consider using '#align real.cau_seq_converges Real.cauSeq_convergesₓ'. -/
 theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x :=
   by

Changes in mathlib4

mathlib3
mathlib4
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -6,7 +6,7 @@ Authors: Mario Carneiro, Floris van Doorn
 import Mathlib.Algebra.Bounds
 import Mathlib.Algebra.Order.Archimedean
 import Mathlib.Data.Real.Basic
-import Mathlib.Data.Set.Intervals.Disjoint
+import Mathlib.Order.Interval.Set.Disjoint
 
 #align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
 
feat: NNRat.cast (#11203)

Define the canonical coercion from the nonnegative rationals to any division semiring.

From LeanAPAP

Diff
@@ -172,10 +172,12 @@ theorem cauchy_inv : ∀ f, (f⁻¹ : ℝ).cauchy = f.cauchy⁻¹
 
 instance instNatCast : NatCast ℝ where natCast n := ⟨n⟩
 instance instIntCast : IntCast ℝ where intCast z := ⟨z⟩
+instance instNNRatCast : NNRatCast ℝ where nnratCast q := ⟨q⟩
 instance instRatCast : RatCast ℝ where ratCast q := ⟨q⟩
 
 lemma ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n := rfl
 lemma ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z := rfl
+lemma ofCauchy_nnratCast (q : ℚ≥0) : (⟨q⟩ : ℝ) = q := rfl
 lemma ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q := rfl
 #align real.of_cauchy_nat_cast Real.ofCauchy_natCast
 #align real.of_cauchy_int_cast Real.ofCauchy_intCast
@@ -183,6 +185,7 @@ lemma ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q := rfl
 
 lemma cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n := rfl
 lemma cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z := rfl
+lemma cauchy_nnratCast (q : ℚ≥0) : (q : ℝ).cauchy = q := rfl
 lemma cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q := rfl
 #align real.cauchy_nat_cast Real.cauchy_natCast
 #align real.cauchy_int_cast Real.cauchy_intCast
@@ -573,7 +576,10 @@ noncomputable instance instLinearOrderedField : LinearOrderedField ℝ where
       Ne, ofCauchy.injEq] at *
     exact CauSeq.Completion.inv_mul_cancel h
   inv_zero := by simp [← ofCauchy_zero, ← ofCauchy_inv]
+  nnqsmul := _
   qsmul := _
+  nnratCast_def q := by
+    rw [← ofCauchy_nnratCast, NNRat.cast_def, ofCauchy_div, ofCauchy_natCast, ofCauchy_natCast]
   ratCast_def q := by
     rw [← ofCauchy_ratCast, Rat.cast_def, ofCauchy_div, ofCauchy_natCast, ofCauchy_intCast]
 
chore: Final cleanup before NNRat.cast (#12360)

This is the parts of the diff of #11203 which don't mention NNRat.cast.

  • Use more where notation.
  • Write qsmul := _ instead of qsmul := qsmulRec _ to make the instances more robust to definition changes.
  • Delete qsmulRec.
  • Move qsmul before ratCast_def in instance declarations.
  • Name more instances.
  • Rename rat_smul to qsmul.
Diff
@@ -573,9 +573,9 @@ noncomputable instance instLinearOrderedField : LinearOrderedField ℝ where
       Ne, ofCauchy.injEq] at *
     exact CauSeq.Completion.inv_mul_cancel h
   inv_zero := by simp [← ofCauchy_zero, ← ofCauchy_inv]
+  qsmul := _
   ratCast_def q := by
     rw [← ofCauchy_ratCast, Rat.cast_def, ofCauchy_div, ofCauchy_natCast, ofCauchy_intCast]
-  qsmul := _
 
 -- Extra instances to short-circuit type class resolution
 noncomputable instance : LinearOrderedAddCommGroup ℝ := by infer_instance
refactor: Avoid Rat internals in the definition of Field (#11639)

Soon, there will be NNRat analogs of the Rat fields in the definition of Field. NNRat is less nicely a structure than Rat, hence there is a need to reduce the dependency of Field on the internals of Rat.

This PR achieves this by restating Field.ratCast_mk' in terms of Rat.num, Rat.den. This requires fixing a few downstream instances.

Reduce the diff of #11203.

Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>

Diff
@@ -170,34 +170,22 @@ theorem cauchy_inv : ∀ f, (f⁻¹ : ℝ).cauchy = f.cauchy⁻¹
   | ⟨f⟩ => show (inv' _).cauchy = _ by rw [inv']
 #align real.cauchy_inv Real.cauchy_inv
 
-instance natCast : NatCast ℝ where natCast n := ⟨n⟩
+instance instNatCast : NatCast ℝ where natCast n := ⟨n⟩
+instance instIntCast : IntCast ℝ where intCast z := ⟨z⟩
+instance instRatCast : RatCast ℝ where ratCast q := ⟨q⟩
 
-instance intCast : IntCast ℝ where intCast z := ⟨z⟩
-
-instance ratCast : RatCast ℝ where ratCast q := ⟨q⟩
-
-theorem ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n :=
-  rfl
+lemma ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n := rfl
+lemma ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z := rfl
+lemma ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q := rfl
 #align real.of_cauchy_nat_cast Real.ofCauchy_natCast
-
-theorem ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z :=
-  rfl
 #align real.of_cauchy_int_cast Real.ofCauchy_intCast
-
-theorem ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q :=
-  rfl
 #align real.of_cauchy_rat_cast Real.ofCauchy_ratCast
 
-theorem cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n :=
-  rfl
+lemma cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n := rfl
+lemma cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z := rfl
+lemma cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q := rfl
 #align real.cauchy_nat_cast Real.cauchy_natCast
-
-theorem cauchy_intCast (z : ℤ) : (z : ℝ).cauchy = z :=
-  rfl
 #align real.cauchy_int_cast Real.cauchy_intCast
-
-theorem cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q :=
-  rfl
 #align real.cauchy_rat_cast Real.cauchy_ratCast
 
 instance commRing : CommRing ℝ := by
@@ -571,21 +559,23 @@ noncomputable instance : LinearOrderedSemiring ℝ := by infer_instance
 instance : IsDomain ℝ :=
   { Real.nontrivial, Real.commRing, LinearOrderedRing.isDomain with }
 
-noncomputable instance : LinearOrderedField ℝ :=
-  { Real.linearOrderedCommRing with
-    inv := Inv.inv
-    mul_inv_cancel := by
-      rintro ⟨a⟩ h
-      rw [mul_comm]
-      simp only [← ofCauchy_inv, ← ofCauchy_mul, ← ofCauchy_one, ← ofCauchy_zero, Ne,
-        ofCauchy.injEq] at *
-      exact CauSeq.Completion.inv_mul_cancel h
-    inv_zero := by simp [← ofCauchy_zero, ← ofCauchy_inv]
-    ratCast := (↑)
-    ratCast_mk := fun n d hd h2 => by
-      rw [← ofCauchy_ratCast, Rat.cast_mk', ofCauchy_mul, ofCauchy_inv, ofCauchy_natCast,
-        ofCauchy_intCast]
-    qsmul := qsmulRec _ }
+noncomputable instance instDivInvMonoid : DivInvMonoid ℝ where
+
+lemma ofCauchy_div (f g) : (⟨f / g⟩ : ℝ) = (⟨f⟩ : ℝ) / (⟨g⟩ : ℝ) := by
+  simp_rw [div_eq_mul_inv, ofCauchy_mul, ofCauchy_inv]
+
+noncomputable instance instLinearOrderedField : LinearOrderedField ℝ where
+  toLinearOrderedCommRing := linearOrderedCommRing
+  mul_inv_cancel := by
+    rintro ⟨a⟩ h
+    rw [mul_comm]
+    simp only [← ofCauchy_inv, ← ofCauchy_mul, ← ofCauchy_one, ← ofCauchy_zero,
+      Ne, ofCauchy.injEq] at *
+    exact CauSeq.Completion.inv_mul_cancel h
+  inv_zero := by simp [← ofCauchy_zero, ← ofCauchy_inv]
+  ratCast_def q := by
+    rw [← ofCauchy_ratCast, Rat.cast_def, ofCauchy_div, ofCauchy_natCast, ofCauchy_intCast]
+  qsmul := _
 
 -- Extra instances to short-circuit type class resolution
 noncomputable instance : LinearOrderedAddCommGroup ℝ := by infer_instance
refactor: Use nsmul in zsmul_rec (#862)

It's annoying that zsmulRec uses nsmulRec to define zsmul even when the user already set nsmul explicitly. This PR changes zsmulRec to take nsmul as an argument.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -200,8 +200,6 @@ theorem cauchy_ratCast (q : ℚ) : (q : ℝ).cauchy = q :=
   rfl
 #align real.cauchy_rat_cast Real.cauchy_ratCast
 
--- TODO: variables `x y` should be not included in this definition;
--- not sure how to exclude them
 instance commRing : CommRing ℝ := by
   refine' { natCast := fun n => ⟨n⟩
             intCast := fun z => ⟨z⟩
@@ -213,7 +211,7 @@ instance commRing : CommRing ℝ := by
             sub := @Sub.sub ℝ _
             npow := @npowRec ℝ ⟨1⟩ ⟨(· * ·)⟩
             nsmul := @nsmulRec ℝ ⟨0⟩ ⟨(· + ·)⟩
-            zsmul := @zsmulRec ℝ ⟨0⟩ ⟨(· + ·)⟩ ⟨@Neg.neg ℝ _⟩,
+            zsmul := @zsmulRec ℝ ⟨0⟩ ⟨(· + ·)⟩ ⟨@Neg.neg ℝ _⟩ (@nsmulRec ℝ ⟨0⟩ ⟨(· + ·)⟩),
             .. }
   all_goals
     intros
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11801)
Diff
@@ -579,8 +579,8 @@ noncomputable instance : LinearOrderedField ℝ :=
     mul_inv_cancel := by
       rintro ⟨a⟩ h
       rw [mul_comm]
-      simp only [← ofCauchy_inv, ← ofCauchy_mul, ← ofCauchy_one, ← ofCauchy_zero,
-        Ne.def, ofCauchy.injEq] at *
+      simp only [← ofCauchy_inv, ← ofCauchy_mul, ← ofCauchy_one, ← ofCauchy_zero, Ne,
+        ofCauchy.injEq] at *
       exact CauSeq.Completion.inv_mul_cancel h
     inv_zero := by simp [← ofCauchy_zero, ← ofCauchy_inv]
     ratCast := (↑)
chore(Probability/Kernel/CondCdf): cleanup (#10635)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -3,10 +3,10 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 -/
-import Mathlib.Data.Real.Basic
-import Mathlib.Data.Set.Image
-import Mathlib.Algebra.Order.Archimedean
 import Mathlib.Algebra.Bounds
+import Mathlib.Algebra.Order.Archimedean
+import Mathlib.Data.Real.Basic
+import Mathlib.Data.Set.Intervals.Disjoint
 
 #align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
 
@@ -346,4 +346,24 @@ theorem iInf_Ioi_eq_iInf_rat_gt {f : ℝ → ℝ} (x : ℝ) (hf : BddBelow (f ''
       norm_cast
 #align infi_Ioi_eq_infi_rat_gt Real.iInf_Ioi_eq_iInf_rat_gt
 
