data.real.cau_seq
⟷
Mathlib.Algebra.Order.CauSeq.Basic
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -471,7 +471,7 @@ instance : AddGroupWithOne (CauSeq β abv) :=
natCast_zero := congr_arg const Nat.cast_zero
natCast_succ := fun n => congr_arg const (Nat.cast_succ n)
intCast := fun n => const n
- intCast_ofNat := fun n => congr_arg const (Int.cast_ofNat n)
+ intCast_ofNat := fun n => congr_arg const (Int.cast_natCast n)
intCast_negSucc := fun n => congr_arg const (Int.cast_negSucc n) }
instance : Pow (CauSeq β abv) ℕ :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -78,7 +78,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
have :=
add_lt_add (mul_lt_mul' (le_of_lt h₁) hb₂ (abv_nonneg abv _) εK)
(mul_lt_mul' (le_of_lt h₂) ha₁ (abv_nonneg abv _) εK)
- rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
+ rw [← abv_mul abv, mul_comm, div_mul_cancel₀ _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
simpa [mul_add, add_mul, sub_eq_add_neg, add_comm, add_left_comm] using
lt_of_le_of_lt (abv_add abv _ _) this
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
@@ -115,7 +115,7 @@ namespace IsCauSeq
variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue abv] {f g : ℕ → β}
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (j k «expr ≥ » i) -/
#print IsCauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
@@ -201,7 +201,7 @@ def ofEq (f : CauSeq β abv) (g : ℕ → β) (e : ∀ i, f i = g i) : CauSeq β
variable [IsAbsoluteValue abv]
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (j k «expr ≥ » i) -/
#print CauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
@@ -476,7 +476,7 @@ instance : AddGroupWithOne (CauSeq β abv) :=
instance : Pow (CauSeq β abv) ℕ :=
⟨fun f n =>
- (ofEq (npowRec n f) fun i => f i ^ n) <| by induction n <;> simp [*, npowRec, pow_succ]⟩
+ (ofEq (npowRec n f) fun i => f i ^ n) <| by induction n <;> simp [*, npowRec, pow_succ']⟩
#print CauSeq.coe_pow /-
@[simp, norm_cast]
@@ -528,7 +528,7 @@ theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f
let ⟨F, F0, hF⟩ := f.bounded' 0
(hg _ <| div_pos ε0 F0).imp fun i H j ij => by
have := mul_lt_mul' (le_of_lt <| hF j) (H _ ij) (abv_nonneg abv _) F0 <;>
- rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this
+ rwa [mul_comm F, div_mul_cancel₀ _ (ne_of_gt F0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_right CauSeq.mul_limZero_right
-/
@@ -538,7 +538,7 @@ theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f *
let ⟨G, G0, hG⟩ := g.bounded' 0
(hg _ <| div_pos ε0 G0).imp fun i H j ij => by
have := mul_lt_mul'' (H _ ij) (hG j) (abv_nonneg abv _) (abv_nonneg abv _) <;>
- rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this
+ rwa [div_mul_cancel₀ _ (ne_of_gt G0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_left CauSeq.mul_limZero_left
-/
@@ -723,7 +723,7 @@ theorem pow_equiv_pow {f1 f2 : CauSeq β abv} (hf : f1 ≈ f2) (n : ℕ) : f1 ^
by
induction' n with n ih
· simp only [pow_zero, Setoid.refl]
- · simpa only [pow_succ] using mul_equiv_mul hf ih
+ · simpa only [pow_succ'] using mul_equiv_mul hf ih
#align cau_seq.pow_equiv_pow CauSeq.pow_equiv_pow
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -78,7 +78,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
have :=
add_lt_add (mul_lt_mul' (le_of_lt h₁) hb₂ (abv_nonneg abv _) εK)
(mul_lt_mul' (le_of_lt h₂) ha₁ (abv_nonneg abv _) εK)
- rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
+ rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
simpa [mul_add, add_mul, sub_eq_add_neg, add_comm, add_left_comm] using
lt_of_le_of_lt (abv_add abv _ _) this
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
@@ -232,7 +232,7 @@ theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
cases' lt_or_le j i with ij ij
· exact lt_of_le_of_lt (this i _ (le_of_lt ij)) (lt_add_one _)
· have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add_of_le_of_lt (this i _ le_rfl) (h _ ij))
- rw [add_sub, add_comm] at this ; simpa
+ rw [add_sub, add_comm] at this; simpa
#align cau_seq.bounded CauSeq.bounded
-/
@@ -528,7 +528,7 @@ theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f
let ⟨F, F0, hF⟩ := f.bounded' 0
(hg _ <| div_pos ε0 F0).imp fun i H j ij => by
have := mul_lt_mul' (le_of_lt <| hF j) (H _ ij) (abv_nonneg abv _) F0 <;>
- rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this
+ rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_right CauSeq.mul_limZero_right
-/
@@ -538,7 +538,7 @@ theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f *
let ⟨G, G0, hG⟩ := g.bounded' 0
(hg _ <| div_pos ε0 G0).imp fun i H j ij => by
have := mul_lt_mul'' (H _ ij) (hG j) (abv_nonneg abv _) (abv_nonneg abv _) <;>
- rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this
+ rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_left CauSeq.mul_limZero_left
-/
@@ -610,7 +610,7 @@ theorem equiv_def₃ {f g : CauSeq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε
by
let ⟨h₁, h₂⟩ := H _ ij
have := lt_of_le_of_lt (abv_add abv (f j - g j) _) (add_lt_add h₁ (h₂ _ jk)) <;>
- rwa [sub_add_sub_cancel', add_halves] at this
+ rwa [sub_add_sub_cancel', add_halves] at this
#align cau_seq.equiv_def₃ CauSeq.equiv_def₃
-/
@@ -627,12 +627,12 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
haveI := Classical.propDecidable
by_contra nk
refine' hf fun ε ε0 => _
- simp [Classical.not_forall] at nk
+ simp [Classical.not_forall] at nk
cases' f.cauchy₃ (half_pos ε0) with i hi
rcases nk _ (half_pos ε0) i with ⟨j, ij, hj⟩
refine' ⟨j, fun k jk => _⟩
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add (hi j ij k jk) hj)
- rwa [sub_add_cancel, add_halves] at this
+ rwa [sub_add_cancel, add_halves] at this
#align cau_seq.abv_pos_of_not_lim_zero CauSeq.abv_pos_of_not_limZero
-/
@@ -642,10 +642,10 @@ theorem of_near (f : ℕ → β) (g : CauSeq β abv) (h : ∀ ε > 0, ∃ i, ∀
| ε, ε0 =>
let ⟨i, hi⟩ := exists_forall_ge_and (h _ (half_pos <| half_pos ε0)) (g.cauchy₃ <| half_pos ε0)
⟨i, fun j ij => by
- cases' hi _ le_rfl with h₁ h₂; rw [abv_sub abv] at h₁
+ cases' hi _ le_rfl with h₁ h₂; rw [abv_sub abv] at h₁
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add (hi _ ij).1 h₁)
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add this (h₂ _ ij))
- rwa [add_halves, add_halves, add_right_comm, sub_add_sub_cancel, sub_add_sub_cancel] at this ⟩
+ rwa [add_halves, add_halves, add_right_comm, sub_add_sub_cancel, sub_add_sub_cancel] at this⟩
#align cau_seq.of_near CauSeq.of_near
-/
@@ -853,7 +853,7 @@ theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f +
⟨_, half_pos F0, i, fun j ij => by
cases' h j ij with h₁ h₂
have := add_le_add h₁ (le_of_lt (abs_lt.1 h₂).1)
- rwa [← sub_eq_add_neg, sub_self_div_two] at this ⟩
+ rwa [← sub_eq_add_neg, sub_self_div_two] at this⟩
#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZero
-/
@@ -876,13 +876,13 @@ theorem trichotomy (f : CauSeq α abs) : Pos f ∨ LimZero f ∨ Pos (-f) :=
refine' (le_total 0 (f i)).imp _ _ <;> refine' fun h => ⟨K, K0, i, fun j ij => _⟩ <;>
have := (hi _ ij).1 <;>
cases' hi _ le_rfl with h₁ h₂
- · rwa [abs_of_nonneg] at this
- rw [abs_of_nonneg h] at h₁
+ · rwa [abs_of_nonneg] at this
+ rw [abs_of_nonneg h] at h₁
exact
(le_add_iff_nonneg_right _).1
(le_trans h₁ <| neg_le_sub_iff_le_add'.1 <| le_of_lt (abs_lt.1 <| h₂ _ ij).1)
- · rwa [abs_of_nonpos] at this
- rw [abs_of_nonpos h] at h₁
+ · rwa [abs_of_nonpos] at this
+ rw [abs_of_nonpos h] at h₁
rw [← sub_le_sub_iff_right, zero_sub]
exact le_trans (le_of_lt (abs_lt.1 <| h₂ _ ij).2) h₁
#align cau_seq.trichotomy CauSeq.trichotomy
@@ -904,7 +904,7 @@ theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f <
#print CauSeq.lt_of_eq_of_lt /-
theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by
have := pos_add_lim_zero gh (neg_lim_zero fg) <;>
- rwa [← sub_eq_add_neg, sub_sub_sub_cancel_right] at this
+ rwa [← sub_eq_add_neg, sub_sub_sub_cancel_right] at this
#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_lt
-/
@@ -955,7 +955,7 @@ theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈
#print CauSeq.lt_total /-
theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
(trichotomy (g - f)).imp_right fun h =>
- h.imp (fun h => Setoid.symm h) fun h => by rwa [neg_sub] at h
+ h.imp (fun h => Setoid.symm h) fun h => by rwa [neg_sub] at h
#align cau_seq.lt_total CauSeq.lt_total
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/b1abe23ae96fef89ad30d9f4362c307f72a55010
@@ -627,7 +627,7 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
haveI := Classical.propDecidable
by_contra nk
refine' hf fun ε ε0 => _
- simp [not_forall] at nk
+ simp [Classical.not_forall] at nk
cases' f.cauchy₃ (half_pos ε0) with i hi
rcases nk _ (half_pos ε0) i with ⟨j, ij, hj⟩
refine' ⟨j, fun k jk => _⟩
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,12 +3,12 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
-import Mathbin.Algebra.GroupPower.Lemmas
-import Mathbin.Algebra.Order.AbsoluteValue
-import Mathbin.Algebra.Order.Group.MinMax
-import Mathbin.Algebra.Order.Field.Basic
-import Mathbin.Algebra.Ring.Pi
-import Mathbin.GroupTheory.GroupAction.Pi
+import Algebra.GroupPower.Lemmas
+import Algebra.Order.AbsoluteValue
+import Algebra.Order.Group.MinMax
+import Algebra.Order.Field.Basic
+import Algebra.Ring.Pi
+import GroupTheory.GroupAction.Pi
#align_import data.real.cau_seq from "leanprover-community/mathlib"@"be24ec5de6701447e5df5ca75400ffee19d65659"
@@ -115,7 +115,7 @@ namespace IsCauSeq
variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue abv] {f g : ℕ → β}
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j k «expr ≥ » i) -/
#print IsCauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
@@ -201,7 +201,7 @@ def ofEq (f : CauSeq β abv) (g : ℕ → β) (e : ∀ i, f i = g i) : CauSeq β
variable [IsAbsoluteValue abv]
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (j k «expr ≥ » i) -/
#print CauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,11 +2,6 @@
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-
-! This file was ported from Lean 3 source module data.real.cau_seq
-! leanprover-community/mathlib commit be24ec5de6701447e5df5ca75400ffee19d65659
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Algebra.GroupPower.Lemmas
import Mathbin.Algebra.Order.AbsoluteValue
@@ -15,6 +10,8 @@ import Mathbin.Algebra.Order.Field.Basic
import Mathbin.Algebra.Ring.Pi
import Mathbin.GroupTheory.GroupAction.Pi
+#align_import data.real.cau_seq from "leanprover-community/mathlib"@"be24ec5de6701447e5df5ca75400ffee19d65659"
+
/-!
# Cauchy sequences
@@ -118,7 +115,7 @@ namespace IsCauSeq
variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue abv] {f g : ℕ → β}
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
#print IsCauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
@@ -204,7 +201,7 @@ def ofEq (f : CauSeq β abv) (g : ℕ → β) (e : ∀ i, f i = g i) : CauSeq β
variable [IsAbsoluteValue abv]
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
#print CauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -56,6 +56,7 @@ section
variable [LinearOrderedField α] [Ring β] (abv : β → α) [IsAbsoluteValue abv]
+#print rat_add_continuous_lemma /-
theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
∃ δ > 0,
∀ {a₁ a₂ b₁ b₂ : β}, abv (a₁ - b₁) < δ → abv (a₂ - b₂) < δ → abv (a₁ + a₂ - (b₁ + b₂)) < ε :=
@@ -63,7 +64,9 @@ theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
simpa [add_halves, sub_eq_add_neg, add_comm, add_left_comm, add_assoc] using
lt_of_le_of_lt (abv_add abv _ _) (add_lt_add h₁ h₂)⟩
#align rat_add_continuous_lemma rat_add_continuous_lemma
+-/
+#print rat_mul_continuous_lemma /-
theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
∃ δ > 0,
∀ {a₁ a₂ b₁ b₂ : β},
@@ -82,7 +85,9 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
simpa [mul_add, add_mul, sub_eq_add_neg, add_comm, add_left_comm] using
lt_of_le_of_lt (abv_add abv _ _) this
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
+-/
+#print rat_inv_continuous_lemma /-
theorem rat_inv_continuous_lemma {β : Type _} [DivisionRing β] (abv : β → α) [IsAbsoluteValue abv]
{ε K : α} (ε0 : 0 < ε) (K0 : 0 < K) :
∃ δ > 0, ∀ {a b : β}, K ≤ abv a → K ≤ abv b → abv (a - b) < δ → abv (a⁻¹ - b⁻¹) < ε :=
@@ -97,6 +102,7 @@ theorem rat_inv_continuous_lemma {β : Type _} [DivisionRing β] (abv : β →
refine' h.trans_le _
exact mul_le_mul (mul_le_mul ha le_rfl ε0.le a0.le) hb K0.le (mul_nonneg a0.le ε0.le)
#align rat_inv_continuous_lemma rat_inv_continuous_lemma
+-/
end
@@ -113,6 +119,7 @@ namespace IsCauSeq
variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue abv] {f g : ℕ → β}
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+#print IsCauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
theorem cauchy₂ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
@@ -123,13 +130,17 @@ theorem cauchy₂ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
refine' lt_of_le_of_lt (abv_sub_le abv _ _ _) (add_lt_add (hi _ ij) _)
rw [abv_sub abv]; exact hi _ ik
#align is_cau_seq.cauchy₂ IsCauSeq.cauchy₂
+-/
+#print IsCauSeq.cauchy₃ /-
theorem cauchy₃ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - f j) < ε :=
let ⟨i, H⟩ := hf.cauchy₂ ε0
⟨i, fun j ij k jk => H _ (le_trans ij jk) _ ij⟩
#align is_cau_seq.cauchy₃ IsCauSeq.cauchy₃
+-/
+#print IsCauSeq.add /-
theorem add (hf : IsCauSeq abv f) (hg : IsCauSeq abv g) : IsCauSeq abv (f + g) := fun ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abv ε0
let ⟨i, H⟩ := exists_forall_ge_and (hf.cauchy₃ δ0) (hg.cauchy₃ δ0)
@@ -137,6 +148,7 @@ theorem add (hf : IsCauSeq abv f) (hg : IsCauSeq abv g) : IsCauSeq abv (f + g) :
let ⟨H₁, H₂⟩ := H _ le_rfl
Hδ (H₁ _ ij) (H₂ _ ij)⟩
#align is_cau_seq.add IsCauSeq.add
+-/
end IsCauSeq
@@ -164,17 +176,23 @@ theorem mk_to_fun (f) (hf : IsCauSeq abv f) : @coeFn (CauSeq β abv) _ _ ⟨f, h
rfl
#align cau_seq.mk_to_fun CauSeq.mk_to_fun
+#print CauSeq.ext /-
theorem ext {f g : CauSeq β abv} (h : ∀ i, f i = g i) : f = g :=
Subtype.eq (funext h)
#align cau_seq.ext CauSeq.ext
+-/
+#print CauSeq.isCauSeq /-
theorem isCauSeq (f : CauSeq β abv) : IsCauSeq abv f :=
f.2
#align cau_seq.is_cau CauSeq.isCauSeq
+-/
+#print CauSeq.cauchy /-
theorem cauchy (f : CauSeq β abv) : ∀ {ε}, 0 < ε → ∃ i, ∀ j ≥ i, abv (f j - f i) < ε :=
f.2
#align cau_seq.cauchy CauSeq.cauchy
+-/
#print CauSeq.ofEq /-
/-- Given a Cauchy sequence `f`, create a Cauchy sequence from a sequence `g` with
@@ -187,17 +205,22 @@ def ofEq (f : CauSeq β abv) (g : ℕ → β) (e : ∀ i, f i = g i) : CauSeq β
variable [IsAbsoluteValue abv]
/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+#print CauSeq.cauchy₂ /-
-- see Note [nolint_ge]
@[nolint ge_or_gt]
theorem cauchy₂ (f : CauSeq β abv) {ε} :
0 < ε → ∃ i, ∀ (j) (_ : j ≥ i) (k) (_ : k ≥ i), abv (f j - f k) < ε :=
f.2.cauchy₂
#align cau_seq.cauchy₂ CauSeq.cauchy₂
+-/
+#print CauSeq.cauchy₃ /-
theorem cauchy₃ (f : CauSeq β abv) {ε} : 0 < ε → ∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - f j) < ε :=
f.2.cauchy₃
#align cau_seq.cauchy₃ CauSeq.cauchy₃
+-/
+#print CauSeq.bounded /-
theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
by
cases' f.cauchy zero_lt_one with i h
@@ -214,25 +237,32 @@ theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
· have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add_of_le_of_lt (this i _ le_rfl) (h _ ij))
rw [add_sub, add_comm] at this ; simpa
#align cau_seq.bounded CauSeq.bounded
+-/
+#print CauSeq.bounded' /-
theorem bounded' (f : CauSeq β abv) (x : α) : ∃ r > x, ∀ i, abv (f i) < r :=
let ⟨r, h⟩ := f.Bounded
⟨max r (x + 1), lt_of_lt_of_le (lt_add_one _) (le_max_right _ _), fun i =>
lt_of_lt_of_le (h i) (le_max_left _ _)⟩
#align cau_seq.bounded' CauSeq.bounded'
+-/
instance : Add (CauSeq β abv) :=
⟨fun f g => ⟨f + g, f.2.add g.2⟩⟩
+#print CauSeq.coe_add /-
@[simp, norm_cast]
theorem coe_add (f g : CauSeq β abv) : ⇑(f + g) = f + g :=
rfl
#align cau_seq.coe_add CauSeq.coe_add
+-/
+#print CauSeq.add_apply /-
@[simp, norm_cast]
theorem add_apply (f g : CauSeq β abv) (i : ℕ) : (f + g) i = f i + g i :=
rfl
#align cau_seq.add_apply CauSeq.add_apply
+-/
variable (abv)
@@ -245,7 +275,6 @@ def const (x : β) : CauSeq β abv :=
variable {abv}
--- mathport name: exprconst
local notation "const" => const abv
#print CauSeq.coe_const /-
@@ -277,39 +306,53 @@ instance : One (CauSeq β abv) :=
instance : Inhabited (CauSeq β abv) :=
⟨0⟩
+#print CauSeq.coe_zero /-
@[simp, norm_cast]
theorem coe_zero : ⇑(0 : CauSeq β abv) = 0 :=
rfl
#align cau_seq.coe_zero CauSeq.coe_zero
+-/
+#print CauSeq.coe_one /-
@[simp, norm_cast]
theorem coe_one : ⇑(1 : CauSeq β abv) = 1 :=
rfl
#align cau_seq.coe_one CauSeq.coe_one
+-/
+#print CauSeq.zero_apply /-
@[simp, norm_cast]
theorem zero_apply (i) : (0 : CauSeq β abv) i = 0 :=
rfl
#align cau_seq.zero_apply CauSeq.zero_apply
+-/
+#print CauSeq.one_apply /-
@[simp, norm_cast]
theorem one_apply (i) : (1 : CauSeq β abv) i = 1 :=
rfl
#align cau_seq.one_apply CauSeq.one_apply
+-/
+#print CauSeq.const_zero /-
@[simp]
theorem const_zero : const 0 = 0 :=
rfl
#align cau_seq.const_zero CauSeq.const_zero
+-/
+#print CauSeq.const_one /-
@[simp]
theorem const_one : const 1 = 1 :=
rfl
#align cau_seq.const_one CauSeq.const_one
+-/
+#print CauSeq.const_add /-
theorem const_add (x y : β) : const (x + y) = const x + const y :=
rfl
#align cau_seq.const_add CauSeq.const_add
+-/
instance : Mul (CauSeq β abv) :=
⟨fun f g =>
@@ -322,53 +365,71 @@ instance : Mul (CauSeq β abv) :=
let ⟨H₁, H₂⟩ := H _ le_rfl
Hδ (hF j) (hG i) (H₁ _ ij) (H₂ _ ij)⟩⟩⟩
+#print CauSeq.coe_mul /-
@[simp, norm_cast]
theorem coe_mul (f g : CauSeq β abv) : ⇑(f * g) = f * g :=
rfl
#align cau_seq.coe_mul CauSeq.coe_mul
+-/
+#print CauSeq.mul_apply /-
@[simp, norm_cast]
theorem mul_apply (f g : CauSeq β abv) (i : ℕ) : (f * g) i = f i * g i :=
rfl
#align cau_seq.mul_apply CauSeq.mul_apply
+-/
+#print CauSeq.const_mul /-
theorem const_mul (x y : β) : const (x * y) = const x * const y :=
rfl
#align cau_seq.const_mul CauSeq.const_mul
+-/
instance : Neg (CauSeq β abv) :=
⟨fun f => ofEq (const (-1) * f) (fun x => -f x) fun i => by simp⟩
+#print CauSeq.coe_neg /-
@[simp, norm_cast]
theorem coe_neg (f : CauSeq β abv) : ⇑(-f) = -f :=
rfl
#align cau_seq.coe_neg CauSeq.coe_neg
+-/
+#print CauSeq.neg_apply /-
@[simp, norm_cast]
theorem neg_apply (f : CauSeq β abv) (i) : (-f) i = -f i :=
rfl
#align cau_seq.neg_apply CauSeq.neg_apply
+-/
+#print CauSeq.const_neg /-
theorem const_neg (x : β) : const (-x) = -const x :=
rfl
#align cau_seq.const_neg CauSeq.const_neg
+-/
instance : Sub (CauSeq β abv) :=
⟨fun f g => ofEq (f + -g) (fun x => f x - g x) fun i => by simp [sub_eq_add_neg]⟩
+#print CauSeq.coe_sub /-
@[simp, norm_cast]
theorem coe_sub (f g : CauSeq β abv) : ⇑(f - g) = f - g :=
rfl
#align cau_seq.coe_sub CauSeq.coe_sub
+-/
+#print CauSeq.sub_apply /-
@[simp, norm_cast]
theorem sub_apply (f g : CauSeq β abv) (i : ℕ) : (f - g) i = f i - g i :=
rfl
#align cau_seq.sub_apply CauSeq.sub_apply
+-/
+#print CauSeq.const_sub /-
theorem const_sub (x y : β) : const (x - y) = const x - const y :=
rfl
#align cau_seq.const_sub CauSeq.const_sub
+-/
section SMul
@@ -377,19 +438,25 @@ variable [SMul G β] [IsScalarTower G β β]
instance : SMul G (CauSeq β abv) :=
⟨fun a f => ofEq (const (a • 1) * f) (a • f) fun i => smul_one_mul _ _⟩
+#print CauSeq.coe_smul /-
@[simp, norm_cast]
theorem coe_smul (a : G) (f : CauSeq β abv) : ⇑(a • f) = a • f :=
rfl
#align cau_seq.coe_smul CauSeq.coe_smul
+-/
+#print CauSeq.smul_apply /-
@[simp, norm_cast]
theorem smul_apply (a : G) (f : CauSeq β abv) (i : ℕ) : (a • f) i = a • f i :=
rfl
#align cau_seq.smul_apply CauSeq.smul_apply
+-/
+#print CauSeq.const_smul /-
theorem const_smul (a : G) (x : β) : const (a • x) = a • const x :=
rfl
#align cau_seq.const_smul CauSeq.const_smul
+-/
instance : IsScalarTower G (CauSeq β abv) (CauSeq β abv) :=
⟨fun a f g => Subtype.ext <| smul_assoc a (⇑f) ⇑g⟩
@@ -414,19 +481,25 @@ instance : Pow (CauSeq β abv) ℕ :=
⟨fun f n =>
(ofEq (npowRec n f) fun i => f i ^ n) <| by induction n <;> simp [*, npowRec, pow_succ]⟩
+#print CauSeq.coe_pow /-
@[simp, norm_cast]
theorem coe_pow (f : CauSeq β abv) (n : ℕ) : ⇑(f ^ n) = f ^ n :=
rfl
#align cau_seq.coe_pow CauSeq.coe_pow
+-/
+#print CauSeq.pow_apply /-
@[simp, norm_cast]
theorem pow_apply (f : CauSeq β abv) (n i : ℕ) : (f ^ n) i = f i ^ n :=
rfl
#align cau_seq.pow_apply CauSeq.pow_apply
+-/
+#print CauSeq.const_pow /-
theorem const_pow (x : β) (n : ℕ) : const (x ^ n) = const x ^ n :=
rfl
#align cau_seq.const_pow CauSeq.const_pow
+-/
instance : Ring (CauSeq β abv) :=
Function.Injective.ring _ Subtype.coe_injective rfl rfl coe_add coe_mul coe_neg coe_sub
@@ -442,6 +515,7 @@ def LimZero {abv : β → α} (f : CauSeq β abv) : Prop :=
#align cau_seq.lim_zero CauSeq.LimZero
-/
+#print CauSeq.add_limZero /-
theorem add_limZero {f g : CauSeq β abv} (hf : LimZero f) (hg : LimZero g) : LimZero (f + g)
| ε, ε0 =>
(exists_forall_ge_and (hf _ <| half_pos ε0) (hg _ <| half_pos ε0)).imp fun i H j ij =>
@@ -449,7 +523,9 @@ theorem add_limZero {f g : CauSeq β abv} (hf : LimZero f) (hg : LimZero g) : Li
let ⟨H₁, H₂⟩ := H _ ij
simpa [add_halves ε] using lt_of_le_of_lt (abv_add abv _ _) (add_lt_add H₁ H₂)
#align cau_seq.add_lim_zero CauSeq.add_limZero
+-/
+#print CauSeq.mul_limZero_right /-
theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f * g)
| ε, ε0 =>
let ⟨F, F0, hF⟩ := f.bounded' 0
@@ -457,7 +533,9 @@ theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f
have := mul_lt_mul' (le_of_lt <| hF j) (H _ ij) (abv_nonneg abv _) F0 <;>
rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_right CauSeq.mul_limZero_right
+-/
+#print CauSeq.mul_limZero_left /-
theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f * g)
| ε, ε0 =>
let ⟨G, G0, hG⟩ := g.bounded' 0
@@ -465,23 +543,33 @@ theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f *
have := mul_lt_mul'' (H _ ij) (hG j) (abv_nonneg abv _) (abv_nonneg abv _) <;>
rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_left CauSeq.mul_limZero_left
+-/
+#print CauSeq.neg_limZero /-
theorem neg_limZero {f : CauSeq β abv} (hf : LimZero f) : LimZero (-f) := by
rw [← neg_one_mul] <;> exact mul_lim_zero_right _ hf
#align cau_seq.neg_lim_zero CauSeq.neg_limZero
+-/
+#print CauSeq.sub_limZero /-
theorem sub_limZero {f g : CauSeq β abv} (hf : LimZero f) (hg : LimZero g) : LimZero (f - g) := by
simpa only [sub_eq_add_neg] using add_lim_zero hf (neg_lim_zero hg)
#align cau_seq.sub_lim_zero CauSeq.sub_limZero
+-/
+#print CauSeq.limZero_sub_rev /-
theorem limZero_sub_rev {f g : CauSeq β abv} (hfg : LimZero (f - g)) : LimZero (g - f) := by
simpa using neg_lim_zero hfg
#align cau_seq.lim_zero_sub_rev CauSeq.limZero_sub_rev
+-/
+#print CauSeq.zero_limZero /-
theorem zero_limZero : LimZero (0 : CauSeq β abv)
| ε, ε0 => ⟨0, fun j ij => by simpa [abv_zero abv] using ε0⟩
#align cau_seq.zero_lim_zero CauSeq.zero_limZero
+-/
+#print CauSeq.const_limZero /-
theorem const_limZero {x : β} : LimZero (const x) ↔ x = 0 :=
⟨fun H =>
(abv_eq_zero abv).1 <|
@@ -490,6 +578,7 @@ theorem const_limZero {x : β} : LimZero (const x) ↔ x = 0 :=
le_of_lt <| hi _ le_rfl,
fun e => e.symm ▸ zero_limZero⟩
#align cau_seq.const_lim_zero CauSeq.const_limZero
+-/
#print CauSeq.equiv /-
instance equiv : Setoid (CauSeq β abv) :=
@@ -499,18 +588,25 @@ instance equiv : Setoid (CauSeq β abv) :=
#align cau_seq.equiv CauSeq.equiv
-/
+#print CauSeq.add_equiv_add /-
theorem add_equiv_add {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) :
f1 + g1 ≈ f2 + g2 := by simpa only [← add_sub_add_comm] using add_lim_zero hf hg
#align cau_seq.add_equiv_add CauSeq.add_equiv_add
+-/
+#print CauSeq.neg_equiv_neg /-
theorem neg_equiv_neg {f g : CauSeq β abv} (hf : f ≈ g) : -f ≈ -g := by
simpa only [neg_sub'] using neg_lim_zero hf
#align cau_seq.neg_equiv_neg CauSeq.neg_equiv_neg
+-/
+#print CauSeq.sub_equiv_sub /-
theorem sub_equiv_sub {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) :
f1 - g1 ≈ f2 - g2 := by simpa only [sub_eq_add_neg] using add_equiv_add hf (neg_equiv_neg hg)
#align cau_seq.sub_equiv_sub CauSeq.sub_equiv_sub
+-/
+#print CauSeq.equiv_def₃ /-
theorem equiv_def₃ {f g : CauSeq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε) :
∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - g j) < ε :=
(exists_forall_ge_and (h _ <| half_pos ε0) (f.cauchy₃ <| half_pos ε0)).imp fun i H j ij k jk =>
@@ -519,11 +615,15 @@ theorem equiv_def₃ {f g : CauSeq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε
have := lt_of_le_of_lt (abv_add abv (f j - g j) _) (add_lt_add h₁ (h₂ _ jk)) <;>
rwa [sub_add_sub_cancel', add_halves] at this
#align cau_seq.equiv_def₃ CauSeq.equiv_def₃
+-/
+#print CauSeq.limZero_congr /-
theorem limZero_congr {f g : CauSeq β abv} (h : f ≈ g) : LimZero f ↔ LimZero g :=
⟨fun l => by simpa using add_lim_zero (Setoid.symm h) l, fun l => by simpa using add_lim_zero h l⟩
#align cau_seq.lim_zero_congr CauSeq.limZero_congr
+-/
+#print CauSeq.abv_pos_of_not_limZero /-
theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
∃ K > 0, ∃ i, ∀ j ≥ i, K ≤ abv (f j) :=
by
@@ -537,7 +637,9 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add (hi j ij k jk) hj)
rwa [sub_add_cancel, add_halves] at this
#align cau_seq.abv_pos_of_not_lim_zero CauSeq.abv_pos_of_not_limZero
+-/
+#print CauSeq.of_near /-
theorem of_near (f : ℕ → β) (g : CauSeq β abv) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - g j) < ε) :
IsCauSeq abv f
| ε, ε0 =>
@@ -548,25 +650,33 @@ theorem of_near (f : ℕ → β) (g : CauSeq β abv) (h : ∀ ε > 0, ∃ i, ∀
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add this (h₂ _ ij))
rwa [add_halves, add_halves, add_right_comm, sub_add_sub_cancel, sub_add_sub_cancel] at this ⟩
#align cau_seq.of_near CauSeq.of_near
+-/
+#print CauSeq.not_limZero_of_not_congr_zero /-
theorem not_limZero_of_not_congr_zero {f : CauSeq _ abv} (hf : ¬f ≈ 0) : ¬LimZero f :=
fun this : LimZero f =>
have : LimZero (f - 0) := by simpa
hf this
#align cau_seq.not_lim_zero_of_not_congr_zero CauSeq.not_limZero_of_not_congr_zero
+-/
+#print CauSeq.mul_equiv_zero /-
theorem mul_equiv_zero (g : CauSeq _ abv) {f : CauSeq _ abv} (hf : f ≈ 0) : g * f ≈ 0 :=
have : LimZero (f - 0) := hf
have : LimZero (g * f) := mul_limZero_right _ <| by simpa
show LimZero (g * f - 0) by simpa
#align cau_seq.mul_equiv_zero CauSeq.mul_equiv_zero
+-/
+#print CauSeq.mul_equiv_zero' /-
theorem mul_equiv_zero' (g : CauSeq _ abv) {f : CauSeq _ abv} (hf : f ≈ 0) : f * g ≈ 0 :=
have : LimZero (f - 0) := hf
have : LimZero (f * g) := mul_limZero_left _ <| by simpa
show LimZero (f * g - 0) by simpa
#align cau_seq.mul_equiv_zero' CauSeq.mul_equiv_zero'
+-/
+#print CauSeq.mul_not_equiv_zero /-
theorem mul_not_equiv_zero {f g : CauSeq _ abv} (hf : ¬f ≈ 0) (hg : ¬g ≈ 0) : ¬f * g ≈ 0 :=
fun this : LimZero (f * g - 0) =>
by
@@ -588,6 +698,7 @@ theorem mul_not_equiv_zero {f g : CauSeq _ abv} (hf : ¬f ≈ 0) (hg : ¬g ≈ 0
· apply le_of_lt ha2
· apply IsAbsoluteValue.abv_nonneg abv
#align cau_seq.mul_not_equiv_zero CauSeq.mul_not_equiv_zero
+-/
#print CauSeq.const_equiv /-
theorem const_equiv {x y : β} : const x ≈ const y ↔ x = y :=
@@ -595,23 +706,29 @@ theorem const_equiv {x y : β} : const x ≈ const y ↔ x = y :=
#align cau_seq.const_equiv CauSeq.const_equiv
-/
+#print CauSeq.mul_equiv_mul /-
theorem mul_equiv_mul {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) :
f1 * g1 ≈ f2 * g2 := by
simpa only [mul_sub, sub_mul, sub_add_sub_cancel] using
add_lim_zero (mul_lim_zero_left g1 hf) (mul_lim_zero_right f2 hg)
#align cau_seq.mul_equiv_mul CauSeq.mul_equiv_mul
+-/
+#print CauSeq.smul_equiv_smul /-
theorem smul_equiv_smul [SMul G β] [IsScalarTower G β β] {f1 f2 : CauSeq β abv} (c : G)
(hf : f1 ≈ f2) : c • f1 ≈ c • f2 := by
simpa [const_smul, smul_one_mul _ _] using mul_equiv_mul (const_equiv.mpr <| Eq.refl <| c • 1) hf
#align cau_seq.smul_equiv_smul CauSeq.smul_equiv_smul
+-/
+#print CauSeq.pow_equiv_pow /-
theorem pow_equiv_pow {f1 f2 : CauSeq β abv} (hf : f1 ≈ f2) (n : ℕ) : f1 ^ n ≈ f2 ^ n :=
by
induction' n with n ih
· simp only [pow_zero, Setoid.refl]
· simpa only [pow_succ] using mul_equiv_mul hf ih
#align cau_seq.pow_equiv_pow CauSeq.pow_equiv_pow
+-/
end Ring
@@ -619,6 +736,7 @@ section IsDomain
variable [Ring β] [IsDomain β] (abv : β → α) [IsAbsoluteValue abv]
+#print CauSeq.one_not_equiv_zero /-
theorem one_not_equiv_zero : ¬const abv 1 ≈ const abv 0 := fun h =>
have : ∀ ε > 0, ∃ i, ∀ k, i ≤ k → abv (1 - 0) < ε := h
have h1 : abv 1 ≤ 0 :=
@@ -629,6 +747,7 @@ theorem one_not_equiv_zero : ¬const abv 1 ≈ const abv 0 := fun h =>
have : (1 : β) = 0 := (IsAbsoluteValue.abv_eq_zero abv).1 this
absurd this one_ne_zero
#align cau_seq.one_not_equiv_zero CauSeq.one_not_equiv_zero
+-/
end IsDomain
@@ -636,6 +755,7 @@ section DivisionRing
variable [DivisionRing β] {abv : β → α} [IsAbsoluteValue abv]
+#print CauSeq.inv_aux /-
theorem inv_aux {f : CauSeq β abv} (hf : ¬LimZero f) :
∀ ε > 0, ∃ i, ∀ j ≥ i, abv ((f j)⁻¹ - (f i)⁻¹) < ε
| ε, ε0 =>
@@ -646,6 +766,7 @@ theorem inv_aux {f : CauSeq β abv} (hf : ¬LimZero f) :
let ⟨iK, H'⟩ := H _ le_rfl
Hδ (H _ ij).1 iK (H' _ ij)⟩
#align cau_seq.inv_aux CauSeq.inv_aux
+-/
#print CauSeq.inv /-
/-- Given a Cauchy sequence `f` with nonzero limit, create a Cauchy sequence with values equal to
@@ -655,54 +776,70 @@ def inv (f : CauSeq β abv) (hf : ¬LimZero f) : CauSeq β abv :=
#align cau_seq.inv CauSeq.inv
-/
+#print CauSeq.coe_inv /-
@[simp, norm_cast]
theorem coe_inv {f : CauSeq β abv} (hf) : ⇑(inv f hf) = f⁻¹ :=
rfl
#align cau_seq.coe_inv CauSeq.coe_inv
+-/
+#print CauSeq.inv_apply /-
@[simp, norm_cast]
theorem inv_apply {f : CauSeq β abv} (hf i) : inv f hf i = (f i)⁻¹ :=
rfl
#align cau_seq.inv_apply CauSeq.inv_apply
+-/
+#print CauSeq.inv_mul_cancel /-
theorem inv_mul_cancel {f : CauSeq β abv} (hf) : inv f hf * f ≈ 1 := fun ε ε0 =>
let ⟨K, K0, i, H⟩ := abv_pos_of_not_limZero hf
⟨i, fun j ij => by simpa [(abv_pos abv).1 (lt_of_lt_of_le K0 (H _ ij)), abv_zero abv] using ε0⟩
#align cau_seq.inv_mul_cancel CauSeq.inv_mul_cancel
+-/
+#print CauSeq.mul_inv_cancel /-
theorem mul_inv_cancel {f : CauSeq β abv} (hf) : f * inv f hf ≈ 1 := fun ε ε0 =>
let ⟨K, K0, i, H⟩ := abv_pos_of_not_limZero hf
⟨i, fun j ij => by simpa [(abv_pos abv).1 (lt_of_lt_of_le K0 (H _ ij)), abv_zero abv] using ε0⟩
#align cau_seq.mul_inv_cancel CauSeq.mul_inv_cancel
+-/
+#print CauSeq.const_inv /-
theorem const_inv {x : β} (hx : x ≠ 0) :
const abv x⁻¹ = inv (const abv x) (by rwa [const_lim_zero]) :=
rfl
#align cau_seq.const_inv CauSeq.const_inv
+-/
end DivisionRing
section Abs
--- mathport name: exprconst
local notation "const" => const abs
+#print CauSeq.Pos /-
/-- The entries of a positive Cauchy sequence eventually have a positive lower bound. -/
def Pos (f : CauSeq α abs) : Prop :=
∃ K > 0, ∃ i, ∀ j ≥ i, K ≤ f j
#align cau_seq.pos CauSeq.Pos
+-/
+#print CauSeq.not_limZero_of_pos /-
theorem not_limZero_of_pos {f : CauSeq α abs} : Pos f → ¬LimZero f
| ⟨F, F0, hF⟩, H =>
let ⟨i, h⟩ := exists_forall_ge_and hF (H _ F0)
let ⟨h₁, h₂⟩ := h _ le_rfl
not_lt_of_le h₁ (abs_lt.1 h₂).2
#align cau_seq.not_lim_zero_of_pos CauSeq.not_limZero_of_pos
+-/
+#print CauSeq.const_pos /-
theorem const_pos {x : α} : Pos (const x) ↔ 0 < x :=
⟨fun ⟨K, K0, i, h⟩ => lt_of_lt_of_le K0 (h _ le_rfl), fun h => ⟨x, h, 0, fun j _ => le_rfl⟩⟩
#align cau_seq.const_pos CauSeq.const_pos
+-/
+#print CauSeq.add_pos /-
theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
| ⟨F, F0, hF⟩, ⟨G, G0, hG⟩ =>
let ⟨i, h⟩ := exists_forall_ge_and hF hG
@@ -710,7 +847,9 @@ theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
let ⟨h₁, h₂⟩ := h _ ij
add_le_add h₁ h₂⟩
#align cau_seq.add_pos CauSeq.add_pos
+-/
+#print CauSeq.pos_add_limZero /-
theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f + g)
| ⟨F, F0, hF⟩, H =>
let ⟨i, h⟩ := exists_forall_ge_and hF (H _ (half_pos F0))
@@ -719,7 +858,9 @@ theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f +
have := add_le_add h₁ (le_of_lt (abs_lt.1 h₂).1)
rwa [← sub_eq_add_neg, sub_self_div_two] at this ⟩
#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZero
+-/
+#print CauSeq.mul_pos /-
protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g)
| ⟨F, F0, hF⟩, ⟨G, G0, hG⟩ =>
let ⟨i, h⟩ := exists_forall_ge_and hF hG
@@ -727,7 +868,9 @@ protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g
let ⟨h₁, h₂⟩ := h _ ij
mul_le_mul h₁ h₂ (le_of_lt G0) (le_trans (le_of_lt F0) h₁)⟩
#align cau_seq.mul_pos CauSeq.mul_pos
+-/
+#print CauSeq.trichotomy /-
theorem trichotomy (f : CauSeq α abs) : Pos f ∨ LimZero f ∨ Pos (-f) :=
by
cases Classical.em (lim_zero f) <;> simp [*]
@@ -746,6 +889,7 @@ theorem trichotomy (f : CauSeq α abs) : Pos f ∨ LimZero f ∨ Pos (-f) :=
rw [← sub_le_sub_iff_right, zero_sub]
exact le_trans (le_of_lt (abs_lt.1 <| h₂ _ ij).2) h₁
#align cau_seq.trichotomy CauSeq.trichotomy
+-/
instance : LT (CauSeq α abs) :=
⟨fun f g => Pos (g - f)⟩
@@ -753,31 +897,43 @@ instance : LT (CauSeq α abs) :=
instance : LE (CauSeq α abs) :=
⟨fun f g => f < g ∨ f ≈ g⟩
+#print CauSeq.lt_of_lt_of_eq /-
theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f < h :=
show Pos (h - f) by
simpa [sub_eq_add_neg, add_comm, add_left_comm] using pos_add_lim_zero fg (neg_lim_zero gh)
#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eq
+-/
+#print CauSeq.lt_of_eq_of_lt /-
theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by
have := pos_add_lim_zero gh (neg_lim_zero fg) <;>
rwa [← sub_eq_add_neg, sub_sub_sub_cancel_right] at this
#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_lt
+-/
+#print CauSeq.lt_trans /-
theorem lt_trans {f g h : CauSeq α abs} (fg : f < g) (gh : g < h) : f < h :=
show Pos (h - f) by simpa [sub_eq_add_neg, add_comm, add_left_comm] using add_pos fg gh
#align cau_seq.lt_trans CauSeq.lt_trans
+-/
+#print CauSeq.lt_irrefl /-
theorem lt_irrefl {f : CauSeq α abs} : ¬f < f
| h => not_limZero_of_pos h (by simp [zero_lim_zero])
#align cau_seq.lt_irrefl CauSeq.lt_irrefl
+-/
+#print CauSeq.le_of_eq_of_le /-
theorem le_of_eq_of_le {f g h : CauSeq α abs} (hfg : f ≈ g) (hgh : g ≤ h) : f ≤ h :=
hgh.elim (Or.inl ∘ CauSeq.lt_of_eq_of_lt hfg) (Or.inr ∘ Setoid.trans hfg)
#align cau_seq.le_of_eq_of_le CauSeq.le_of_eq_of_le
+-/
+#print CauSeq.le_of_le_of_eq /-
theorem le_of_le_of_eq {f g h : CauSeq α abs} (hfg : f ≤ g) (hgh : g ≈ h) : f ≤ h :=
hfg.elim (fun h => Or.inl (CauSeq.lt_of_lt_of_eq h hgh)) fun h => Or.inr (Setoid.trans h hgh)
#align cau_seq.le_of_le_of_eq CauSeq.le_of_le_of_eq
+-/
instance : Preorder (CauSeq α abs) where
lt := (· < ·)
@@ -793,27 +949,38 @@ instance : Preorder (CauSeq α abs) where
⟨fun h => ⟨Or.inl h, not_or_of_not (mt (lt_trans h) lt_irrefl) (not_limZero_of_pos h)⟩,
fun ⟨h₁, h₂⟩ => h₁.resolve_right (mt (fun h => Or.inr (Setoid.symm h)) h₂)⟩
+#print CauSeq.le_antisymm /-
theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈ g :=
fg.resolve_left (not_lt_of_le gf)
#align cau_seq.le_antisymm CauSeq.le_antisymm
+-/
+#print CauSeq.lt_total /-
theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
(trichotomy (g - f)).imp_right fun h =>
h.imp (fun h => Setoid.symm h) fun h => by rwa [neg_sub] at h
#align cau_seq.lt_total CauSeq.lt_total
+-/
+#print CauSeq.le_total /-
theorem le_total (f g : CauSeq α abs) : f ≤ g ∨ g ≤ f :=
(or_assoc.2 (lt_total f g)).imp_right Or.inl
#align cau_seq.le_total CauSeq.le_total
+-/
+#print CauSeq.const_lt /-
theorem const_lt {x y : α} : const x < const y ↔ x < y :=
show Pos _ ↔ _ by rw [← const_sub, const_pos, sub_pos]
#align cau_seq.const_lt CauSeq.const_lt
+-/
+#print CauSeq.const_le /-
theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by
rw [le_iff_lt_or_eq] <;> exact or_congr const_lt const_equiv
#align cau_seq.const_le CauSeq.const_le
+-/
+#print CauSeq.le_of_exists /-
theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j) : f ≤ g :=
let ⟨i, hi⟩ := h
(or_assoc.2 (CauSeq.lt_total f g)).elim id fun hgf =>
@@ -822,7 +989,9 @@ theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j)
not_lt_of_ge (hi (max i j) (le_max_left _ _))
(sub_pos.1 (lt_of_lt_of_le hK0 (hKj _ (le_max_right _ _)))))
#align cau_seq.le_of_exists CauSeq.le_of_exists
+-/
+#print CauSeq.exists_gt /-
theorem exists_gt (f : CauSeq α abs) : ∃ a : α, f < const a :=
let ⟨K, H⟩ := f.Bounded
⟨K + 1, 1, zero_lt_one, 0, fun i _ =>
@@ -830,23 +999,30 @@ theorem exists_gt (f : CauSeq α abs) : ∃ a : α, f < const a :=
rw [sub_apply, const_apply, le_sub_iff_add_le', add_le_add_iff_right]
exact le_of_lt (abs_lt.1 (H _)).2⟩
#align cau_seq.exists_gt CauSeq.exists_gt
+-/
+#print CauSeq.exists_lt /-
theorem exists_lt (f : CauSeq α abs) : ∃ a : α, const a < f :=
let ⟨a, h⟩ := (-f).exists_gt
⟨-a, show Pos _ by rwa [const_neg, sub_neg_eq_add, add_comm, ← sub_neg_eq_add]⟩
#align cau_seq.exists_lt CauSeq.exists_lt
+-/
+#print CauSeq.rat_sup_continuous_lemma /-
-- so named to match `rat_add_continuous_lemma`
theorem CauSeq.rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊔ a₂ - b₁ ⊔ b₂) < ε := fun h₁ h₂ =>
(abs_max_sub_max_le_max _ _ _ _).trans_lt (max_lt h₁ h₂)
#align rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemma
+-/
+#print CauSeq.rat_inf_continuous_lemma /-
-- so named to match `rat_add_continuous_lemma`
theorem CauSeq.rat_inf_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊓ a₂ - b₁ ⊓ b₂) < ε := fun h₁ h₂ =>
(abs_min_sub_min_le_max _ _ _ _).trans_lt (max_lt h₁ h₂)
#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemma
+-/
instance : Sup (CauSeq α abs) :=
⟨fun f g =>
@@ -862,16 +1038,21 @@ instance : Inf (CauSeq α abs) :=
let ⟨H₁, H₂⟩ := H _ le_rfl
CauSeq.rat_inf_continuous_lemma (H₁ _ ij) (H₂ _ ij)⟩⟩
+#print CauSeq.coe_sup /-
@[simp, norm_cast]
theorem coe_sup (f g : CauSeq α abs) : ⇑(f ⊔ g) = f ⊔ g :=
rfl
#align cau_seq.coe_sup CauSeq.coe_sup
+-/
+#print CauSeq.coe_inf /-
@[simp, norm_cast]
theorem coe_inf (f g : CauSeq α abs) : ⇑(f ⊓ g) = f ⊓ g :=
rfl
#align cau_seq.coe_inf CauSeq.coe_inf
+-/
+#print CauSeq.sup_limZero /-
theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : LimZero (f ⊔ g)
| ε, ε0 =>
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij =>
@@ -880,7 +1061,9 @@ theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
rw [abs_lt] at H₁ H₂ ⊢
exact ⟨lt_sup_iff.mpr (Or.inl H₁.1), sup_lt_iff.mpr ⟨H₁.2, H₂.2⟩⟩
#align cau_seq.sup_lim_zero CauSeq.sup_limZero
+-/
+#print CauSeq.inf_limZero /-
theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : LimZero (f ⊓ g)
| ε, ε0 =>
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij =>
@@ -889,7 +1072,9 @@ theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
rw [abs_lt] at H₁ H₂ ⊢
exact ⟨lt_inf_iff.mpr ⟨H₁.1, H₂.1⟩, inf_lt_iff.mpr (Or.inl H₁.2)⟩
#align cau_seq.inf_lim_zero CauSeq.inf_limZero
+-/
+#print CauSeq.sup_equiv_sup /-
theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊔ b₁ ≈ a₂ ⊔ b₂ := by
intro ε ε0
@@ -900,7 +1085,9 @@ theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
(abs_max_sub_max_le_max (a₁ i) (b₁ i) (a₂ i) (b₂ i)).trans_lt
(max_lt (hai i (sup_le_iff.mp hi).1) (hbi i (sup_le_iff.mp hi).2))⟩
#align cau_seq.sup_equiv_sup CauSeq.sup_equiv_sup
+-/
+#print CauSeq.inf_equiv_inf /-
theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊓ b₁ ≈ a₂ ⊓ b₂ := by
intro ε ε0
@@ -911,7 +1098,9 @@ theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
(abs_min_sub_min_le_max (a₁ i) (b₁ i) (a₂ i) (b₂ i)).trans_lt
(max_lt (hai i (sup_le_iff.mp hi).1) (hbi i (sup_le_iff.mp hi).2))⟩
#align cau_seq.inf_equiv_inf CauSeq.inf_equiv_inf
+-/
+#print CauSeq.sup_lt /-
protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a ⊔ b < c :=
by
obtain ⟨⟨εa, εa0, ia, ha⟩, ⟨εb, εb0, ib, hb⟩⟩ := ha, hb
@@ -919,7 +1108,9 @@ protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a
have := min_le_min (ha _ (sup_le_iff.mp hi).1) (hb _ (sup_le_iff.mp hi).2)
exact this.trans_eq (min_sub_sub_left _ _ _)
#align cau_seq.sup_lt CauSeq.sup_lt
+-/
+#print CauSeq.lt_inf /-
protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a < b ⊓ c :=
by
obtain ⟨⟨εb, εb0, ib, hb⟩, ⟨εc, εc0, ic, hc⟩⟩ := hb, hc
@@ -927,25 +1118,35 @@ protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a <
have := min_le_min (hb _ (sup_le_iff.mp hi).1) (hc _ (sup_le_iff.mp hi).2)
exact this.trans_eq (min_sub_sub_right _ _ _)
#align cau_seq.lt_inf CauSeq.lt_inf
+-/
+#print CauSeq.sup_idem /-
@[simp]
protected theorem sup_idem (a : CauSeq α abs) : a ⊔ a = a :=
Subtype.ext sup_idem
#align cau_seq.sup_idem CauSeq.sup_idem
+-/
+#print CauSeq.inf_idem /-
@[simp]
protected theorem inf_idem (a : CauSeq α abs) : a ⊓ a = a :=
Subtype.ext inf_idem
#align cau_seq.inf_idem CauSeq.inf_idem
+-/
+#print CauSeq.sup_comm /-
protected theorem sup_comm (a b : CauSeq α abs) : a ⊔ b = b ⊔ a :=
Subtype.ext sup_comm
#align cau_seq.sup_comm CauSeq.sup_comm
+-/
+#print CauSeq.inf_comm /-
protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a :=
Subtype.ext inf_comm
#align cau_seq.inf_comm CauSeq.inf_comm
+-/
+#print CauSeq.sup_eq_right /-
protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈ b :=
by
obtain ⟨ε, ε0 : _ < _, i, h⟩ | h := h
@@ -960,7 +1161,9 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
rw [CauSeq.sup_idem]
exact Setoid.refl _
#align cau_seq.sup_eq_right CauSeq.sup_eq_right
+-/
+#print CauSeq.inf_eq_right /-
protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈ b :=
by
obtain ⟨ε, ε0 : _ < _, i, h⟩ | h := h
@@ -974,31 +1177,45 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
rw [CauSeq.inf_idem]
exact Setoid.refl _
#align cau_seq.inf_eq_right CauSeq.inf_eq_right
+-/
+#print CauSeq.sup_eq_left /-
protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by
simpa only [CauSeq.sup_comm] using CauSeq.sup_eq_right h
#align cau_seq.sup_eq_left CauSeq.sup_eq_left
+-/
+#print CauSeq.inf_eq_left /-
protected theorem inf_eq_left {a b : CauSeq α abs} (h : a ≤ b) : a ⊓ b ≈ a := by
simpa only [CauSeq.inf_comm] using CauSeq.inf_eq_right h
#align cau_seq.inf_eq_left CauSeq.inf_eq_left
+-/
+#print CauSeq.le_sup_left /-
protected theorem le_sup_left {a b : CauSeq α abs} : a ≤ a ⊔ b :=
le_of_exists ⟨0, fun j hj => le_sup_left⟩
#align cau_seq.le_sup_left CauSeq.le_sup_left
+-/
+#print CauSeq.inf_le_left /-
protected theorem inf_le_left {a b : CauSeq α abs} : a ⊓ b ≤ a :=
le_of_exists ⟨0, fun j hj => inf_le_left⟩
#align cau_seq.inf_le_left CauSeq.inf_le_left
+-/
+#print CauSeq.le_sup_right /-
protected theorem le_sup_right {a b : CauSeq α abs} : b ≤ a ⊔ b :=
le_of_exists ⟨0, fun j hj => le_sup_right⟩
#align cau_seq.le_sup_right CauSeq.le_sup_right
+-/
+#print CauSeq.inf_le_right /-
protected theorem inf_le_right {a b : CauSeq α abs} : a ⊓ b ≤ b :=
le_of_exists ⟨0, fun j hj => inf_le_right⟩
#align cau_seq.inf_le_right CauSeq.inf_le_right
+-/
+#print CauSeq.sup_le /-
protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) : a ⊔ b ≤ c :=
by
cases' ha with ha ha
@@ -1011,7 +1228,9 @@ protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) :
refine' le_of_le_of_eq (Or.inr _) ha
exact CauSeq.sup_eq_left hb
#align cau_seq.sup_le CauSeq.sup_le
+-/
+#print CauSeq.le_inf /-
protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) : a ≤ b ⊓ c :=
by
cases' hb with hb hb
@@ -1024,17 +1243,22 @@ protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) :
refine' le_of_eq_of_le hb (Or.inr _)
exact Setoid.symm (CauSeq.inf_eq_left hc)
#align cau_seq.le_inf CauSeq.le_inf
+-/
/-! Note that `distrib_lattice (cau_seq α abs)` is not true because there is no `partial_order`. -/
+#print CauSeq.sup_inf_distrib_left /-
protected theorem sup_inf_distrib_left (a b c : CauSeq α abs) : a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_left
#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_left
+-/
+#print CauSeq.sup_inf_distrib_right /-
protected theorem sup_inf_distrib_right (a b c : CauSeq α abs) : a ⊓ b ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_right
#align cau_seq.sup_inf_distrib_right CauSeq.sup_inf_distrib_right
+-/
end Abs
mathlib commit https://github.com/leanprover-community/mathlib/commit/31c24aa72e7b3e5ed97a8412470e904f82b81004
@@ -112,7 +112,7 @@ namespace IsCauSeq
variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue abv] {f g : ℕ → β}
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » i) -/
-- see Note [nolint_ge]
@[nolint ge_or_gt]
theorem cauchy₂ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
@@ -186,7 +186,7 @@ def ofEq (f : CauSeq β abv) (g : ℕ → β) (e : ∀ i, f i = g i) : CauSeq β
variable [IsAbsoluteValue abv]
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (j k «expr ≥ » i) -/
-- see Note [nolint_ge]
@[nolint ge_or_gt]
theorem cauchy₂ (f : CauSeq β abv) {ε} :
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -78,7 +78,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
have :=
add_lt_add (mul_lt_mul' (le_of_lt h₁) hb₂ (abv_nonneg abv _) εK)
(mul_lt_mul' (le_of_lt h₂) ha₁ (abv_nonneg abv _) εK)
- rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
+ rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
simpa [mul_add, add_mul, sub_eq_add_neg, add_comm, add_left_comm] using
lt_of_le_of_lt (abv_add abv _ _) this
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
@@ -212,7 +212,7 @@ theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
cases' lt_or_le j i with ij ij
· exact lt_of_le_of_lt (this i _ (le_of_lt ij)) (lt_add_one _)
· have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add_of_le_of_lt (this i _ le_rfl) (h _ ij))
- rw [add_sub, add_comm] at this; simpa
+ rw [add_sub, add_comm] at this ; simpa
#align cau_seq.bounded CauSeq.bounded
theorem bounded' (f : CauSeq β abv) (x : α) : ∃ r > x, ∀ i, abv (f i) < r :=
@@ -455,7 +455,7 @@ theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f
let ⟨F, F0, hF⟩ := f.bounded' 0
(hg _ <| div_pos ε0 F0).imp fun i H j ij => by
have := mul_lt_mul' (le_of_lt <| hF j) (H _ ij) (abv_nonneg abv _) F0 <;>
- rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this
+ rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_right CauSeq.mul_limZero_right
theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f * g)
@@ -463,7 +463,7 @@ theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f *
let ⟨G, G0, hG⟩ := g.bounded' 0
(hg _ <| div_pos ε0 G0).imp fun i H j ij => by
have := mul_lt_mul'' (H _ ij) (hG j) (abv_nonneg abv _) (abv_nonneg abv _) <;>
- rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this
+ rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_left CauSeq.mul_limZero_left
theorem neg_limZero {f : CauSeq β abv} (hf : LimZero f) : LimZero (-f) := by
@@ -517,7 +517,7 @@ theorem equiv_def₃ {f g : CauSeq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε
by
let ⟨h₁, h₂⟩ := H _ ij
have := lt_of_le_of_lt (abv_add abv (f j - g j) _) (add_lt_add h₁ (h₂ _ jk)) <;>
- rwa [sub_add_sub_cancel', add_halves] at this
+ rwa [sub_add_sub_cancel', add_halves] at this
#align cau_seq.equiv_def₃ CauSeq.equiv_def₃
theorem limZero_congr {f g : CauSeq β abv} (h : f ≈ g) : LimZero f ↔ LimZero g :=
@@ -530,12 +530,12 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
haveI := Classical.propDecidable
by_contra nk
refine' hf fun ε ε0 => _
- simp [not_forall] at nk
+ simp [not_forall] at nk
cases' f.cauchy₃ (half_pos ε0) with i hi
rcases nk _ (half_pos ε0) i with ⟨j, ij, hj⟩
refine' ⟨j, fun k jk => _⟩
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add (hi j ij k jk) hj)
- rwa [sub_add_cancel, add_halves] at this
+ rwa [sub_add_cancel, add_halves] at this
#align cau_seq.abv_pos_of_not_lim_zero CauSeq.abv_pos_of_not_limZero
theorem of_near (f : ℕ → β) (g : CauSeq β abv) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - g j) < ε) :
@@ -543,10 +543,10 @@ theorem of_near (f : ℕ → β) (g : CauSeq β abv) (h : ∀ ε > 0, ∃ i, ∀
| ε, ε0 =>
let ⟨i, hi⟩ := exists_forall_ge_and (h _ (half_pos <| half_pos ε0)) (g.cauchy₃ <| half_pos ε0)
⟨i, fun j ij => by
- cases' hi _ le_rfl with h₁ h₂; rw [abv_sub abv] at h₁
+ cases' hi _ le_rfl with h₁ h₂; rw [abv_sub abv] at h₁
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add (hi _ ij).1 h₁)
have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add this (h₂ _ ij))
- rwa [add_halves, add_halves, add_right_comm, sub_add_sub_cancel, sub_add_sub_cancel] at this⟩
+ rwa [add_halves, add_halves, add_right_comm, sub_add_sub_cancel, sub_add_sub_cancel] at this ⟩
#align cau_seq.of_near CauSeq.of_near
theorem not_limZero_of_not_congr_zero {f : CauSeq _ abv} (hf : ¬f ≈ 0) : ¬LimZero f :=
@@ -717,7 +717,7 @@ theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f +
⟨_, half_pos F0, i, fun j ij => by
cases' h j ij with h₁ h₂
have := add_le_add h₁ (le_of_lt (abs_lt.1 h₂).1)
- rwa [← sub_eq_add_neg, sub_self_div_two] at this⟩
+ rwa [← sub_eq_add_neg, sub_self_div_two] at this ⟩
#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZero
protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g)
@@ -736,13 +736,13 @@ theorem trichotomy (f : CauSeq α abs) : Pos f ∨ LimZero f ∨ Pos (-f) :=
refine' (le_total 0 (f i)).imp _ _ <;> refine' fun h => ⟨K, K0, i, fun j ij => _⟩ <;>
have := (hi _ ij).1 <;>
cases' hi _ le_rfl with h₁ h₂
- · rwa [abs_of_nonneg] at this
- rw [abs_of_nonneg h] at h₁
+ · rwa [abs_of_nonneg] at this
+ rw [abs_of_nonneg h] at h₁
exact
(le_add_iff_nonneg_right _).1
(le_trans h₁ <| neg_le_sub_iff_le_add'.1 <| le_of_lt (abs_lt.1 <| h₂ _ ij).1)
- · rwa [abs_of_nonpos] at this
- rw [abs_of_nonpos h] at h₁
+ · rwa [abs_of_nonpos] at this
+ rw [abs_of_nonpos h] at h₁
rw [← sub_le_sub_iff_right, zero_sub]
exact le_trans (le_of_lt (abs_lt.1 <| h₂ _ ij).2) h₁
#align cau_seq.trichotomy CauSeq.trichotomy
@@ -760,7 +760,7 @@ theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f <
theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by
have := pos_add_lim_zero gh (neg_lim_zero fg) <;>
- rwa [← sub_eq_add_neg, sub_sub_sub_cancel_right] at this
+ rwa [← sub_eq_add_neg, sub_sub_sub_cancel_right] at this
#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_lt
theorem lt_trans {f g h : CauSeq α abs} (fg : f < g) (gh : g < h) : f < h :=
@@ -799,7 +799,7 @@ theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈
theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
(trichotomy (g - f)).imp_right fun h =>
- h.imp (fun h => Setoid.symm h) fun h => by rwa [neg_sub] at h
+ h.imp (fun h => Setoid.symm h) fun h => by rwa [neg_sub] at h
#align cau_seq.lt_total CauSeq.lt_total
theorem le_total (f g : CauSeq α abs) : f ≤ g ∨ g ≤ f :=
@@ -877,7 +877,7 @@ theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij =>
by
let ⟨H₁, H₂⟩ := H _ ij
- rw [abs_lt] at H₁ H₂⊢
+ rw [abs_lt] at H₁ H₂ ⊢
exact ⟨lt_sup_iff.mpr (Or.inl H₁.1), sup_lt_iff.mpr ⟨H₁.2, H₂.2⟩⟩
#align cau_seq.sup_lim_zero CauSeq.sup_limZero
@@ -886,7 +886,7 @@ theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij =>
by
let ⟨H₁, H₂⟩ := H _ ij
- rw [abs_lt] at H₁ H₂⊢
+ rw [abs_lt] at H₁ H₂ ⊢
exact ⟨lt_inf_iff.mpr ⟨H₁.1, H₂.1⟩, inf_lt_iff.mpr (Or.inl H₁.2)⟩
#align cau_seq.inf_lim_zero CauSeq.inf_limZero
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -159,12 +159,10 @@ variable [Ring β] {abv : β → α}
instance : CoeFun (CauSeq β abv) fun _ => ℕ → β :=
⟨Subtype.val⟩
-/- warning: cau_seq.mk_to_fun clashes with [anonymous] -> [anonymous]
-Case conversion may be inaccurate. Consider using '#align cau_seq.mk_to_fun [anonymous]ₓ'. -/
@[simp]
-theorem [anonymous] (f) (hf : IsCauSeq abv f) : @coeFn (CauSeq β abv) _ _ ⟨f, hf⟩ = f :=
+theorem mk_to_fun (f) (hf : IsCauSeq abv f) : @coeFn (CauSeq β abv) _ _ ⟨f, hf⟩ = f :=
rfl
-#align cau_seq.mk_to_fun [anonymous]
+#align cau_seq.mk_to_fun CauSeq.mk_to_fun
theorem ext {f g : CauSeq β abv} (h : ∀ i, f i = g i) : f = g :=
Subtype.eq (funext h)
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -43,12 +43,14 @@ open IsAbsoluteValue
variable {G α β : Type _}
+#print exists_forall_ge_and /-
theorem exists_forall_ge_and {α} [LinearOrder α] {P Q : α → Prop} :
(∃ i, ∀ j ≥ i, P j) → (∃ i, ∀ j ≥ i, Q j) → ∃ i, ∀ j ≥ i, P j ∧ Q j
| ⟨a, h₁⟩, ⟨b, h₂⟩ =>
let ⟨c, ac, bc⟩ := exists_ge_of_linear a b
⟨c, fun j hj => ⟨h₁ _ (le_trans ac hj), h₂ _ (le_trans bc hj)⟩⟩
#align exists_forall_ge_and exists_forall_ge_and
+-/
section
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -43,12 +43,6 @@ open IsAbsoluteValue
variable {G α β : Type _}
-/- warning: exists_forall_ge_and -> exists_forall_ge_and is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {P : α -> Prop} {Q : α -> Prop}, (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) j i) -> (P j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) j i) -> (Q j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) j i) -> (And (P j) (Q j))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {P : α -> Prop} {Q : α -> Prop}, (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) j i) -> (P j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) j i) -> (Q j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) j i) -> (And (P j) (Q j))))
-Case conversion may be inaccurate. Consider using '#align exists_forall_ge_and exists_forall_ge_andₓ'. -/
theorem exists_forall_ge_and {α} [LinearOrder α] {P Q : α → Prop} :
(∃ i, ∀ j ≥ i, P j) → (∃ i, ∀ j ≥ i, Q j) → ∃ i, ∀ j ≥ i, P j ∧ Q j
| ⟨a, h₁⟩, ⟨b, h₂⟩ =>
@@ -60,9 +54,6 @@ section
variable [LinearOrderedField α] [Ring β] (abv : β → α) [IsAbsoluteValue abv]
-/- warning: rat_add_continuous_lemma -> rat_add_continuous_lemma is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align rat_add_continuous_lemma rat_add_continuous_lemmaₓ'. -/
theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
∃ δ > 0,
∀ {a₁ a₂ b₁ b₂ : β}, abv (a₁ - b₁) < δ → abv (a₂ - b₂) < δ → abv (a₁ + a₂ - (b₁ + b₂)) < ε :=
@@ -71,9 +62,6 @@ theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
lt_of_le_of_lt (abv_add abv _ _) (add_lt_add h₁ h₂)⟩
#align rat_add_continuous_lemma rat_add_continuous_lemma
-/- warning: rat_mul_continuous_lemma -> rat_mul_continuous_lemma is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align rat_mul_continuous_lemma rat_mul_continuous_lemmaₓ'. -/
theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
∃ δ > 0,
∀ {a₁ a₂ b₁ b₂ : β},
@@ -93,9 +81,6 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
lt_of_le_of_lt (abv_add abv _ _) this
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
-/- warning: rat_inv_continuous_lemma -> rat_inv_continuous_lemma is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align rat_inv_continuous_lemma rat_inv_continuous_lemmaₓ'. -/
theorem rat_inv_continuous_lemma {β : Type _} [DivisionRing β] (abv : β → α) [IsAbsoluteValue abv]
{ε K : α} (ε0 : 0 < ε) (K0 : 0 < K) :
∃ δ > 0, ∀ {a b : β}, K ≤ abv a → K ≤ abv b → abv (a - b) < δ → abv (a⁻¹ - b⁻¹) < ε :=
@@ -125,12 +110,6 @@ namespace IsCauSeq
variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue abv] {f g : ℕ → β}
-/- warning: is_cau_seq.cauchy₂ -> IsCauSeq.cauchy₂ is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (f k))) ε)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f j) (f k))) ε)))))
-Case conversion may be inaccurate. Consider using '#align is_cau_seq.cauchy₂ IsCauSeq.cauchy₂ₓ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
-- see Note [nolint_ge]
@[nolint ge_or_gt]
@@ -143,24 +122,12 @@ theorem cauchy₂ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
rw [abv_sub abv]; exact hi _ ik
#align is_cau_seq.cauchy₂ IsCauSeq.cauchy₂
-/- warning: is_cau_seq.cauchy₃ -> IsCauSeq.cauchy₃ is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f k) (f j))) ε)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f k) (f j))) ε)))))
-Case conversion may be inaccurate. Consider using '#align is_cau_seq.cauchy₃ IsCauSeq.cauchy₃ₓ'. -/
theorem cauchy₃ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - f j) < ε :=
let ⟨i, H⟩ := hf.cauchy₂ ε0
⟨i, fun j ij k jk => H _ (le_trans ij jk) _ ij⟩
#align is_cau_seq.cauchy₃ IsCauSeq.cauchy₃
-/- warning: is_cau_seq.add -> IsCauSeq.add is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β} {g : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv g) -> (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv (HAdd.hAdd.{u2, u2, u2} (Nat -> β) (Nat -> β) (Nat -> β) (instHAdd.{u2} (Nat -> β) (Pi.instAdd.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2)))) f g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β} {g : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv g) -> (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv (HAdd.hAdd.{u1, u1, u1} (Nat -> β) (Nat -> β) (Nat -> β) (instHAdd.{u1} (Nat -> β) (Pi.instAdd.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2))))))) f g))
-Case conversion may be inaccurate. Consider using '#align is_cau_seq.add IsCauSeq.addₓ'. -/
theorem add (hf : IsCauSeq abv f) (hg : IsCauSeq abv g) : IsCauSeq abv (f + g) := fun ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abv ε0
let ⟨i, H⟩ := exists_forall_ge_and (hf.cauchy₃ δ0) (hg.cauchy₃ δ0)
@@ -191,43 +158,20 @@ instance : CoeFun (CauSeq β abv) fun _ => ℕ → β :=
⟨Subtype.val⟩
/- warning: cau_seq.mk_to_fun clashes with [anonymous] -> [anonymous]
-warning: cau_seq.mk_to_fun -> [anonymous] is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} (f : Nat -> β) (hf : IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (Subtype.mk.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) f hf)) f
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}}, (Nat -> α -> β) -> Nat -> (List.{u1} α) -> (List.{u2} β)
Case conversion may be inaccurate. Consider using '#align cau_seq.mk_to_fun [anonymous]ₓ'. -/
@[simp]
theorem [anonymous] (f) (hf : IsCauSeq abv f) : @coeFn (CauSeq β abv) _ _ ⟨f, hf⟩ = f :=
rfl
#align cau_seq.mk_to_fun [anonymous]
-/- warning: cau_seq.ext -> CauSeq.ext is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (forall (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g i)) -> (Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) f g)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (forall (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g i)) -> (Eq.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) f g)
-Case conversion may be inaccurate. Consider using '#align cau_seq.ext CauSeq.extₓ'. -/
theorem ext {f g : CauSeq β abv} (h : ∀ i, f i = g i) : f = g :=
Subtype.eq (funext h)
#align cau_seq.ext CauSeq.ext
-/- warning: cau_seq.is_cau -> CauSeq.isCauSeq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f)
-Case conversion may be inaccurate. Consider using '#align cau_seq.is_cau CauSeq.isCauSeqₓ'. -/
theorem isCauSeq (f : CauSeq β abv) : IsCauSeq abv f :=
f.2
#align cau_seq.is_cau CauSeq.isCauSeq
-/- warning: cau_seq.cauchy -> CauSeq.cauchy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))) ε)))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i))) ε)))
-Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy CauSeq.cauchyₓ'. -/
theorem cauchy (f : CauSeq β abv) : ∀ {ε}, 0 < ε → ∃ i, ∀ j ≥ i, abv (f j - f i) < ε :=
f.2
#align cau_seq.cauchy CauSeq.cauchy
@@ -242,12 +186,6 @@ def ofEq (f : CauSeq β abv) (g : ℕ → β) (e : ∀ i, f i = g i) : CauSeq β
variable [IsAbsoluteValue abv]
-/- warning: cau_seq.cauchy₂ -> CauSeq.cauchy₂ is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k))) ε))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k))) ε))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy₂ CauSeq.cauchy₂ₓ'. -/
/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
-- see Note [nolint_ge]
@[nolint ge_or_gt]
@@ -256,22 +194,10 @@ theorem cauchy₂ (f : CauSeq β abv) {ε} :
f.2.cauchy₂
#align cau_seq.cauchy₂ CauSeq.cauchy₂
-/- warning: cau_seq.cauchy₃ -> CauSeq.cauchy₃ is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j))) ε))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j))) ε))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy₃ CauSeq.cauchy₃ₓ'. -/
theorem cauchy₃ (f : CauSeq β abv) {ε} : 0 < ε → ∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - f j) < ε :=
f.2.cauchy₃
#align cau_seq.cauchy₃ CauSeq.cauchy₃
-/- warning: cau_seq.bounded -> CauSeq.bounded is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Exists.{succ u1} α (fun (r : α) => forall (i : Nat), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i)) r)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Exists.{succ u2} α (fun (r : α) => forall (i : Nat), LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i)) r)
-Case conversion may be inaccurate. Consider using '#align cau_seq.bounded CauSeq.boundedₓ'. -/
theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
by
cases' f.cauchy zero_lt_one with i h
@@ -289,12 +215,6 @@ theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
rw [add_sub, add_comm] at this; simpa
#align cau_seq.bounded CauSeq.bounded
-/- warning: cau_seq.bounded' -> CauSeq.bounded' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (x : α), Exists.{succ u1} α (fun (r : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) r x) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) r x) => forall (i : Nat), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i)) r))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (x : α), Exists.{succ u2} α (fun (r : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) r x) (forall (i : Nat), LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i)) r))
-Case conversion may be inaccurate. Consider using '#align cau_seq.bounded' CauSeq.bounded'ₓ'. -/
theorem bounded' (f : CauSeq β abv) (x : α) : ∃ r > x, ∀ i, abv (f i) < r :=
let ⟨r, h⟩ := f.Bounded
⟨max r (x + 1), lt_of_lt_of_le (lt_add_one _) (le_max_right _ _), fun i =>
@@ -304,23 +224,11 @@ theorem bounded' (f : CauSeq β abv) (x : α) : ∃ r > x, ∀ i, abv (f i) < r
instance : Add (CauSeq β abv) :=
⟨fun f g => ⟨f + g, f.2.add g.2⟩⟩
-/- warning: cau_seq.coe_add -> CauSeq.coe_add is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HAdd.hAdd.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHAdd.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasAdd.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HAdd.hAdd.{u2, u2, u2} (Nat -> β) (Nat -> β) (Nat -> β) (instHAdd.{u2} (Nat -> β) (Pi.instAdd.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2)))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHAdd.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instAddCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HAdd.hAdd.{u1, u1, u1} (Nat -> β) (Nat -> β) (Nat -> β) (instHAdd.{u1} (Nat -> β) (Pi.instAdd.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2))))))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_add CauSeq.coe_addₓ'. -/
@[simp, norm_cast]
theorem coe_add (f g : CauSeq β abv) : ⇑(f + g) = f + g :=
rfl
#align cau_seq.coe_add CauSeq.coe_add
-/- warning: cau_seq.add_apply -> CauSeq.add_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HAdd.hAdd.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHAdd.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasAdd.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g i))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHAdd.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instAddCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HAdd.hAdd.{u1, u1, u1} β β β (instHAdd.{u1} β (Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g i))
-Case conversion may be inaccurate. Consider using '#align cau_seq.add_apply CauSeq.add_applyₓ'. -/
@[simp, norm_cast]
theorem add_apply (f g : CauSeq β abv) (i : ℕ) : (f + g) i = f i + g i :=
rfl
@@ -369,78 +277,36 @@ instance : One (CauSeq β abv) :=
instance : Inhabited (CauSeq β abv) :=
⟨0⟩
-/- warning: cau_seq.coe_zero -> CauSeq.coe_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) (OfNat.ofNat.{u2} (Nat -> β) 0 (OfNat.mk.{u2} (Nat -> β) 0 (Zero.zero.{u2} (Nat -> β) (Pi.instZero.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) (OfNat.ofNat.{u2} (Nat -> β) 0 (Zero.toOfNat0.{u2} (Nat -> β) (Pi.instZero.{0, u2} Nat (fun (a._@.Mathlib.Data.Real.CauSeq._hyg.1649 : Nat) => β) (fun (i : Nat) => MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2))))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_zero CauSeq.coe_zeroₓ'. -/
@[simp, norm_cast]
theorem coe_zero : ⇑(0 : CauSeq β abv) = 0 :=
rfl
#align cau_seq.coe_zero CauSeq.coe_zero
-/- warning: cau_seq.coe_one -> CauSeq.coe_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) (OfNat.ofNat.{u2} (Nat -> β) 1 (OfNat.mk.{u2} (Nat -> β) 1 (One.one.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) (OfNat.ofNat.{u2} (Nat -> β) 1 (One.toOfNat1.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (a._@.Mathlib.Data.Real.CauSeq._hyg.1649 : Nat) => β) (fun (i : Nat) => Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_one CauSeq.coe_oneₓ'. -/
@[simp, norm_cast]
theorem coe_one : ⇑(1 : CauSeq β abv) = 1 :=
rfl
#align cau_seq.coe_one CauSeq.coe_one
-/- warning: cau_seq.zero_apply -> CauSeq.zero_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) i) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))) i) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.zero_apply CauSeq.zero_applyₓ'. -/
@[simp, norm_cast]
theorem zero_apply (i) : (0 : CauSeq β abv) i = 0 :=
rfl
#align cau_seq.zero_apply CauSeq.zero_apply
-/- warning: cau_seq.one_apply -> CauSeq.one_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) i) (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))) i) (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.one_apply CauSeq.one_applyₓ'. -/
@[simp, norm_cast]
theorem one_apply (i) : (1 : CauSeq β abv) i = 1 :=
rfl
#align cau_seq.one_apply CauSeq.one_apply
-/- warning: cau_seq.const_zero -> CauSeq.const_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_zero CauSeq.const_zeroₓ'. -/
@[simp]
theorem const_zero : const 0 = 0 :=
rfl
#align cau_seq.const_zero CauSeq.const_zero
-/- warning: cau_seq.const_one -> CauSeq.const_one is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_one CauSeq.const_oneₓ'. -/
@[simp]
theorem const_one : const 1 = 1 :=
rfl
#align cau_seq.const_one CauSeq.const_one
-/- warning: cau_seq.const_add -> CauSeq.const_add is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) x y)) (HAdd.hAdd.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHAdd.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasAdd.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toAdd.{u2} β (NonUnitalNonAssocSemiring.toDistrib.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) x y)) (HAdd.hAdd.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHAdd.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instAddCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_add CauSeq.const_addₓ'. -/
theorem const_add (x y : β) : const (x + y) = const x + const y :=
rfl
#align cau_seq.const_add CauSeq.const_add
@@ -456,34 +322,16 @@ instance : Mul (CauSeq β abv) :=
let ⟨H₁, H₂⟩ := H _ le_rfl
Hδ (hF j) (hG i) (H₁ _ ij) (H₂ _ ij)⟩⟩⟩