+theorem not_bddAbove_coe : ¬ (BddAbove <| range (fun (x : ℚ) ↦ (x : ℝ))) := by
+  dsimp only [BddAbove, upperBounds]
+  rw [Set.not_nonempty_iff_eq_empty]
+  ext
+  simpa using exists_rat_gt _
+
+theorem not_bddBelow_coe : ¬ (BddBelow <| range (fun (x : ℚ) ↦ (x : ℝ))) := by
+  dsimp only [BddBelow, lowerBounds]
+  rw [Set.not_nonempty_iff_eq_empty]
+  ext
+  simpa using exists_rat_lt _
+
+theorem iUnion_Iic_rat : ⋃ r : ℚ, Iic (r : ℝ) = univ := by
+  exact iUnion_Iic_of_not_bddAbove_range not_bddAbove_coe
+#align real.Union_Iic_rat Real.iUnion_Iic_rat
+
+theorem iInter_Iic_rat : ⋂ r : ℚ, Iic (r : ℝ) = ∅ := by
+  exact iInter_Iic_eq_empty_iff.mpr not_bddBelow_coe
+#align real.Inter_Iic_rat Real.iInter_Iic_rat
+
 end Real
chore: Rename cat_coe_nat/cast_coe_int to cast_natCast/cast_intCast (#11552)

Reduce the diff of #11499

Diff
@@ -73,7 +73,7 @@ theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃
   have hf₂ : ∀ n > 0, ∀ y ∈ S, (y - ((n : ℕ) : ℝ)⁻¹) < (f n / n : ℚ) := by
     intro n n0 y yS
     have := (Int.sub_one_lt_floor _).trans_le (Int.cast_le.2 <| (hf n).2 _ ⟨y, yS, Int.floor_le _⟩)
-    simp only [Rat.cast_div, Rat.cast_coe_int, Rat.cast_coe_nat, gt_iff_lt]
+    simp only [Rat.cast_div, Rat.cast_intCast, Rat.cast_natCast, gt_iff_lt]
     rwa [lt_div_iff (Nat.cast_pos.2 n0 : (_ : ℝ) < _), sub_mul, _root_.inv_mul_cancel]
     exact ne_of_gt (Nat.cast_pos.2 n0)
   have hg : IsCauSeq abs (fun n => f n / n : ℕ → ℚ) := by
refactor: do not allow qsmul to default automatically (#11262)

Follows on from #6262. Again, this does not attempt to fix any diamonds; it only identifies where they may be.

Diff
@@ -586,7 +586,8 @@ noncomputable instance : LinearOrderedField ℝ :=
     ratCast := (↑)
     ratCast_mk := fun n d hd h2 => by
       rw [← ofCauchy_ratCast, Rat.cast_mk', ofCauchy_mul, ofCauchy_inv, ofCauchy_natCast,
-        ofCauchy_intCast] }
+        ofCauchy_intCast]
+    qsmul := qsmulRec _ }
 
 -- Extra instances to short-circuit type class resolution
 noncomputable instance : LinearOrderedAddCommGroup ℝ := by infer_instance
chore: squeeze some non-terminal simps (#11247)

This PR accompanies #11246, squeezing some non-terminal simps highlighted by the linter until I decided to stop!

Diff
@@ -355,7 +355,8 @@ private theorem le_def' {x y : ℝ} : x ≤ y ↔ x < y ∨ x = y :=
   show le _ _ ↔ _ by rw [le_def]
 
 @[simp]
-theorem mk_le {f g : CauSeq ℚ abs} : mk f ≤ mk g ↔ f ≤ g := by simp [le_def', mk_eq]; rfl
+theorem mk_le {f g : CauSeq ℚ abs} : mk f ≤ mk g ↔ f ≤ g := by
+  simp only [le_def', mk_lt, mk_eq]; rfl
 #align real.mk_le Real.mk_le
 
 @[elab_as_elim]
chore: Remove ball and bex from lemma names (#10816)

ball for "bounded forall" and bex for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem and exists_mem in the few Set lemma names that mention them.

Also deprecate ball_image_of_ball, mem_image_elim, mem_image_elim_on since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image semi-implicit), have obscure names and are completely unused.

Diff
@@ -243,7 +243,7 @@ As `0` is the default value for `Real.sSup` of the empty set or sets which are n
 suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
 -/
 protected theorem iSup_nonneg {ι : Sort*} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
-  sSup_nonneg _ <| Set.forall_range_iff.2 hf
+  sSup_nonneg _ <| Set.forall_mem_range.2 hf
 #align real.supr_nonneg Real.iSup_nonneg
 
 /--
@@ -258,7 +258,7 @@ protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (h
 
 protected theorem iSup_le {ι : Sort*} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
     ⨆ i, f i ≤ a :=
-  Real.sSup_le (Set.forall_range_iff.2 hS) ha
+  Real.sSup_le (Set.forall_mem_range.2 hS) ha
 #align real.supr_le Real.iSup_le
 
 /-- As `0` is the default value for `Real.sSup` of the empty set, it suffices to show that `S` is
@@ -280,7 +280,7 @@ theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sI
 bounded below by `0` to show that `0 ≤ iInf f`.
 -/
 theorem iInf_nonneg {ι} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ iInf f :=
-  sInf_nonneg _ <| Set.forall_range_iff.2 hf
+  sInf_nonneg _ <| Set.forall_mem_range.2 hf
 
 /--
 As `0` is the default value for `Real.sInf` of the empty set or sets which are not bounded below, it
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -549,7 +549,7 @@ instance : SemilatticeInf ℝ :=
 instance : SemilatticeSup ℝ :=
   inferInstance
 
-open Classical
+open scoped Classical
 
 instance : IsTotal ℝ (· ≤ ·) :=
   ⟨by
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -15,7 +15,8 @@ import Mathlib.Algebra.Bounds
 
 -/
 
-open Pointwise CauSeq Classical
+open scoped Classical
+open Pointwise CauSeq
 
 namespace Real
 
chore(CauSeq): Cleanup (#10530)
  • Rename Data.Real.CauSeq to Algebra.Order.CauSeq.Basic
  • Rename Data.Real.CauSeqCompletion to Algebra.Order.CauSeq.Completion
  • Move the general lemmas about CauSeq from Data.Complex.Exponential to a new file Algebra.Order.CauSeq.BigOperators
  • Move the lemmas mentioning Module from Algebra.BigOperators.Intervals to a new file Algebra.BigOperators.Module
  • Move a few more lemmas to earlier files
  • Deprecate abv_sum_le_sum_abv as it's a duplicate of IsAbsoluteValue.abv_sum
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 -/
 import Mathlib.Algebra.Star.Basic
-import Mathlib.Data.Real.CauSeqCompletion
+import Mathlib.Algebra.Order.CauSeq.Completion
 
 #align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
 
chore: Rename Real.ciSup_empty (#10217)

and a few more to clarify that they are about IsEmpty, not about . Make a few more lemmas simp.`

Diff
@@ -177,17 +177,17 @@ theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
   dif_neg <| by simp
 #align real.Sup_empty Real.sSup_empty
 
-theorem ciSup_empty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨆ i, f i = 0 := by
+@[simp] lemma iSup_of_isEmpty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨆ i, f i = 0 := by
   dsimp [iSup]
   convert Real.sSup_empty
   rw [Set.range_eq_empty_iff]
   infer_instance
-#align real.csupr_empty Real.ciSup_empty
+#align real.csupr_empty Real.iSup_of_isEmpty
 
 @[simp]
 theorem ciSup_const_zero {α : Sort*} : ⨆ _ : α, (0 : ℝ) = 0 := by
   cases isEmpty_or_nonempty α
-  · exact Real.ciSup_empty _
+  · exact Real.iSup_of_isEmpty _
   · exact ciSup_const
 #align real.csupr_const_zero Real.ciSup_const_zero
 
@@ -200,22 +200,21 @@ theorem iSup_of_not_bddAbove {α : Sort*} {f : α → ℝ} (hf : ¬BddAbove (Set
   sSup_of_not_bddAbove hf
 #align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
 
-theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
-  Real.sSup_of_not_bddAbove fun ⟨_, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
+theorem sSup_univ : sSup (@Set.univ ℝ) = 0 := Real.sSup_of_not_bddAbove not_bddAbove_univ
 #align real.Sup_univ Real.sSup_univ
 
 @[simp]
 theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [sInf_def, sSup_empty]
 #align real.Inf_empty Real.sInf_empty
 
-theorem ciInf_empty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨅ i, f i = 0 := by
-  rw [iInf_of_empty', sInf_empty]
-#align real.cinfi_empty Real.ciInf_empty
+@[simp] nonrec lemma iInf_of_isEmpty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨅ i, f i = 0 := by
+  rw [iInf_of_isEmpty, sInf_empty]
+#align real.cinfi_empty Real.iInf_of_isEmpty
 
 @[simp]
 theorem ciInf_const_zero {α : Sort*} : ⨅ _ : α, (0 : ℝ) = 0 := by
   cases isEmpty_or_nonempty α
-  · exact Real.ciInf_empty _
+  · exact Real.iInf_of_isEmpty _
   · exact ciInf_const
 #align real.cinfi_const_zero Real.ciInf_const_zero
 
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -3,7 +3,6 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 -/
-import Mathlib.Algebra.Bounds
 import Mathlib.Algebra.Star.Basic
 import Mathlib.Data.Real.CauSeqCompletion
 
@@ -28,8 +27,6 @@ assert_not_exists Module
 assert_not_exists Submonoid
 assert_not_exists FloorRing
 
-open Pointwise
-
 /-- The type `ℝ` of real numbers constructed as equivalence classes of Cauchy sequences of rational
 numbers. -/
 structure Real where ofCauchy ::
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -4,7 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 -/
 import Mathlib.Data.Real.Basic
+import Mathlib.Data.Set.Image
 import Mathlib.Algebra.Order.Archimedean
+import Mathlib.Algebra.Bounds
 
 #align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
 
chore: split Data.Real.Basic (#8356)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -4,7 +4,6 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 -/
 import Mathlib.Algebra.Bounds
-import Mathlib.Algebra.Order.Archimedean
 import Mathlib.Algebra.Star.Basic
 import Mathlib.Data.Real.CauSeqCompletion
 
@@ -16,12 +15,18 @@ import Mathlib.Data.Real.CauSeqCompletion
 This file defines `ℝ` as the type of equivalence classes of Cauchy sequences of rational numbers.
 This choice is motivated by how easy it is to prove that `ℝ` is a commutative ring, by simply
 lifting everything to `ℚ`.
+
+The facts that the real numbers are an Archimedean floor ring,
+and a conditionally complete linear order,
+have been deferred to the file `Mathlib/Data/Real/Archimedean.lean`,
+in order to keep the imports here simple.
 -/
 
 
 assert_not_exists Finset
 assert_not_exists Module
 assert_not_exists Submonoid
+assert_not_exists FloorRing
 
 open Pointwise
 
@@ -640,331 +645,4 @@ theorem mk_near_of_forall_near {f : CauSeq ℚ abs} {x : ℝ} {ε : ℝ}
         le_mk_of_forall_le <| H.imp fun _ h j ij => sub_le_comm.1 (abs_sub_le_iff.1 <| h j ij).2⟩
 #align real.mk_near_of_forall_near Real.mk_near_of_forall_near
 