-/- warning: cau_seq.coe_mul -> CauSeq.coe_mul is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HMul.hMul.{u2, u2, u2} (Nat -> β) (Nat -> β) (Nat -> β) (instHMul.{u2} (Nat -> β) (Pi.instMul.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2)))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HMul.hMul.{u1, u1, u1} (Nat -> β) (Nat -> β) (Nat -> β) (instHMul.{u1} (Nat -> β) (Pi.instMul.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2))))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_mul CauSeq.coe_mulₓ'. -/
@[simp, norm_cast]
theorem coe_mul (f g : CauSeq β abv) : ⇑(f * g) = f * g :=
rfl
#align cau_seq.coe_mul CauSeq.coe_mul
-/- warning: cau_seq.mul_apply -> CauSeq.mul_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g i))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g i))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_apply CauSeq.mul_applyₓ'. -/
@[simp, norm_cast]
theorem mul_apply (f g : CauSeq β abv) (i : ℕ) : (f * g) i = f i * g i :=
rfl
#align cau_seq.mul_apply CauSeq.mul_apply
-/- warning: cau_seq.const_mul -> CauSeq.const_mul is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) x y)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (NonUnitalNonAssocRing.toMul.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))) x y)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_mul CauSeq.const_mulₓ'. -/
theorem const_mul (x y : β) : const (x * y) = const x * const y :=
rfl
#align cau_seq.const_mul CauSeq.const_mul
@@ -491,34 +339,16 @@ theorem const_mul (x y : β) : const (x * y) = const x * const y :=
instance : Neg (CauSeq β abv) :=
⟨fun f => ofEq (const (-1) * f) (fun x => -f x) fun i => by simp⟩
-/- warning: cau_seq.coe_neg -> CauSeq.coe_neg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f)) (Neg.neg.{u2} (Nat -> β) (Pi.instNeg.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (Neg.neg.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3) f)) (Neg.neg.{u1} (Nat -> β) (Pi.instNeg.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Ring.toNeg.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_neg CauSeq.coe_negₓ'. -/
@[simp, norm_cast]
theorem coe_neg (f : CauSeq β abv) : ⇑(-f) = -f :=
rfl
#align cau_seq.coe_neg CauSeq.coe_neg
-/- warning: cau_seq.neg_apply -> CauSeq.neg_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f) i) (Neg.neg.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (Neg.neg.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3) f) i) (Neg.neg.{u1} β (Ring.toNeg.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i))
-Case conversion may be inaccurate. Consider using '#align cau_seq.neg_apply CauSeq.neg_applyₓ'. -/
@[simp, norm_cast]
theorem neg_apply (f : CauSeq β abv) (i) : (-f) i = -f i :=
rfl
#align cau_seq.neg_apply CauSeq.neg_apply
-/- warning: cau_seq.const_neg -> CauSeq.const_neg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (Neg.neg.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))) x)) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (Neg.neg.{u2} β (Ring.toNeg.{u2} β _inst_2) x)) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_neg CauSeq.const_negₓ'. -/
theorem const_neg (x : β) : const (-x) = -const x :=
rfl
#align cau_seq.const_neg CauSeq.const_neg
@@ -526,34 +356,16 @@ theorem const_neg (x : β) : const (-x) = -const x :=
instance : Sub (CauSeq β abv) :=
⟨fun f g => ofEq (f + -g) (fun x => f x - g x) fun i => by simp [sub_eq_add_neg]⟩
-/- warning: cau_seq.coe_sub -> CauSeq.coe_sub is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HSub.hSub.{u2, u2, u2} (Nat -> β) (Nat -> β) (Nat -> β) (instHSub.{u2} (Nat -> β) (Pi.instSub.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HSub.hSub.{u1, u1, u1} (Nat -> β) (Nat -> β) (Nat -> β) (instHSub.{u1} (Nat -> β) (Pi.instSub.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Ring.toSub.{u1} β _inst_2))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_sub CauSeq.coe_subₓ'. -/
@[simp, norm_cast]
theorem coe_sub (f g : CauSeq β abv) : ⇑(f - g) = f - g :=
rfl
#align cau_seq.coe_sub CauSeq.coe_sub
-/- warning: cau_seq.sub_apply -> CauSeq.sub_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g i))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g i))
-Case conversion may be inaccurate. Consider using '#align cau_seq.sub_apply CauSeq.sub_applyₓ'. -/
@[simp, norm_cast]
theorem sub_apply (f g : CauSeq β abv) (i : ℕ) : (f - g) i = f i - g i :=
rfl
#align cau_seq.sub_apply CauSeq.sub_apply
-/- warning: cau_seq.const_sub -> CauSeq.const_sub is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) x y)) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β _inst_2)) x y)) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_sub CauSeq.const_subₓ'. -/
theorem const_sub (x y : β) : const (x - y) = const x - const y :=
rfl
#align cau_seq.const_sub CauSeq.const_sub
@@ -565,34 +377,16 @@ variable [SMul G β] [IsScalarTower G β β]
instance : SMul G (CauSeq β abv) :=
⟨fun a f => ofEq (const (a • 1) * f) (a • f) fun i => smul_one_mul _ _⟩
-/- warning: cau_seq.coe_smul -> CauSeq.coe_smul is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u3} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u3} α (StrictOrderedSemiring.toOrderedSemiring.{u2} α (StrictOrderedRing.toStrictOrderedSemiring.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))) β (Ring.toSemiring.{u3} β _inst_2) abv] [_inst_4 : SMul.{u1, u3} G β] [_inst_5 : IsScalarTower.{u1, u3, u3} G β β _inst_4 (Mul.toSMul.{u3} β (Distrib.toHasMul.{u3} β (Ring.toDistrib.{u3} β _inst_2))) _inst_4] (a : G) (f : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv), Eq.{succ u3} (Nat -> β) (coeFn.{succ u3, succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u2, u3} α β _inst_1 _inst_2 abv) (SMul.smul.{u1, u3} G (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.hasSmul.{u1, u2, u3} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5) a f)) (SMul.smul.{u1, u3} G (Nat -> β) (Function.hasSMul.{0, u1, u3} Nat G β _inst_4) a (coeFn.{succ u3, succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u2, u3} α β _inst_1 _inst_2 abv) f))
-but is expected to have type
- forall {G : Type.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u3} G] [_inst_2 : Ring.{u2} α] {abv : α -> G} [_inst_3 : IsAbsoluteValue.{u3, u2} G (OrderedCommSemiring.toOrderedSemiring.{u3} G (StrictOrderedCommSemiring.toOrderedCommSemiring.{u3} G (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u3} G (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u3} G (LinearOrderedField.toLinearOrderedSemifield.{u3} G _inst_1))))) α (Ring.toSemiring.{u2} α _inst_2) abv] [_inst_4 : SMul.{u1, u2} β α] [_inst_5 : IsScalarTower.{u1, u2, u2} β α α _inst_4 (MulAction.toSMul.{u2, u2} α α (MonoidWithZero.toMonoid.{u2} α (Semiring.toMonoidWithZero.{u2} α (Ring.toSemiring.{u2} α _inst_2))) (Monoid.toMulAction.{u2} α (MonoidWithZero.toMonoid.{u2} α (Semiring.toMonoidWithZero.{u2} α (Ring.toSemiring.{u2} α _inst_2))))) _inst_4] (a : β) (f : CauSeq.{u3, u2} G _inst_1 α _inst_2 abv), Eq.{succ u2} (Nat -> α) (Subtype.val.{succ u2} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u3, u2} G _inst_1 α _inst_2 abv f) (HSMul.hSMul.{u1, u2, u2} β (CauSeq.{u3, u2} G _inst_1 α _inst_2 abv) (CauSeq.{u3, u2} G _inst_1 α _inst_2 abv) (instHSMul.{u1, u2} β (CauSeq.{u3, u2} G _inst_1 α _inst_2 abv) (CauSeq.instSMulCauSeq.{u3, u2, u1} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5)) a f)) (HSMul.hSMul.{u1, u2, u2} β (Nat -> α) (Nat -> α) (instHSMul.{u1, u2} β (Nat -> α) (Pi.instSMul.{0, u2, u1} Nat β (fun (a._@.Mathlib.Data.Real.CauSeq._hyg.1649 : Nat) => α) (fun (i : Nat) => _inst_4))) a (Subtype.val.{succ u2} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u3, u2} G _inst_1 α _inst_2 abv f) f))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_smul CauSeq.coe_smulₓ'. -/
@[simp, norm_cast]
theorem coe_smul (a : G) (f : CauSeq β abv) : ⇑(a • f) = a • f :=
rfl
#align cau_seq.coe_smul CauSeq.coe_smul
-/- warning: cau_seq.smul_apply -> CauSeq.smul_apply is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u3} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u3} α (StrictOrderedSemiring.toOrderedSemiring.{u2} α (StrictOrderedRing.toStrictOrderedSemiring.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))) β (Ring.toSemiring.{u3} β _inst_2) abv] [_inst_4 : SMul.{u1, u3} G β] [_inst_5 : IsScalarTower.{u1, u3, u3} G β β _inst_4 (Mul.toSMul.{u3} β (Distrib.toHasMul.{u3} β (Ring.toDistrib.{u3} β _inst_2))) _inst_4] (a : G) (f : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u3} β (coeFn.{succ u3, succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u2, u3} α β _inst_1 _inst_2 abv) (SMul.smul.{u1, u3} G (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.hasSmul.{u1, u2, u3} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5) a f) i) (SMul.smul.{u1, u3} G β _inst_4 a (coeFn.{succ u3, succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u2, u3} α β _inst_1 _inst_2 abv) f i))
-but is expected to have type
- forall {G : Type.{u3}} {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u3} G] [_inst_2 : Ring.{u2} α] {abv : α -> G} [_inst_3 : IsAbsoluteValue.{u3, u2} G (OrderedCommSemiring.toOrderedSemiring.{u3} G (StrictOrderedCommSemiring.toOrderedCommSemiring.{u3} G (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u3} G (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u3} G (LinearOrderedField.toLinearOrderedSemifield.{u3} G _inst_1))))) α (Ring.toSemiring.{u2} α _inst_2) abv] [_inst_4 : SMul.{u1, u2} β α] [_inst_5 : IsScalarTower.{u1, u2, u2} β α α _inst_4 (MulAction.toSMul.{u2, u2} α α (MonoidWithZero.toMonoid.{u2} α (Semiring.toMonoidWithZero.{u2} α (Ring.toSemiring.{u2} α _inst_2))) (Monoid.toMulAction.{u2} α (MonoidWithZero.toMonoid.{u2} α (Semiring.toMonoidWithZero.{u2} α (Ring.toSemiring.{u2} α _inst_2))))) _inst_4] (a : β) (f : CauSeq.{u3, u2} G _inst_1 α _inst_2 abv) (i : Nat), Eq.{succ u2} α (Subtype.val.{succ u2} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u3, u2} G _inst_1 α _inst_2 abv f) (HSMul.hSMul.{u1, u2, u2} β (CauSeq.{u3, u2} G _inst_1 α _inst_2 abv) (CauSeq.{u3, u2} G _inst_1 α _inst_2 abv) (instHSMul.{u1, u2} β (CauSeq.{u3, u2} G _inst_1 α _inst_2 abv) (CauSeq.instSMulCauSeq.{u3, u2, u1} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5)) a f) i) (HSMul.hSMul.{u1, u2, u2} β α α (instHSMul.{u1, u2} β α _inst_4) a (Subtype.val.{succ u2} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u3, u2} G _inst_1 α _inst_2 abv f) f i))
-Case conversion may be inaccurate. Consider using '#align cau_seq.smul_apply CauSeq.smul_applyₓ'. -/
@[simp, norm_cast]
theorem smul_apply (a : G) (f : CauSeq β abv) (i : ℕ) : (a • f) i = a • f i :=
rfl
#align cau_seq.smul_apply CauSeq.smul_apply
-/- warning: cau_seq.const_smul -> CauSeq.const_smul is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u3} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u3} α (StrictOrderedSemiring.toOrderedSemiring.{u2} α (StrictOrderedRing.toStrictOrderedSemiring.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))) β (Ring.toSemiring.{u3} β _inst_2) abv] [_inst_4 : SMul.{u1, u3} G β] [_inst_5 : IsScalarTower.{u1, u3, u3} G β β _inst_4 (Mul.toSMul.{u3} β (Distrib.toHasMul.{u3} β (Ring.toDistrib.{u3} β _inst_2))) _inst_4] (a : G) (x : β), Eq.{succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.const.{u2, u3} α β _inst_1 _inst_2 abv _inst_3 (SMul.smul.{u1, u3} G β _inst_4 a x)) (SMul.smul.{u1, u3} G (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.hasSmul.{u1, u2, u3} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5) a (CauSeq.const.{u2, u3} α β _inst_1 _inst_2 abv _inst_3 x))
-but is expected to have type
- forall {G : Type.{u2}} {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} G] [_inst_2 : Ring.{u3} α] {abv : α -> G} [_inst_3 : IsAbsoluteValue.{u2, u3} G (OrderedCommSemiring.toOrderedSemiring.{u2} G (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} G (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} G (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} G (LinearOrderedField.toLinearOrderedSemifield.{u2} G _inst_1))))) α (Ring.toSemiring.{u3} α _inst_2) abv] [_inst_4 : SMul.{u1, u3} β α] [_inst_5 : IsScalarTower.{u1, u3, u3} β α α _inst_4 (MulAction.toSMul.{u3, u3} α α (MonoidWithZero.toMonoid.{u3} α (Semiring.toMonoidWithZero.{u3} α (Ring.toSemiring.{u3} α _inst_2))) (Monoid.toMulAction.{u3} α (MonoidWithZero.toMonoid.{u3} α (Semiring.toMonoidWithZero.{u3} α (Ring.toSemiring.{u3} α _inst_2))))) _inst_4] (a : β) (x : α), Eq.{succ u3} (CauSeq.{u2, u3} G _inst_1 α _inst_2 abv) (CauSeq.const.{u2, u3} G α _inst_1 _inst_2 abv _inst_3 (HSMul.hSMul.{u1, u3, u3} β α α (instHSMul.{u1, u3} β α _inst_4) a x)) (HSMul.hSMul.{u1, u3, u3} β (CauSeq.{u2, u3} G _inst_1 α _inst_2 abv) (CauSeq.{u2, u3} G _inst_1 α _inst_2 abv) (instHSMul.{u1, u3} β (CauSeq.{u2, u3} G _inst_1 α _inst_2 abv) (CauSeq.instSMulCauSeq.{u2, u3, u1} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5)) a (CauSeq.const.{u2, u3} G α _inst_1 _inst_2 abv _inst_3 x))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_smul CauSeq.const_smulₓ'. -/
theorem const_smul (a : G) (x : β) : const (a • x) = a • const x :=
rfl
#align cau_seq.const_smul CauSeq.const_smul
@@ -620,34 +414,16 @@ instance : Pow (CauSeq β abv) ℕ :=
⟨fun f n =>
(ofEq (npowRec n f) fun i => f i ^ n) <| by induction n <;> simp [*, npowRec, pow_succ]⟩
-/- warning: cau_seq.coe_pow -> CauSeq.coe_pow is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (n : Nat), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HPow.hPow.{u2, 0, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHPow.{u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.Nat.hasPow.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f n)) (HPow.hPow.{u2, 0, u2} (Nat -> β) Nat (Nat -> β) (instHPow.{u2, 0} (Nat -> β) Nat (Pi.hasPow.{0, u2, 0} Nat Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Monoid.Pow.{u2} β (Ring.toMonoid.{u2} β _inst_2)))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f) n)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (n : Nat), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HPow.hPow.{u1, 0, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHPow.{u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.instPowCauSeqNat.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f n)) (HPow.hPow.{u1, 0, u1} (Nat -> β) Nat (Nat -> β) (instHPow.{u1, 0} (Nat -> β) Nat (Pi.instPow.{0, u1, 0} Nat Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Monoid.Pow.{u1} β (MonoidWithZero.toMonoid.{u1} β (Semiring.toMonoidWithZero.{u1} β (Ring.toSemiring.{u1} β _inst_2)))))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f) n)
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_pow CauSeq.coe_powₓ'. -/
@[simp, norm_cast]
theorem coe_pow (f : CauSeq β abv) (n : ℕ) : ⇑(f ^ n) = f ^ n :=
rfl
#align cau_seq.coe_pow CauSeq.coe_pow
-/- warning: cau_seq.pow_apply -> CauSeq.pow_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (n : Nat) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HPow.hPow.{u2, 0, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHPow.{u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.Nat.hasPow.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f n) i) (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (Ring.toMonoid.{u2} β _inst_2))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i) n)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (n : Nat) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HPow.hPow.{u1, 0, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHPow.{u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.instPowCauSeqNat.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f n) i) (HPow.hPow.{u1, 0, u1} β Nat β (instHPow.{u1, 0} β Nat (Monoid.Pow.{u1} β (MonoidWithZero.toMonoid.{u1} β (Semiring.toMonoidWithZero.{u1} β (Ring.toSemiring.{u1} β _inst_2))))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i) n)
-Case conversion may be inaccurate. Consider using '#align cau_seq.pow_apply CauSeq.pow_applyₓ'. -/
@[simp, norm_cast]
theorem pow_apply (f : CauSeq β abv) (n i : ℕ) : (f ^ n) i = f i ^ n :=
rfl
#align cau_seq.pow_apply CauSeq.pow_apply
-/- warning: cau_seq.const_pow -> CauSeq.const_pow is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (n : Nat), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (Ring.toMonoid.{u2} β _inst_2))) x n)) (HPow.hPow.{u2, 0, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHPow.{u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.Nat.hasPow.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) n)
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (n : Nat), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HPow.hPow.{u2, 0, u2} β Nat β (instHPow.{u2, 0} β Nat (Monoid.Pow.{u2} β (MonoidWithZero.toMonoid.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2))))) x n)) (HPow.hPow.{u2, 0, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHPow.{u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.instPowCauSeqNat.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) n)
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_pow CauSeq.const_powₓ'. -/
theorem const_pow (x : β) (n : ℕ) : const (x ^ n) = const x ^ n :=
rfl
#align cau_seq.const_pow CauSeq.const_pow
@@ -666,12 +442,6 @@ def LimZero {abv : β → α} (f : CauSeq β abv) : Prop :=
#align cau_seq.lim_zero CauSeq.LimZero
-/
-/- warning: cau_seq.add_lim_zero -> CauSeq.add_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv g) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (HAdd.hAdd.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHAdd.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasAdd.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv g) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHAdd.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instAddCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.add_lim_zero CauSeq.add_limZeroₓ'. -/
theorem add_limZero {f g : CauSeq β abv} (hf : LimZero f) (hg : LimZero g) : LimZero (f + g)
| ε, ε0 =>
(exists_forall_ge_and (hf _ <| half_pos ε0) (hg _ <| half_pos ε0)).imp fun i H j ij =>
@@ -680,12 +450,6 @@ theorem add_limZero {f g : CauSeq β abv} (hf : LimZero f) (hg : LimZero g) : Li
simpa [add_halves ε] using lt_of_le_of_lt (abv_add abv _ _) (add_lt_add H₁ H₂)
#align cau_seq.add_lim_zero CauSeq.add_limZero
-/- warning: cau_seq.mul_lim_zero_right -> CauSeq.mul_limZero_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv g) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv g) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_lim_zero_right CauSeq.mul_limZero_rightₓ'. -/
theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f * g)
| ε, ε0 =>
let ⟨F, F0, hF⟩ := f.bounded' 0
@@ -694,12 +458,6 @@ theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f
rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_right CauSeq.mul_limZero_right
-/- warning: cau_seq.mul_lim_zero_left -> CauSeq.mul_limZero_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_lim_zero_left CauSeq.mul_limZero_leftₓ'. -/
theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f * g)
| ε, ε0 =>
let ⟨G, G0, hG⟩ := g.bounded' 0
@@ -708,52 +466,22 @@ theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f *
rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul abv] at this
#align cau_seq.mul_lim_zero_left CauSeq.mul_limZero_left
-/- warning: cau_seq.neg_lim_zero -> CauSeq.neg_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (Neg.neg.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3) f))
-Case conversion may be inaccurate. Consider using '#align cau_seq.neg_lim_zero CauSeq.neg_limZeroₓ'. -/
theorem neg_limZero {f : CauSeq β abv} (hf : LimZero f) : LimZero (-f) := by
rw [← neg_one_mul] <;> exact mul_lim_zero_right _ hf
#align cau_seq.neg_lim_zero CauSeq.neg_limZero
-/- warning: cau_seq.sub_lim_zero -> CauSeq.sub_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv g) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv g) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.sub_lim_zero CauSeq.sub_limZeroₓ'. -/
theorem sub_limZero {f g : CauSeq β abv} (hf : LimZero f) (hg : LimZero g) : LimZero (f - g) := by
simpa only [sub_eq_add_neg] using add_lim_zero hf (neg_lim_zero hg)
#align cau_seq.sub_lim_zero CauSeq.sub_limZero
-/- warning: cau_seq.lim_zero_sub_rev -> CauSeq.limZero_sub_rev is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g)) -> (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) g f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g)) -> (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) g f))
-Case conversion may be inaccurate. Consider using '#align cau_seq.lim_zero_sub_rev CauSeq.limZero_sub_revₓ'. -/
theorem limZero_sub_rev {f g : CauSeq β abv} (hfg : LimZero (f - g)) : LimZero (g - f) := by
simpa using neg_lim_zero hfg
#align cau_seq.lim_zero_sub_rev CauSeq.limZero_sub_rev
-/- warning: cau_seq.zero_lim_zero -> CauSeq.zero_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv], CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)))
-Case conversion may be inaccurate. Consider using '#align cau_seq.zero_lim_zero CauSeq.zero_limZeroₓ'. -/
theorem zero_limZero : LimZero (0 : CauSeq β abv)
| ε, ε0 => ⟨0, fun j ij => by simpa [abv_zero abv] using ε0⟩
#align cau_seq.zero_lim_zero CauSeq.zero_limZero
-/- warning: cau_seq.const_lim_zero -> CauSeq.const_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {x : β}, Iff (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x)) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {x : β}, Iff (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv (CauSeq.const.{u2, u1} α β _inst_1 _inst_2 abv _inst_3 x)) (Eq.{succ u1} β x (OfNat.ofNat.{u1} β 0 (Zero.toOfNat0.{u1} β (MonoidWithZero.toZero.{u1} β (Semiring.toMonoidWithZero.{u1} β (Ring.toSemiring.{u1} β _inst_2))))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_lim_zero CauSeq.const_limZeroₓ'. -/
theorem const_limZero {x : β} : LimZero (const x) ↔ x = 0 :=
⟨fun H =>
(abv_eq_zero abv).1 <|
@@ -771,39 +499,18 @@ instance equiv : Setoid (CauSeq β abv) :=
#align cau_seq.equiv CauSeq.equiv
-/
-/- warning: cau_seq.add_equiv_add -> CauSeq.add_equiv_add is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f1 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g1 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g2 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) g1 g2) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (HAdd.hAdd.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHAdd.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasAdd.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 g1) (HAdd.hAdd.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHAdd.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasAdd.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f2 g2))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f1 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g1 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g2 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) g1 g2) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHAdd.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instAddCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 g1) (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHAdd.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instAddCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f2 g2))
-Case conversion may be inaccurate. Consider using '#align cau_seq.add_equiv_add CauSeq.add_equiv_addₓ'. -/
theorem add_equiv_add {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) :
f1 + g1 ≈ f2 + g2 := by simpa only [← add_sub_add_comm] using add_lim_zero hf hg
#align cau_seq.add_equiv_add CauSeq.add_equiv_add
-/- warning: cau_seq.neg_equiv_neg -> CauSeq.neg_equiv_neg is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (Neg.neg.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3) f) (Neg.neg.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3) g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.neg_equiv_neg CauSeq.neg_equiv_negₓ'. -/
theorem neg_equiv_neg {f g : CauSeq β abv} (hf : f ≈ g) : -f ≈ -g := by
simpa only [neg_sub'] using neg_lim_zero hf
#align cau_seq.neg_equiv_neg CauSeq.neg_equiv_neg
-/- warning: cau_seq.sub_equiv_sub -> CauSeq.sub_equiv_sub is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f1 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g1 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g2 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) g1 g2) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 g1) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f2 g2))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f1 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g1 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g2 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) g1 g2) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 g1) (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f2 g2))
-Case conversion may be inaccurate. Consider using '#align cau_seq.sub_equiv_sub CauSeq.sub_equiv_subₓ'. -/
theorem sub_equiv_sub {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) :
f1 - g1 ≈ f2 - g2 := by simpa only [sub_eq_add_neg] using add_equiv_add hf (neg_equiv_neg hg)
#align cau_seq.sub_equiv_sub CauSeq.sub_equiv_sub
-/- warning: cau_seq.equiv_def₃ -> CauSeq.equiv_def₃ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.equiv_def₃ CauSeq.equiv_def₃ₓ'. -/
theorem equiv_def₃ {f g : CauSeq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε) :
∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - g j) < ε :=
(exists_forall_ge_and (h _ <| half_pos ε0) (f.cauchy₃ <| half_pos ε0)).imp fun i H j ij k jk =>
@@ -813,22 +520,10 @@ theorem equiv_def₃ {f g : CauSeq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε
rwa [sub_add_sub_cancel', add_halves] at this
#align cau_seq.equiv_def₃ CauSeq.equiv_def₃
-/- warning: cau_seq.lim_zero_congr -> CauSeq.limZero_congr is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (Iff (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f) (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv g))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (Iff (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f) (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.lim_zero_congr CauSeq.limZero_congrₓ'. -/
theorem limZero_congr {f g : CauSeq β abv} (h : f ≈ g) : LimZero f ↔ LimZero g :=
⟨fun l => by simpa using add_lim_zero (Setoid.symm h) l, fun l => by simpa using add_lim_zero h l⟩
#align cau_seq.lim_zero_congr CauSeq.limZero_congr
-/- warning: cau_seq.abv_pos_of_not_lim_zero -> CauSeq.abv_pos_of_not_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f)) -> (Exists.{succ u1} α (fun (K : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j)))))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (Not (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f)) -> (Exists.{succ u2} α (fun (K : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) K (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) K (abv (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j)))))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.abv_pos_of_not_lim_zero CauSeq.abv_pos_of_not_limZeroₓ'. -/
theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
∃ K > 0, ∃ i, ∀ j ≥ i, K ≤ abv (f j) :=
by
@@ -843,12 +538,6 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
rwa [sub_add_cancel, add_halves] at this
#align cau_seq.abv_pos_of_not_lim_zero CauSeq.abv_pos_of_not_limZero
-/- warning: cau_seq.of_near -> CauSeq.of_near is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))) -> (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f)
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) ε (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g j))) ε)))) -> (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f)
-Case conversion may be inaccurate. Consider using '#align cau_seq.of_near CauSeq.of_nearₓ'. -/
theorem of_near (f : ℕ → β) (g : CauSeq β abv) (h : ∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - g j) < ε) :
IsCauSeq abv f
| ε, ε0 =>
@@ -860,48 +549,24 @@ theorem of_near (f : ℕ → β) (g : CauSeq β abv) (h : ∀ ε > 0, ∃ i, ∀
rwa [add_halves, add_halves, add_right_comm, sub_add_sub_cancel, sub_add_sub_cancel] at this⟩
#align cau_seq.of_near CauSeq.of_near
-/- warning: cau_seq.not_lim_zero_of_not_congr_zero -> CauSeq.not_limZero_of_not_congr_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))))) -> (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (Not (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3))))) -> (Not (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f))
-Case conversion may be inaccurate. Consider using '#align cau_seq.not_lim_zero_of_not_congr_zero CauSeq.not_limZero_of_not_congr_zeroₓ'. -/
theorem not_limZero_of_not_congr_zero {f : CauSeq _ abv} (hf : ¬f ≈ 0) : ¬LimZero f :=
fun this : LimZero f =>
have : LimZero (f - 0) := by simpa
hf this
#align cau_seq.not_lim_zero_of_not_congr_zero CauSeq.not_limZero_of_not_congr_zero
-/- warning: cau_seq.mul_equiv_zero -> CauSeq.mul_equiv_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) g f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)))) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) g f) (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_equiv_zero CauSeq.mul_equiv_zeroₓ'. -/
theorem mul_equiv_zero (g : CauSeq _ abv) {f : CauSeq _ abv} (hf : f ≈ 0) : g * f ≈ 0 :=
have : LimZero (f - 0) := hf
have : LimZero (g * f) := mul_limZero_right _ <| by simpa
show LimZero (g * f - 0) by simpa
#align cau_seq.mul_equiv_zero CauSeq.mul_equiv_zero
-/- warning: cau_seq.mul_equiv_zero' -> CauSeq.mul_equiv_zero' is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)))) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_equiv_zero' CauSeq.mul_equiv_zero'ₓ'. -/
theorem mul_equiv_zero' (g : CauSeq _ abv) {f : CauSeq _ abv} (hf : f ≈ 0) : f * g ≈ 0 :=
have : LimZero (f - 0) := hf
have : LimZero (f * g) := mul_limZero_left _ <| by simpa
show LimZero (f * g - 0) by simpa
#align cau_seq.mul_equiv_zero' CauSeq.mul_equiv_zero'
-/- warning: cau_seq.mul_not_equiv_zero -> CauSeq.mul_not_equiv_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))))) -> (Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) g (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))))) -> (Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 0 (Zero.zero.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasZero.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (Not (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3))))) -> (Not (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) g (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3))))) -> (Not (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) 0 (Zero.toOfNat0.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instZeroCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_not_equiv_zero CauSeq.mul_not_equiv_zeroₓ'. -/
theorem mul_not_equiv_zero {f g : CauSeq _ abv} (hf : ¬f ≈ 0) (hg : ¬g ≈ 0) : ¬f * g ≈ 0 :=
fun this : LimZero (f * g - 0) =>
by
@@ -930,35 +595,17 @@ theorem const_equiv {x y : β} : const x ≈ const y ↔ x = y :=
#align cau_seq.const_equiv CauSeq.const_equiv
-/
-/- warning: cau_seq.mul_equiv_mul -> CauSeq.mul_equiv_mul is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f1 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g1 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g2 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) g1 g2) -> (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 g1) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f2 g2))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f1 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g1 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g2 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) g1 g2) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 g1) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f2 g2))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_equiv_mul CauSeq.mul_equiv_mulₓ'. -/
theorem mul_equiv_mul {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1 ≈ g2) :
f1 * g1 ≈ f2 * g2 := by
simpa only [mul_sub, sub_mul, sub_add_sub_cancel] using
add_lim_zero (mul_lim_zero_left g1 hf) (mul_lim_zero_right f2 hg)
#align cau_seq.mul_equiv_mul CauSeq.mul_equiv_mul
-/- warning: cau_seq.smul_equiv_smul -> CauSeq.smul_equiv_smul is a dubious translation:
-lean 3 declaration is
- forall {G : Type.{u1}} {α : Type.{u2}} {β : Type.{u3}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u3} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u3} α (StrictOrderedSemiring.toOrderedSemiring.{u2} α (StrictOrderedRing.toStrictOrderedSemiring.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1))))) β (Ring.toSemiring.{u3} β _inst_2) abv] [_inst_4 : SMul.{u1, u3} G β] [_inst_5 : IsScalarTower.{u1, u3, u3} G β β _inst_4 (Mul.toSMul.{u3} β (Distrib.toHasMul.{u3} β (Ring.toDistrib.{u3} β _inst_2))) _inst_4] {f1 : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u2, u3} α _inst_1 β _inst_2 abv} (c : G), (HasEquivₓ.Equiv.{succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u3} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (HasEquivₓ.Equiv.{succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u3} (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u3} α β _inst_1 _inst_2 abv _inst_3)) (SMul.smul.{u1, u3} G (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.hasSmul.{u1, u2, u3} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5) c f1) (SMul.smul.{u1, u3} G (CauSeq.{u2, u3} α _inst_1 β _inst_2 abv) (CauSeq.hasSmul.{u1, u2, u3} G α β _inst_1 _inst_2 abv _inst_3 _inst_4 _inst_5) c f2))
-but is expected to have type
- forall {G : Type.{u1}} {α : Type.{u2}} [β : LinearOrderedField.{u1} G] [_inst_1 : Ring.{u2} α] {_inst_2 : α -> G} [abv : IsAbsoluteValue.{u1, u2} G (OrderedCommSemiring.toOrderedSemiring.{u1} G (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} G (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} G (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} G (LinearOrderedField.toLinearOrderedSemifield.{u1} G β))))) α (Ring.toSemiring.{u2} α _inst_1) _inst_2] {_inst_3 : Type.{u3}} [_inst_4 : SMul.{u3, u2} _inst_3 α] [_inst_5 : IsScalarTower.{u3, u2, u2} _inst_3 α α _inst_4 (MulAction.toSMul.{u2, u2} α α (MonoidWithZero.toMonoid.{u2} α (Semiring.toMonoidWithZero.{u2} α (Ring.toSemiring.{u2} α _inst_1))) (Monoid.toMulAction.{u2} α (MonoidWithZero.toMonoid.{u2} α (Semiring.toMonoidWithZero.{u2} α (Ring.toSemiring.{u2} α _inst_1))))) _inst_4] {f1 : CauSeq.{u1, u2} G β α _inst_1 _inst_2} {f2 : CauSeq.{u1, u2} G β α _inst_1 _inst_2} (c : _inst_3), (HasEquiv.Equiv.{succ u2, 0} (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (instHasEquiv.{succ u2} (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (CauSeq.equiv.{u1, u2} G α β _inst_1 _inst_2 abv)) f1 f2) -> (HasEquiv.Equiv.{succ u2, 0} (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (instHasEquiv.{succ u2} (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (CauSeq.equiv.{u1, u2} G α β _inst_1 _inst_2 abv)) (HSMul.hSMul.{u3, u2, u2} _inst_3 (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (instHSMul.{u3, u2} _inst_3 (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (CauSeq.instSMulCauSeq.{u1, u2, u3} G α _inst_3 β _inst_1 _inst_2 abv _inst_4 _inst_5)) c f1) (HSMul.hSMul.{u3, u2, u2} _inst_3 (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (instHSMul.{u3, u2} _inst_3 (CauSeq.{u1, u2} G β α _inst_1 _inst_2) (CauSeq.instSMulCauSeq.{u1, u2, u3} G α _inst_3 β _inst_1 _inst_2 abv _inst_4 _inst_5)) c f2))
-Case conversion may be inaccurate. Consider using '#align cau_seq.smul_equiv_smul CauSeq.smul_equiv_smulₓ'. -/
theorem smul_equiv_smul [SMul G β] [IsScalarTower G β β] {f1 f2 : CauSeq β abv} (c : G)
(hf : f1 ≈ f2) : c • f1 ≈ c • f2 := by
simpa [const_smul, smul_one_mul _ _] using mul_equiv_mul (const_equiv.mpr <| Eq.refl <| c • 1) hf
#align cau_seq.smul_equiv_smul CauSeq.smul_equiv_smul
-/- warning: cau_seq.pow_equiv_pow -> CauSeq.pow_equiv_pow is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f1 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (forall (n : Nat), HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (HPow.hPow.{u2, 0, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHPow.{u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.Nat.hasPow.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f1 n) (HPow.hPow.{u2, 0, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHPow.{u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) Nat (CauSeq.Nat.hasPow.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f2 n))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f1 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {f2 : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 f2) -> (forall (n : Nat), HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) (HPow.hPow.{u1, 0, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHPow.{u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.instPowCauSeqNat.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f1 n) (HPow.hPow.{u1, 0, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHPow.{u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) Nat (CauSeq.instPowCauSeqNat.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f2 n))
-Case conversion may be inaccurate. Consider using '#align cau_seq.pow_equiv_pow CauSeq.pow_equiv_powₓ'. -/
theorem pow_equiv_pow {f1 f2 : CauSeq β abv} (hf : f1 ≈ f2) (n : ℕ) : f1 ^ n ≈ f2 ^ n :=
by
induction' n with n ih
@@ -972,12 +619,6 @@ section IsDomain
variable [Ring β] [IsDomain β] (abv : β → α) [IsAbsoluteValue abv]
-/- warning: cau_seq.one_not_equiv_zero -> CauSeq.one_not_equiv_zero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquiv.Equiv.{succ u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.one_not_equiv_zero CauSeq.one_not_equiv_zeroₓ'. -/
theorem one_not_equiv_zero : ¬const abv 1 ≈ const abv 0 := fun h =>
have : ∀ ε > 0, ∃ i, ∀ k, i ≤ k → abv (1 - 0) < ε := h
have h1 : abv 1 ≤ 0 :=
@@ -995,12 +636,6 @@ section DivisionRing
variable [DivisionRing β] {abv : β → α} [IsAbsoluteValue abv]
-/- warning: cau_seq.inv_aux -> CauSeq.inv_aux is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f j)) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f i)))) ε))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : DivisionRing.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (DivisionSemiring.toSemiring.{u1} β (DivisionRing.toDivisionSemiring.{u1} β _inst_2)) abv] {f : CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv}, (Not (CauSeq.LimZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) ε (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β (DivisionRing.toRing.{u1} β _inst_2))) (Inv.inv.{u1} β (DivisionRing.toInv.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f j)) (Inv.inv.{u1} β (DivisionRing.toInv.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f i)))) ε))))
-Case conversion may be inaccurate. Consider using '#align cau_seq.inv_aux CauSeq.inv_auxₓ'. -/
theorem inv_aux {f : CauSeq β abv} (hf : ¬LimZero f) :
∀ ε > 0, ∃ i, ∀ j ≥ i, abv ((f j)⁻¹ - (f i)⁻¹) < ε
| ε, ε0 =>
@@ -1020,56 +655,26 @@ def inv (f : CauSeq β abv) (hf : ¬LimZero f) : CauSeq β abv :=
#align cau_seq.inv CauSeq.inv
-/
-/- warning: cau_seq.coe_inv -> CauSeq.coe_inv is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.inv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 f hf)) (Inv.inv.{u2} (Nat -> β) (Pi.instInv.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : DivisionRing.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (DivisionSemiring.toSemiring.{u1} β (DivisionRing.toDivisionSemiring.{u1} β _inst_2)) abv] {f : CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv f)), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) (CauSeq.inv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3 f hf)) (Inv.inv.{u1} (Nat -> β) (Pi.instInv.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => DivisionRing.toInv.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f))
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_inv CauSeq.coe_invₓ'. -/
@[simp, norm_cast]
theorem coe_inv {f : CauSeq β abv} (hf) : ⇑(inv f hf) = f⁻¹ :=
rfl
#align cau_seq.coe_inv CauSeq.coe_inv
-/- warning: cau_seq.inv_apply -> CauSeq.inv_apply is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.inv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 f hf) i) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f i))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : DivisionRing.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (DivisionSemiring.toSemiring.{u1} β (DivisionRing.toDivisionSemiring.{u1} β _inst_2)) abv] {f : CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv f)) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) (CauSeq.inv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3 f hf) i) (Inv.inv.{u1} β (DivisionRing.toInv.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f i))
-Case conversion may be inaccurate. Consider using '#align cau_seq.inv_apply CauSeq.inv_applyₓ'. -/
@[simp, norm_cast]
theorem inv_apply {f : CauSeq β abv} (hf i) : inv f hf i = (f i)⁻¹ :=
rfl
#align cau_seq.inv_apply CauSeq.inv_apply
-/- warning: cau_seq.inv_mul_cancel -> CauSeq.inv_mul_cancel is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)), HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.equiv.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3)) (CauSeq.inv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 f hf) f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : DivisionRing.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (DivisionSemiring.toSemiring.{u1} β (DivisionRing.toDivisionSemiring.{u1} β _inst_2)) abv] {f : CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv f)), HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.equiv.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv _inst_3)) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv _inst_3)) (CauSeq.inv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3 f hf) f) (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) 1 (One.toOfNat1.{u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.instOneCauSeq.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv _inst_3)))
-Case conversion may be inaccurate. Consider using '#align cau_seq.inv_mul_cancel CauSeq.inv_mul_cancelₓ'. -/
theorem inv_mul_cancel {f : CauSeq β abv} (hf) : inv f hf * f ≈ 1 := fun ε ε0 =>
let ⟨K, K0, i, H⟩ := abv_pos_of_not_limZero hf
⟨i, fun j ij => by simpa [(abv_pos abv).1 (lt_of_lt_of_le K0 (H _ ij)), abv_zero abv] using ε0⟩
#align cau_seq.inv_mul_cancel CauSeq.inv_mul_cancel
-/- warning: cau_seq.mul_inv_cancel -> CauSeq.mul_inv_cancel is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)), HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.equiv.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3)) (HMul.hMul.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (instHMul.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.hasMul.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3)) f (CauSeq.inv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 f hf)) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : DivisionRing.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (DivisionSemiring.toSemiring.{u1} β (DivisionRing.toDivisionSemiring.{u1} β _inst_2)) abv] {f : CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv} (hf : Not (CauSeq.LimZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv f)), HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.equiv.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv _inst_3)) (HMul.hMul.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (instHMul.{u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.instMulCauSeq.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv _inst_3)) f (CauSeq.inv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3 f hf)) (OfNat.ofNat.{u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) 1 (One.toOfNat1.{u1} (CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv) (CauSeq.instOneCauSeq.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv _inst_3)))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_inv_cancel CauSeq.mul_inv_cancelₓ'. -/
theorem mul_inv_cancel {f : CauSeq β abv} (hf) : f * inv f hf ≈ 1 := fun ε ε0 =>
let ⟨K, K0, i, H⟩ := abv_pos_of_not_limZero hf
⟨i, fun j ij => by simpa [(abv_pos abv).1 (lt_of_lt_of_le K0 (H _ ij)), abv_zero abv] using ε0⟩
#align cau_seq.mul_inv_cancel CauSeq.mul_inv_cancel
-/- warning: cau_seq.const_inv -> CauSeq.const_inv is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {x : β} (hx : Ne.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_2)))))))))), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) x)) (CauSeq.inv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x) (Eq.mpr.{0} (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x))) (Not (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))))))) (id_tag Tactic.IdTag.rw (Eq.{1} Prop (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x))) (Not (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_2)))))))))))) (Eq.ndrec.{0, 1} Prop (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)) (fun (_a : Prop) => Eq.{1} Prop (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x))) (Not _a)) (rfl.{1} Prop (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_2)))))))))) (propext (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_2)))))))))) (CauSeq.const_limZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)))) hx))
-but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (DivisionSemiring.toSemiring.{u2} β (DivisionRing.toDivisionSemiring.{u2} β _inst_2)) abv] {x : β} (hx : Ne.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (DivisionSemiring.toSemiring.{u2} β (DivisionRing.toDivisionSemiring.{u2} β _inst_2))))))), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 (Inv.inv.{u2} β (DivisionRing.toInv.{u2} β _inst_2) x)) (CauSeq.inv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x) (Eq.mpr.{0} (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x))) (Not (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)))))))) (id.{0} (Eq.{1} Prop (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x))) (Not (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))))) (Eq.ndrec.{0, 1} Prop (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)) (fun (_a : Prop) => Eq.{1} Prop (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x))) (Not _a)) (Eq.refl.{1} Prop (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))) (propext (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv (CauSeq.const.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))) (CauSeq.const_limZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv _inst_3 x)))) hx))
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_inv CauSeq.const_invₓ'. -/
theorem const_inv {x : β} (hx : x ≠ 0) :
const abv x⁻¹ = inv (const abv x) (by rwa [const_lim_zero]) :=
rfl
@@ -1082,23 +687,11 @@ section Abs
-- mathport name: exprconst
local notation "const" => const abs
-/- warning: cau_seq.pos -> CauSeq.Pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) -> Prop
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) -> Prop
-Case conversion may be inaccurate. Consider using '#align cau_seq.pos CauSeq.Posₓ'. -/
/-- The entries of a positive Cauchy sequence eventually have a positive lower bound. -/
def Pos (f : CauSeq α abs) : Prop :=
∃ K > 0, ∃ i, ∀ j ≥ i, K ≤ f j
#align cau_seq.pos CauSeq.Pos
-/- warning: cau_seq.not_lim_zero_of_pos -> CauSeq.not_limZero_of_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f))
-Case conversion may be inaccurate. Consider using '#align cau_seq.not_lim_zero_of_pos CauSeq.not_limZero_of_posₓ'. -/
theorem not_limZero_of_pos {f : CauSeq α abs} : Pos f → ¬LimZero f
| ⟨F, F0, hF⟩, H =>
let ⟨i, h⟩ := exists_forall_ge_and hF (H _ F0)
@@ -1106,22 +699,10 @@ theorem not_limZero_of_pos {f : CauSeq α abs} : Pos f → ¬LimZero f
not_lt_of_le h₁ (abs_lt.1 h₂).2
#align cau_seq.not_lim_zero_of_pos CauSeq.not_limZero_of_pos
-/- warning: cau_seq.const_pos -> CauSeq.const_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x)
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_pos CauSeq.const_posₓ'. -/
theorem const_pos {x : α} : Pos (const x) ↔ 0 < x :=
⟨fun ⟨K, K0, i, h⟩ => lt_of_lt_of_le K0 (h _ le_rfl), fun h => ⟨x, h, 0, fun j _ => le_rfl⟩⟩
#align cau_seq.const_pos CauSeq.const_pos
-/- warning: cau_seq.add_pos -> CauSeq.add_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.add_pos CauSeq.add_posₓ'. -/
theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
| ⟨F, F0, hF⟩, ⟨G, G0, hG⟩ =>
let ⟨i, h⟩ := exists_forall_ge_and hF hG
@@ -1130,9 +711,6 @@ theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
add_le_add h₁ h₂⟩
#align cau_seq.add_pos CauSeq.add_pos
-/- warning: cau_seq.pos_add_lim_zero -> CauSeq.pos_add_limZero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZeroₓ'. -/
theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f + g)
| ⟨F, F0, hF⟩, H =>
let ⟨i, h⟩ := exists_forall_ge_and hF (H _ (half_pos F0))
@@ -1142,12 +720,6 @@ theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f +
rwa [← sub_eq_add_neg, sub_self_div_two] at this⟩
#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZero
-/- warning: cau_seq.mul_pos -> CauSeq.mul_pos is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasMul.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instMulCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.mul_pos CauSeq.mul_posₓ'. -/
protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g)
| ⟨F, F0, hF⟩, ⟨G, G0, hG⟩ =>
let ⟨i, h⟩ := exists_forall_ge_and hF hG
@@ -1156,12 +728,6 @@ protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g
mul_le_mul h₁ h₂ (le_of_lt G0) (le_trans (le_of_lt F0) h₁)⟩
#align cau_seq.mul_pos CauSeq.mul_pos
-/- warning: cau_seq.trichotomy -> CauSeq.trichotomy is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasNeg.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instNegCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
-Case conversion may be inaccurate. Consider using '#align cau_seq.trichotomy CauSeq.trichotomyₓ'. -/
theorem trichotomy (f : CauSeq α abs) : Pos f ∨ LimZero f ∨ Pos (-f) :=
by
cases Classical.em (lim_zero f) <;> simp [*]
@@ -1187,52 +753,28 @@ instance : LT (CauSeq α abs) :=
instance : LE (CauSeq α abs) :=
⟨fun f g => f < g ∨ f ≈ g⟩
-/- warning: cau_seq.lt_of_lt_of_eq -> CauSeq.lt_of_lt_of_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eqₓ'. -/
theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f < h :=
show Pos (h - f) by
simpa [sub_eq_add_neg, add_comm, add_left_comm] using pos_add_lim_zero fg (neg_lim_zero gh)
#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eq
-/- warning: cau_seq.lt_of_eq_of_lt -> CauSeq.lt_of_eq_of_lt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_ltₓ'. -/
theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by
have := pos_add_lim_zero gh (neg_lim_zero fg) <;>
rwa [← sub_eq_add_neg, sub_sub_sub_cancel_right] at this
#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_lt
-/- warning: cau_seq.lt_trans -> CauSeq.lt_trans is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
-Case conversion may be inaccurate. Consider using '#align cau_seq.lt_trans CauSeq.lt_transₓ'. -/
theorem lt_trans {f g h : CauSeq α abs} (fg : f < g) (gh : g < h) : f < h :=
show Pos (h - f) by simpa [sub_eq_add_neg, add_comm, add_left_comm] using add_pos fg gh
#align cau_seq.lt_trans CauSeq.lt_trans
-/- warning: cau_seq.lt_irrefl -> CauSeq.lt_irrefl is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f f)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f f)
-Case conversion may be inaccurate. Consider using '#align cau_seq.lt_irrefl CauSeq.lt_irreflₓ'. -/
theorem lt_irrefl {f : CauSeq α abs} : ¬f < f
| h => not_limZero_of_pos h (by simp [zero_lim_zero])
#align cau_seq.lt_irrefl CauSeq.lt_irrefl
-/- warning: cau_seq.le_of_eq_of_le -> CauSeq.le_of_eq_of_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_eq_of_le CauSeq.le_of_eq_of_leₓ'. -/
theorem le_of_eq_of_le {f g h : CauSeq α abs} (hfg : f ≈ g) (hgh : g ≤ h) : f ≤ h :=
hgh.elim (Or.inl ∘ CauSeq.lt_of_eq_of_lt hfg) (Or.inr ∘ Setoid.trans hfg)
#align cau_seq.le_of_eq_of_le CauSeq.le_of_eq_of_le
-/- warning: cau_seq.le_of_le_of_eq -> CauSeq.le_of_le_of_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_le_of_eq CauSeq.le_of_le_of_eqₓ'. -/
theorem le_of_le_of_eq {f g h : CauSeq α abs} (hfg : f ≤ g) (hgh : g ≈ h) : f ≤ h :=
hfg.elim (fun h => Or.inl (CauSeq.lt_of_lt_of_eq h hgh)) fun h => Or.inr (Setoid.trans h hgh)
#align cau_seq.le_of_le_of_eq CauSeq.le_of_le_of_eq
@@ -1251,54 +793,27 @@ instance : Preorder (CauSeq α abs) where
⟨fun h => ⟨Or.inl h, not_or_of_not (mt (lt_trans h) lt_irrefl) (not_limZero_of_pos h)⟩,
fun ⟨h₁, h₂⟩ => h₁.resolve_right (mt (fun h => Or.inr (Setoid.symm h)) h₂)⟩
-/- warning: cau_seq.le_antisymm -> CauSeq.le_antisymm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_antisymm CauSeq.le_antisymmₓ'. -/
theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈ g :=
fg.resolve_left (not_lt_of_le gf)
#align cau_seq.le_antisymm CauSeq.le_antisymm
-/- warning: cau_seq.lt_total -> CauSeq.lt_total is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.lt_total CauSeq.lt_totalₓ'. -/
theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
(trichotomy (g - f)).imp_right fun h =>
h.imp (fun h => Setoid.symm h) fun h => by rwa [neg_sub] at h
#align cau_seq.lt_total CauSeq.lt_total
-/- warning: cau_seq.le_total -> CauSeq.le_total is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f)
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_total CauSeq.le_totalₓ'. -/
theorem le_total (f g : CauSeq α abs) : f ≤ g ∨ g ≤ f :=
(or_assoc.2 (lt_total f g)).imp_right Or.inl
#align cau_seq.le_total CauSeq.le_total
-/- warning: cau_seq.const_lt -> CauSeq.const_lt is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_lt CauSeq.const_ltₓ'. -/
theorem const_lt {x y : α} : const x < const y ↔ x < y :=
show Pos _ ↔ _ by rw [← const_sub, const_pos, sub_pos]
#align cau_seq.const_lt CauSeq.const_lt
-/- warning: cau_seq.const_le -> CauSeq.const_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
-Case conversion may be inaccurate. Consider using '#align cau_seq.const_le CauSeq.const_leₓ'. -/
theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by
rw [le_iff_lt_or_eq] <;> exact or_congr const_lt const_equiv
#align cau_seq.const_le CauSeq.const_le
-/- warning: cau_seq.le_of_exists -> CauSeq.le_of_exists is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_exists CauSeq.le_of_existsₓ'. -/
theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j) : f ≤ g :=
let ⟨i, hi⟩ := h
(or_assoc.2 (CauSeq.lt_total f g)).elim id fun hgf =>
@@ -1308,12 +823,6 @@ theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j)
(sub_pos.1 (lt_of_lt_of_le hK0 (hKj _ (le_max_right _ _)))))
#align cau_seq.le_of_exists CauSeq.le_of_exists
-/- warning: cau_seq.exists_gt -> CauSeq.exists_gt is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
-Case conversion may be inaccurate. Consider using '#align cau_seq.exists_gt CauSeq.exists_gtₓ'. -/
theorem exists_gt (f : CauSeq α abs) : ∃ a : α, f < const a :=
let ⟨K, H⟩ := f.Bounded
⟨K + 1, 1, zero_lt_one, 0, fun i _ =>
@@ -1322,35 +831,17 @@ theorem exists_gt (f : CauSeq α abs) : ∃ a : α, f < const a :=
exact le_of_lt (abs_lt.1 (H _)).2⟩
#align cau_seq.exists_gt CauSeq.exists_gt
-/- warning: cau_seq.exists_lt -> CauSeq.exists_lt is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
-Case conversion may be inaccurate. Consider using '#align cau_seq.exists_lt CauSeq.exists_ltₓ'. -/
theorem exists_lt (f : CauSeq α abs) : ∃ a : α, const a < f :=
let ⟨a, h⟩ := (-f).exists_gt
⟨-a, show Pos _ by rwa [const_neg, sub_neg_eq_add, add_comm, ← sub_neg_eq_add]⟩
#align cau_seq.exists_lt CauSeq.exists_lt
-/- warning: rat_sup_continuous_lemma -> CauSeq.rat_sup_continuous_lemma is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) b₁ b₂))) ε)
-Case conversion may be inaccurate. Consider using '#align rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemmaₓ'. -/
-- so named to match `rat_add_continuous_lemma`
theorem CauSeq.rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊔ a₂ - b₁ ⊔ b₂) < ε := fun h₁ h₂ =>
(abs_max_sub_max_le_max _ _ _ _).trans_lt (max_lt h₁ h₂)
#align rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemma
-/- warning: rat_inf_continuous_lemma -> CauSeq.rat_inf_continuous_lemma is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
-Case conversion may be inaccurate. Consider using '#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemmaₓ'. -/
-- so named to match `rat_add_continuous_lemma`
theorem CauSeq.rat_inf_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊓ a₂ - b₁ ⊓ b₂) < ε := fun h₁ h₂ =>
@@ -1371,28 +862,16 @@ instance : Inf (CauSeq α abs) :=
let ⟨H₁, H₂⟩ := H _ le_rfl
CauSeq.rat_inf_continuous_lemma (H₁ _ ij) (H₂ _ ij)⟩⟩
-/- warning: cau_seq.coe_sup -> CauSeq.coe_sup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_sup CauSeq.coe_supₓ'. -/
@[simp, norm_cast]
theorem coe_sup (f g : CauSeq α abs) : ⇑(f ⊔ g) = f ⊔ g :=
rfl
#align cau_seq.coe_sup CauSeq.coe_sup
-/- warning: cau_seq.coe_inf -> CauSeq.coe_inf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.coe_inf CauSeq.coe_infₓ'. -/
@[simp, norm_cast]
theorem coe_inf (f g : CauSeq α abs) : ⇑(f ⊓ g) = f ⊓ g :=
rfl
#align cau_seq.coe_inf CauSeq.coe_inf
-/- warning: cau_seq.sup_lim_zero -> CauSeq.sup_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_lim_zero CauSeq.sup_limZeroₓ'. -/
theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : LimZero (f ⊔ g)
| ε, ε0 =>
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij =>
@@ -1402,12 +881,6 @@ theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
exact ⟨lt_sup_iff.mpr (Or.inl H₁.1), sup_lt_iff.mpr ⟨H₁.2, H₂.2⟩⟩
#align cau_seq.sup_lim_zero CauSeq.sup_limZero
-/- warning: cau_seq.inf_lim_zero -> CauSeq.inf_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_lim_zero CauSeq.inf_limZeroₓ'. -/
theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : LimZero (f ⊓ g)
| ε, ε0 =>
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij =>
@@ -1417,9 +890,6 @@ theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
exact ⟨lt_inf_iff.mpr ⟨H₁.1, H₂.1⟩, inf_lt_iff.mpr (Or.inl H₁.2)⟩
#align cau_seq.inf_lim_zero CauSeq.inf_limZero
-/- warning: cau_seq.sup_equiv_sup -> CauSeq.sup_equiv_sup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_equiv_sup CauSeq.sup_equiv_supₓ'. -/
theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊔ b₁ ≈ a₂ ⊔ b₂ := by
intro ε ε0
@@ -1431,9 +901,6 @@ theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
(max_lt (hai i (sup_le_iff.mp hi).1) (hbi i (sup_le_iff.mp hi).2))⟩
#align cau_seq.sup_equiv_sup CauSeq.sup_equiv_sup
-/- warning: cau_seq.inf_equiv_inf -> CauSeq.inf_equiv_inf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_equiv_inf CauSeq.inf_equiv_infₓ'. -/
theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊓ b₁ ≈ a₂ ⊓ b₂ := by
intro ε ε0
@@ -1445,9 +912,6 @@ theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
(max_lt (hai i (sup_le_iff.mp hi).1) (hbi i (sup_le_iff.mp hi).2))⟩
#align cau_seq.inf_equiv_inf CauSeq.inf_equiv_inf
-/- warning: cau_seq.sup_lt -> CauSeq.sup_lt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_lt CauSeq.sup_ltₓ'. -/
protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a ⊔ b < c :=
by
obtain ⟨⟨εa, εa0, ia, ha⟩, ⟨εb, εb0, ib, hb⟩⟩ := ha, hb
@@ -1456,9 +920,6 @@ protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a
exact this.trans_eq (min_sub_sub_left _ _ _)
#align cau_seq.sup_lt CauSeq.sup_lt
-/- warning: cau_seq.lt_inf -> CauSeq.lt_inf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.lt_inf CauSeq.lt_infₓ'. -/
protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a < b ⊓ c :=
by
obtain ⟨⟨εb, εb0, ib, hb⟩, ⟨εc, εc0, ic, hc⟩⟩ := hb, hc
@@ -1467,51 +928,24 @@ protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a <
exact this.trans_eq (min_sub_sub_right _ _ _)
#align cau_seq.lt_inf CauSeq.lt_inf
-/- warning: cau_seq.sup_idem -> CauSeq.sup_idem is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a a) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_idem CauSeq.sup_idemₓ'. -/
@[simp]
protected theorem sup_idem (a : CauSeq α abs) : a ⊔ a = a :=
Subtype.ext sup_idem
#align cau_seq.sup_idem CauSeq.sup_idem
-/- warning: cau_seq.inf_idem -> CauSeq.inf_idem is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a a) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_idem CauSeq.inf_idemₓ'. -/
@[simp]
protected theorem inf_idem (a : CauSeq α abs) : a ⊓ a = a :=
Subtype.ext inf_idem
#align cau_seq.inf_idem CauSeq.inf_idem
-/- warning: cau_seq.sup_comm -> CauSeq.sup_comm is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b a)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_comm CauSeq.sup_commₓ'. -/
protected theorem sup_comm (a b : CauSeq α abs) : a ⊔ b = b ⊔ a :=
Subtype.ext sup_comm
#align cau_seq.sup_comm CauSeq.sup_comm
-/- warning: cau_seq.inf_comm -> CauSeq.inf_comm is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b a)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_comm CauSeq.inf_commₓ'. -/
protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a :=
Subtype.ext inf_comm
#align cau_seq.inf_comm CauSeq.inf_comm
-/- warning: cau_seq.sup_eq_right -> CauSeq.sup_eq_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_right CauSeq.sup_eq_rightₓ'. -/
protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈ b :=
by
obtain ⟨ε, ε0 : _ < _, i, h⟩ | h := h
@@ -1527,9 +961,6 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
exact Setoid.refl _
#align cau_seq.sup_eq_right CauSeq.sup_eq_right
-/- warning: cau_seq.inf_eq_right -> CauSeq.inf_eq_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_right CauSeq.inf_eq_rightₓ'. -/
protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈ b :=
by
obtain ⟨ε, ε0 : _ < _, i, h⟩ | h := h
@@ -1544,63 +975,30 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
exact Setoid.refl _
#align cau_seq.inf_eq_right CauSeq.inf_eq_right
-/- warning: cau_seq.sup_eq_left -> CauSeq.sup_eq_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_left CauSeq.sup_eq_leftₓ'. -/
protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by
simpa only [CauSeq.sup_comm] using CauSeq.sup_eq_right h
#align cau_seq.sup_eq_left CauSeq.sup_eq_left
-/- warning: cau_seq.inf_eq_left -> CauSeq.inf_eq_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_left CauSeq.inf_eq_leftₓ'. -/
protected theorem inf_eq_left {a b : CauSeq α abs} (h : a ≤ b) : a ⊓ b ≈ a := by
simpa only [CauSeq.inf_comm] using CauSeq.inf_eq_right h
#align cau_seq.inf_eq_left CauSeq.inf_eq_left
-/- warning: cau_seq.le_sup_left -> CauSeq.le_sup_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_sup_left CauSeq.le_sup_leftₓ'. -/
protected theorem le_sup_left {a b : CauSeq α abs} : a ≤ a ⊔ b :=
le_of_exists ⟨0, fun j hj => le_sup_left⟩
#align cau_seq.le_sup_left CauSeq.le_sup_left
-/- warning: cau_seq.inf_le_left -> CauSeq.inf_le_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_le_left CauSeq.inf_le_leftₓ'. -/
protected theorem inf_le_left {a b : CauSeq α abs} : a ⊓ b ≤ a :=
le_of_exists ⟨0, fun j hj => inf_le_left⟩
#align cau_seq.inf_le_left CauSeq.inf_le_left
-/- warning: cau_seq.le_sup_right -> CauSeq.le_sup_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_sup_right CauSeq.le_sup_rightₓ'. -/
protected theorem le_sup_right {a b : CauSeq α abs} : b ≤ a ⊔ b :=
le_of_exists ⟨0, fun j hj => le_sup_right⟩
#align cau_seq.le_sup_right CauSeq.le_sup_right
-/- warning: cau_seq.inf_le_right -> CauSeq.inf_le_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b
-Case conversion may be inaccurate. Consider using '#align cau_seq.inf_le_right CauSeq.inf_le_rightₓ'. -/
protected theorem inf_le_right {a b : CauSeq α abs} : a ⊓ b ≤ b :=
le_of_exists ⟨0, fun j hj => inf_le_right⟩
#align cau_seq.inf_le_right CauSeq.inf_le_right
-/- warning: cau_seq.sup_le -> CauSeq.sup_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_le CauSeq.sup_leₓ'. -/
protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) : a ⊔ b ≤ c :=
by
cases' ha with ha ha
@@ -1614,9 +1012,6 @@ protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) :
exact CauSeq.sup_eq_left hb
#align cau_seq.sup_le CauSeq.sup_le
-/- warning: cau_seq.le_inf -> CauSeq.le_inf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.le_inf CauSeq.le_infₓ'. -/
protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) : a ≤ b ⊓ c :=
by
cases' hb with hb hb
@@ -1633,16 +1028,10 @@ protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) :
/-! Note that `distrib_lattice (cau_seq α abs)` is not true because there is no `partial_order`. -/
-/- warning: cau_seq.sup_inf_distrib_left -> CauSeq.sup_inf_distrib_left is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_leftₓ'. -/
protected theorem sup_inf_distrib_left (a b c : CauSeq α abs) : a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_left
#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_left
-/- warning: cau_seq.sup_inf_distrib_right -> CauSeq.sup_inf_distrib_right is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_right CauSeq.sup_inf_distrib_rightₓ'. -/
protected theorem sup_inf_distrib_right (a b c : CauSeq α abs) : a ⊓ b ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_right
#align cau_seq.sup_inf_distrib_right CauSeq.sup_inf_distrib_right
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -286,8 +286,7 @@ theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
cases' lt_or_le j i with ij ij
· exact lt_of_le_of_lt (this i _ (le_of_lt ij)) (lt_add_one _)
· have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add_of_le_of_lt (this i _ le_rfl) (h _ ij))
- rw [add_sub, add_comm] at this
- simpa
+ rw [add_sub, add_comm] at this; simpa
#align cau_seq.bounded CauSeq.bounded
/- warning: cau_seq.bounded' -> CauSeq.bounded' is a dubious translation:
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -61,10 +61,7 @@ section
variable [LinearOrderedField α] [Ring β] (abv : β → α) [IsAbsoluteValue abv]