-instance instArchimedean : Archimedean ℝ :=
-  archimedean_iff_rat_le.2 fun x =>
-    Real.ind_mk x fun f =>
-      let ⟨M, _, H⟩ := f.bounded' 0
-      ⟨M, mk_le_of_forall_le ⟨0, fun i _ => Rat.cast_le.2 <| le_of_lt (abs_lt.1 (H i)).2⟩⟩
-#align real.archimedean Real.instArchimedean
-
-noncomputable instance : FloorRing ℝ :=
-  Archimedean.floorRing _
-
-theorem isCauSeq_iff_lift {f : ℕ → ℚ} : IsCauSeq abs f ↔ IsCauSeq abs fun i => (f i : ℝ) :=
-  ⟨fun H ε ε0 =>
-    let ⟨δ, δ0, δε⟩ := exists_pos_rat_lt ε0
-    (H _ δ0).imp fun i hi j ij => lt_trans (by simpa using (@Rat.cast_lt ℝ _ _ _).2 (hi _ ij)) δε,
-    fun H ε ε0 =>
-    (H _ (Rat.cast_pos.2 ε0)).imp fun i hi j ij =>
-      (@Rat.cast_lt ℝ _ _ _).1 <| by simpa using hi _ ij⟩
-#align real.is_cau_seq_iff_lift Real.isCauSeq_iff_lift
-
-theorem of_near (f : ℕ → ℚ) (x : ℝ) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, |(f j : ℝ) - x| < ε) :
-    ∃ h', Real.mk ⟨f, h'⟩ = x :=
-  ⟨isCauSeq_iff_lift.2 (CauSeq.of_near _ (const abs x) h),
-    sub_eq_zero.1 <|
-      abs_eq_zero.1 <|
-        (eq_of_le_of_forall_le_of_dense (abs_nonneg _)) fun _ε ε0 =>
-          mk_near_of_forall_near <| (h _ ε0).imp fun _i h j ij => le_of_lt (h j ij)⟩
-#align real.of_near Real.of_near
-
-theorem exists_floor (x : ℝ) : ∃ ub : ℤ, (ub : ℝ) ≤ x ∧ ∀ z : ℤ, (z : ℝ) ≤ x → z ≤ ub :=
-  Int.exists_greatest_of_bdd
-    (let ⟨n, hn⟩ := exists_int_gt x
-    ⟨n, fun _ h' => Int.cast_le.1 <| le_trans h' <| le_of_lt hn⟩)
-    (let ⟨n, hn⟩ := exists_int_lt x
-    ⟨n, le_of_lt hn⟩)
-#align real.exists_floor Real.exists_floor
-
-theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃ x, IsLUB S x := by
-  rcases hne, hbdd with ⟨⟨L, hL⟩, ⟨U, hU⟩⟩
-  have : ∀ d : ℕ, BddAbove { m : ℤ | ∃ y ∈ S, (m : ℝ) ≤ y * d } := by
-    cases' exists_int_gt U with k hk
-    refine' fun d => ⟨k * d, fun z h => _⟩
-    rcases h with ⟨y, yS, hy⟩
-    refine' Int.cast_le.1 (hy.trans _)
-    push_cast
-    exact mul_le_mul_of_nonneg_right ((hU yS).trans hk.le) d.cast_nonneg
-  choose f hf using fun d : ℕ =>
-    Int.exists_greatest_of_bdd (this d) ⟨⌊L * d⌋, L, hL, Int.floor_le _⟩
-  have hf₁ : ∀ n > 0, ∃ y ∈ S, ((f n / n : ℚ) : ℝ) ≤ y := fun n n0 =>
-    let ⟨y, yS, hy⟩ := (hf n).1
-    ⟨y, yS, by simpa using (div_le_iff (Nat.cast_pos.2 n0 : (_ : ℝ) < _)).2 hy⟩
-  have hf₂ : ∀ n > 0, ∀ y ∈ S, (y - ((n : ℕ) : ℝ)⁻¹) < (f n / n : ℚ) := by
-    intro n n0 y yS
-    have := (Int.sub_one_lt_floor _).trans_le (Int.cast_le.2 <| (hf n).2 _ ⟨y, yS, Int.floor_le _⟩)
-    simp only [Rat.cast_div, Rat.cast_coe_int, Rat.cast_coe_nat, gt_iff_lt]
-    rwa [lt_div_iff (Nat.cast_pos.2 n0 : (_ : ℝ) < _), sub_mul, _root_.inv_mul_cancel]
-    exact ne_of_gt (Nat.cast_pos.2 n0)
-  have hg : IsCauSeq abs (fun n => f n / n : ℕ → ℚ) := by
-    intro ε ε0
-    suffices ∀ j ≥ ⌈ε⁻¹⌉₊, ∀ k ≥ ⌈ε⁻¹⌉₊, (f j / j - f k / k : ℚ) < ε by
-      refine' ⟨_, fun j ij => abs_lt.2 ⟨_, this _ ij _ le_rfl⟩⟩
-      rw [neg_lt, neg_sub]
-      exact this _ le_rfl _ ij
-    intro j ij k ik
-    replace ij := le_trans (Nat.le_ceil _) (Nat.cast_le.2 ij)
-    replace ik := le_trans (Nat.le_ceil _) (Nat.cast_le.2 ik)
-    have j0 := Nat.cast_pos.1 ((inv_pos.2 ε0).trans_le ij)
-    have k0 := Nat.cast_pos.1 ((inv_pos.2 ε0).trans_le ik)
-    rcases hf₁ _ j0 with ⟨y, yS, hy⟩
-    refine' lt_of_lt_of_le ((@Rat.cast_lt ℝ _ _ _).1 _) ((inv_le ε0 (Nat.cast_pos.2 k0)).1 ik)
-    simpa using sub_lt_iff_lt_add'.2 (lt_of_le_of_lt hy <| sub_lt_iff_lt_add.1 <| hf₂ _ k0 _ yS)
-  let g : CauSeq ℚ abs := ⟨fun n => f n / n, hg⟩
-  refine' ⟨mk g, ⟨fun x xS => _, fun y h => _⟩⟩
-  · refine' le_of_forall_ge_of_dense fun z xz => _
-    cases' exists_nat_gt (x - z)⁻¹ with K hK
-    refine' le_mk_of_forall_le ⟨K, fun n nK => _⟩
-    replace xz := sub_pos.2 xz
-    replace hK := hK.le.trans (Nat.cast_le.2 nK)
-    have n0 : 0 < n := Nat.cast_pos.1 ((inv_pos.2 xz).trans_le hK)
-    refine' le_trans _ (hf₂ _ n0 _ xS).le
-    rwa [le_sub_comm, inv_le (Nat.cast_pos.2 n0 : (_ : ℝ) < _) xz]
-  · exact
-      mk_le_of_forall_le
-        ⟨1, fun n n1 =>
-          let ⟨x, xS, hx⟩ := hf₁ _ n1
-          le_trans hx (h xS)⟩
-#align real.exists_is_lub Real.exists_isLUB
-
-noncomputable instance : SupSet ℝ :=
-  ⟨fun S => if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0⟩
-
-theorem sSup_def (S : Set ℝ) :
-    sSup S = if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0 :=
-  rfl
-#align real.Sup_def Real.sSup_def
-
-protected theorem isLUB_sSup (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) :
-    IsLUB S (sSup S) := by
-  simp only [sSup_def, dif_pos (And.intro h₁ h₂)]
-  apply Classical.choose_spec
-#align real.is_lub_Sup Real.isLUB_sSup
-
-noncomputable instance : InfSet ℝ :=
-  ⟨fun S => -sSup (-S)⟩
-
-theorem sInf_def (S : Set ℝ) : sInf S = -sSup (-S) :=
-  rfl
-#align real.Inf_def Real.sInf_def
-
-protected theorem is_glb_sInf (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddBelow S) :
-    IsGLB S (sInf S) := by
-  rw [sInf_def, ← isLUB_neg', neg_neg]
-  exact Real.isLUB_sSup _ h₁.neg h₂.neg
-#align real.is_glb_Inf Real.is_glb_sInf
-
-noncomputable instance : ConditionallyCompleteLinearOrder ℝ :=
-  { Real.linearOrder, Real.lattice with
-    sSup := SupSet.sSup
-    sInf := InfSet.sInf
-    le_csSup := fun s a hs ha => (Real.isLUB_sSup s ⟨a, ha⟩ hs).1 ha
-    csSup_le := fun s a hs ha => (Real.isLUB_sSup s hs ⟨a, ha⟩).2 ha
-    csInf_le := fun s a hs ha => (Real.is_glb_sInf s ⟨a, ha⟩ hs).1 ha
-    le_csInf := fun s a hs ha => (Real.is_glb_sInf s hs ⟨a, ha⟩).2 ha
-    csSup_of_not_bddAbove := fun s hs ↦ by simp [hs, sSup_def]
-    csInf_of_not_bddBelow := fun s hs ↦ by simp [hs, sInf_def, sSup_def] }
-
-theorem lt_sInf_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
-    ∃ a ∈ s, a < sInf s + ε :=
-  exists_lt_of_csInf_lt h <| lt_add_of_pos_right _ hε
-#align real.lt_Inf_add_pos Real.lt_sInf_add_pos
-
-theorem add_neg_lt_sSup {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : ε < 0) :
-    ∃ a ∈ s, sSup s + ε < a :=
-  exists_lt_of_lt_csSup h <| add_lt_iff_neg_left.2 hε
-#align real.add_neg_lt_Sup Real.add_neg_lt_sSup
-
-theorem sInf_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
-    sInf s ≤ a ↔ ∀ ε, 0 < ε → ∃ x ∈ s, x < a + ε := by
-  rw [le_iff_forall_pos_lt_add]
-  constructor <;> intro H ε ε_pos
-  · exact exists_lt_of_csInf_lt h' (H ε ε_pos)
-  · rcases H ε ε_pos with ⟨x, x_in, hx⟩
-    exact csInf_lt_of_lt h x_in hx
-#align real.Inf_le_iff Real.sInf_le_iff
-
-theorem le_sSup_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
-    a ≤ sSup s ↔ ∀ ε, ε < 0 → ∃ x ∈ s, a + ε < x := by
-  rw [le_iff_forall_pos_lt_add]
-  refine' ⟨fun H ε ε_neg => _, fun H ε ε_pos => _⟩
-  · exact exists_lt_of_lt_csSup h' (lt_sub_iff_add_lt.mp (H _ (neg_pos.mpr ε_neg)))
-  · rcases H _ (neg_lt_zero.mpr ε_pos) with ⟨x, x_in, hx⟩
-    exact sub_lt_iff_lt_add.mp (lt_csSup_of_lt h x_in hx)
-#align real.le_Sup_iff Real.le_sSup_iff
-
-@[simp]
-theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
-  dif_neg <| by simp
-#align real.Sup_empty Real.sSup_empty
-
-theorem ciSup_empty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨆ i, f i = 0 := by
-  dsimp [iSup]
-  convert Real.sSup_empty
-  rw [Set.range_eq_empty_iff]
-  infer_instance
-#align real.csupr_empty Real.ciSup_empty
-
-@[simp]
-theorem ciSup_const_zero {α : Sort*} : ⨆ _ : α, (0 : ℝ) = 0 := by
-  cases isEmpty_or_nonempty α
-  · exact Real.ciSup_empty _
-  · exact ciSup_const
-#align real.csupr_const_zero Real.ciSup_const_zero
-
-theorem sSup_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : sSup s = 0 :=
-  dif_neg fun h => hs h.2
-#align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAbove
-
-theorem iSup_of_not_bddAbove {α : Sort*} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
-    ⨆ i, f i = 0 :=
-  sSup_of_not_bddAbove hf
-#align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
-
-theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
-  Real.sSup_of_not_bddAbove fun ⟨_, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
-#align real.Sup_univ Real.sSup_univ
-
-@[simp]
-theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [sInf_def, sSup_empty]
-#align real.Inf_empty Real.sInf_empty
-
-theorem ciInf_empty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨅ i, f i = 0 := by
-  rw [iInf_of_empty', sInf_empty]
-#align real.cinfi_empty Real.ciInf_empty
-
-@[simp]
-theorem ciInf_const_zero {α : Sort*} : ⨅ _ : α, (0 : ℝ) = 0 := by
-  cases isEmpty_or_nonempty α
-  · exact Real.ciInf_empty _
-  · exact ciInf_const
-#align real.cinfi_const_zero Real.ciInf_const_zero
-
-theorem sInf_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : sInf s = 0 :=
-  neg_eq_zero.2 <| sSup_of_not_bddAbove <| mt bddAbove_neg.1 hs
-#align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelow
-
-theorem iInf_of_not_bddBelow {α : Sort*} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
-    ⨅ i, f i = 0 :=
-  sInf_of_not_bddBelow hf
-#align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelow
-
-/--
-As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
-suffices to show that `S` is bounded below by `0` to show that `0 ≤ sSup S`.
--/
-theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sSup S := by
-  rcases S.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
-  · exact sSup_empty.ge
-  · apply dite _ (fun h => le_csSup_of_le h hy <| hS y hy) fun h => (sSup_of_not_bddAbove h).ge
-#align real.Sup_nonneg Real.sSup_nonneg
-
-/--
-As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
-suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
--/
-protected theorem iSup_nonneg {ι : Sort*} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
-  sSup_nonneg _ <| Set.forall_range_iff.2 hf
-#align real.supr_nonneg Real.iSup_nonneg
-
-/--
-As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
-suffices to show that all elements of `S` are bounded by a nonnegative number to show that `sSup S`
-is bounded by this number.
--/
-protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (ha : 0 ≤ a) : sSup S ≤ a := by
-  rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts [sSup_empty.trans_le ha, csSup_le hS₂ hS]
-#align real.Sup_le Real.sSup_le
-
-protected theorem iSup_le {ι : Sort*} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
-    ⨆ i, f i ≤ a :=
-  Real.sSup_le (Set.forall_range_iff.2 hS) ha
-#align real.supr_le Real.iSup_le
-
-/-- As `0` is the default value for `Real.sSup` of the empty set, it suffices to show that `S` is
-bounded above by `0` to show that `sSup S ≤ 0`.
--/
-theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S ≤ 0 :=
-  Real.sSup_le hS le_rfl
-#align real.Sup_nonpos Real.sSup_nonpos
-
-/-- As `0` is the default value for `Real.sInf` of the empty set, it suffices to show that `S` is
-bounded below by `0` to show that `0 ≤ sInf S`.
--/
-theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sInf S := by
-  rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts [sInf_empty.ge, le_csInf hS₂ hS]
-#align real.Inf_nonneg Real.sInf_nonneg
-
-/-- As `0` is the default value for `Real.sInf` of the empty set, it suffices to show that `f i` is
-bounded below by `0` to show that `0 ≤ iInf f`.
--/
-theorem iInf_nonneg {ι} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ iInf f :=
-  sInf_nonneg _ <| Set.forall_range_iff.2 hf
-
-/--
-As `0` is the default value for `Real.sInf` of the empty set or sets which are not bounded below, it
-suffices to show that `S` is bounded above by `0` to show that `sInf S ≤ 0`.
--/
-theorem sInf_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sInf S ≤ 0 := by
-  rcases S.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
-  · exact sInf_empty.le
-  · apply dite _ (fun h => csInf_le_of_le h hy <| hS y hy) fun h => (sInf_of_not_bddBelow h).le
-#align real.Inf_nonpos Real.sInf_nonpos
-
-theorem sInf_le_sSup (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : sInf s ≤ sSup s := by
-  rcases s.eq_empty_or_nonempty with (rfl | hne)
-  · rw [sInf_empty, sSup_empty]
-  · exact csInf_le_csSup h₁ h₂ hne
-#align real.Inf_le_Sup Real.sInf_le_sSup
-
-theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x := by
-  let S := { x : ℝ | const abs x < f }
-  have lb : ∃ x, x ∈ S := exists_lt f
-  have ub' : ∀ x, f < const abs x → ∀ y ∈ S, y ≤ x := fun x h y yS =>
-    le_of_lt <| const_lt.1 <| CauSeq.lt_trans yS h
-  have ub : ∃ x, ∀ y ∈ S, y ≤ x := (exists_gt f).imp ub'
-  refine' ⟨sSup S, ((lt_total _ _).resolve_left fun h => _).resolve_right fun h => _⟩
-  · rcases h with ⟨ε, ε0, i, ih⟩
-    refine' (csSup_le lb (ub' _ _)).not_lt (sub_lt_self _ (half_pos ε0))
-    refine' ⟨_, half_pos ε0, i, fun j ij => _⟩
-    rw [sub_apply, const_apply, sub_right_comm, le_sub_iff_add_le, add_halves]
-    exact ih _ ij
-  · rcases h with ⟨ε, ε0, i, ih⟩
-    refine' (le_csSup ub _).not_lt ((lt_add_iff_pos_left _).2 (half_pos ε0))
-    refine' ⟨_, half_pos ε0, i, fun j ij => _⟩
-    rw [sub_apply, const_apply, add_comm, ← sub_sub, le_sub_iff_add_le, add_halves]
-    exact ih _ ij
-#align real.cau_seq_converges Real.cauSeq_converges
-
-instance : CauSeq.IsComplete ℝ abs :=
-  ⟨cauSeq_converges⟩
-
-open Set
-
-theorem iInf_Ioi_eq_iInf_rat_gt {f : ℝ → ℝ} (x : ℝ) (hf : BddBelow (f '' Ioi x))
-    (hf_mono : Monotone f) : ⨅ r : Ioi x, f r = ⨅ q : { q' : ℚ // x < q' }, f q := by
-  refine' le_antisymm _ _
-  · have : Nonempty { r' : ℚ // x < ↑r' } := by
-      obtain ⟨r, hrx⟩ := exists_rat_gt x
-      exact ⟨⟨r, hrx⟩⟩
-    refine' le_ciInf fun r => _
-    obtain ⟨y, hxy, hyr⟩ := exists_rat_btwn r.prop
-    refine' ciInf_set_le hf (hxy.trans _)
-    exact_mod_cast hyr
-  · refine' le_ciInf fun q => _
-    have hq := q.prop
-    rw [mem_Ioi] at hq
-    obtain ⟨y, hxy, hyq⟩ := exists_rat_btwn hq
-    refine' (ciInf_le _ _).trans _
-    · refine' ⟨hf.some, fun z => _⟩
-      rintro ⟨u, rfl⟩
-      suffices hfu : f u ∈ f '' Ioi x from hf.choose_spec hfu
-      exact ⟨u, u.prop, rfl⟩
-    · exact ⟨y, hxy⟩
-    · refine' hf_mono (le_trans _ hyq.le)
-      norm_cast
-#align infi_Ioi_eq_infi_rat_gt Real.iInf_Ioi_eq_iInf_rat_gt
-
 end Real
chore: split Data.Real.Basic (#8356)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