/- warning: rat_add_continuous_lemma -> rat_add_continuous_lemma is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{succ u2} α (fun (δ : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) δ (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₁ b₁)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₂ b₂)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (HAdd.hAdd.{u1, u1, u1} β β β (instHAdd.{u1} β (Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))))) a₁ a₂) (HAdd.hAdd.{u1, u1, u1} β β β (instHAdd.{u1} β (Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))))) b₁ b₂))) ε))))
+<too large>
Case conversion may be inaccurate. Consider using '#align rat_add_continuous_lemma rat_add_continuous_lemmaₓ'. -/
theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
∃ δ > 0,
@@ -75,10 +72,7 @@ theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
#align rat_add_continuous_lemma rat_add_continuous_lemma
/- warning: rat_mul_continuous_lemma -> rat_mul_continuous_lemma is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv a₁) K₁) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv b₂) K₂) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{succ u2} α (fun (δ : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) δ (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv a₁) K₁) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv b₂) K₂) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₁ b₁)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₂ b₂)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))) a₁ a₂) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))) b₁ b₂))) ε))))
+<too large>
Case conversion may be inaccurate. Consider using '#align rat_mul_continuous_lemma rat_mul_continuous_lemmaₓ'. -/
theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
∃ δ > 0,
@@ -100,10 +94,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
/- warning: rat_inv_continuous_lemma -> rat_inv_continuous_lemma is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) a) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) b))) ε))))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (DivisionSemiring.toSemiring.{u2} β (DivisionRing.toDivisionSemiring.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => And (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) δ (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β (DivisionRing.toRing.{u2} β _inst_4))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β (DivisionRing.toRing.{u2} β _inst_4))) (Inv.inv.{u2} β (DivisionRing.toInv.{u2} β _inst_4) a) (Inv.inv.{u2} β (DivisionRing.toInv.{u2} β _inst_4) b))) ε))))
+<too large>
Case conversion may be inaccurate. Consider using '#align rat_inv_continuous_lemma rat_inv_continuous_lemmaₓ'. -/
theorem rat_inv_continuous_lemma {β : Type _} [DivisionRing β] (abv : β → α) [IsAbsoluteValue abv]
{ε K : α} (ε0 : 0 < ε) (K0 : 0 < K) :
@@ -812,10 +803,7 @@ theorem sub_equiv_sub {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1
#align cau_seq.sub_equiv_sub CauSeq.sub_equiv_sub
/- warning: cau_seq.equiv_def₃ -> CauSeq.equiv_def₃ is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))))
-but is expected to have type
- forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g j))) ε)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.equiv_def₃ CauSeq.equiv_def₃ₓ'. -/
theorem equiv_def₃ {f g : CauSeq β abv} (h : f ≈ g) {ε : α} (ε0 : 0 < ε) :
∃ i, ∀ j ≥ i, ∀ k ≥ j, abv (f k - g j) < ε :=
@@ -1144,10 +1132,7 @@ theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
#align cau_seq.add_pos CauSeq.add_pos
/- warning: cau_seq.pos_add_lim_zero -> CauSeq.pos_add_limZero is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZeroₓ'. -/
theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f + g)
| ⟨F, F0, hF⟩, H =>
@@ -1204,10 +1189,7 @@ instance : LE (CauSeq α abs) :=
⟨fun f g => f < g ∨ f ≈ g⟩
/- warning: cau_seq.lt_of_lt_of_eq -> CauSeq.lt_of_lt_of_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eqₓ'. -/
theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f < h :=
show Pos (h - f) by
@@ -1215,10 +1197,7 @@ theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f <
#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eq
/- warning: cau_seq.lt_of_eq_of_lt -> CauSeq.lt_of_eq_of_lt is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_ltₓ'. -/
theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by
have := pos_add_lim_zero gh (neg_lim_zero fg) <;>
@@ -1246,20 +1225,14 @@ theorem lt_irrefl {f : CauSeq α abs} : ¬f < f
#align cau_seq.lt_irrefl CauSeq.lt_irrefl
/- warning: cau_seq.le_of_eq_of_le -> CauSeq.le_of_eq_of_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_eq_of_le CauSeq.le_of_eq_of_leₓ'. -/
theorem le_of_eq_of_le {f g h : CauSeq α abs} (hfg : f ≈ g) (hgh : g ≤ h) : f ≤ h :=
hgh.elim (Or.inl ∘ CauSeq.lt_of_eq_of_lt hfg) (Or.inr ∘ Setoid.trans hfg)
#align cau_seq.le_of_eq_of_le CauSeq.le_of_eq_of_le
/- warning: cau_seq.le_of_le_of_eq -> CauSeq.le_of_le_of_eq is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_le_of_eq CauSeq.le_of_le_of_eqₓ'. -/
theorem le_of_le_of_eq {f g h : CauSeq α abs} (hfg : f ≤ g) (hgh : g ≈ h) : f ≤ h :=
hfg.elim (fun h => Or.inl (CauSeq.lt_of_lt_of_eq h hgh)) fun h => Or.inr (Setoid.trans h hgh)
@@ -1280,20 +1253,14 @@ instance : Preorder (CauSeq α abs) where
fun ⟨h₁, h₂⟩ => h₁.resolve_right (mt (fun h => Or.inr (Setoid.symm h)) h₂)⟩
/- warning: cau_seq.le_antisymm -> CauSeq.le_antisymm is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.le_antisymm CauSeq.le_antisymmₓ'. -/
theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈ g :=
fg.resolve_left (not_lt_of_le gf)
#align cau_seq.le_antisymm CauSeq.le_antisymm
/- warning: cau_seq.lt_total -> CauSeq.lt_total is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) (Or (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g f))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (Or (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_total CauSeq.lt_totalₓ'. -/
theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
(trichotomy (g - f)).imp_right fun h =>
@@ -1331,10 +1298,7 @@ theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by
#align cau_seq.const_le CauSeq.const_le
/- warning: cau_seq.le_of_exists -> CauSeq.le_of_exists is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f j) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f j) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_exists CauSeq.le_of_existsₓ'. -/
theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j) : f ≤ g :=
let ⟨i, hi⟩ := h
@@ -1409,10 +1373,7 @@ instance : Inf (CauSeq α abs) :=
CauSeq.rat_inf_continuous_lemma (H₁ _ ij) (H₂ _ ij)⟩⟩
/- warning: cau_seq.coe_sup -> CauSeq.coe_sup is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g)) (Sup.sup.{u1} (Nat -> α) (Pi.hasSup.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (Sup.sup.{u1} (Nat -> α) (Pi.instSupForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_sup CauSeq.coe_supₓ'. -/
@[simp, norm_cast]
theorem coe_sup (f g : CauSeq α abs) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -1420,10 +1381,7 @@ theorem coe_sup (f g : CauSeq α abs) : ⇑(f ⊔ g) = f ⊔ g :=
#align cau_seq.coe_sup CauSeq.coe_sup
/- warning: cau_seq.coe_inf -> CauSeq.coe_inf is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g)) (Inf.inf.{u1} (Nat -> α) (Pi.hasInf.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (Inf.inf.{u1} (Nat -> α) (Pi.instInfForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_inf CauSeq.coe_infₓ'. -/
@[simp, norm_cast]
theorem coe_inf (f g : CauSeq α abs) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1461,10 +1419,7 @@ theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
#align cau_seq.inf_lim_zero CauSeq.inf_limZero
/- warning: cau_seq.sup_equiv_sup -> CauSeq.sup_equiv_sup is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₁ b₁) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₂ b₂))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_equiv_sup CauSeq.sup_equiv_supₓ'. -/
theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊔ b₁ ≈ a₂ ⊔ b₂ := by
@@ -1478,10 +1433,7 @@ theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
#align cau_seq.sup_equiv_sup CauSeq.sup_equiv_sup
/- warning: cau_seq.inf_equiv_inf -> CauSeq.inf_equiv_inf is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₁ b₁) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₂ b₂))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_equiv_inf CauSeq.inf_equiv_infₓ'. -/
theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊓ b₁ ≈ a₂ ⊓ b₂ := by
@@ -1495,10 +1447,7 @@ theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
#align cau_seq.inf_equiv_inf CauSeq.inf_equiv_inf
/- warning: cau_seq.sup_lt -> CauSeq.sup_lt is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_lt CauSeq.sup_ltₓ'. -/
protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a ⊔ b < c :=
by
@@ -1509,10 +1458,7 @@ protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a
#align cau_seq.sup_lt CauSeq.sup_lt
/- warning: cau_seq.lt_inf -> CauSeq.lt_inf is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_inf CauSeq.lt_infₓ'. -/
protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a < b ⊓ c :=
by
@@ -1565,10 +1511,7 @@ protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a :=
#align cau_seq.inf_comm CauSeq.inf_comm
/- warning: cau_seq.sup_eq_right -> CauSeq.sup_eq_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) b)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_right CauSeq.sup_eq_rightₓ'. -/
protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈ b :=
by
@@ -1586,10 +1529,7 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
#align cau_seq.sup_eq_right CauSeq.sup_eq_right
/- warning: cau_seq.inf_eq_right -> CauSeq.inf_eq_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_right CauSeq.inf_eq_rightₓ'. -/
protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈ b :=
by
@@ -1606,20 +1546,14 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
#align cau_seq.inf_eq_right CauSeq.inf_eq_right
/- warning: cau_seq.sup_eq_left -> CauSeq.sup_eq_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) a)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_left CauSeq.sup_eq_leftₓ'. -/
protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by
simpa only [CauSeq.sup_comm] using CauSeq.sup_eq_right h
#align cau_seq.sup_eq_left CauSeq.sup_eq_left
/- warning: cau_seq.inf_eq_left -> CauSeq.inf_eq_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_left CauSeq.inf_eq_leftₓ'. -/
protected theorem inf_eq_left {a b : CauSeq α abs} (h : a ≤ b) : a ⊓ b ≈ a := by
simpa only [CauSeq.inf_comm] using CauSeq.inf_eq_right h
@@ -1666,10 +1600,7 @@ protected theorem inf_le_right {a b : CauSeq α abs} : a ⊓ b ≤ b :=
#align cau_seq.inf_le_right CauSeq.inf_le_right
/- warning: cau_seq.sup_le -> CauSeq.sup_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_le CauSeq.sup_leₓ'. -/
protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) : a ⊔ b ≤ c :=
by
@@ -1685,10 +1616,7 @@ protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) :
#align cau_seq.sup_le CauSeq.sup_le
/- warning: cau_seq.le_inf -> CauSeq.le_inf is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.le_inf CauSeq.le_infₓ'. -/
protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) : a ≤ b ⊓ c :=
by
@@ -1707,20 +1635,14 @@ protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) :
/- warning: cau_seq.sup_inf_distrib_left -> CauSeq.sup_inf_distrib_left is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c)) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_leftₓ'. -/
protected theorem sup_inf_distrib_left (a b c : CauSeq α abs) : a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_left
#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_left
/- warning: cau_seq.sup_inf_distrib_right -> CauSeq.sup_inf_distrib_right is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b c))
-but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
+<too large>
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_right CauSeq.sup_inf_distrib_rightₓ'. -/
protected theorem sup_inf_distrib_right (a b c : CauSeq α abs) : a ⊓ b ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_right
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -43,14 +43,18 @@ open IsAbsoluteValue
variable {G α β : Type _}
-#print exists_forall_ge_and /-
+/- warning: exists_forall_ge_and -> exists_forall_ge_and is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {P : α -> Prop} {Q : α -> Prop}, (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) j i) -> (P j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) j i) -> (Q j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) j i) -> (And (P j) (Q j))))
+but is expected to have type
+ forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {P : α -> Prop} {Q : α -> Prop}, (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) j i) -> (P j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) j i) -> (Q j))) -> (Exists.{succ u1} α (fun (i : α) => forall (j : α), (GE.ge.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) j i) -> (And (P j) (Q j))))
+Case conversion may be inaccurate. Consider using '#align exists_forall_ge_and exists_forall_ge_andₓ'. -/
theorem exists_forall_ge_and {α} [LinearOrder α] {P Q : α → Prop} :
(∃ i, ∀ j ≥ i, P j) → (∃ i, ∀ j ≥ i, Q j) → ∃ i, ∀ j ≥ i, P j ∧ Q j
| ⟨a, h₁⟩, ⟨b, h₂⟩ =>
let ⟨c, ac, bc⟩ := exists_ge_of_linear a b
⟨c, fun j hj => ⟨h₁ _ (le_trans ac hj), h₂ _ (le_trans bc hj)⟩⟩
#align exists_forall_ge_and exists_forall_ge_and
--/
section
@@ -58,7 +62,7 @@ variable [LinearOrderedField α] [Ring β] (abv : β → α) [IsAbsoluteValue ab
/- warning: rat_add_continuous_lemma -> rat_add_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{succ u2} α (fun (δ : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) δ (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₁ b₁)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₂ b₂)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (HAdd.hAdd.{u1, u1, u1} β β β (instHAdd.{u1} β (Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))))) a₁ a₂) (HAdd.hAdd.{u1, u1, u1} β β β (instHAdd.{u1} β (Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))))) b₁ b₂))) ε))))
Case conversion may be inaccurate. Consider using '#align rat_add_continuous_lemma rat_add_continuous_lemmaₓ'. -/
@@ -72,7 +76,7 @@ theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
/- warning: rat_mul_continuous_lemma -> rat_mul_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv a₁) K₁) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv b₂) K₂) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv a₁) K₁) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv b₂) K₂) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{succ u2} α (fun (δ : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) δ (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv a₁) K₁) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv b₂) K₂) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₁ b₁)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₂ b₂)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))) a₁ a₂) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))) b₁ b₂))) ε))))
Case conversion may be inaccurate. Consider using '#align rat_mul_continuous_lemma rat_mul_continuous_lemmaₓ'. -/
@@ -97,7 +101,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
/- warning: rat_inv_continuous_lemma -> rat_inv_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) a) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) b))) ε))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) a) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) b))) ε))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (DivisionSemiring.toSemiring.{u2} β (DivisionRing.toDivisionSemiring.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => And (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) δ (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β (DivisionRing.toRing.{u2} β _inst_4))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β (DivisionRing.toRing.{u2} β _inst_4))) (Inv.inv.{u2} β (DivisionRing.toInv.{u2} β _inst_4) a) (Inv.inv.{u2} β (DivisionRing.toInv.{u2} β _inst_4) b))) ε))))
Case conversion may be inaccurate. Consider using '#align rat_inv_continuous_lemma rat_inv_continuous_lemmaₓ'. -/
@@ -132,7 +136,7 @@ variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue ab
/- warning: is_cau_seq.cauchy₂ -> IsCauSeq.cauchy₂ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (f k))) ε)))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (f k))) ε)))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f j) (f k))) ε)))))
Case conversion may be inaccurate. Consider using '#align is_cau_seq.cauchy₂ IsCauSeq.cauchy₂ₓ'. -/
@@ -150,7 +154,7 @@ theorem cauchy₂ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
/- warning: is_cau_seq.cauchy₃ -> IsCauSeq.cauchy₃ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f k) (f j))) ε)))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f k) (f j))) ε)))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f k) (f j))) ε)))))
Case conversion may be inaccurate. Consider using '#align is_cau_seq.cauchy₃ IsCauSeq.cauchy₃ₓ'. -/
@@ -229,7 +233,7 @@ theorem isCauSeq (f : CauSeq β abv) : IsCauSeq abv f :=
/- warning: cau_seq.cauchy -> CauSeq.cauchy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))) ε)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))) ε)))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i))) ε)))
Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy CauSeq.cauchyₓ'. -/
@@ -249,7 +253,7 @@ variable [IsAbsoluteValue abv]
/- warning: cau_seq.cauchy₂ -> CauSeq.cauchy₂ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k))) ε))))
Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy₂ CauSeq.cauchy₂ₓ'. -/
@@ -263,7 +267,7 @@ theorem cauchy₂ (f : CauSeq β abv) {ε} :
/- warning: cau_seq.cauchy₃ -> CauSeq.cauchy₃ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j))) ε))))
Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy₃ CauSeq.cauchy₃ₓ'. -/
@@ -273,7 +277,7 @@ theorem cauchy₃ (f : CauSeq β abv) {ε} : 0 < ε → ∃ i, ∀ j ≥ i, ∀
/- warning: cau_seq.bounded -> CauSeq.bounded is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Exists.{succ u1} α (fun (r : α) => forall (i : Nat), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i)) r)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Exists.{succ u1} α (fun (r : α) => forall (i : Nat), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i)) r)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Exists.{succ u2} α (fun (r : α) => forall (i : Nat), LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i)) r)
Case conversion may be inaccurate. Consider using '#align cau_seq.bounded CauSeq.boundedₓ'. -/
@@ -297,7 +301,7 @@ theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r :=
/- warning: cau_seq.bounded' -> CauSeq.bounded' is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (x : α), Exists.{succ u1} α (fun (r : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) r x) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) r x) => forall (i : Nat), LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i)) r))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (x : α), Exists.{succ u1} α (fun (r : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) r x) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) r x) => forall (i : Nat), LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i)) r))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (x : α), Exists.{succ u2} α (fun (r : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) r x) (forall (i : Nat), LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i)) r))
Case conversion may be inaccurate. Consider using '#align cau_seq.bounded' CauSeq.bounded'ₓ'. -/
@@ -809,7 +813,7 @@ theorem sub_equiv_sub {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1
/- warning: cau_seq.equiv_def₃ -> CauSeq.equiv_def₃ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g j))) ε)))))
Case conversion may be inaccurate. Consider using '#align cau_seq.equiv_def₃ CauSeq.equiv_def₃ₓ'. -/
@@ -834,7 +838,7 @@ theorem limZero_congr {f g : CauSeq β abv} (h : f ≈ g) : LimZero f ↔ LimZer
/- warning: cau_seq.abv_pos_of_not_lim_zero -> CauSeq.abv_pos_of_not_limZero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f)) -> (Exists.{succ u1} α (fun (K : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j)))))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 _inst_2 abv f)) -> (Exists.{succ u1} α (fun (K : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j)))))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (Not (CauSeq.LimZero.{u2, u1} α β _inst_1 _inst_2 abv f)) -> (Exists.{succ u2} α (fun (K : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) K (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) K (abv (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j)))))))
Case conversion may be inaccurate. Consider using '#align cau_seq.abv_pos_of_not_lim_zero CauSeq.abv_pos_of_not_limZeroₓ'. -/
@@ -854,7 +858,7 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
/- warning: cau_seq.of_near -> CauSeq.of_near is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))) -> (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))) -> (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) ε (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g j))) ε)))) -> (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f)
Case conversion may be inaccurate. Consider using '#align cau_seq.of_near CauSeq.of_nearₓ'. -/
@@ -1006,7 +1010,7 @@ variable [DivisionRing β] {abv : β → α} [IsAbsoluteValue abv]
/- warning: cau_seq.inv_aux -> CauSeq.inv_aux is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f j)) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f i)))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f j)) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f i)))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : DivisionRing.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (DivisionSemiring.toSemiring.{u1} β (DivisionRing.toDivisionSemiring.{u1} β _inst_2)) abv] {f : CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv}, (Not (CauSeq.LimZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) ε (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β (DivisionRing.toRing.{u1} β _inst_2))) (Inv.inv.{u1} β (DivisionRing.toInv.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f j)) (Inv.inv.{u1} β (DivisionRing.toInv.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f i)))) ε))))
Case conversion may be inaccurate. Consider using '#align cau_seq.inv_aux CauSeq.inv_auxₓ'. -/
@@ -1117,7 +1121,7 @@ theorem not_limZero_of_pos {f : CauSeq α abs} : Pos f → ¬LimZero f
/- warning: cau_seq.const_pos -> CauSeq.const_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_pos CauSeq.const_posₓ'. -/
@@ -1308,7 +1312,7 @@ theorem le_total (f g : CauSeq α abs) : f ≤ g ∨ g ≤ f :=
/- warning: cau_seq.const_lt -> CauSeq.const_lt is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_lt CauSeq.const_ltₓ'. -/
@@ -1318,7 +1322,7 @@ theorem const_lt {x y : α} : const x < const y ↔ x < y :=
/- warning: cau_seq.const_le -> CauSeq.const_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_le CauSeq.const_leₓ'. -/
@@ -1328,7 +1332,7 @@ theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by
/- warning: cau_seq.le_of_exists -> CauSeq.le_of_exists is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f j) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f j) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f j) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_exists CauSeq.le_of_existsₓ'. -/
@@ -1368,7 +1372,7 @@ theorem exists_lt (f : CauSeq α abs) : ∃ a : α, const a < f :=
/- warning: rat_sup_continuous_lemma -> CauSeq.rat_sup_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) b₁ b₂))) ε)
Case conversion may be inaccurate. Consider using '#align rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemmaₓ'. -/
@@ -1380,7 +1384,7 @@ theorem CauSeq.rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
/- warning: rat_inf_continuous_lemma -> CauSeq.rat_inf_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
Case conversion may be inaccurate. Consider using '#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemmaₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -390,7 +390,7 @@ theorem coe_zero : ⇑(0 : CauSeq β abv) = 0 :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) (OfNat.ofNat.{u2} (Nat -> β) 1 (OfNat.mk.{u2} (Nat -> β) 1 (One.one.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))))))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) (OfNat.ofNat.{u2} (Nat -> β) 1 (One.toOfNat1.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (a._@.Mathlib.Data.Real.CauSeq._hyg.1649 : Nat) => β) (fun (i : Nat) => NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) (OfNat.ofNat.{u2} (Nat -> β) 1 (One.toOfNat1.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (a._@.Mathlib.Data.Real.CauSeq._hyg.1649 : Nat) => β) (fun (i : Nat) => Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_one CauSeq.coe_oneₓ'. -/
@[simp, norm_cast]
theorem coe_one : ⇑(1 : CauSeq β abv) = 1 :=
@@ -412,7 +412,7 @@ theorem zero_apply (i) : (0 : CauSeq β abv) i = 0 :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) i) (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))) i) (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))) i) (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2))))
Case conversion may be inaccurate. Consider using '#align cau_seq.one_apply CauSeq.one_applyₓ'. -/
@[simp, norm_cast]
theorem one_apply (i) : (1 : CauSeq β abv) i = 1 :=
@@ -434,7 +434,7 @@ theorem const_zero : const 0 = 0 :=
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))
Case conversion may be inaccurate. Consider using '#align cau_seq.const_one CauSeq.const_oneₓ'. -/
@[simp]
theorem const_one : const 1 = 1 :=
@@ -985,7 +985,7 @@ variable [Ring β] [IsDomain β] (abv : β → α) [IsAbsoluteValue abv]
lean 3 declaration is
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))))
but is expected to have type
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquiv.Equiv.{succ u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquiv.Equiv.{succ u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Semiring.toOne.{u2} β (Ring.toSemiring.{u2} β _inst_2))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))))
Case conversion may be inaccurate. Consider using '#align cau_seq.one_not_equiv_zero CauSeq.one_not_equiv_zeroₓ'. -/
theorem one_not_equiv_zero : ¬const abv 1 ≈ const abv 0 := fun h =>
have : ∀ ε > 0, ∃ i, ∀ k, i ≤ k → abv (1 - 0) < ε := h
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -58,7 +58,7 @@ variable [LinearOrderedField α] [Ring β] (abv : β → α) [IsAbsoluteValue ab
/- warning: rat_add_continuous_lemma -> rat_add_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HAdd.hAdd.{u2, u2, u2} β β β (instHAdd.{u2} β (Distrib.toHasAdd.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{succ u2} α (fun (δ : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) δ (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₁ b₁)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₂ b₂)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (HAdd.hAdd.{u1, u1, u1} β β β (instHAdd.{u1} β (Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))))) a₁ a₂) (HAdd.hAdd.{u1, u1, u1} β β β (instHAdd.{u1} β (Distrib.toAdd.{u1} β (NonUnitalNonAssocSemiring.toDistrib.{u1} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))))) b₁ b₂))) ε))))
Case conversion may be inaccurate. Consider using '#align rat_add_continuous_lemma rat_add_continuous_lemmaₓ'. -/
@@ -72,7 +72,7 @@ theorem rat_add_continuous_lemma {ε : α} (ε0 : 0 < ε) :
/- warning: rat_mul_continuous_lemma -> rat_mul_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv a₁) K₁) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv b₂) K₂) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv a₁) K₁) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv b₂) K₂) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₁ b₁)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) a₂ b₂)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) a₁ a₂) (HMul.hMul.{u2, u2, u2} β β β (instHMul.{u2} β (Distrib.toHasMul.{u2} β (Ring.toDistrib.{u2} β _inst_2))) b₁ b₂))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] (abv : β -> α) [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {ε : α} {K₁ : α} {K₂ : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{succ u2} α (fun (δ : α) => And (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) δ (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) (forall {a₁ : β} {a₂ : β} {b₁ : β} {b₂ : β}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv a₁) K₁) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv b₂) K₂) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₁ b₁)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) a₂ b₂)) δ) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))) a₁ a₂) (HMul.hMul.{u1, u1, u1} β β β (instHMul.{u1} β (NonUnitalNonAssocRing.toMul.{u1} β (NonAssocRing.toNonUnitalNonAssocRing.{u1} β (Ring.toNonAssocRing.{u1} β _inst_2)))) b₁ b₂))) ε))))
Case conversion may be inaccurate. Consider using '#align rat_mul_continuous_lemma rat_mul_continuous_lemmaₓ'. -/
@@ -97,7 +97,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
/- warning: rat_inv_continuous_lemma -> rat_inv_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) a) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) b))) ε))))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => Exists.{0} (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) (fun (H : GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) δ (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) => forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_4))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) a) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_4)) b))) ε))))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {β : Type.{u2}} [_inst_4 : DivisionRing.{u2} β] (abv : β -> α) [_inst_5 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (DivisionSemiring.toSemiring.{u2} β (DivisionRing.toDivisionSemiring.{u2} β _inst_4)) abv] {ε : α} {K : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) K) -> (Exists.{succ u1} α (fun (δ : α) => And (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) δ (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1)))))))) (forall {a : β} {b : β}, (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) K (abv a)) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) K (abv b)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β (DivisionRing.toRing.{u2} β _inst_4))) a b)) δ) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β (DivisionRing.toRing.{u2} β _inst_4))) (Inv.inv.{u2} β (DivisionRing.toInv.{u2} β _inst_4) a) (Inv.inv.{u2} β (DivisionRing.toInv.{u2} β _inst_4) b))) ε))))
Case conversion may be inaccurate. Consider using '#align rat_inv_continuous_lemma rat_inv_continuous_lemmaₓ'. -/
@@ -132,7 +132,7 @@ variable [LinearOrderedField α] [Ring β] {abv : β → α} [IsAbsoluteValue ab
/- warning: is_cau_seq.cauchy₂ -> IsCauSeq.cauchy₂ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (f j) (f k))) ε)))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (f k))) ε)))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f j) (f k))) ε)))))
Case conversion may be inaccurate. Consider using '#align is_cau_seq.cauchy₂ IsCauSeq.cauchy₂ₓ'. -/
@@ -150,7 +150,7 @@ theorem cauchy₂ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
/- warning: is_cau_seq.cauchy₃ -> IsCauSeq.cauchy₃ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (f k) (f j))) ε)))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f k) (f j))) ε)))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f k) (f j))) ε)))))
Case conversion may be inaccurate. Consider using '#align is_cau_seq.cauchy₃ IsCauSeq.cauchy₃ₓ'. -/
@@ -229,7 +229,7 @@ theorem isCauSeq (f : CauSeq β abv) : IsCauSeq abv f :=
/- warning: cau_seq.cauchy -> CauSeq.cauchy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))) ε)))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))) ε)))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i))) ε)))
Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy CauSeq.cauchyₓ'. -/
@@ -249,7 +249,7 @@ variable [IsAbsoluteValue abv]
/- warning: cau_seq.cauchy₂ -> CauSeq.cauchy₂ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k))) ε))))
Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy₂ CauSeq.cauchy₂ₓ'. -/
@@ -263,7 +263,7 @@ theorem cauchy₂ (f : CauSeq β abv) {ε} :
/- warning: cau_seq.cauchy₃ -> CauSeq.cauchy₃ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f j))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j))) ε))))
Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy₃ CauSeq.cauchy₃ₓ'. -/
@@ -388,7 +388,7 @@ theorem coe_zero : ⇑(0 : CauSeq β abv) = 0 :=