chore: tidy various files (#7359)
Diff
@@ -960,8 +960,7 @@ theorem iInf_Ioi_eq_iInf_rat_gt {f : ℝ → ℝ} (x : ℝ) (hf : BddBelow (f ''
     refine' (ciInf_le _ _).trans _
     · refine' ⟨hf.some, fun z => _⟩
       rintro ⟨u, rfl⟩
-      suffices hfu : f u ∈ f '' Ioi x by
-        exact hf.choose_spec hfu
+      suffices hfu : f u ∈ f '' Ioi x from hf.choose_spec hfu
       exact ⟨u, u.prop, rfl⟩
     · exact ⟨y, hxy⟩
     · refine' hf_mono (le_trans _ hyq.le)
chore: avoid lean3 style have/suffices (#6964)

Many proofs use the "stream of consciousness" style from Lean 3, rather than have ... := or suffices ... from/by.

This PR updates a fraction of these to the preferred Lean 4 style.

I think a good goal would be to delete the "deferred" versions of have, suffices, and let at the bottom of Mathlib.Tactic.Have

(Anyone who would like to contribute more cleanup is welcome to push directly to this branch.)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -960,8 +960,8 @@ theorem iInf_Ioi_eq_iInf_rat_gt {f : ℝ → ℝ} (x : ℝ) (hf : BddBelow (f ''
     refine' (ciInf_le _ _).trans _
     · refine' ⟨hf.some, fun z => _⟩
       rintro ⟨u, rfl⟩
-      suffices hfu : f u ∈ f '' Ioi x
-      exact hf.choose_spec hfu
+      suffices hfu : f u ∈ f '' Ioi x by
+        exact hf.choose_spec hfu
       exact ⟨u, u.prop, rfl⟩
     · exact ⟨y, hxy⟩
     · refine' hf_mono (le_trans _ hyq.le)
feat: use junk value in the definition of conditionally complete linear order (#6571)

Currently, in a conditionally complete linear order, the supremum of an unbounded set hasn't any specific property. However, in all instances in mathlib, all unbounded sets have the same supremum. This PR adds this requirement in mathlib. This will be convenient to remove boundedness assumptions in measurability statements.

Diff
@@ -761,7 +761,9 @@ noncomputable instance : ConditionallyCompleteLinearOrder ℝ :=
     le_csSup := fun s a hs ha => (Real.isLUB_sSup s ⟨a, ha⟩ hs).1 ha
     csSup_le := fun s a hs ha => (Real.isLUB_sSup s hs ⟨a, ha⟩).2 ha
     csInf_le := fun s a hs ha => (Real.is_glb_sInf s ⟨a, ha⟩ hs).1 ha
-    le_csInf := fun s a hs ha => (Real.is_glb_sInf s hs ⟨a, ha⟩).2 ha }
+    le_csInf := fun s a hs ha => (Real.is_glb_sInf s hs ⟨a, ha⟩).2 ha
+    csSup_of_not_bddAbove := fun s hs ↦ by simp [hs, sSup_def]
+    csInf_of_not_bddBelow := fun s hs ↦ by simp [hs, sInf_def, sSup_def] }
 
 theorem lt_sInf_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
     ∃ a ∈ s, a < sInf s + ε :=
chore: move lemmas from Stietljes.lean to their proper afterport places (#6554)
Diff
@@ -939,4 +939,31 @@ theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x := by
 instance : CauSeq.IsComplete ℝ abs :=
   ⟨cauSeq_converges⟩
 
+open Set
+
+theorem iInf_Ioi_eq_iInf_rat_gt {f : ℝ → ℝ} (x : ℝ) (hf : BddBelow (f '' Ioi x))
+    (hf_mono : Monotone f) : ⨅ r : Ioi x, f r = ⨅ q : { q' : ℚ // x < q' }, f q := by
+  refine' le_antisymm _ _
+  · have : Nonempty { r' : ℚ // x < ↑r' } := by
+      obtain ⟨r, hrx⟩ := exists_rat_gt x
+      exact ⟨⟨r, hrx⟩⟩
+    refine' le_ciInf fun r => _
+    obtain ⟨y, hxy, hyr⟩ := exists_rat_btwn r.prop
+    refine' ciInf_set_le hf (hxy.trans _)
+    exact_mod_cast hyr
+  · refine' le_ciInf fun q => _
+    have hq := q.prop
+    rw [mem_Ioi] at hq
+    obtain ⟨y, hxy, hyq⟩ := exists_rat_btwn hq
+    refine' (ciInf_le _ _).trans _
+    · refine' ⟨hf.some, fun z => _⟩
+      rintro ⟨u, rfl⟩
+      suffices hfu : f u ∈ f '' Ioi x
+      exact hf.choose_spec hfu
+      exact ⟨u, u.prop, rfl⟩
+    · exact ⟨y, hxy⟩
+    · refine' hf_mono (le_trans _ hyq.le)
+      norm_cast
+#align infi_Ioi_eq_infi_rat_gt Real.iInf_Ioi_eq_iInf_rat_gt
+
 end Real
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -796,7 +796,7 @@ theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
   dif_neg <| by simp
 #align real.Sup_empty Real.sSup_empty
 
-theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : ⨆ i, f i = 0 := by
+theorem ciSup_empty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨆ i, f i = 0 := by
   dsimp [iSup]
   convert Real.sSup_empty
   rw [Set.range_eq_empty_iff]
@@ -804,7 +804,7 @@ theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : ⨆ i, f i = 0
 #align real.csupr_empty Real.ciSup_empty
 
 @[simp]
-theorem ciSup_const_zero {α : Sort _} : ⨆ _ : α, (0 : ℝ) = 0 := by
+theorem ciSup_const_zero {α : Sort*} : ⨆ _ : α, (0 : ℝ) = 0 := by
   cases isEmpty_or_nonempty α
   · exact Real.ciSup_empty _
   · exact ciSup_const
@@ -814,7 +814,7 @@ theorem sSup_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : sSup s = 0 :=
   dif_neg fun h => hs h.2
 #align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAbove
 
-theorem iSup_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
+theorem iSup_of_not_bddAbove {α : Sort*} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
     ⨆ i, f i = 0 :=
   sSup_of_not_bddAbove hf
 #align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
@@ -827,12 +827,12 @@ theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
 theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [sInf_def, sSup_empty]
 #align real.Inf_empty Real.sInf_empty
 
-theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : ⨅ i, f i = 0 := by
+theorem ciInf_empty {α : Sort*} [IsEmpty α] (f : α → ℝ) : ⨅ i, f i = 0 := by
   rw [iInf_of_empty', sInf_empty]
 #align real.cinfi_empty Real.ciInf_empty
 
 @[simp]
-theorem ciInf_const_zero {α : Sort _} : ⨅ _ : α, (0 : ℝ) = 0 := by
+theorem ciInf_const_zero {α : Sort*} : ⨅ _ : α, (0 : ℝ) = 0 := by
   cases isEmpty_or_nonempty α
   · exact Real.ciInf_empty _
   · exact ciInf_const
@@ -842,7 +842,7 @@ theorem sInf_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : sInf s = 0 :=
   neg_eq_zero.2 <| sSup_of_not_bddAbove <| mt bddAbove_neg.1 hs
 #align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelow
 
-theorem iInf_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
+theorem iInf_of_not_bddBelow {α : Sort*} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
     ⨅ i, f i = 0 :=
   sInf_of_not_bddBelow hf
 #align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelow
@@ -861,7 +861,7 @@ theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sS
 As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
 suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
 -/
-protected theorem iSup_nonneg {ι : Sort _} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
+protected theorem iSup_nonneg {ι : Sort*} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
   sSup_nonneg _ <| Set.forall_range_iff.2 hf
 #align real.supr_nonneg Real.iSup_nonneg
 
@@ -875,7 +875,7 @@ protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (h
   exacts [sSup_empty.trans_le ha, csSup_le hS₂ hS]
 #align real.Sup_le Real.sSup_le
 
-protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
+protected theorem iSup_le {ι : Sort*} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
     ⨆ i, f i ≤ a :=
   Real.sSup_le (Set.forall_range_iff.2 hS) ha
 #align real.supr_le Real.iSup_le
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
-
-! This file was ported from Lean 3 source module data.real.basic
-! leanprover-community/mathlib commit cb42593171ba005beaaf4549fcfe0dece9ada4c9
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Bounds
 import Mathlib.Algebra.Order.Archimedean
 import Mathlib.Algebra.Star.Basic
 import Mathlib.Data.Real.CauSeqCompletion
 
+#align_import data.real.basic from "leanprover-community/mathlib"@"cb42593171ba005beaaf4549fcfe0dece9ada4c9"
+
 /-!
 # Real numbers from Cauchy sequences
 
chore: cleanup whitespace (#5988)

Grepping for [^ .:{-] [^ :] and reviewing the results. Once I started I couldn't stop. :-)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -381,7 +381,7 @@ instance partialOrder : PartialOrder ℝ where
     induction' a using Real.ind_mk with a
     induction' b using Real.ind_mk with b
     simpa using lt_iff_le_not_le
-  le_refl a :=  by
+  le_refl a := by
     induction' a using Real.ind_mk with a
     rw [mk_le]
   le_trans a b c := by
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -799,7 +799,7 @@ theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
   dif_neg <| by simp
 #align real.Sup_empty Real.sSup_empty
 
-theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 := by
+theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : ⨆ i, f i = 0 := by
   dsimp [iSup]
   convert Real.sSup_empty
   rw [Set.range_eq_empty_iff]
@@ -807,7 +807,7 @@ theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) =
 #align real.csupr_empty Real.ciSup_empty
 
 @[simp]
-theorem ciSup_const_zero {α : Sort _} : (⨆ _ : α, (0 : ℝ)) = 0 := by
+theorem ciSup_const_zero {α : Sort _} : ⨆ _ : α, (0 : ℝ) = 0 := by
   cases isEmpty_or_nonempty α
   · exact Real.ciSup_empty _
   · exact ciSup_const
@@ -818,7 +818,7 @@ theorem sSup_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : sSup s = 0 :=
 #align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAbove
 
 theorem iSup_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
-    (⨆ i, f i) = 0 :=
+    ⨆ i, f i = 0 :=
   sSup_of_not_bddAbove hf
 #align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
 
@@ -830,12 +830,12 @@ theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
 theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [sInf_def, sSup_empty]
 #align real.Inf_empty Real.sInf_empty
 
-theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
+theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : ⨅ i, f i = 0 := by
   rw [iInf_of_empty', sInf_empty]
 #align real.cinfi_empty Real.ciInf_empty
 
 @[simp]
-theorem ciInf_const_zero {α : Sort _} : (⨅ _ : α, (0 : ℝ)) = 0 := by
+theorem ciInf_const_zero {α : Sort _} : ⨅ _ : α, (0 : ℝ) = 0 := by
   cases isEmpty_or_nonempty α
   · exact Real.ciInf_empty _
   · exact ciInf_const
@@ -846,7 +846,7 @@ theorem sInf_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : sInf s = 0 :=
 #align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelow
 
 theorem iInf_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
-    (⨅ i, f i) = 0 :=
+    ⨅ i, f i = 0 :=
   sInf_of_not_bddBelow hf
 #align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelow
 
@@ -879,7 +879,7 @@ protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (h
 #align real.Sup_le Real.sSup_le
 
 protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
-    (⨆ i, f i) ≤ a :=
+    ⨆ i, f i ≤ a :=
   Real.sSup_le (Set.forall_range_iff.2 hS) ha
 #align real.supr_le Real.iSup_le
 
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -870,7 +870,7 @@ protected theorem iSup_nonneg {ι : Sort _} {f : ι → ℝ} (hf : ∀ i, 0 ≤
 
 /--
 As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
-suffices to show that all elements of `S` are bounded by a nonnagative number to show that `sSup S`
+suffices to show that all elements of `S` are bounded by a nonnegative number to show that `sSup S`
 is bounded by this number.
 -/
 protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (ha : 0 ≤ a) : sSup S ≤ a := by
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -895,7 +895,7 @@ bounded below by `0` to show that `0 ≤ sInf S`.
 -/
 theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sInf S := by
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[sInf_empty.ge, le_csInf hS₂ hS]
+  exacts [sInf_empty.ge, le_csInf hS₂ hS]
 #align real.Inf_nonneg Real.sInf_nonneg
 
 /-- As `0` is the default value for `Real.sInf` of the empty set, it suffices to show that `f i` is
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -807,7 +807,7 @@ theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) =
 #align real.csupr_empty Real.ciSup_empty
 
 @[simp]
-theorem ciSup_const_zero {α : Sort _} : (⨆ _i : α, (0 : ℝ)) = 0 := by
+theorem ciSup_const_zero {α : Sort _} : (⨆ _ : α, (0 : ℝ)) = 0 := by
   cases isEmpty_or_nonempty α
   · exact Real.ciSup_empty _
   · exact ciSup_const
@@ -835,7 +835,7 @@ theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) =
 #align real.cinfi_empty Real.ciInf_empty
 
 @[simp]
-theorem ciInf_const_zero {α : Sort _} : (⨅ _i : α, (0 : ℝ)) = 0 := by
+theorem ciInf_const_zero {α : Sort _} : (⨅ _ : α, (0 : ℝ)) = 0 := by
   cases isEmpty_or_nonempty α
   · exact Real.ciInf_empty _
   · exact ciInf_const
feat: add Real.iSup_nonneg etc (#4475)

Forward-port of leanprover-community/mathlib#19096

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Floris van Doorn
 
 ! This file was ported from Lean 3 source module data.real.basic
-! leanprover-community/mathlib commit 7c523cb78f4153682c2929e3006c863bfef463d0
+! leanprover-community/mathlib commit cb42593171ba005beaaf4549fcfe0dece9ada4c9
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -852,7 +852,7 @@ theorem iInf_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Se
 