/- warning: cau_seq.coe_one -> CauSeq.coe_one is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) (OfNat.ofNat.{u2} (Nat -> β) 1 (OfNat.mk.{u2} (Nat -> β) 1 (One.one.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) (OfNat.ofNat.{u2} (Nat -> β) 1 (OfNat.mk.{u2} (Nat -> β) 1 (One.one.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))))))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) (OfNat.ofNat.{u2} (Nat -> β) 1 (One.toOfNat1.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (a._@.Mathlib.Data.Real.CauSeq._hyg.1649 : Nat) => β) (fun (i : Nat) => NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_one CauSeq.coe_oneₓ'. -/
@@ -410,7 +410,7 @@ theorem zero_apply (i) : (0 : CauSeq β abv) i = 0 :=
/- warning: cau_seq.one_apply -> CauSeq.one_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) i) (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) i) (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))) i) (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))
Case conversion may be inaccurate. Consider using '#align cau_seq.one_apply CauSeq.one_applyₓ'. -/
@@ -432,7 +432,7 @@ theorem const_zero : const 0 = 0 :=
/- warning: cau_seq.const_one -> CauSeq.const_one is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))
Case conversion may be inaccurate. Consider using '#align cau_seq.const_one CauSeq.const_oneₓ'. -/
@@ -499,7 +499,7 @@ instance : Neg (CauSeq β abv) :=
/- warning: cau_seq.coe_neg -> CauSeq.coe_neg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f)) (Neg.neg.{u2} (Nat -> β) (Pi.instNeg.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f)) (Neg.neg.{u2} (Nat -> β) (Pi.instNeg.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (Neg.neg.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3) f)) (Neg.neg.{u1} (Nat -> β) (Pi.instNeg.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Ring.toNeg.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_neg CauSeq.coe_negₓ'. -/
@@ -510,7 +510,7 @@ theorem coe_neg (f : CauSeq β abv) : ⇑(-f) = -f :=
/- warning: cau_seq.neg_apply -> CauSeq.neg_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f) i) (Neg.neg.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) f) i) (Neg.neg.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (Neg.neg.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3) f) i) (Neg.neg.{u1} β (Ring.toNeg.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i))
Case conversion may be inaccurate. Consider using '#align cau_seq.neg_apply CauSeq.neg_applyₓ'. -/
@@ -521,7 +521,7 @@ theorem neg_apply (f : CauSeq β abv) (i) : (-f) i = -f i :=
/- warning: cau_seq.const_neg -> CauSeq.const_neg is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (Neg.neg.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))) x)) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (Neg.neg.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))) x)) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasNeg.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (Neg.neg.{u2} β (Ring.toNeg.{u2} β _inst_2) x)) (Neg.neg.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instNegCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x))
Case conversion may be inaccurate. Consider using '#align cau_seq.const_neg CauSeq.const_negₓ'. -/
@@ -534,7 +534,7 @@ instance : Sub (CauSeq β abv) :=
/- warning: cau_seq.coe_sub -> CauSeq.coe_sub is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HSub.hSub.{u2, u2, u2} (Nat -> β) (Nat -> β) (Nat -> β) (instHSub.{u2} (Nat -> β) (Pi.instSub.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HSub.hSub.{u2, u2, u2} (Nat -> β) (Nat -> β) (Nat -> β) (instHSub.{u2} (Nat -> β) (Pi.instSub.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2))))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), Eq.{succ u1} (Nat -> β) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g)) (HSub.hSub.{u1, u1, u1} (Nat -> β) (Nat -> β) (Nat -> β) (instHSub.{u1} (Nat -> β) (Pi.instSub.{0, u1} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => Ring.toSub.{u1} β _inst_2))) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_sub CauSeq.coe_subₓ'. -/
@@ -545,7 +545,7 @@ theorem coe_sub (f g : CauSeq β abv) : ⇑(f - g) = f - g :=
/- warning: cau_seq.sub_apply -> CauSeq.sub_apply is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g i))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f i) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g i))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (i : Nat), Eq.{succ u1} β (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) (HSub.hSub.{u1, u1, u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHSub.{u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) i) (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f i) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g i))
Case conversion may be inaccurate. Consider using '#align cau_seq.sub_apply CauSeq.sub_applyₓ'. -/
@@ -556,7 +556,7 @@ theorem sub_apply (f g : CauSeq β abv) (i : ℕ) : (f - g) i = f i - g i :=
/- warning: cau_seq.const_sub -> CauSeq.const_sub is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) x y)) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) x y)) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasSub.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (x : β) (y : β), Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (Ring.toSub.{u2} β _inst_2)) x y)) (HSub.hSub.{u2, u2, u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHSub.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instSubCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 x) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 y))
Case conversion may be inaccurate. Consider using '#align cau_seq.const_sub CauSeq.const_subₓ'. -/
@@ -809,7 +809,7 @@ theorem sub_equiv_sub {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1
/- warning: cau_seq.equiv_def₃ -> CauSeq.equiv_def₃ is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] {f : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv} {g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv}, (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (forall (k : Nat), (GE.ge.{0} Nat Nat.hasLe k j) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) f k) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv} {g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u1} (CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u2, u1} α β _inst_1 _inst_2 abv _inst_3)) f g) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k j) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g j))) ε)))))
Case conversion may be inaccurate. Consider using '#align cau_seq.equiv_def₃ CauSeq.equiv_def₃ₓ'. -/
@@ -854,7 +854,7 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
/- warning: cau_seq.of_near -> CauSeq.of_near is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))) (f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))) -> (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f)
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))) (f j) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) g j))) ε)))) -> (IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f)
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : Nat -> β) (g : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv), (forall (ε : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) ε (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) g j))) ε)))) -> (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f)
Case conversion may be inaccurate. Consider using '#align cau_seq.of_near CauSeq.of_nearₓ'. -/
@@ -983,7 +983,7 @@ variable [Ring β] [IsDomain β] (abv : β → α) [IsAbsoluteValue abv]
/- warning: cau_seq.one_not_equiv_zero -> CauSeq.one_not_equiv_zero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquivₓ.Equiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (setoidHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β _inst_2)))))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (MulZeroClass.toHasZero.{u2} β (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} β (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} β (NonAssocRing.toNonUnitalNonAssocRing.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))))
but is expected to have type
forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] [_inst_3 : IsDomain.{u2} β (Ring.toSemiring.{u2} β _inst_2)] (abv : β -> α) [_inst_4 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Not (HasEquiv.Equiv.{succ u2, 0} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (instHasEquiv.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.equiv.{u1, u2} α β _inst_1 _inst_2 abv _inst_4)) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_4 (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (MonoidWithZero.toZero.{u2} β (Semiring.toMonoidWithZero.{u2} β (Ring.toSemiring.{u2} β _inst_2)))))))
Case conversion may be inaccurate. Consider using '#align cau_seq.one_not_equiv_zero CauSeq.one_not_equiv_zeroₓ'. -/
@@ -1006,7 +1006,7 @@ variable [DivisionRing β] {abv : β → α} [IsAbsoluteValue abv]
/- warning: cau_seq.inv_aux -> CauSeq.inv_aux is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f j)) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f i)))) ε))))
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : DivisionRing.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β (DivisionRing.toRing.{u2} β _inst_2)) abv] {f : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv}, (Not (CauSeq.LimZero.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) ε (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (abv (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β (AddGroupWithOne.toAddGroup.{u2} β (AddCommGroupWithOne.toAddGroupWithOne.{u2} β (Ring.toAddCommGroupWithOne.{u2} β (DivisionRing.toRing.{u2} β _inst_2))))))) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f j)) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (DivisionRing.toDivInvMonoid.{u2} β _inst_2)) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β (DivisionRing.toRing.{u2} β _inst_2) abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 (DivisionRing.toRing.{u2} β _inst_2) abv) f i)))) ε))))
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : DivisionRing.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (DivisionSemiring.toSemiring.{u1} β (DivisionRing.toDivisionSemiring.{u1} β _inst_2)) abv] {f : CauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv}, (Not (CauSeq.LimZero.{u2, u1} α β _inst_1 (DivisionRing.toRing.{u1} β _inst_2) abv f)) -> (forall (ε : α), (GT.gt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) ε (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1)))))))) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β (DivisionRing.toRing.{u1} β _inst_2))) (Inv.inv.{u1} β (DivisionRing.toInv.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f j)) (Inv.inv.{u1} β (DivisionRing.toInv.{u1} β _inst_2) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β (DivisionRing.toRing.{u1} β _inst_2) abv f) f i)))) ε))))
Case conversion may be inaccurate. Consider using '#align cau_seq.inv_aux CauSeq.inv_auxₓ'. -/
@@ -1093,7 +1093,7 @@ local notation "const" => const abs
/- warning: cau_seq.pos -> CauSeq.Pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) -> Prop
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) -> Prop
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) -> Prop
Case conversion may be inaccurate. Consider using '#align cau_seq.pos CauSeq.Posₓ'. -/
@@ -1104,7 +1104,7 @@ def Pos (f : CauSeq α abs) : Prop :=
/- warning: cau_seq.not_lim_zero_of_pos -> CauSeq.not_limZero_of_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f))
Case conversion may be inaccurate. Consider using '#align cau_seq.not_lim_zero_of_pos CauSeq.not_limZero_of_posₓ'. -/
@@ -1117,7 +1117,7 @@ theorem not_limZero_of_pos {f : CauSeq α abs} : Pos f → ¬LimZero f
/- warning: cau_seq.const_pos -> CauSeq.const_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_pos CauSeq.const_posₓ'. -/
@@ -1127,7 +1127,7 @@ theorem const_pos {x : α} : Pos (const x) ↔ 0 < x :=
/- warning: cau_seq.add_pos -> CauSeq.add_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.add_pos CauSeq.add_posₓ'. -/
@@ -1141,7 +1141,7 @@ theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
/- warning: cau_seq.pos_add_lim_zero -> CauSeq.pos_add_limZero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZeroₓ'. -/
@@ -1156,7 +1156,7 @@ theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f +
/- warning: cau_seq.mul_pos -> CauSeq.mul_pos is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasMul.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasMul.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instMulCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.mul_pos CauSeq.mul_posₓ'. -/
@@ -1170,7 +1170,7 @@ protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g
/- warning: cau_seq.trichotomy -> CauSeq.trichotomy is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasNeg.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasNeg.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instNegCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
Case conversion may be inaccurate. Consider using '#align cau_seq.trichotomy CauSeq.trichotomyₓ'. -/
@@ -1201,7 +1201,7 @@ instance : LE (CauSeq α abs) :=
/- warning: cau_seq.lt_of_lt_of_eq -> CauSeq.lt_of_lt_of_eq is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eqₓ'. -/
@@ -1212,7 +1212,7 @@ theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f <
/- warning: cau_seq.lt_of_eq_of_lt -> CauSeq.lt_of_eq_of_lt is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_ltₓ'. -/
@@ -1223,7 +1223,7 @@ theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f <
/- warning: cau_seq.lt_trans -> CauSeq.lt_trans is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_trans CauSeq.lt_transₓ'. -/
@@ -1233,7 +1233,7 @@ theorem lt_trans {f g h : CauSeq α abs} (fg : f < g) (gh : g < h) : f < h :=
/- warning: cau_seq.lt_irrefl -> CauSeq.lt_irrefl is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f f)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f f)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f f)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_irrefl CauSeq.lt_irreflₓ'. -/
@@ -1243,7 +1243,7 @@ theorem lt_irrefl {f : CauSeq α abs} : ¬f < f
/- warning: cau_seq.le_of_eq_of_le -> CauSeq.le_of_eq_of_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_eq_of_le CauSeq.le_of_eq_of_leₓ'. -/
@@ -1253,7 +1253,7 @@ theorem le_of_eq_of_le {f g h : CauSeq α abs} (hfg : f ≈ g) (hgh : g ≤ h) :
/- warning: cau_seq.le_of_le_of_eq -> CauSeq.le_of_le_of_eq is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_le_of_eq CauSeq.le_of_le_of_eqₓ'. -/
@@ -1277,7 +1277,7 @@ instance : Preorder (CauSeq α abs) where
/- warning: cau_seq.le_antisymm -> CauSeq.le_antisymm is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_antisymm CauSeq.le_antisymmₓ'. -/
@@ -1287,7 +1287,7 @@ theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈
/- warning: cau_seq.lt_total -> CauSeq.lt_total is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) (Or (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g f))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) (Or (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g f))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (Or (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f))
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_total CauSeq.lt_totalₓ'. -/
@@ -1298,7 +1298,7 @@ theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
/- warning: cau_seq.le_total -> CauSeq.le_total is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_total CauSeq.le_totalₓ'. -/
@@ -1308,7 +1308,7 @@ theorem le_total (f g : CauSeq α abs) : f ≤ g ∨ g ≤ f :=
/- warning: cau_seq.const_lt -> CauSeq.const_lt is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_lt CauSeq.const_ltₓ'. -/
@@ -1318,7 +1318,7 @@ theorem const_lt {x y : α} : const x < const y ↔ x < y :=
/- warning: cau_seq.const_le -> CauSeq.const_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_le CauSeq.const_leₓ'. -/
@@ -1328,7 +1328,7 @@ theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by
/- warning: cau_seq.le_of_exists -> CauSeq.le_of_exists is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f j) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f j) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f j) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_exists CauSeq.le_of_existsₓ'. -/
@@ -1343,7 +1343,7 @@ theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j)
/- warning: cau_seq.exists_gt -> CauSeq.exists_gt is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
Case conversion may be inaccurate. Consider using '#align cau_seq.exists_gt CauSeq.exists_gtₓ'. -/
@@ -1357,7 +1357,7 @@ theorem exists_gt (f : CauSeq α abs) : ∃ a : α, f < const a :=
/- warning: cau_seq.exists_lt -> CauSeq.exists_lt is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
Case conversion may be inaccurate. Consider using '#align cau_seq.exists_lt CauSeq.exists_ltₓ'. -/
@@ -1368,7 +1368,7 @@ theorem exists_lt (f : CauSeq α abs) : ∃ a : α, const a < f :=
/- warning: rat_sup_continuous_lemma -> CauSeq.rat_sup_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) b₁ b₂))) ε)
Case conversion may be inaccurate. Consider using '#align rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemmaₓ'. -/
@@ -1380,7 +1380,7 @@ theorem CauSeq.rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
/- warning: rat_inf_continuous_lemma -> CauSeq.rat_inf_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
Case conversion may be inaccurate. Consider using '#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemmaₓ'. -/
@@ -1406,7 +1406,7 @@ instance : Inf (CauSeq α abs) :=
/- warning: cau_seq.coe_sup -> CauSeq.coe_sup is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g)) (Sup.sup.{u1} (Nat -> α) (Pi.hasSup.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g)) (Sup.sup.{u1} (Nat -> α) (Pi.hasSup.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (Sup.sup.{u1} (Nat -> α) (Pi.instSupForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_sup CauSeq.coe_supₓ'. -/
@@ -1417,7 +1417,7 @@ theorem coe_sup (f g : CauSeq α abs) : ⇑(f ⊔ g) = f ⊔ g :=
/- warning: cau_seq.coe_inf -> CauSeq.coe_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g)) (Inf.inf.{u1} (Nat -> α) (Pi.hasInf.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g)) (Inf.inf.{u1} (Nat -> α) (Pi.hasInf.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (Inf.inf.{u1} (Nat -> α) (Pi.instInfForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_inf CauSeq.coe_infₓ'. -/
@@ -1428,7 +1428,7 @@ theorem coe_inf (f g : CauSeq α abs) : ⇑(f ⊓ g) = f ⊓ g :=
/- warning: cau_seq.sup_lim_zero -> CauSeq.sup_limZero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_lim_zero CauSeq.sup_limZeroₓ'. -/
@@ -1443,7 +1443,7 @@ theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
/- warning: cau_seq.inf_lim_zero -> CauSeq.inf_limZero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_lim_zero CauSeq.inf_limZeroₓ'. -/
@@ -1458,7 +1458,7 @@ theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
/- warning: cau_seq.sup_equiv_sup -> CauSeq.sup_equiv_sup is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₁ b₁) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₂ b₂))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₁ b₁) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₂ b₂))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_equiv_sup CauSeq.sup_equiv_supₓ'. -/
@@ -1475,7 +1475,7 @@ theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
/- warning: cau_seq.inf_equiv_inf -> CauSeq.inf_equiv_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₁ b₁) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₂ b₂))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₁ b₁) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₂ b₂))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_equiv_inf CauSeq.inf_equiv_infₓ'. -/
@@ -1492,7 +1492,7 @@ theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
/- warning: cau_seq.sup_lt -> CauSeq.sup_lt is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_lt CauSeq.sup_ltₓ'. -/
@@ -1506,7 +1506,7 @@ protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a
/- warning: cau_seq.lt_inf -> CauSeq.lt_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_inf CauSeq.lt_infₓ'. -/
@@ -1520,7 +1520,7 @@ protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a <
/- warning: cau_seq.sup_idem -> CauSeq.sup_idem is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a a) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a a) a
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_idem CauSeq.sup_idemₓ'. -/
@@ -1531,7 +1531,7 @@ protected theorem sup_idem (a : CauSeq α abs) : a ⊔ a = a :=
/- warning: cau_seq.inf_idem -> CauSeq.inf_idem is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a a) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a a) a
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_idem CauSeq.inf_idemₓ'. -/
@@ -1542,7 +1542,7 @@ protected theorem inf_idem (a : CauSeq α abs) : a ⊓ a = a :=
/- warning: cau_seq.sup_comm -> CauSeq.sup_comm is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b a)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_comm CauSeq.sup_commₓ'. -/
@@ -1552,7 +1552,7 @@ protected theorem sup_comm (a b : CauSeq α abs) : a ⊔ b = b ⊔ a :=
/- warning: cau_seq.inf_comm -> CauSeq.inf_comm is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b a)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_comm CauSeq.inf_commₓ'. -/
@@ -1562,7 +1562,7 @@ protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a :=
/- warning: cau_seq.sup_eq_right -> CauSeq.sup_eq_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) b)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_right CauSeq.sup_eq_rightₓ'. -/
@@ -1583,7 +1583,7 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
/- warning: cau_seq.inf_eq_right -> CauSeq.inf_eq_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_right CauSeq.inf_eq_rightₓ'. -/
@@ -1603,7 +1603,7 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
/- warning: cau_seq.sup_eq_left -> CauSeq.sup_eq_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) a)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_left CauSeq.sup_eq_leftₓ'. -/
@@ -1613,7 +1613,7 @@ protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈
/- warning: cau_seq.inf_eq_left -> CauSeq.inf_eq_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_left CauSeq.inf_eq_leftₓ'. -/
@@ -1623,7 +1623,7 @@ protected theorem inf_eq_left {a b : CauSeq α abs} (h : a ≤ b) : a ⊓ b ≈
/- warning: cau_seq.le_sup_left -> CauSeq.le_sup_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_sup_left CauSeq.le_sup_leftₓ'. -/
@@ -1633,7 +1633,7 @@ protected theorem le_sup_left {a b : CauSeq α abs} : a ≤ a ⊔ b :=
/- warning: cau_seq.inf_le_left -> CauSeq.inf_le_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_le_left CauSeq.inf_le_leftₓ'. -/
@@ -1643,7 +1643,7 @@ protected theorem inf_le_left {a b : CauSeq α abs} : a ⊓ b ≤ a :=
/- warning: cau_seq.le_sup_right -> CauSeq.le_sup_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_sup_right CauSeq.le_sup_rightₓ'. -/
@@ -1653,7 +1653,7 @@ protected theorem le_sup_right {a b : CauSeq α abs} : b ≤ a ⊔ b :=
/- warning: cau_seq.inf_le_right -> CauSeq.inf_le_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_le_right CauSeq.inf_le_rightₓ'. -/
@@ -1663,7 +1663,7 @@ protected theorem inf_le_right {a b : CauSeq α abs} : a ⊓ b ≤ b :=
/- warning: cau_seq.sup_le -> CauSeq.sup_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_le CauSeq.sup_leₓ'. -/
@@ -1682,7 +1682,7 @@ protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) :
/- warning: cau_seq.le_inf -> CauSeq.le_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
Case conversion may be inaccurate. Consider using '#align cau_seq.le_inf CauSeq.le_infₓ'. -/
@@ -1704,7 +1704,7 @@ protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) :
/- warning: cau_seq.sup_inf_distrib_left -> CauSeq.sup_inf_distrib_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c)) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_leftₓ'. -/
@@ -1714,7 +1714,7 @@ protected theorem sup_inf_distrib_left (a b c : CauSeq α abs) : a ⊔ b ⊓ c =
/- warning: cau_seq.sup_inf_distrib_right -> CauSeq.sup_inf_distrib_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (AddCommGroupWithOne.toAddGroupWithOne.{u1} α (Ring.toAddCommGroupWithOne.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b c))
but is expected to have type
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_right CauSeq.sup_inf_distrib_rightₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/b19481deb571022990f1baa9cbf9172e6757a479
@@ -386,12 +386,16 @@ theorem coe_zero : ⇑(0 : CauSeq β abv) = 0 :=
rfl
#align cau_seq.coe_zero CauSeq.coe_zero
-#print CauSeq.coe_one /-
+/- warning: cau_seq.coe_one -> CauSeq.coe_one is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))) (OfNat.ofNat.{u2} (Nat -> β) 1 (OfNat.mk.{u2} (Nat -> β) 1 (One.one.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (ᾰ : Nat) => β) (fun (i : Nat) => AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))))))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (Nat -> β) (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) (OfNat.ofNat.{u2} (Nat -> β) 1 (One.toOfNat1.{u2} (Nat -> β) (Pi.instOne.{0, u2} Nat (fun (a._@.Mathlib.Data.Real.CauSeq._hyg.1649 : Nat) => β) (fun (i : Nat) => NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))
+Case conversion may be inaccurate. Consider using '#align cau_seq.coe_one CauSeq.coe_oneₓ'. -/
@[simp, norm_cast]
theorem coe_one : ⇑(1 : CauSeq β abv) = 1 :=
rfl
#align cau_seq.coe_one CauSeq.coe_one
--/
/- warning: cau_seq.zero_apply -> CauSeq.zero_apply is a dubious translation:
lean 3 declaration is
@@ -404,12 +408,16 @@ theorem zero_apply (i) : (0 : CauSeq β abv) i = 0 :=
rfl
#align cau_seq.zero_apply CauSeq.zero_apply
-#print CauSeq.one_apply /-
+/- warning: cau_seq.one_apply -> CauSeq.one_apply is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (coeFn.{succ u2, succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (fun (_x : CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) => Nat -> β) (CauSeq.hasCoeToFun.{u1, u2} α β _inst_1 _inst_2 abv) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))) i) (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv] (i : Nat), Eq.{succ u2} β (Subtype.val.{succ u2} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u1, u2} α _inst_1 β _inst_2 abv f) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))) i) (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))
+Case conversion may be inaccurate. Consider using '#align cau_seq.one_apply CauSeq.one_applyₓ'. -/
@[simp, norm_cast]
theorem one_apply (i) : (1 : CauSeq β abv) i = 1 :=
rfl
#align cau_seq.one_apply CauSeq.one_apply
--/
/- warning: cau_seq.const_zero -> CauSeq.const_zero is a dubious translation:
lean 3 declaration is
@@ -422,12 +430,16 @@ theorem const_zero : const 0 = 0 :=
rfl
#align cau_seq.const_zero CauSeq.const_zero
-#print CauSeq.const_one /-
+/- warning: cau_seq.const_one -> CauSeq.const_one is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (StrictOrderedSemiring.toOrderedSemiring.{u1} α (StrictOrderedRing.toStrictOrderedSemiring.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (AddMonoidWithOne.toOne.{u2} β (AddGroupWithOne.toAddMonoidWithOne.{u2} β (NonAssocRing.toAddGroupWithOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2)))))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (OfNat.mk.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.one.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.hasOne.{u1, u2} α β _inst_1 _inst_2 abv _inst_3))))
+but is expected to have type
+ forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : LinearOrderedField.{u1} α] [_inst_2 : Ring.{u2} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u1, u2} α (OrderedCommSemiring.toOrderedSemiring.{u1} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u1} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u1} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))) β (Ring.toSemiring.{u2} β _inst_2) abv], Eq.{succ u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.const.{u1, u2} α β _inst_1 _inst_2 abv _inst_3 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (NonAssocRing.toOne.{u2} β (Ring.toNonAssocRing.{u2} β _inst_2))))) (OfNat.ofNat.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) 1 (One.toOfNat1.{u2} (CauSeq.{u1, u2} α _inst_1 β _inst_2 abv) (CauSeq.instOneCauSeq.{u1, u2} α β _inst_1 _inst_2 abv _inst_3)))
+Case conversion may be inaccurate. Consider using '#align cau_seq.const_one CauSeq.const_oneₓ'. -/
@[simp]
theorem const_one : const 1 = 1 :=
rfl
#align cau_seq.const_one CauSeq.const_one
--/
/- warning: cau_seq.const_add -> CauSeq.const_add is a dubious translation:
lean 3 declaration is
mathlib commit https://github.com/leanprover-community/mathlib/commit/4c586d291f189eecb9d00581aeb3dd998ac34442
@@ -136,7 +136,7 @@ lean 3 declaration is
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] {f : Nat -> β}, (IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) -> (forall {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (f j) (f k))) ε)))))
Case conversion may be inaccurate. Consider using '#align is_cau_seq.cauchy₂ IsCauSeq.cauchy₂ₓ'. -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
-- see Note [nolint_ge]
@[nolint ge_or_gt]
theorem cauchy₂ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
@@ -253,7 +253,7 @@ lean 3 declaration is
but is expected to have type
forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : LinearOrderedField.{u2} α] [_inst_2 : Ring.{u1} β] {abv : β -> α} [_inst_3 : IsAbsoluteValue.{u2, u1} α (OrderedCommSemiring.toOrderedSemiring.{u2} α (StrictOrderedCommSemiring.toOrderedCommSemiring.{u2} α (LinearOrderedCommSemiring.toStrictOrderedCommSemiring.{u2} α (LinearOrderedSemifield.toLinearOrderedCommSemiring.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))) β (Ring.toSemiring.{u1} β _inst_2) abv] (f : CauSeq.{u2, u1} α _inst_1 β _inst_2 abv) {ε : α}, (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (OfNat.ofNat.{u2} α 0 (Zero.toOfNat0.{u2} α (CommMonoidWithZero.toZero.{u2} α (CommGroupWithZero.toCommMonoidWithZero.{u2} α (Semifield.toCommGroupWithZero.{u2} α (LinearOrderedSemifield.toSemifield.{u2} α (LinearOrderedField.toLinearOrderedSemifield.{u2} α _inst_1))))))) ε) -> (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (forall (k : Nat), (GE.ge.{0} Nat instLENat k i) -> (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (StrictOrderedRing.toPartialOrder.{u2} α (LinearOrderedRing.toStrictOrderedRing.{u2} α (LinearOrderedCommRing.toLinearOrderedRing.{u2} α (LinearOrderedField.toLinearOrderedCommRing.{u2} α _inst_1)))))) (abv (HSub.hSub.{u1, u1, u1} β β β (instHSub.{u1} β (Ring.toSub.{u1} β _inst_2)) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f j) (Subtype.val.{succ u1} (Nat -> β) (fun (f : Nat -> β) => IsCauSeq.{u2, u1} α _inst_1 β _inst_2 abv f) f k))) ε))))
Case conversion may be inaccurate. Consider using '#align cau_seq.cauchy₂ CauSeq.cauchy₂ₓ'. -/
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (j k «expr ≥ » i) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (j k «expr ≥ » i) -/
-- see Note [nolint_ge]
@[nolint ge_or_gt]
theorem cauchy₂ (f : CauSeq β abv) {ε} :
mathlib commit https://github.com/leanprover-community/mathlib/commit/9da1b3534b65d9661eb8f42443598a92bbb49211
@@ -1083,7 +1083,7 @@ local notation "const" => const abs
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) -> Prop
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) -> Prop
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α], (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) -> Prop
Case conversion may be inaccurate. Consider using '#align cau_seq.pos CauSeq.Posₓ'. -/
/-- The entries of a positive Cauchy sequence eventually have a positive lower bound. -/
def Pos (f : CauSeq α abs) : Prop :=
@@ -1094,7 +1094,7 @@ def Pos (f : CauSeq α abs) : Prop :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (Not (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f))
Case conversion may be inaccurate. Consider using '#align cau_seq.not_lim_zero_of_pos CauSeq.not_limZero_of_posₓ'. -/
theorem not_limZero_of_pos {f : CauSeq α abs} : Pos f → ¬LimZero f
| ⟨F, F0, hF⟩, H =>
@@ -1107,7 +1107,7 @@ theorem not_limZero_of_pos {f : CauSeq α abs} : Pos f → ¬LimZero f
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} α (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} α (NonAssocRing.toNonUnitalNonAssocRing.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))))) x)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α}, Iff (CauSeq.Pos.{u1} α _inst_1 (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (CommMonoidWithZero.toZero.{u1} α (CommGroupWithZero.toCommMonoidWithZero.{u1} α (Semifield.toCommGroupWithZero.{u1} α (LinearOrderedSemifield.toSemifield.{u1} α (LinearOrderedField.toLinearOrderedSemifield.{u1} α _inst_1))))))) x)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_pos CauSeq.const_posₓ'. -/