 /--
 As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
-suffices to show that `S` is bounded below by `0` to show that `0 ≤ sInf S`.
+suffices to show that `S` is bounded below by `0` to show that `0 ≤ sSup S`.
 -/
 theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sSup S := by
   rcases S.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
@@ -860,12 +860,34 @@ theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sS
   · apply dite _ (fun h => le_csSup_of_le h hy <| hS y hy) fun h => (sSup_of_not_bddAbove h).ge
 #align real.Sup_nonneg Real.sSup_nonneg
 
+/--
+As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
+suffices to show that `f i` is nonnegative to show that `0 ≤ ⨆ i, f i`.
+-/
+protected theorem iSup_nonneg {ι : Sort _} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ ⨆ i, f i :=
+  sSup_nonneg _ <| Set.forall_range_iff.2 hf
+#align real.supr_nonneg Real.iSup_nonneg
+
+/--
+As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
+suffices to show that all elements of `S` are bounded by a nonnagative number to show that `sSup S`
+is bounded by this number.
+-/
+protected theorem sSup_le {S : Set ℝ} {a : ℝ} (hS : ∀ x ∈ S, x ≤ a) (ha : 0 ≤ a) : sSup S ≤ a := by
+  rcases S.eq_empty_or_nonempty with (rfl | hS₂)
+  exacts [sSup_empty.trans_le ha, csSup_le hS₂ hS]
+#align real.Sup_le Real.sSup_le
+
+protected theorem iSup_le {ι : Sort _} {f : ι → ℝ} {a : ℝ} (hS : ∀ i, f i ≤ a) (ha : 0 ≤ a) :
+    (⨆ i, f i) ≤ a :=
+  Real.sSup_le (Set.forall_range_iff.2 hS) ha
+#align real.supr_le Real.iSup_le
+
 /-- As `0` is the default value for `Real.sSup` of the empty set, it suffices to show that `S` is
 bounded above by `0` to show that `sSup S ≤ 0`.
 -/
-theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S ≤ 0 := by
-  rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[sSup_empty.le, csSup_le hS₂ hS]
+theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S ≤ 0 :=
+  Real.sSup_le hS le_rfl
 #align real.Sup_nonpos Real.sSup_nonpos
 
 /-- As `0` is the default value for `Real.sInf` of the empty set, it suffices to show that `S` is
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -232,7 +232,7 @@ instance commRing : CommRing ℝ := by
         | apply mul_assoc
         | apply mul_comm
 
-/-- `real.equiv_Cauchy` as a ring equivalence. -/
+/-- `Real.equivCauchy` as a ring equivalence. -/
 @[simps]
 def ringEquivCauchy : ℝ ≃+* CauSeq.Completion.Cauchy (abs : ℚ → ℚ) :=
   { equivCauchy with
feat: port Analysis.SpecialFunctions.Pow.Asymptotics (#4174)

Co-authored-by: Jireh Loreaux <loreaujy@gmail.com>

Diff
@@ -643,11 +643,12 @@ theorem mk_near_of_forall_near {f : CauSeq ℚ abs} {x : ℝ} {ε : ℝ}
         le_mk_of_forall_le <| H.imp fun _ h j ij => sub_le_comm.1 (abs_sub_le_iff.1 <| h j ij).2⟩
 #align real.mk_near_of_forall_near Real.mk_near_of_forall_near
 
-instance : Archimedean ℝ :=
+instance instArchimedean : Archimedean ℝ :=
   archimedean_iff_rat_le.2 fun x =>
     Real.ind_mk x fun f =>
       let ⟨M, _, H⟩ := f.bounded' 0
       ⟨M, mk_le_of_forall_le ⟨0, fun i _ => Rat.cast_le.2 <| le_of_lt (abs_lt.1 (H i)).2⟩⟩
+#align real.archimedean Real.instArchimedean
 
 noncomputable instance : FloorRing ℝ :=
   Archimedean.floorRing _
feat: assert_not_exists (#4245)
Diff
@@ -22,9 +22,9 @@ lifting everything to `ℚ`.
 -/
 
 
---assert_not_exists finset
---assert_not_exists Module
---assert_not_exists Submonoid
+assert_not_exists Finset
+assert_not_exists Module
+assert_not_exists Submonoid
 
 open Pointwise
 
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -732,170 +732,170 @@ theorem exists_isLUB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddAbove S) : ∃
 noncomputable instance : SupSet ℝ :=
   ⟨fun S => if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0⟩
 
-theorem supₛ_def (S : Set ℝ) :
-    supₛ S = if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0 :=
+theorem sSup_def (S : Set ℝ) :
+    sSup S = if h : S.Nonempty ∧ BddAbove S then Classical.choose (exists_isLUB S h.1 h.2) else 0 :=
   rfl
-#align real.Sup_def Real.supₛ_def
+#align real.Sup_def Real.sSup_def
 
-protected theorem isLUB_supₛ (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) :
-    IsLUB S (supₛ S) := by
-  simp only [supₛ_def, dif_pos (And.intro h₁ h₂)]
+protected theorem isLUB_sSup (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddAbove S) :
+    IsLUB S (sSup S) := by
+  simp only [sSup_def, dif_pos (And.intro h₁ h₂)]
   apply Classical.choose_spec
-#align real.is_lub_Sup Real.isLUB_supₛ
+#align real.is_lub_Sup Real.isLUB_sSup
 
 noncomputable instance : InfSet ℝ :=
-  ⟨fun S => -supₛ (-S)⟩
+  ⟨fun S => -sSup (-S)⟩
 
-theorem infₛ_def (S : Set ℝ) : infₛ S = -supₛ (-S) :=
+theorem sInf_def (S : Set ℝ) : sInf S = -sSup (-S) :=
   rfl
-#align real.Inf_def Real.infₛ_def
+#align real.Inf_def Real.sInf_def
 
-protected theorem is_glb_infₛ (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddBelow S) :
-    IsGLB S (infₛ S) := by
-  rw [infₛ_def, ← isLUB_neg', neg_neg]
-  exact Real.isLUB_supₛ _ h₁.neg h₂.neg
-#align real.is_glb_Inf Real.is_glb_infₛ
+protected theorem is_glb_sInf (S : Set ℝ) (h₁ : S.Nonempty) (h₂ : BddBelow S) :
+    IsGLB S (sInf S) := by
+  rw [sInf_def, ← isLUB_neg', neg_neg]
+  exact Real.isLUB_sSup _ h₁.neg h₂.neg
+#align real.is_glb_Inf Real.is_glb_sInf
 
 noncomputable instance : ConditionallyCompleteLinearOrder ℝ :=
   { Real.linearOrder, Real.lattice with
-    supₛ := SupSet.supₛ
-    infₛ := InfSet.infₛ
-    le_csupₛ := fun s a hs ha => (Real.isLUB_supₛ s ⟨a, ha⟩ hs).1 ha
-    csupₛ_le := fun s a hs ha => (Real.isLUB_supₛ s hs ⟨a, ha⟩).2 ha
-    cinfₛ_le := fun s a hs ha => (Real.is_glb_infₛ s ⟨a, ha⟩ hs).1 ha
-    le_cinfₛ := fun s a hs ha => (Real.is_glb_infₛ s hs ⟨a, ha⟩).2 ha }
-
-theorem lt_infₛ_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
-    ∃ a ∈ s, a < infₛ s + ε :=
-  exists_lt_of_cinfₛ_lt h <| lt_add_of_pos_right _ hε
-#align real.lt_Inf_add_pos Real.lt_infₛ_add_pos
-
-theorem add_neg_lt_supₛ {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : ε < 0) :
-    ∃ a ∈ s, supₛ s + ε < a :=
-  exists_lt_of_lt_csupₛ h <| add_lt_iff_neg_left.2 hε
-#align real.add_neg_lt_Sup Real.add_neg_lt_supₛ
-
-theorem infₛ_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
-    infₛ s ≤ a ↔ ∀ ε, 0 < ε → ∃ x ∈ s, x < a + ε := by
+    sSup := SupSet.sSup
+    sInf := InfSet.sInf
+    le_csSup := fun s a hs ha => (Real.isLUB_sSup s ⟨a, ha⟩ hs).1 ha
+    csSup_le := fun s a hs ha => (Real.isLUB_sSup s hs ⟨a, ha⟩).2 ha
+    csInf_le := fun s a hs ha => (Real.is_glb_sInf s ⟨a, ha⟩ hs).1 ha
+    le_csInf := fun s a hs ha => (Real.is_glb_sInf s hs ⟨a, ha⟩).2 ha }
+
+theorem lt_sInf_add_pos {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : 0 < ε) :
+    ∃ a ∈ s, a < sInf s + ε :=
+  exists_lt_of_csInf_lt h <| lt_add_of_pos_right _ hε
+#align real.lt_Inf_add_pos Real.lt_sInf_add_pos
+
+theorem add_neg_lt_sSup {s : Set ℝ} (h : s.Nonempty) {ε : ℝ} (hε : ε < 0) :
+    ∃ a ∈ s, sSup s + ε < a :=
+  exists_lt_of_lt_csSup h <| add_lt_iff_neg_left.2 hε
+#align real.add_neg_lt_Sup Real.add_neg_lt_sSup
+
+theorem sInf_le_iff {s : Set ℝ} (h : BddBelow s) (h' : s.Nonempty) {a : ℝ} :
+    sInf s ≤ a ↔ ∀ ε, 0 < ε → ∃ x ∈ s, x < a + ε := by
   rw [le_iff_forall_pos_lt_add]
   constructor <;> intro H ε ε_pos
-  · exact exists_lt_of_cinfₛ_lt h' (H ε ε_pos)
+  · exact exists_lt_of_csInf_lt h' (H ε ε_pos)
   · rcases H ε ε_pos with ⟨x, x_in, hx⟩
-    exact cinfₛ_lt_of_lt h x_in hx
-#align real.Inf_le_iff Real.infₛ_le_iff
+    exact csInf_lt_of_lt h x_in hx
+#align real.Inf_le_iff Real.sInf_le_iff
 
-theorem le_supₛ_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
-    a ≤ supₛ s ↔ ∀ ε, ε < 0 → ∃ x ∈ s, a + ε < x := by
+theorem le_sSup_iff {s : Set ℝ} (h : BddAbove s) (h' : s.Nonempty) {a : ℝ} :
+    a ≤ sSup s ↔ ∀ ε, ε < 0 → ∃ x ∈ s, a + ε < x := by
   rw [le_iff_forall_pos_lt_add]
   refine' ⟨fun H ε ε_neg => _, fun H ε ε_pos => _⟩
-  · exact exists_lt_of_lt_csupₛ h' (lt_sub_iff_add_lt.mp (H _ (neg_pos.mpr ε_neg)))
+  · exact exists_lt_of_lt_csSup h' (lt_sub_iff_add_lt.mp (H _ (neg_pos.mpr ε_neg)))
   · rcases H _ (neg_lt_zero.mpr ε_pos) with ⟨x, x_in, hx⟩
-    exact sub_lt_iff_lt_add.mp (lt_csupₛ_of_lt h x_in hx)
-#align real.le_Sup_iff Real.le_supₛ_iff
+    exact sub_lt_iff_lt_add.mp (lt_csSup_of_lt h x_in hx)
+#align real.le_Sup_iff Real.le_sSup_iff
 
 @[simp]
-theorem supₛ_empty : supₛ (∅ : Set ℝ) = 0 :=
+theorem sSup_empty : sSup (∅ : Set ℝ) = 0 :=
   dif_neg <| by simp
-#align real.Sup_empty Real.supₛ_empty
+#align real.Sup_empty Real.sSup_empty
 
-theorem csupᵢ_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 := by
-  dsimp [supᵢ]
-  convert Real.supₛ_empty
+theorem ciSup_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨆ i, f i) = 0 := by
+  dsimp [iSup]
+  convert Real.sSup_empty
   rw [Set.range_eq_empty_iff]
   infer_instance
-#align real.csupr_empty Real.csupᵢ_empty
+#align real.csupr_empty Real.ciSup_empty
 
 @[simp]
-theorem csupᵢ_const_zero {α : Sort _} : (⨆ _i : α, (0 : ℝ)) = 0 := by
+theorem ciSup_const_zero {α : Sort _} : (⨆ _i : α, (0 : ℝ)) = 0 := by
   cases isEmpty_or_nonempty α
-  · exact Real.csupᵢ_empty _
-  · exact csupᵢ_const
-#align real.csupr_const_zero Real.csupᵢ_const_zero
+  · exact Real.ciSup_empty _
+  · exact ciSup_const
+#align real.csupr_const_zero Real.ciSup_const_zero
 
-theorem supₛ_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : supₛ s = 0 :=
+theorem sSup_of_not_bddAbove {s : Set ℝ} (hs : ¬BddAbove s) : sSup s = 0 :=
   dif_neg fun h => hs h.2
-#align real.Sup_of_not_bdd_above Real.supₛ_of_not_bddAbove
+#align real.Sup_of_not_bdd_above Real.sSup_of_not_bddAbove
 
-theorem supᵢ_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
+theorem iSup_of_not_bddAbove {α : Sort _} {f : α → ℝ} (hf : ¬BddAbove (Set.range f)) :
     (⨆ i, f i) = 0 :=
-  supₛ_of_not_bddAbove hf
-#align real.supr_of_not_bdd_above Real.supᵢ_of_not_bddAbove
+  sSup_of_not_bddAbove hf
+#align real.supr_of_not_bdd_above Real.iSup_of_not_bddAbove
 
-theorem supₛ_univ : supₛ (@Set.univ ℝ) = 0 :=
-  Real.supₛ_of_not_bddAbove fun ⟨_, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
-#align real.Sup_univ Real.supₛ_univ
+theorem sSup_univ : sSup (@Set.univ ℝ) = 0 :=
+  Real.sSup_of_not_bddAbove fun ⟨_, h⟩ => not_le_of_lt (lt_add_one _) <| h (Set.mem_univ _)
+#align real.Sup_univ Real.sSup_univ
 
 @[simp]
-theorem infₛ_empty : infₛ (∅ : Set ℝ) = 0 := by simp [infₛ_def, supₛ_empty]
-#align real.Inf_empty Real.infₛ_empty
+theorem sInf_empty : sInf (∅ : Set ℝ) = 0 := by simp [sInf_def, sSup_empty]
+#align real.Inf_empty Real.sInf_empty
 
-theorem cinfᵢ_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
-  rw [infᵢ_of_empty', infₛ_empty]
-#align real.cinfi_empty Real.cinfᵢ_empty
+theorem ciInf_empty {α : Sort _} [IsEmpty α] (f : α → ℝ) : (⨅ i, f i) = 0 := by
+  rw [iInf_of_empty', sInf_empty]
+#align real.cinfi_empty Real.ciInf_empty
 
 @[simp]
-theorem cinfᵢ_const_zero {α : Sort _} : (⨅ _i : α, (0 : ℝ)) = 0 := by
+theorem ciInf_const_zero {α : Sort _} : (⨅ _i : α, (0 : ℝ)) = 0 := by
   cases isEmpty_or_nonempty α
-  · exact Real.cinfᵢ_empty _
-  · exact cinfᵢ_const
-#align real.cinfi_const_zero Real.cinfᵢ_const_zero
+  · exact Real.ciInf_empty _
+  · exact ciInf_const
+#align real.cinfi_const_zero Real.ciInf_const_zero
 
-theorem infₛ_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : infₛ s = 0 :=
-  neg_eq_zero.2 <| supₛ_of_not_bddAbove <| mt bddAbove_neg.1 hs
-#align real.Inf_of_not_bdd_below Real.infₛ_of_not_bddBelow
+theorem sInf_of_not_bddBelow {s : Set ℝ} (hs : ¬BddBelow s) : sInf s = 0 :=
+  neg_eq_zero.2 <| sSup_of_not_bddAbove <| mt bddAbove_neg.1 hs
+#align real.Inf_of_not_bdd_below Real.sInf_of_not_bddBelow
 
-theorem infᵢ_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
+theorem iInf_of_not_bddBelow {α : Sort _} {f : α → ℝ} (hf : ¬BddBelow (Set.range f)) :
     (⨅ i, f i) = 0 :=
-  infₛ_of_not_bddBelow hf
-#align real.infi_of_not_bdd_below Real.infᵢ_of_not_bddBelow
+  sInf_of_not_bddBelow hf
+#align real.infi_of_not_bdd_below Real.iInf_of_not_bddBelow
 
 /--
-As `0` is the default value for `Real.supₛ` of the empty set or sets which are not bounded above, it
-suffices to show that `S` is bounded below by `0` to show that `0 ≤ infₛ S`.
+As `0` is the default value for `Real.sSup` of the empty set or sets which are not bounded above, it
+suffices to show that `S` is bounded below by `0` to show that `0 ≤ sInf S`.
 -/
-theorem supₛ_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ supₛ S := by
+theorem sSup_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sSup S := by
   rcases S.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
-  · exact supₛ_empty.ge
-  · apply dite _ (fun h => le_csupₛ_of_le h hy <| hS y hy) fun h => (supₛ_of_not_bddAbove h).ge
-#align real.Sup_nonneg Real.supₛ_nonneg
+  · exact sSup_empty.ge
+  · apply dite _ (fun h => le_csSup_of_le h hy <| hS y hy) fun h => (sSup_of_not_bddAbove h).ge
+#align real.Sup_nonneg Real.sSup_nonneg
 
-/-- As `0` is the default value for `Real.supₛ` of the empty set, it suffices to show that `S` is
-bounded above by `0` to show that `supₛ S ≤ 0`.
+/-- As `0` is the default value for `Real.sSup` of the empty set, it suffices to show that `S` is
+bounded above by `0` to show that `sSup S ≤ 0`.
 -/
-theorem supₛ_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : supₛ S ≤ 0 := by
+theorem sSup_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sSup S ≤ 0 := by
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[supₛ_empty.le, csupₛ_le hS₂ hS]
-#align real.Sup_nonpos Real.supₛ_nonpos
+  exacts[sSup_empty.le, csSup_le hS₂ hS]
+#align real.Sup_nonpos Real.sSup_nonpos
 
-/-- As `0` is the default value for `Real.infₛ` of the empty set, it suffices to show that `S` is
-bounded below by `0` to show that `0 ≤ infₛ S`.
+/-- As `0` is the default value for `Real.sInf` of the empty set, it suffices to show that `S` is
+bounded below by `0` to show that `0 ≤ sInf S`.
 -/
-theorem infₛ_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ infₛ S := by
+theorem sInf_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤ sInf S := by
   rcases S.eq_empty_or_nonempty with (rfl | hS₂)
-  exacts[infₛ_empty.ge, le_cinfₛ hS₂ hS]
-#align real.Inf_nonneg Real.infₛ_nonneg
+  exacts[sInf_empty.ge, le_csInf hS₂ hS]
+#align real.Inf_nonneg Real.sInf_nonneg
 
-/-- As `0` is the default value for `Real.infₛ` of the empty set, it suffices to show that `f i` is
-bounded below by `0` to show that `0 ≤ infᵢ f`.
+/-- As `0` is the default value for `Real.sInf` of the empty set, it suffices to show that `f i` is
+bounded below by `0` to show that `0 ≤ iInf f`.
 -/
-theorem infᵢ_nonneg {ι} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ infᵢ f :=
-  infₛ_nonneg _ <| Set.forall_range_iff.2 hf
+theorem iInf_nonneg {ι} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ iInf f :=
+  sInf_nonneg _ <| Set.forall_range_iff.2 hf
 
 /--
-As `0` is the default value for `Real.infₛ` of the empty set or sets which are not bounded below, it
-suffices to show that `S` is bounded above by `0` to show that `infₛ S ≤ 0`.
+As `0` is the default value for `Real.sInf` of the empty set or sets which are not bounded below, it
+suffices to show that `S` is bounded above by `0` to show that `sInf S ≤ 0`.
 -/
-theorem infₛ_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : infₛ S ≤ 0 := by
+theorem sInf_nonpos (S : Set ℝ) (hS : ∀ x ∈ S, x ≤ (0 : ℝ)) : sInf S ≤ 0 := by
   rcases S.eq_empty_or_nonempty with (rfl | ⟨y, hy⟩)
-  · exact infₛ_empty.le
-  · apply dite _ (fun h => cinfₛ_le_of_le h hy <| hS y hy) fun h => (infₛ_of_not_bddBelow h).le
-#align real.Inf_nonpos Real.infₛ_nonpos
+  · exact sInf_empty.le
+  · apply dite _ (fun h => csInf_le_of_le h hy <| hS y hy) fun h => (sInf_of_not_bddBelow h).le
+#align real.Inf_nonpos Real.sInf_nonpos
 
-theorem infₛ_le_supₛ (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : infₛ s ≤ supₛ s := by
+theorem sInf_le_sSup (s : Set ℝ) (h₁ : BddBelow s) (h₂ : BddAbove s) : sInf s ≤ sSup s := by
   rcases s.eq_empty_or_nonempty with (rfl | hne)
-  · rw [infₛ_empty, supₛ_empty]
-  · exact cinfₛ_le_csupₛ h₁ h₂ hne
-#align real.Inf_le_Sup Real.infₛ_le_supₛ
+  · rw [sInf_empty, sSup_empty]
+  · exact csInf_le_csSup h₁ h₂ hne
+#align real.Inf_le_Sup Real.sInf_le_sSup
 
 theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x := by
   let S := { x : ℝ | const abs x < f }
@@ -903,14 +903,14 @@ theorem cauSeq_converges (f : CauSeq ℝ abs) : ∃ x, f ≈ const abs x := by
   have ub' : ∀ x, f < const abs x → ∀ y ∈ S, y ≤ x := fun x h y yS =>
     le_of_lt <| const_lt.1 <| CauSeq.lt_trans yS h
   have ub : ∃ x, ∀ y ∈ S, y ≤ x := (exists_gt f).imp ub'
-  refine' ⟨supₛ S, ((lt_total _ _).resolve_left fun h => _).resolve_right fun h => _⟩
+  refine' ⟨sSup S, ((lt_total _ _).resolve_left fun h => _).resolve_right fun h => _⟩
   · rcases h with ⟨ε, ε0, i, ih⟩
-    refine' (csupₛ_le lb (ub' _ _)).not_lt (sub_lt_self _ (half_pos ε0))
+    refine' (csSup_le lb (ub' _ _)).not_lt (sub_lt_self _ (half_pos ε0))
     refine' ⟨_, half_pos ε0, i, fun j ij => _⟩
     rw [sub_apply, const_apply, sub_right_comm, le_sub_iff_add_le, add_halves]
     exact ih _ ij
   · rcases h with ⟨ε, ε0, i, ih⟩
-    refine' (le_csupₛ ub _).not_lt ((lt_add_iff_pos_left _).2 (half_pos ε0))
+    refine' (le_csSup ub _).not_lt ((lt_add_iff_pos_left _).2 (half_pos ε0))
     refine' ⟨_, half_pos ε0, i, fun j ij => _⟩
     rw [sub_apply, const_apply, add_comm, ← sub_sub, le_sub_iff_add_le, add_halves]
     exact ih _ ij
feat: support irreducible_def in to_additive (#3399)
Diff
@@ -88,8 +88,7 @@ private irreducible_def neg : ℝ → ℝ
 private irreducible_def mul : ℝ → ℝ → ℝ
   | ⟨a⟩, ⟨b⟩ => ⟨a * b⟩
 