theorem const_pos {x : α} : Pos (const x) ↔ 0 < x :=
⟨fun ⟨K, K0, i, h⟩ => lt_of_lt_of_le K0 (h _ le_rfl), fun h => ⟨x, h, 0, fun j _ => le_rfl⟩⟩
@@ -1117,7 +1117,7 @@ theorem const_pos {x : α} : Pos (const x) ↔ 0 < x :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.add_pos CauSeq.add_posₓ'. -/
theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
| ⟨F, F0, hF⟩, ⟨G, G0, hG⟩ =>
@@ -1131,7 +1131,7 @@ theorem add_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f + g)
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasAdd.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.Pos.{u1} α _inst_1 (HAdd.hAdd.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHAdd.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instAddCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.pos_add_lim_zero CauSeq.pos_add_limZeroₓ'. -/
theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f + g)
| ⟨F, F0, hF⟩, H =>
@@ -1146,7 +1146,7 @@ theorem pos_add_limZero {f g : CauSeq α abs} : Pos f → LimZero g → Pos (f +
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasMul.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instMulCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.Pos.{u1} α _inst_1 f) -> (CauSeq.Pos.{u1} α _inst_1 g) -> (CauSeq.Pos.{u1} α _inst_1 (HMul.hMul.{u1, u1, u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHMul.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instMulCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.mul_pos CauSeq.mul_posₓ'. -/
protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g)
| ⟨F, F0, hF⟩, ⟨G, G0, hG⟩ =>
@@ -1160,7 +1160,7 @@ protected theorem mul_pos {f g : CauSeq α abs} : Pos f → Pos g → Pos (f * g
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasNeg.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instNegCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (CauSeq.Pos.{u1} α _inst_1 f) (Or (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (CauSeq.Pos.{u1} α _inst_1 (Neg.neg.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instNegCauSeq.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))) f)))
Case conversion may be inaccurate. Consider using '#align cau_seq.trichotomy CauSeq.trichotomyₓ'. -/
theorem trichotomy (f : CauSeq α abs) : Pos f ∨ LimZero f ∨ Pos (-f) :=
by
@@ -1191,7 +1191,7 @@ instance : LE (CauSeq α abs) :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eqₓ'. -/
theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f < h :=
show Pos (h - f) by
@@ -1202,7 +1202,7 @@ theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f <
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_of_eq_of_lt CauSeq.lt_of_eq_of_ltₓ'. -/
theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by
have := pos_add_lim_zero gh (neg_lim_zero fg) <;>
@@ -1213,7 +1213,7 @@ theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f <
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f h)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_trans CauSeq.lt_transₓ'. -/
theorem lt_trans {f g h : CauSeq α abs} (fg : f < g) (gh : g < h) : f < h :=
show Pos (h - f) by simpa [sub_eq_add_neg, add_comm, add_left_comm] using add_pos fg gh
@@ -1223,7 +1223,7 @@ theorem lt_trans {f g h : CauSeq α abs} (fg : f < g) (gh : g < h) : f < h :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f f)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f f)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, Not (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f f)
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_irrefl CauSeq.lt_irreflₓ'. -/
theorem lt_irrefl {f : CauSeq α abs} : ¬f < f
| h => not_limZero_of_pos h (by simp [zero_lim_zero])
@@ -1233,7 +1233,7 @@ theorem lt_irrefl {f : CauSeq α abs} : ¬f < f
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_eq_of_le CauSeq.le_of_eq_of_leₓ'. -/
theorem le_of_eq_of_le {f g h : CauSeq α abs} (hfg : f ≈ g) (hgh : g ≤ h) : f ≤ h :=
hgh.elim (Or.inl ∘ CauSeq.lt_of_eq_of_lt hfg) (Or.inr ∘ Setoid.trans hfg)
@@ -1243,7 +1243,7 @@ theorem le_of_eq_of_le {f g h : CauSeq α abs} (hfg : f ≈ g) (hgh : g ≤ h) :
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f h)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {h : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) g h) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f h)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_le_of_eq CauSeq.le_of_le_of_eqₓ'. -/
theorem le_of_le_of_eq {f g h : CauSeq α abs} (hfg : f ≤ g) (hgh : g ≈ h) : f ≤ h :=
hfg.elim (fun h => Or.inl (CauSeq.lt_of_lt_of_eq h hgh)) fun h => Or.inr (Setoid.trans h hgh)
@@ -1267,7 +1267,7 @@ instance : Preorder (CauSeq α abs) where
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_antisymm CauSeq.le_antisymmₓ'. -/
theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈ g :=
fg.resolve_left (not_lt_of_le gf)
@@ -1277,7 +1277,7 @@ theorem le_antisymm {f g : CauSeq α abs} (fg : f ≤ g) (gf : g ≤ f) : f ≈
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f g) (Or (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) g f))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (Or (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (Or (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) f g) (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f))
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_total CauSeq.lt_totalₓ'. -/
theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
(trichotomy (g - f)).imp_right fun h =>
@@ -1288,7 +1288,7 @@ theorem lt_total (f g : CauSeq α abs) : f < g ∨ f ≈ g ∨ g < f :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) g f)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Or (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g) (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) g f)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_total CauSeq.le_totalₓ'. -/
theorem le_total (f g : CauSeq α abs) : f ≤ g ∨ g ≤ f :=
(or_assoc.2 (lt_total f g)).imp_right Or.inl
@@ -1298,7 +1298,7 @@ theorem le_total (f g : CauSeq α abs) : f ≤ g ∨ g ≤ f :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_lt CauSeq.const_ltₓ'. -/
theorem const_lt {x y : α} : const x < const y ↔ x < y :=
show Pos _ ↔ _ by rw [← const_sub, const_pos, sub_pos]
@@ -1308,7 +1308,7 @@ theorem const_lt {x y : α} : const x < const y ↔ x < y :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) x y)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {x : α} {y : α}, Iff (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) x) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) y)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) x y)
Case conversion may be inaccurate. Consider using '#align cau_seq.const_le CauSeq.const_leₓ'. -/
theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by
rw [le_iff_lt_or_eq] <;> exact or_congr const_lt const_equiv
@@ -1318,7 +1318,7 @@ theorem const_le {x y : α} : const x ≤ const y ↔ x ≤ y := by
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat Nat.hasLe j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f j) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) f g)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f j) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (Exists.{1} Nat (fun (i : Nat) => forall (j : Nat), (GE.ge.{0} Nat instLENat j i) -> (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f j) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g j)))) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_of_exists CauSeq.le_of_existsₓ'. -/
theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j) : f ≤ g :=
let ⟨i, hi⟩ := h
@@ -1333,7 +1333,7 @@ theorem le_of_exists {f g : CauSeq α abs} (h : ∃ i, ∀ j ≥ i, f j ≤ g j)
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a))
Case conversion may be inaccurate. Consider using '#align cau_seq.exists_gt CauSeq.exists_gtₓ'. -/
theorem exists_gt (f : CauSeq α abs) : ∃ a : α, f < const a :=
let ⟨K, H⟩ := f.Bounded
@@ -1347,7 +1347,7 @@ theorem exists_gt (f : CauSeq α abs) : ∃ a : α, f < const a :=
lean 3 declaration is
forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Exists.{succ u1} α (fun (a : α) => LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (CauSeq.const.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))) a) f)
Case conversion may be inaccurate. Consider using '#align cau_seq.exists_lt CauSeq.exists_ltₓ'. -/
theorem exists_lt (f : CauSeq α abs) : ∃ a : α, const a < f :=
let ⟨a, h⟩ := (-f).exists_gt
@@ -1356,9 +1356,9 @@ theorem exists_lt (f : CauSeq α abs) : ∃ a : α, const a < f :=
/- warning: rat_sup_continuous_lemma -> CauSeq.rat_sup_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a₁ a₂) (HasSup.sup.{u1} α (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) a₁ a₂) (Sup.sup.{u1} α (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) b₁ b₂))) ε)
Case conversion may be inaccurate. Consider using '#align rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemmaₓ'. -/
-- so named to match `rat_add_continuous_lemma`
theorem CauSeq.rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
@@ -1368,9 +1368,9 @@ theorem CauSeq.rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
/- warning: rat_inf_continuous_lemma -> CauSeq.rat_inf_continuous_lemma is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (HasInf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (OrderedAddCommGroup.toPartialOrder.{u1} α (StrictOrderedRing.toOrderedAddCommGroup.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (SubNegMonoid.toHasSub.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))))))) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (HasInf.inf.{u1} α (Lattice.toHasInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {ε : α} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₁ b₁)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) a₂ b₂)) ε) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (StrictOrderedRing.toPartialOrder.{u1} α (LinearOrderedRing.toStrictOrderedRing.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HSub.hSub.{u1, u1, u1} α α α (instHSub.{u1} α (Ring.toSub.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))))) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) a₁ a₂) (Inf.inf.{u1} α (Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))) b₁ b₂))) ε)
Case conversion may be inaccurate. Consider using '#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemmaₓ'. -/
-- so named to match `rat_add_continuous_lemma`
theorem CauSeq.rat_inf_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
@@ -1378,14 +1378,14 @@ theorem CauSeq.rat_inf_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
(abs_min_sub_min_le_max _ _ _ _).trans_lt (max_lt h₁ h₂)
#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemma
-instance : HasSup (CauSeq α abs) :=
+instance : Sup (CauSeq α abs) :=
⟨fun f g =>
⟨f ⊔ g, fun ε ε0 =>
(exists_forall_ge_and (f.cauchy₃ ε0) (g.cauchy₃ ε0)).imp fun i H j ij =>
let ⟨H₁, H₂⟩ := H _ le_rfl
CauSeq.rat_sup_continuous_lemma (H₁ _ ij) (H₂ _ ij)⟩⟩
-instance : HasInf (CauSeq α abs) :=
+instance : Inf (CauSeq α abs) :=
⟨fun f g =>
⟨f ⊓ g, fun ε ε0 =>
(exists_forall_ge_and (f.cauchy₃ ε0) (g.cauchy₃ ε0)).imp fun i H j ij =>
@@ -1394,9 +1394,9 @@ instance : HasInf (CauSeq α abs) :=
/- warning: cau_seq.coe_sup -> CauSeq.coe_sup is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g)) (HasSup.sup.{u1} (Nat -> α) (Pi.hasSup.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g)) (Sup.sup.{u1} (Nat -> α) (Pi.hasSup.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (HasSup.sup.{u1} (Nat -> α) (Pi.instHasSupForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (Sup.sup.{u1} (Nat -> α) (Pi.instSupForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_sup CauSeq.coe_supₓ'. -/
@[simp, norm_cast]
theorem coe_sup (f g : CauSeq α abs) : ⇑(f ⊔ g) = f ⊔ g :=
@@ -1405,9 +1405,9 @@ theorem coe_sup (f g : CauSeq α abs) : ⇑(f ⊔ g) = f ⊔ g :=
/- warning: cau_seq.coe_inf -> CauSeq.coe_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g)) (HasInf.inf.{u1} (Nat -> α) (Pi.hasInf.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (Nat -> α) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g)) (Inf.inf.{u1} (Nat -> α) (Pi.hasInf.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => SemilatticeInf.toHasInf.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (coeFn.{succ u1, succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (fun (_x : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) => Nat -> α) (CauSeq.hasCoeToFun.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (HasInf.inf.{u1} (Nat -> α) (Pi.instHasInfForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => Lattice.toHasInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (Nat -> α) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g)) (Inf.inf.{u1} (Nat -> α) (Pi.instInfForAll.{0, u1} Nat (fun (ᾰ : Nat) => α) (fun (i : Nat) => Lattice.toInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) f) (Subtype.val.{succ u1} (Nat -> α) (fun (f : Nat -> α) => IsCauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) g))
Case conversion may be inaccurate. Consider using '#align cau_seq.coe_inf CauSeq.coe_infₓ'. -/
@[simp, norm_cast]
theorem coe_inf (f g : CauSeq α abs) : ⇑(f ⊓ g) = f ⊓ g :=
@@ -1416,9 +1416,9 @@ theorem coe_inf (f g : CauSeq α abs) : ⇑(f ⊓ g) = f ⊓ g :=
/- warning: cau_seq.sup_lim_zero -> CauSeq.sup_limZero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) f g))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_lim_zero CauSeq.sup_limZeroₓ'. -/
theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : LimZero (f ⊔ g)
| ε, ε0 =>
@@ -1431,9 +1431,9 @@ theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
/- warning: cau_seq.inf_lim_zero -> CauSeq.inf_limZero is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) f g))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {f : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {g : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) f) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) g) -> (CauSeq.LimZero.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) f g))
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_lim_zero CauSeq.inf_limZeroₓ'. -/
theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : LimZero (f ⊓ g)
| ε, ε0 =>
@@ -1446,9 +1446,9 @@ theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
/- warning: cau_seq.sup_equiv_sup -> CauSeq.sup_equiv_sup is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₁ b₁) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₂ b₂))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₁ b₁) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a₂ b₂))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_equiv_sup CauSeq.sup_equiv_supₓ'. -/
theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊔ b₁ ≈ a₂ ⊔ b₂ := by
@@ -1463,9 +1463,9 @@ theorem sup_equiv_sup {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
/- warning: cau_seq.inf_equiv_inf -> CauSeq.inf_equiv_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₁ b₁) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₂ b₂))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₁ b₁) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a₂ b₂))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₁ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {a₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b₂ : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) a₁ a₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) b₁ b₂) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₁ b₁) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a₂ b₂))
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_equiv_inf CauSeq.inf_equiv_infₓ'. -/
theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂) (hb : b₁ ≈ b₂) :
a₁ ⊓ b₁ ≈ a₂ ⊓ b₂ := by
@@ -1480,9 +1480,9 @@ theorem inf_equiv_inf {a₁ b₁ a₂ b₂ : CauSeq α abs} (ha : a₁ ≈ a₂)
/- warning: cau_seq.sup_lt -> CauSeq.sup_lt is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_lt CauSeq.sup_ltₓ'. -/
protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a ⊔ b < c :=
by
@@ -1494,9 +1494,9 @@ protected theorem sup_lt {a b c : CauSeq α abs} (ha : a < c) (hb : b < c) : a
/- warning: cau_seq.lt_inf -> CauSeq.lt_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLt.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LT.lt.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLTCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
Case conversion may be inaccurate. Consider using '#align cau_seq.lt_inf CauSeq.lt_infₓ'. -/
protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a < b ⊓ c :=
by
@@ -1508,9 +1508,9 @@ protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a <
/- warning: cau_seq.sup_idem -> CauSeq.sup_idem is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a a) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_idem CauSeq.sup_idemₓ'. -/
@[simp]
protected theorem sup_idem (a : CauSeq α abs) : a ⊔ a = a :=
@@ -1519,9 +1519,9 @@ protected theorem sup_idem (a : CauSeq α abs) : a ⊔ a = a :=
/- warning: cau_seq.inf_idem -> CauSeq.inf_idem is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a a) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a a) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a a) a
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_idem CauSeq.inf_idemₓ'. -/
@[simp]
protected theorem inf_idem (a : CauSeq α abs) : a ⊓ a = a :=
@@ -1530,9 +1530,9 @@ protected theorem inf_idem (a : CauSeq α abs) : a ⊓ a = a :=
/- warning: cau_seq.sup_comm -> CauSeq.sup_comm is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b a)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_comm CauSeq.sup_commₓ'. -/
protected theorem sup_comm (a b : CauSeq α abs) : a ⊔ b = b ⊔ a :=
Subtype.ext sup_comm
@@ -1540,9 +1540,9 @@ protected theorem sup_comm (a b : CauSeq α abs) : a ⊔ b = b ⊔ a :=
/- warning: cau_seq.inf_comm -> CauSeq.inf_comm is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b a)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a)
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_comm CauSeq.inf_commₓ'. -/
protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a :=
Subtype.ext inf_comm
@@ -1550,9 +1550,9 @@ protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a :=
/- warning: cau_seq.sup_eq_right -> CauSeq.sup_eq_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) b)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_right CauSeq.sup_eq_rightₓ'. -/
protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈ b :=
by
@@ -1571,9 +1571,9 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
/- warning: cau_seq.inf_eq_right -> CauSeq.inf_eq_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b)
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_right CauSeq.inf_eq_rightₓ'. -/
protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈ b :=
by
@@ -1591,9 +1591,9 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
/- warning: cau_seq.sup_eq_left -> CauSeq.sup_eq_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b a) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) a)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b a) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_eq_left CauSeq.sup_eq_leftₓ'. -/
protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by
simpa only [CauSeq.sup_comm] using CauSeq.sup_eq_right h
@@ -1601,9 +1601,9 @@ protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈
/- warning: cau_seq.inf_eq_left -> CauSeq.inf_eq_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (HasEquivₓ.Equiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (setoidHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (HasEquiv.Equiv.{succ u1, 0} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (instHasEquiv.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.equiv.{u1, u1} α α _inst_1 (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (IsAbsoluteValue.abs_isAbsoluteValue.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a)
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_eq_left CauSeq.inf_eq_leftₓ'. -/
protected theorem inf_eq_left {a b : CauSeq α abs} (h : a ≤ b) : a ⊓ b ≈ a := by
simpa only [CauSeq.inf_comm] using CauSeq.inf_eq_right h
@@ -1611,9 +1611,9 @@ protected theorem inf_eq_left {a b : CauSeq α abs} (h : a ≤ b) : a ⊓ b ≈
/- warning: cau_seq.le_sup_left -> CauSeq.le_sup_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_sup_left CauSeq.le_sup_leftₓ'. -/
protected theorem le_sup_left {a b : CauSeq α abs} : a ≤ a ⊔ b :=
le_of_exists ⟨0, fun j hj => le_sup_left⟩
@@ -1621,9 +1621,9 @@ protected theorem le_sup_left {a b : CauSeq α abs} : a ≤ a ⊔ b :=
/- warning: cau_seq.inf_le_left -> CauSeq.inf_le_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) a
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) a
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_le_left CauSeq.inf_le_leftₓ'. -/
protected theorem inf_le_left {a b : CauSeq α abs} : a ⊓ b ≤ a :=
le_of_exists ⟨0, fun j hj => inf_le_left⟩
@@ -1631,9 +1631,9 @@ protected theorem inf_le_left {a b : CauSeq α abs} : a ⊓ b ≤ a :=
/- warning: cau_seq.le_sup_right -> CauSeq.le_sup_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b)
Case conversion may be inaccurate. Consider using '#align cau_seq.le_sup_right CauSeq.le_sup_rightₓ'. -/
protected theorem le_sup_right {a b : CauSeq α abs} : b ≤ a ⊔ b :=
le_of_exists ⟨0, fun j hj => le_sup_right⟩
@@ -1641,9 +1641,9 @@ protected theorem le_sup_right {a b : CauSeq α abs} : b ≤ a ⊔ b :=
/- warning: cau_seq.inf_le_right -> CauSeq.inf_le_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) b
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) b
Case conversion may be inaccurate. Consider using '#align cau_seq.inf_le_right CauSeq.inf_le_rightₓ'. -/
protected theorem inf_le_right {a b : CauSeq α abs} : a ⊓ b ≤ b :=
le_of_exists ⟨0, fun j hj => inf_le_right⟩
@@ -1651,9 +1651,9 @@ protected theorem inf_le_right {a b : CauSeq α abs} : a ⊓ b ≤ b :=
/- warning: cau_seq.sup_le -> CauSeq.sup_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) c)
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c)
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_le CauSeq.sup_leₓ'. -/
protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) : a ⊔ b ≤ c :=
by
@@ -1670,9 +1670,9 @@ protected theorem sup_le {a b c : CauSeq α abs} (ha : a ≤ c) (hb : b ≤ c) :
/- warning: cau_seq.le_inf -> CauSeq.le_inf is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasLe.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] {a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))} {c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))}, (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) -> (LE.le.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instLECauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
Case conversion may be inaccurate. Consider using '#align cau_seq.le_inf CauSeq.le_infₓ'. -/
protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) : a ≤ b ⊓ c :=
by
@@ -1692,9 +1692,9 @@ protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) :
/- warning: cau_seq.sup_inf_distrib_left -> CauSeq.sup_inf_distrib_left is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c)) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) b c)) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c)) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c)) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_leftₓ'. -/
protected theorem sup_inf_distrib_left (a b c : CauSeq α abs) : a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_left
@@ -1702,9 +1702,9 @@ protected theorem sup_inf_distrib_left (a b c : CauSeq α abs) : a ⊔ b ⊓ c =
/- warning: cau_seq.sup_inf_distrib_right -> CauSeq.sup_inf_distrib_right is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) c) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) a b) c) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasInf.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) a c) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (SubNegMonoid.toHasNeg.{u1} α (AddGroup.toSubNegMonoid.{u1} α (AddGroupWithOne.toAddGroup.{u1} α (NonAssocRing.toAddGroupWithOne.{u1} α (Ring.toNonAssocRing.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))))))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (LinearOrder.toLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1))))))))) (CauSeq.hasSup.{u1} α _inst_1) b c))
but is expected to have type
- forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c) (HasInf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) (HasSup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toHasSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instHasSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToHasSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
+ forall {α : Type.{u1}} [_inst_1 : LinearOrderedField.{u1} α] (a : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (b : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (c : CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))), Eq.{succ u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a b) c) (Inf.inf.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instInfCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) a c) (Sup.sup.{u1} (CauSeq.{u1, u1} α _inst_1 α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1))) (Abs.abs.{u1} α (Neg.toHasAbs.{u1} α (Ring.toNeg.{u1} α (DivisionRing.toRing.{u1} α (Field.toDivisionRing.{u1} α (LinearOrderedField.toField.{u1} α _inst_1)))) (SemilatticeSup.toSup.{u1} α (Lattice.toSemilatticeSup.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α (LinearOrderedRing.toLinearOrder.{u1} α (LinearOrderedCommRing.toLinearOrderedRing.{u1} α (LinearOrderedField.toLinearOrderedCommRing.{u1} α _inst_1)))))))))) (CauSeq.instSupCauSeqToRingToDivisionRingToFieldAbsToHasAbsToNegToSupToSemilatticeSupToLatticeInstDistribLatticeToLinearOrderToLinearOrderedRingToLinearOrderedCommRing.{u1} α _inst_1) b c))
Case conversion may be inaccurate. Consider using '#align cau_seq.sup_inf_distrib_right CauSeq.sup_inf_distrib_rightₓ'. -/
protected theorem sup_inf_distrib_right (a b c : CauSeq α abs) : a ⊓ b ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) :=
Subtype.ext <| funext fun i => max_min_distrib_right
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -192,8 +192,8 @@ lemma geo_series [Nontrivial β] (x : β) (hx1 : abv x < 1) :
refine' @of_mono_bounded _ _ _ _ ((1 : α) / (1 - abv x)) 0 _ _
· intro n _
rw [abs_of_nonneg]
- gcongr
- · exact sub_le_self _ (abv_pow abv x n ▸ abv_nonneg _ _)
+ · gcongr
+ exact sub_le_self _ (abv_pow abv x n ▸ abv_nonneg _ _)
refine' div_nonneg (sub_nonneg.2 _) (sub_nonneg.2 <| le_of_lt hx1)
exact pow_le_one _ (by positivity) hx1.le
· intro n _
We change the following field in the definition of an additive commutative monoid:
nsmul_succ : ∀ (n : ℕ) (x : G),
- AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+ AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
where the latter is more natural
We adjust the definitions of ^
in monoids, groups, etc.
Originally there was a warning comment about why this natural order was preferred
use
x * npowRec n x
and notnpowRec n x * x
in the definition to make sure that definitional unfolding ofnpowRec
is blocked, to avoid deep recursion issues.
but it seems to no longer apply.
Remarks on the PR :
pow_succ
and pow_succ'
have switched their meanings.Ideal.IsPrime.mul_mem_pow
which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul
.@@ -172,7 +172,7 @@ lemma of_decreasing_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥
_ = a - l • ε + ε := by
conv =>
rhs
- rw [← Nat.succ_pred_eq_of_pos (Nat.pos_of_ne_zero hl0), succ_nsmul', sub_add,
+ rw [← Nat.succ_pred_eq_of_pos (Nat.pos_of_ne_zero hl0), succ_nsmul, sub_add,
add_sub_cancel_right]
_ < f j + ε := add_lt_add_right (hl j (le_trans hi.1 hj)) _
#align is_cau_of_decreasing_bounded IsCauSeq.of_decreasing_bounded
@@ -197,7 +197,7 @@ lemma geo_series [Nontrivial β] (x : β) (hx1 : abv x < 1) :
refine' div_nonneg (sub_nonneg.2 _) (sub_nonneg.2 <| le_of_lt hx1)
exact pow_le_one _ (by positivity) hx1.le
· intro n _
- rw [← one_mul (abv x ^ n), pow_succ]
+ rw [← one_mul (abv x ^ n), pow_succ']
gcongr
#align is_cau_geo_series IsCauSeq.geo_series
@@ -222,7 +222,7 @@ lemma series_ratio_test {f : ℕ → β} (n : ℕ) (r : α) (hr0 : 0 ≤ r) (hr1
positivity
· have kn : k + n.succ ≥ n.succ := by
rw [← zero_add n.succ]; exact add_le_add (Nat.zero_le _) (by simp)
- erw [hk, Nat.succ_add, pow_succ' r, ← mul_assoc]
+ erw [hk, Nat.succ_add, pow_succ r, ← mul_assoc]
refine
le_trans (by rw [mul_comm] <;> exact h _ (Nat.le_of_succ_le kn))
(mul_le_mul_of_nonneg_right ?_ hr0)
We change the following field in the definition of an additive commutative monoid:
nsmul_succ : ∀ (n : ℕ) (x : G),
- AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+ AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
where the latter is more natural
We adjust the definitions of ^
in monoids, groups, etc.
Originally there was a warning comment about why this natural order was preferred
use
x * npowRec n x
and notnpowRec n x * x
in the definition to make sure that definitional unfolding ofnpowRec
is blocked, to avoid deep recursion issues.
but it seems to no longer apply.
Remarks on the PR :
pow_succ
and pow_succ'
have switched their meanings.Ideal.IsPrime.mul_mem_pow
which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul
.@@ -589,7 +589,7 @@ theorem smul_equiv_smul {G : Type*} [SMul G β] [IsScalarTower G β β] {f1 f2 :
theorem pow_equiv_pow {f1 f2 : CauSeq β abv} (hf : f1 ≈ f2) (n : ℕ) : f1 ^ n ≈ f2 ^ n := by
induction' n with n ih
· simp only [Nat.zero_eq, pow_zero, Setoid.refl]
- · simpa only [pow_succ] using mul_equiv_mul hf ih
+ · simpa only [pow_succ'] using mul_equiv_mul hf ih
#align cau_seq.pow_equiv_pow CauSeq.pow_equiv_pow
end Ring
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -85,8 +85,8 @@ theorem _root_.cauchy_product (ha : IsCauSeq abs fun m ↦ ∑ n in range m, abv
have hQ0 : Q ≠ 0 := fun h ↦ by simp [h, lt_irrefl] at hQε0
have h2Q0 : 2 * Q ≠ 0 := mul_ne_zero two_ne_zero hQ0
have hε : ε / (2 * P) * P + ε / (4 * Q) * (2 * Q) = ε := by
- rw [← div_div, div_mul_cancel _ (Ne.symm (ne_of_lt hP0)), two_mul_two, mul_assoc, ← div_div,
- div_mul_cancel _ h2Q0, add_halves]
+ rw [← div_div, div_mul_cancel₀ _ (Ne.symm (ne_of_lt hP0)), two_mul_two, mul_assoc, ← div_div,
+ div_mul_cancel₀ _ h2Q0, add_halves]
have hNMK : max N M + 1 < K :=
lt_of_lt_of_le (by rw [two_mul]; exact lt_add_of_pos_left _ (Nat.succ_pos _)) hK
have hKN : N < K :=
@@ -173,7 +173,7 @@ lemma of_decreasing_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥
conv =>
rhs
rw [← Nat.succ_pred_eq_of_pos (Nat.pos_of_ne_zero hl0), succ_nsmul', sub_add,
- add_sub_cancel]
+ add_sub_cancel_right]
_ < f j + ε := add_lt_add_right (hl j (le_trans hi.1 hj)) _
#align is_cau_of_decreasing_bounded IsCauSeq.of_decreasing_bounded
@@ -218,7 +218,7 @@ lemma series_ratio_test {f : ℕ → β} (n : ℕ) (r : α) (hr0 : 0 ≤ r) (hr1
generalize hk : m - n.succ = k
replace hk : m = k + n.succ := (tsub_eq_iff_eq_add_of_le hmn).1 hk
induction' k with k ih generalizing m n
- · rw [hk, Nat.zero_add, mul_right_comm, inv_pow _ _, ← div_eq_mul_inv, mul_div_cancel]
+ · rw [hk, Nat.zero_add, mul_right_comm, inv_pow _ _, ← div_eq_mul_inv, mul_div_cancel_right₀]
positivity
· have kn : k + n.succ ≥ n.succ := by
rw [← zero_add n.succ]; exact add_le_add (Nat.zero_le _) (by simp)
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -66,7 +66,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
set M := max 1 (max K₁ K₂)
have : abv (a₁ - b₁) * abv b₂ + abv (a₂ - b₂) * abv a₁ < ε / 2 / M * M + ε / 2 / M * M := by
gcongr
- rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
+ rw [← abv_mul abv, mul_comm, div_mul_cancel₀ _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
simpa [sub_eq_add_neg, mul_add, add_mul, add_left_comm] using
lt_of_le_of_lt (abv_add abv _ _) this
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
@@ -432,7 +432,7 @@ theorem mul_limZero_right (f : CauSeq β abv) {g} (hg : LimZero g) : LimZero (f
let ⟨F, F0, hF⟩ := f.bounded' 0
(hg _ <| div_pos ε0 F0).imp fun i H j ij => by
have := mul_lt_mul' (le_of_lt <| hF j) (H _ ij) (abv_nonneg abv _) F0
- rwa [mul_comm F, div_mul_cancel _ (ne_of_gt F0), ← abv_mul] at this
+ rwa [mul_comm F, div_mul_cancel₀ _ (ne_of_gt F0), ← abv_mul] at this
#align cau_seq.mul_lim_zero_right CauSeq.mul_limZero_right
theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f * g)
@@ -440,7 +440,7 @@ theorem mul_limZero_left {f} (g : CauSeq β abv) (hg : LimZero f) : LimZero (f *
let ⟨G, G0, hG⟩ := g.bounded' 0
(hg _ <| div_pos ε0 G0).imp fun i H j ij => by
have := mul_lt_mul'' (H _ ij) (hG j) (abv_nonneg abv _) (abv_nonneg abv _)
- rwa [div_mul_cancel _ (ne_of_gt G0), ← abv_mul] at this
+ rwa [div_mul_cancel₀ _ (ne_of_gt G0), ← abv_mul] at this
#align cau_seq.mul_lim_zero_left CauSeq.mul_limZero_left
theorem neg_limZero {f : CauSeq β abv} (hf : LimZero f) : LimZero (-f) := by
... or reduce its scope (the full removal is not as obvious).