--- TODO irreducible_def
-private noncomputable def inv' : ℝ → ℝ
+private noncomputable irreducible_def inv' : ℝ → ℝ
   | ⟨a⟩ => ⟨a⁻¹⟩
 
 instance : Zero ℝ :=
feat: port Topology.MetricSpace.Gluing (#2711)
Diff
@@ -876,6 +876,12 @@ theorem infₛ_nonneg (S : Set ℝ) (hS : ∀ x ∈ S, (0 : ℝ) ≤ x) : 0 ≤
   exacts[infₛ_empty.ge, le_cinfₛ hS₂ hS]
 #align real.Inf_nonneg Real.infₛ_nonneg
 
+/-- As `0` is the default value for `Real.infₛ` of the empty set, it suffices to show that `f i` is
+bounded below by `0` to show that `0 ≤ infᵢ f`.
+-/
+theorem infᵢ_nonneg {ι} {f : ι → ℝ} (hf : ∀ i, 0 ≤ f i) : 0 ≤ infᵢ f :=
+  infₛ_nonneg _ <| Set.forall_range_iff.2 hf
+
 /--
 As `0` is the default value for `Real.infₛ` of the empty set or sets which are not bounded below, it
 suffices to show that `S` is bounded above by `0` to show that `infₛ S ≤ 0`.
fix: replace symmApply by symm_apply (#2560)
Diff
@@ -246,7 +246,7 @@ set_option linter.uppercaseLean3 false in
 set_option linter.uppercaseLean3 false in
 #align real.ring_equiv_Cauchy_apply Real.ringEquivCauchy_apply
 set_option linter.uppercaseLean3 false in
-#align real.ring_equiv_Cauchy_symm_apply_cauchy Real.ringEquivCauchy_symmApply_cauchy
+#align real.ring_equiv_Cauchy_symm_apply_cauchy Real.ringEquivCauchy_symm_apply_cauchy
 
 /-! Extra instances to short-circuit type class resolution.
 
refactor: rename HasSup/HasInf to Sup/Inf (#2475)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -458,7 +458,7 @@ instance nontrivial : Nontrivial ℝ :=
 private irreducible_def sup : ℝ → ℝ → ℝ
   | ⟨x⟩, ⟨y⟩ => ⟨Quotient.map₂ (· ⊔ ·) (fun _ _ hx _ _ hy => sup_equiv_sup hx hy) x y⟩
 
-instance : HasSup ℝ :=
+instance : Sup ℝ :=
   ⟨sup⟩
 
 theorem ofCauchy_sup (a b) : (⟨⟦a ⊔ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊔ ⟨⟦b⟧⟩ :=
@@ -475,7 +475,7 @@ theorem mk_sup (a b) : (mk (a ⊔ b) : ℝ) = mk a ⊔ mk b :=
 private irreducible_def inf : ℝ → ℝ → ℝ
   | ⟨x⟩, ⟨y⟩ => ⟨Quotient.map₂ (· ⊓ ·) (fun _ _ hx _ _ hy => inf_equiv_inf hx hy) x y⟩
 
-instance : HasInf ℝ :=
+instance : Inf ℝ :=
   ⟨inf⟩
 
 theorem ofCauchy_inf (a b) : (⟨⟦a ⊓ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊓ ⟨⟦b⟧⟩ :=
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -243,6 +243,10 @@ def ringEquivCauchy : ℝ ≃+* CauSeq.Completion.Cauchy (abs : ℚ → ℚ) :=
     map_mul' := cauchy_mul }
 set_option linter.uppercaseLean3 false in
 #align real.ring_equiv_Cauchy Real.ringEquivCauchy
+set_option linter.uppercaseLean3 false in
+#align real.ring_equiv_Cauchy_apply Real.ringEquivCauchy_apply
+set_option linter.uppercaseLean3 false in
+#align real.ring_equiv_Cauchy_symm_apply_cauchy Real.ringEquivCauchy_symmApply_cauchy
 
 /-! Extra instances to short-circuit type class resolution.
 
feat: add uppercase lean 3 linter (#1796)

Implements a linter for lean 3 declarations containing capital letters (as suggested on Zulip).

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -69,6 +69,7 @@ theorem ext_cauchy {x y : Real} : x.cauchy = y.cauchy → x = y :=
 /-- The real numbers are isomorphic to the quotient of Cauchy sequences on the rationals. -/
 def equivCauchy : ℝ ≃ CauSeq.Completion.Cauchy (abs : ℚ → ℚ) :=
   ⟨Real.cauchy, Real.ofCauchy, fun ⟨_⟩ => rfl, fun _ => rfl⟩
+set_option linter.uppercaseLean3 false in
 #align real.equiv_Cauchy Real.equivCauchy
 
 -- irreducible doesn't work for instances: https://github.com/leanprover-community/lean/issues/511
@@ -240,6 +241,7 @@ def ringEquivCauchy : ℝ ≃+* CauSeq.Completion.Cauchy (abs : ℚ → ℚ) :=
     invFun := ofCauchy
     map_add' := cauchy_add
     map_mul' := cauchy_mul }
+set_option linter.uppercaseLean3 false in
 #align real.ring_equiv_Cauchy Real.ringEquivCauchy
 
 /-! Extra instances to short-circuit type class resolution.
chore: fix most phantom #aligns (#1794)
Diff
@@ -114,32 +114,32 @@ noncomputable instance : Inv ℝ :=
 
 theorem ofCauchy_zero : (⟨0⟩ : ℝ) = 0 :=
   zero_def.symm
-#align real.ofCauchy_zero Real.ofCauchy_zero
+#align real.of_cauchy_zero Real.ofCauchy_zero
 
 theorem ofCauchy_one : (⟨1⟩ : ℝ) = 1 :=
   one_def.symm
-#align real.ofCauchy_one Real.ofCauchy_one
+#align real.of_cauchy_one Real.ofCauchy_one
 
 theorem ofCauchy_add (a b) : (⟨a + b⟩ : ℝ) = ⟨a⟩ + ⟨b⟩ :=
   (add_def _ _).symm
-#align real.ofCauchy_add Real.ofCauchy_add
+#align real.of_cauchy_add Real.ofCauchy_add
 
 theorem ofCauchy_neg (a) : (⟨-a⟩ : ℝ) = -⟨a⟩ :=
   (neg_def _).symm
-#align real.ofCauchy_neg Real.ofCauchy_neg
+#align real.of_cauchy_neg Real.ofCauchy_neg
 
 theorem ofCauchy_sub (a b) : (⟨a - b⟩ : ℝ) = ⟨a⟩ - ⟨b⟩ := by
   rw [sub_eq_add_neg, ofCauchy_add, ofCauchy_neg]
   rfl
-#align real.ofCauchy_sub Real.ofCauchy_sub
+#align real.of_cauchy_sub Real.ofCauchy_sub
 
 theorem ofCauchy_mul (a b) : (⟨a * b⟩ : ℝ) = ⟨a⟩ * ⟨b⟩ :=
   (mul_def _ _).symm
-#align real.ofCauchy_mul Real.ofCauchy_mul
+#align real.of_cauchy_mul Real.ofCauchy_mul
 
 theorem ofCauchy_inv {f} : (⟨f⁻¹⟩ : ℝ) = ⟨f⟩⁻¹ :=
   show _ = inv' _ by rw [inv']
-#align real.ofCauchy_inv Real.ofCauchy_inv
+#align real.of_cauchy_inv Real.ofCauchy_inv
 
 theorem cauchy_zero : (0 : ℝ).cauchy = 0 :=
   show zero.cauchy = 0 by rw [zero_def]
@@ -179,15 +179,15 @@ instance ratCast : RatCast ℝ where ratCast q := ⟨q⟩
 
 theorem ofCauchy_natCast (n : ℕ) : (⟨n⟩ : ℝ) = n :=
   rfl
-#align real.ofCauchy_nat_cast Real.ofCauchy_natCast
+#align real.of_cauchy_nat_cast Real.ofCauchy_natCast
 
 theorem ofCauchy_intCast (z : ℤ) : (⟨z⟩ : ℝ) = z :=
   rfl
-#align real.ofCauchy_int_cast Real.ofCauchy_intCast
+#align real.of_cauchy_int_cast Real.ofCauchy_intCast
 
 theorem ofCauchy_ratCast (q : ℚ) : (⟨q⟩ : ℝ) = q :=
   rfl
-#align real.ofCauchy_rat_cast Real.ofCauchy_ratCast
+#align real.of_cauchy_rat_cast Real.ofCauchy_ratCast
 
 theorem cauchy_natCast (n : ℕ) : (n : ℝ).cauchy = n :=
   rfl
@@ -459,7 +459,7 @@ theorem ofCauchy_sup (a b) : (⟨⟦a ⊔ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊔ ⟨
   show _ = sup _ _ by
     rw [sup_def]
     rfl
-#align real.ofCauchy_sup Real.ofCauchy_sup
+#align real.of_cauchy_sup Real.ofCauchy_sup
 
 @[simp]
 theorem mk_sup (a b) : (mk (a ⊔ b) : ℝ) = mk a ⊔ mk b :=
@@ -476,7 +476,7 @@ theorem ofCauchy_inf (a b) : (⟨⟦a ⊓ b⟧⟩ : ℝ) = ⟨⟦a⟧⟩ ⊓ ⟨
   show _ = inf _ _ by
     rw [inf_def]
     rfl
-#align real.ofCauchy_inf Real.ofCauchy_inf
+#align real.of_cauchy_inf Real.ofCauchy_inf
 
 @[simp]
 theorem mk_inf (a b) : (mk (a ⊓ b) : ℝ) = mk a ⊓ mk b :=
feat: port Data.Real.Basic (#1514)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com> Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Reid Barton <rwbarton@gmail.com> Co-authored-by: Lukas Miaskiwskyi <lukas.mias@gmail.com>

Dependencies 3 + 201

202 files ported (98.5%)
77495 lines ported (98.7%)
Show graph

The unported dependencies are