@@ -39,7 +39,7 @@ assert_not_exists Module
assert_not_exists Submonoid
assert_not_exists FloorRing
-set_option autoImplicit true
+variable {α β : Type*}
open IsAbsoluteValue
@@ -349,7 +349,7 @@ theorem const_sub (x y : β) : const (x - y) = const x - const y :=
section SMul
-variable [SMul G β] [IsScalarTower G β β]
+variable {G : Type*} [SMul G β] [IsScalarTower G β β]
instance : SMul G (CauSeq β abv) :=
⟨fun a f => (ofEq (const (a • (1 : β)) * f) (a • (f : ℕ → β))) fun _ => smul_one_mul _ _⟩
@@ -580,7 +580,7 @@ theorem mul_equiv_mul {f1 f2 g1 g2 : CauSeq β abv} (hf : f1 ≈ f2) (hg : g1
-/
#align cau_seq.mul_equiv_mul CauSeq.mul_equiv_mul
-theorem smul_equiv_smul [SMul G β] [IsScalarTower G β β] {f1 f2 : CauSeq β abv} (c : G)
+theorem smul_equiv_smul {G : Type*} [SMul G β] [IsScalarTower G β β] {f1 f2 : CauSeq β abv} (c : G)
(hf : f1 ≈ f2) : c • f1 ≈ c • f2 := by
simpa [const_smul, smul_one_mul _ _] using
mul_equiv_mul (const_equiv.mpr <| Eq.refl <| c • (1 : β)) hf
Those lemmas have historically been very annoying to use in rw
since all their arguments were implicit. One too many people complained about it on Zulip, so I'm changing them.
Downstream code broken by this change can fix it by adding appropriately many _
s.
Also marks CauSeq.ext
@[ext]
.
Order.BoundedOrder
top_sup_eq
sup_top_eq
bot_sup_eq
sup_bot_eq
top_inf_eq
inf_top_eq
bot_inf_eq
inf_bot_eq
Order.Lattice
sup_idem
sup_comm
sup_assoc
sup_left_idem
sup_right_idem
inf_idem
inf_comm
inf_assoc
inf_left_idem
inf_right_idem
sup_inf_left
sup_inf_right
inf_sup_left
inf_sup_right
Order.MinMax
max_min_distrib_left
max_min_distrib_right
min_max_distrib_left
min_max_distrib_right
Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -181,8 +181,8 @@ theorem mk_to_fun (f) (hf : IsCauSeq abv f) : @coeFn (CauSeq β abv) _ _ ⟨f, h
rfl -/
#noalign cau_seq.mk_to_fun
-theorem ext {f g : CauSeq β abv} (h : ∀ i, f i = g i) : f = g :=
- Subtype.eq (funext h)
+@[ext]
+theorem ext {f g : CauSeq β abv} (h : ∀ i, f i = g i) : f = g := Subtype.eq (funext h)
#align cau_seq.ext CauSeq.ext
theorem isCauSeq (f : CauSeq β abv) : IsCauSeq abv f :=
@@ -904,21 +904,17 @@ protected theorem lt_inf {a b c : CauSeq α abs} (hb : a < b) (hc : a < c) : a <
#align cau_seq.lt_inf CauSeq.lt_inf
@[simp]
-protected theorem sup_idem (a : CauSeq α abs) : a ⊔ a = a :=
- Subtype.ext sup_idem
+protected theorem sup_idem (a : CauSeq α abs) : a ⊔ a = a := Subtype.ext (sup_idem _)
#align cau_seq.sup_idem CauSeq.sup_idem
@[simp]
-protected theorem inf_idem (a : CauSeq α abs) : a ⊓ a = a :=
- Subtype.ext inf_idem
+protected theorem inf_idem (a : CauSeq α abs) : a ⊓ a = a := Subtype.ext (inf_idem _)
#align cau_seq.inf_idem CauSeq.inf_idem
-protected theorem sup_comm (a b : CauSeq α abs) : a ⊔ b = b ⊔ a :=
- Subtype.ext sup_comm
+protected theorem sup_comm (a b : CauSeq α abs) : a ⊔ b = b ⊔ a := Subtype.ext (sup_comm _ _)
#align cau_seq.sup_comm CauSeq.sup_comm
-protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a :=
- Subtype.ext inf_comm
+protected theorem inf_comm (a b : CauSeq α abs) : a ⊓ b = b ⊓ a := Subtype.ext (inf_comm _ _)
#align cau_seq.inf_comm CauSeq.inf_comm
protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈ b := by
@@ -998,11 +994,11 @@ protected theorem le_inf {a b c : CauSeq α abs} (hb : a ≤ b) (hc : a ≤ c) :
protected theorem sup_inf_distrib_left (a b c : CauSeq α abs) : a ⊔ b ⊓ c = (a ⊔ b) ⊓ (a ⊔ c) :=
- Subtype.ext <| funext fun _ => max_min_distrib_left
+ ext fun _ ↦ max_min_distrib_left _ _ _
#align cau_seq.sup_inf_distrib_left CauSeq.sup_inf_distrib_left
protected theorem sup_inf_distrib_right (a b c : CauSeq α abs) : a ⊓ b ⊔ c = (a ⊔ c) ⊓ (b ⊔ c) :=
- Subtype.ext <| funext fun _ => max_min_distrib_right
+ ext fun _ ↦ max_min_distrib_right _ _ _
#align cau_seq.sup_inf_distrib_right CauSeq.sup_inf_distrib_right
end Abs
@@ -119,7 +119,7 @@ lemma bounded (hf : IsCauSeq abv f) : ∃ r, ∀ i, abv (f i) < r := by
have : ∀ i, ∀ j ≤ i, abv (f j) ≤ R i := by
refine' Nat.rec (by simp [hR]) _
rintro i hi j (rfl | hj)
- · simp
+ · simp [R]
· exact (hi j hj).trans (le_max_left _ _)
refine ⟨R i + 1, fun j ↦ ?_⟩
obtain hji | hij := le_total j i
have
, replace
and suffices
(#10640)
No changes to tactic file, it's just boring fixes throughout the library.
This follows on from #6964.
Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>
@@ -95,10 +95,10 @@ theorem _root_.cauchy_product (ha : IsCauSeq abs fun m ↦ ∑ n in range m, abv
_ < max N M + 1 := Nat.lt_succ_self _
_ < K := hNMK
have hsumlesum :
- (∑ i in range (max N M + 1),
+ (∑ i in range (max N M + 1),
abv (f i) * abv ((∑ k in range (K - i), g k) - ∑ k in range K, g k)) ≤
- ∑ i in range (max N M + 1), abv (f i) * (ε / (2 * P))
- · gcongr with m hmJ
+ ∑ i in range (max N M + 1), abv (f i) * (ε / (2 * P)) := by
+ gcongr with m hmJ
refine le_of_lt $ hN (K - m) (le_tsub_of_add_le_left $ hK.trans' ?_) K hKN.le
rw [two_mul]
gcongr
Data.Real.CauSeq
to Algebra.Order.CauSeq.Basic
Data.Real.CauSeqCompletion
to Algebra.Order.CauSeq.Completion
CauSeq
from Data.Complex.Exponential
to a new file Algebra.Order.CauSeq.BigOperators
Module
from Algebra.BigOperators.Intervals
to a new file Algebra.BigOperators.Module
abv_sum_le_sum_abv
as it's a duplicate of IsAbsoluteValue.abv_sum
Data.Real.CauSeq
to Algebra.Order.CauSeq.Basic
Data.Real.CauSeqCompletion
to Algebra.Order.CauSeq.Completion
CauSeq
from Data.Complex.Exponential
to a new file Algebra.Order.CauSeq.BigOperators
Module
from Algebra.BigOperators.Intervals
to a new file Algebra.BigOperators.Module
abv_sum_le_sum_abv
as it's a duplicate of IsAbsoluteValue.abv_sum
@@ -4,8 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import Mathlib.Algebra.Order.AbsoluteValue
-import Mathlib.Algebra.Order.Group.MinMax
import Mathlib.Algebra.Order.Field.Basic
+import Mathlib.Algebra.Order.Group.MinMax
import Mathlib.Algebra.Ring.Pi
import Mathlib.GroupTheory.GroupAction.Pi
import Mathlib.GroupTheory.GroupAction.Ring
@@ -34,17 +34,15 @@ This is a concrete implementation that is useful for simplicity and computabilit
sequence, cauchy, abs val, absolute value
-/
+assert_not_exists Finset
+assert_not_exists Module
+assert_not_exists Submonoid
+assert_not_exists FloorRing
+
set_option autoImplicit true
open IsAbsoluteValue
-theorem exists_forall_ge_and {α} [LinearOrder α] {P Q : α → Prop} :
- (∃ i, ∀ j ≥ i, P j) → (∃ i, ∀ j ≥ i, Q j) → ∃ i, ∀ j ≥ i, P j ∧ Q j
- | ⟨a, h₁⟩, ⟨b, h₂⟩ =>
- let ⟨c, ac, bc⟩ := exists_ge_of_linear a b
- ⟨c, fun _ hj => ⟨h₁ _ (le_trans ac hj), h₂ _ (le_trans bc hj)⟩⟩
-#align exists_forall_ge_and exists_forall_ge_and
-
section
variable [LinearOrderedField α] [Ring β] (abv : β → α) [IsAbsoluteValue abv]
@@ -115,6 +113,27 @@ theorem cauchy₃ (hf : IsCauSeq abv f) {ε : α} (ε0 : 0 < ε) :
⟨i, fun _ ij _ jk => H _ (le_trans ij jk) _ ij⟩
#align is_cau_seq.cauchy₃ IsCauSeq.cauchy₃
+lemma bounded (hf : IsCauSeq abv f) : ∃ r, ∀ i, abv (f i) < r := by
+ obtain ⟨i, h⟩ := hf _ zero_lt_one
+ set R : ℕ → α := @Nat.rec (fun _ => α) (abv (f 0)) fun i c => max c (abv (f i.succ)) with hR
+ have : ∀ i, ∀ j ≤ i, abv (f j) ≤ R i := by
+ refine' Nat.rec (by simp [hR]) _
+ rintro i hi j (rfl | hj)
+ · simp
+ · exact (hi j hj).trans (le_max_left _ _)
+ refine ⟨R i + 1, fun j ↦ ?_⟩
+ obtain hji | hij := le_total j i
+ · exact (this i _ hji).trans_lt (lt_add_one _)
+ · simpa using (abv_add abv _ _).trans_lt $ add_lt_add_of_le_of_lt (this i _ le_rfl) (h _ hij)
+
+lemma bounded' (hf : IsCauSeq abv f) (x : α) : ∃ r > x, ∀ i, abv (f i) < r :=
+ let ⟨r, h⟩ := hf.bounded
+ ⟨max r (x + 1), (lt_add_one x).trans_le (le_max_right _ _),
+ fun i ↦ (h i).trans_le (le_max_left _ _)⟩
+
+lemma const (x : β) : IsCauSeq abv fun _ ↦ x :=
+ fun ε ε0 ↦ ⟨0, fun j _ => by simpa [abv_zero] using ε0⟩
+
theorem add (hf : IsCauSeq abv f) (hg : IsCauSeq abv g) : IsCauSeq abv (f + g) := fun _ ε0 =>
let ⟨_, δ0, Hδ⟩ := rat_add_continuous_lemma abv ε0
let ⟨i, H⟩ := exists_forall_ge_and (hf.cauchy₃ δ0) (hg.cauchy₃ δ0)
@@ -123,6 +142,20 @@ theorem add (hf : IsCauSeq abv f) (hg : IsCauSeq abv g) : IsCauSeq abv (f + g) :
Hδ (H₁ _ ij) (H₂ _ ij)⟩
#align is_cau_seq.add IsCauSeq.add
+lemma mul (hf : IsCauSeq abv f) (hg : IsCauSeq abv g) : IsCauSeq abv (f * g) := fun _ ε0 =>
+ let ⟨_, _, hF⟩ := hf.bounded' 0
+ let ⟨_, _, hG⟩ := hg.bounded' 0
+ let ⟨_, δ0, Hδ⟩ := rat_mul_continuous_lemma abv ε0
+ let ⟨i, H⟩ := exists_forall_ge_and (hf.cauchy₃ δ0) (hg.cauchy₃ δ0)
+ ⟨i, fun j ij =>
+ let ⟨H₁, H₂⟩ := H _ le_rfl
+ Hδ (hF j) (hG i) (H₁ _ ij) (H₂ _ ij)⟩
+
+@[simp] lemma _root_.isCauSeq_neg : IsCauSeq abv (-f) ↔ IsCauSeq abv f := by
+ simp only [IsCauSeq, Pi.neg_apply, ← neg_sub', abv_neg]
+
+protected alias ⟨of_neg, neg⟩ := isCauSeq_neg
+
end IsCauSeq
/-- `CauSeq β abv` is the type of `β`-valued Cauchy sequences, with respect to the absolute value
@@ -178,26 +211,10 @@ theorem cauchy₃ (f : CauSeq β abv) {ε} : 0 < ε → ∃ i, ∀ j ≥ i, ∀
f.2.cauchy₃
#align cau_seq.cauchy₃ CauSeq.cauchy₃
-theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r := by
- cases' f.cauchy zero_lt_one with i h
- set R : ℕ → α := @Nat.rec (fun _ => α) (abv (f 0)) fun i c => max c (abv (f i.succ)) with hR
- have : ∀ i, ∀ j ≤ i, abv (f j) ≤ R i := by
- refine' Nat.rec (by simp [hR]) _
- rintro i hi j (rfl | hj)
- · simp
- exact (hi j hj).trans (le_max_left _ _)
- refine' ⟨R i + 1, fun j => _⟩
- cases' lt_or_le j i with ij ij
- · exact lt_of_le_of_lt (this i _ (le_of_lt ij)) (lt_add_one _)
- · have := lt_of_le_of_lt (abv_add abv _ _) (add_lt_add_of_le_of_lt (this i _ le_rfl) (h _ ij))
- rw [add_sub, add_comm] at this
- simpa using this
+theorem bounded (f : CauSeq β abv) : ∃ r, ∀ i, abv (f i) < r := f.2.bounded
#align cau_seq.bounded CauSeq.bounded
-theorem bounded' (f : CauSeq β abv) (x : α) : ∃ r > x, ∀ i, abv (f i) < r :=
- let ⟨r, h⟩ := f.bounded
- ⟨max r (x + 1), lt_of_lt_of_le (lt_add_one _) (le_max_right _ _), fun i =>
- lt_of_lt_of_le (h i) (le_max_left _ _)⟩
+theorem bounded' (f : CauSeq β abv) (x : α) : ∃ r > x, ∀ i, abv (f i) < r := f.2.bounded' x
#align cau_seq.bounded' CauSeq.bounded'
instance : Add (CauSeq β abv) :=
@@ -216,8 +233,7 @@ theorem add_apply (f g : CauSeq β abv) (i : ℕ) : (f + g) i = f i + g i :=
variable (abv)
/-- The constant Cauchy sequence. -/
-def const (x : β) : CauSeq β abv :=
- ⟨fun _ => x, fun ε ε0 => ⟨0, fun j _ => by simpa [abv_zero] using ε0⟩⟩
+def const (x : β) : CauSeq β abv := ⟨fun _ ↦ x, IsCauSeq.const _⟩
#align cau_seq.const CauSeq.const
variable {abv}
@@ -282,16 +298,7 @@ theorem const_add (x y : β) : const (x + y) = const x + const y :=
rfl
#align cau_seq.const_add CauSeq.const_add
-instance : Mul (CauSeq β abv) :=
- ⟨fun f g =>
- ⟨f * g, fun _ ε0 =>
- let ⟨_, _, hF⟩ := f.bounded' 0
- let ⟨_, _, hG⟩ := g.bounded' 0
- let ⟨_, δ0, Hδ⟩ := rat_mul_continuous_lemma abv ε0
- let ⟨i, H⟩ := exists_forall_ge_and (f.cauchy₃ δ0) (g.cauchy₃ δ0)
- ⟨i, fun j ij =>
- let ⟨H₁, H₂⟩ := H _ le_rfl
- Hδ (hF j) (hG i) (H₁ _ ij) (H₂ _ ij)⟩⟩⟩
+instance : Mul (CauSeq β abv) := ⟨fun f g ↦ ⟨f * g, f.2.mul g.2⟩⟩
@[simp, norm_cast]
theorem coe_mul (f g : CauSeq β abv) : ⇑(f * g) = (f : ℕ → β) * g :=
@@ -307,8 +314,7 @@ theorem const_mul (x y : β) : const (x * y) = const x * const y :=
rfl
#align cau_seq.const_mul CauSeq.const_mul
-instance : Neg (CauSeq β abv) :=
- ⟨fun f => ofEq (const (-1) * f) (fun x => -f x) fun i => by simp⟩
+instance : Neg (CauSeq β abv) := ⟨fun f ↦ ⟨-f, f.2.neg⟩⟩
@[simp, norm_cast]
theorem coe_neg (f : CauSeq β abv) : ⇑(-f) = -f :=
@[gcongr]
tags around (#9393)
import Mathlib.Tactic.GCongr.Core
to Algebra/Order/Ring/Lemmas
.@[gcongr]
tags next to the lemmas.See Zulip thread
Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>
@@ -5,6 +5,7 @@ Authors: Mario Carneiro
-/
import Mathlib.Algebra.Order.AbsoluteValue
import Mathlib.Algebra.Order.Group.MinMax
+import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.GroupTheory.GroupAction.Pi
import Mathlib.GroupTheory.GroupAction.Ring
Algebra.GroupPower.Lemmas
(#9411)
Algebra.GroupPower.Lemmas
used to be a big bag of lemmas that made it there on the criterion that they needed "more imports". This was completely untrue, as all lemmas could be moved to earlier files in PRs:
There are several reasons for this:
Algebra.GroupPower.Lemmas
Int
and Nat
lemmas which let us shortcircuit the part of the algebraic order hierarchy on which the corresponding general lemmas restThis PR finishes the job by moving the last few lemmas out of Algebra.GroupPower.Lemmas
, which is therefore deleted.
@@ -1001,3 +1001,5 @@ protected theorem sup_inf_distrib_right (a b c : CauSeq α abs) : a ⊓ b ⊔ c
end Abs
end CauSeq
+
+assert_not_exists Module
@@ -3,10 +3,8 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
-import Mathlib.Algebra.GroupPower.Lemmas
import Mathlib.Algebra.Order.AbsoluteValue
import Mathlib.Algebra.Order.Group.MinMax
-import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.GroupTheory.GroupAction.Pi
import Mathlib.GroupTheory.GroupAction.Ring
@@ -9,6 +9,7 @@ import Mathlib.Algebra.Order.Group.MinMax
import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.GroupTheory.GroupAction.Pi
+import Mathlib.GroupTheory.GroupAction.Ring
import Mathlib.Init.Align
import Mathlib.Tactic.GCongr
import Mathlib.Tactic.Ring
@@ -407,7 +407,7 @@ instance ring : Ring (CauSeq β abv) :=
instance {β : Type*} [CommRing β] {abv : β → α} [IsAbsoluteValue abv] : CommRing (CauSeq β abv) :=
{ CauSeq.ring with
- mul_comm := fun a b => ext $ fun n => by simp [mul_left_comm, mul_comm] }
+ mul_comm := fun a b => ext fun n => by simp [mul_left_comm, mul_comm] }
/-- `LimZero f` holds when `f` approaches 0. -/
def LimZero {abv : β → α} (f : CauSeq β abv) : Prop :=
∃ x ∈ s, _
instead of ∃ (x) (_ : x ∈ s), _
(#9184)
Search for [∀∃].*(_
and manually replace some occurrences with more readable versions.
In case of ∀
, the new expressions are defeq to the old ones.
In case of ∃
, they differ by exists_prop
.
In some rare cases, golf proofs that needed fixing.
@@ -170,7 +170,7 @@ variable [IsAbsoluteValue abv]
-- see Note [nolint_ge]
-- @[nolint ge_or_gt] -- Porting note: restore attribute
theorem cauchy₂ (f : CauSeq β abv) {ε} :
- 0 < ε → ∃ i, ∀ (j) (_ : j ≥ i) (k) (_ : k ≥ i), abv (f j - f k) < ε :=
+ 0 < ε → ∃ i, ∀ j ≥ i, ∀ k ≥ i, abv (f j - f k) < ε :=
f.2.cauchy₂
#align cau_seq.cauchy₂ CauSeq.cauchy₂
@@ -499,7 +499,8 @@ theorem abv_pos_of_not_limZero {f : CauSeq β abv} (hf : ¬LimZero f) :
haveI := Classical.propDecidable
by_contra nk
refine' hf fun ε ε0 => _
- simp [not_forall] at nk
+ simp? [not_forall] at nk says
+ simp only [gt_iff_lt, ge_iff_le, not_exists, not_and, not_forall, not_le, exists_prop] at nk
cases' f.cauchy₃ (half_pos ε0) with i hi
rcases nk _ (half_pos ε0) i with ⟨j, ij, hj⟩
refine' ⟨j, fun k jk => _⟩
Many proofs use the "stream of consciousness" style from Lean 3, rather than have ... :=
or suffices ... from/by
.
This PR updates a fraction of these to the preferred Lean 4 style.
I think a good goal would be to delete the "deferred" versions of have
, suffices
, and let
at the bottom of Mathlib.Tactic.Have
(Anyone who would like to contribute more cleanup is welcome to push directly to this branch.)
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -66,8 +66,8 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
replace ha₁ := lt_of_lt_of_le ha₁ (le_trans (le_max_left _ K₂) (le_max_right 1 _))
replace hb₂ := lt_of_lt_of_le hb₂ (le_trans (le_max_right K₁ _) (le_max_right 1 _))
set M := max 1 (max K₁ K₂)
- have : abv (a₁ - b₁) * abv b₂ + abv (a₂ - b₂) * abv a₁ < ε / 2 / M * M + ε / 2 / M * M
- · gcongr
+ have : abv (a₁ - b₁) * abv b₂ + abv (a₂ - b₂) * abv a₁ < ε / 2 / M * M + ε / 2 / M * M := by
+ gcongr
rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
simpa [sub_eq_add_neg, mul_add, add_mul, add_left_comm] using
lt_of_le_of_lt (abv_add abv _ _) this
As noted on Zulip, a from-scratch build of mathlib after lake exe cache get
will compile all of Std
due to some unnecessary imports. With a few well chosen import reductions we only end up having to compile ~20 files instead of ~300 files (compile meaning Compiling
, generating the arch-dependent .o
files that are not in the cache).
@@ -9,6 +9,7 @@ import Mathlib.Algebra.Order.Group.MinMax
import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.GroupTheory.GroupAction.Pi
+import Mathlib.Init.Align
import Mathlib.Tactic.GCongr
import Mathlib.Tactic.Ring
Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.
The intent of this PR is to make autoImplicit
opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true
in the few files that rely on it.
That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.
I claim that many of the uses of autoImplicit
in these files are accidental; situations such as:
variables
are in scope, but pasting the lemma in the wrong sectionHaving set_option autoImplicit false
as the default prevents these types of mistake being made in the 90% of files where autoImplicit
s are not used at all, and causes them to be caught by CI during review.
I think there were various points during the port where we encouraged porters to delete the universes u v
lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.
A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18
as the no:dontcare:yes
vote ratio.
While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true
has been placed locally within a section, rather than at the top of the file.
@@ -33,6 +33,7 @@ This is a concrete implementation that is useful for simplicity and computabilit
sequence, cauchy, abs val, absolute value
-/
+set_option autoImplicit true
open IsAbsoluteValue
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -71,7 +71,7 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
lt_of_le_of_lt (abv_add abv _ _) this
#align rat_mul_continuous_lemma rat_mul_continuous_lemma
-theorem rat_inv_continuous_lemma {β : Type _} [DivisionRing β] (abv : β → α) [IsAbsoluteValue abv]
+theorem rat_inv_continuous_lemma {β : Type*} [DivisionRing β] (abv : β → α) [IsAbsoluteValue abv]
{ε K : α} (ε0 : 0 < ε) (K0 : 0 < K) :
∃ δ > 0, ∀ {a b : β}, K ≤ abv a → K ≤ abv b → abv (a - b) < δ → abv (a⁻¹ - b⁻¹) < ε := by
refine' ⟨K * ε * K, mul_pos (mul_pos K0 ε0) K0, fun {a b} ha hb h => _⟩
@@ -88,7 +88,7 @@ theorem rat_inv_continuous_lemma {β : Type _} [DivisionRing β] (abv : β →
end
/-- A sequence is Cauchy if the distance between its entries tends to zero. -/
-def IsCauSeq {α : Type _} [LinearOrderedField α] {β : Type _} [Ring β] (abv : β → α) (f : ℕ → β) :
+def IsCauSeq {α : Type*} [LinearOrderedField α] {β : Type*} [Ring β] (abv : β → α) (f : ℕ → β) :
Prop :=
∀ ε > 0, ∃ i, ∀ j ≥ i, abv (f j - f i) < ε
#align is_cau_seq IsCauSeq
@@ -125,7 +125,7 @@ end IsCauSeq
/-- `CauSeq β abv` is the type of `β`-valued Cauchy sequences, with respect to the absolute value
function `abv`. -/
-def CauSeq {α : Type _} [LinearOrderedField α] (β : Type _) [Ring β] (abv : β → α) : Type _ :=
+def CauSeq {α : Type*} [LinearOrderedField α] (β : Type*) [Ring β] (abv : β → α) : Type _ :=
{ f : ℕ → β // IsCauSeq abv f }
#align cau_seq CauSeq
@@ -403,7 +403,7 @@ instance ring : Ring (CauSeq β abv) :=
Function.Injective.ring Subtype.val Subtype.val_injective rfl rfl coe_add coe_mul coe_neg coe_sub
(fun _ _ => coe_smul _ _) (fun _ _ => coe_smul _ _) coe_pow (fun _ => rfl) fun _ => rfl
-instance {β : Type _} [CommRing β] {abv : β → α} [IsAbsoluteValue abv] : CommRing (CauSeq β abv) :=
+instance {β : Type*} [CommRing β] {abv : β → α} [IsAbsoluteValue abv] : CommRing (CauSeq β abv) :=
{ CauSeq.ring with
mul_comm := fun a b => ext $ fun n => by simp [mul_left_comm, mul_comm] }
@@ -2,11 +2,6 @@
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-
-! This file was ported from Lean 3 source module data.real.cau_seq
-! leanprover-community/mathlib commit 9116dd6709f303dcf781632e15fdef382b0fc579
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Algebra.GroupPower.Lemmas
import Mathlib.Algebra.Order.AbsoluteValue
@@ -17,6 +12,8 @@ import Mathlib.GroupTheory.GroupAction.Pi
import Mathlib.Tactic.GCongr
import Mathlib.Tactic.Ring
+#align_import data.real.cau_seq from "leanprover-community/mathlib"@"9116dd6709f303dcf781632e15fdef382b0fc579"
+
/-!
# Cauchy sequences
at
and goals (#5387)
Changes are of the form
some_tactic at h⊢
-> some_tactic at h ⊢
some_tactic at h
-> some_tactic at h
@@ -849,7 +849,7 @@ theorem sup_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
| ε, ε0 =>
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij => by
let ⟨H₁, H₂⟩ := H _ ij
- rw [abs_lt] at H₁ H₂⊢
+ rw [abs_lt] at H₁ H₂ ⊢
exact ⟨lt_sup_iff.mpr (Or.inl H₁.1), sup_lt_iff.mpr ⟨H₁.2, H₂.2⟩⟩
#align cau_seq.sup_lim_zero CauSeq.sup_limZero
@@ -857,7 +857,7 @@ theorem inf_limZero {f g : CauSeq α abs} (hf : LimZero f) (hg : LimZero g) : Li
| ε, ε0 =>
(exists_forall_ge_and (hf _ ε0) (hg _ ε0)).imp fun i H j ij => by
let ⟨H₁, H₂⟩ := H _ ij
- rw [abs_lt] at H₁ H₂⊢
+ rw [abs_lt] at H₁ H₂ ⊢
exact ⟨lt_inf_iff.mpr ⟨H₁.1, H₂.1⟩, inf_lt_iff.mpr (Or.inl H₁.2)⟩
#align cau_seq.inf_lim_zero CauSeq.inf_limZero
@@ -14,6 +14,7 @@ import Mathlib.Algebra.Order.Group.MinMax
import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.GroupTheory.GroupAction.Pi
+import Mathlib.Tactic.GCongr
import Mathlib.Tactic.Ring
/-!
@@ -65,9 +66,9 @@ theorem rat_mul_continuous_lemma {ε K₁ K₂ : α} (ε0 : 0 < ε) :
refine' ⟨_, εK, fun {a₁ a₂ b₁ b₂} ha₁ hb₂ h₁ h₂ => _⟩
replace ha₁ := lt_of_lt_of_le ha₁ (le_trans (le_max_left _ K₂) (le_max_right 1 _))
replace hb₂ := lt_of_lt_of_le hb₂ (le_trans (le_max_right K₁ _) (le_max_right 1 _))
- have :=
- add_lt_add (mul_lt_mul' (le_of_lt h₁) hb₂ (abv_nonneg abv _) εK)
- (mul_lt_mul' (le_of_lt h₂) ha₁ (abv_nonneg abv _) εK)
+ set M := max 1 (max K₁ K₂)
+ have : abv (a₁ - b₁) * abv b₂ + abv (a₂ - b₂) * abv a₁ < ε / 2 / M * M + ε / 2 / M * M
+ · gcongr
rw [← abv_mul abv, mul_comm, div_mul_cancel _ (ne_of_gt K0), ← abv_mul abv, add_halves] at this
simpa [sub_eq_add_neg, mul_add, add_mul, add_left_comm] using
lt_of_le_of_lt (abv_add abv _ _) this
@@ -84,7 +85,7 @@ theorem rat_inv_continuous_lemma {β : Type _} [DivisionRing β] (abv : β →
refine' lt_of_mul_lt_mul_left (lt_of_mul_lt_mul_right _ b0.le) a0.le
rw [mul_assoc, inv_mul_cancel_right₀ b0.ne', ← mul_assoc, mul_inv_cancel a0.ne', one_mul]
refine' h.trans_le _
- exact mul_le_mul (mul_le_mul ha le_rfl ε0.le a0.le) hb K0.le (mul_nonneg a0.le ε0.le)
+ gcongr
#align rat_inv_continuous_lemma rat_inv_continuous_lemma
end
@@ -552,9 +553,7 @@ theorem mul_not_equiv_zero {f g : CauSeq _ abv} (hf : ¬f ≈ 0) (hg : ¬g ≈ 0
apply not_le_of_lt hN'
change _ ≤ abv (_ * _)
rw [abv_mul abv]
- apply mul_le_mul <;> try assumption
- · exact le_of_lt ha2
- · exact abv_nonneg abv _
+ gcongr
#align cau_seq.mul_not_equiv_zero CauSeq.mul_not_equiv_zero
theorem const_equiv {x y : β} : const x ≈ const y ↔ x = y :=
This makes a mathlib4 version of mathlib3's tactic.basic
, now called Mathlib.Tactic.Common
, which imports all tactics which do not have significant theory requirements, and then is imported all across the base of the hierarchy.
This ensures that all common tactics are available nearly everywhere in the library, rather than having to be imported one-by-one as you need them.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -15,7 +15,6 @@ import Mathlib.Algebra.Order.Field.Basic
import Mathlib.Algebra.Ring.Pi
import Mathlib.GroupTheory.GroupAction.Pi
import Mathlib.Tactic.Ring
-import Mathlib.Tactic.Set
/-!
# Cauchy sequences
@@ -928,7 +927,6 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
exact ε0.le.trans (h _ hj)
· refine' Setoid.trans (sup_equiv_sup h (Setoid.refl _)) _
rw [CauSeq.sup_idem]
- exact Setoid.refl _
#align cau_seq.sup_eq_right CauSeq.sup_eq_right
protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈ b := by
@@ -941,7 +939,6 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
exact ε0.le.trans (h _ hj)
· refine' Setoid.trans (inf_equiv_inf (Setoid.symm h) (Setoid.refl _)) _
rw [CauSeq.inf_idem]
- exact Setoid.refl _
#align cau_seq.inf_eq_right CauSeq.inf_eq_right
protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by
@@ -928,6 +928,7 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
exact ε0.le.trans (h _ hj)
· refine' Setoid.trans (sup_equiv_sup h (Setoid.refl _)) _
rw [CauSeq.sup_idem]
+ exact Setoid.refl _
#align cau_seq.sup_eq_right CauSeq.sup_eq_right
protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈ b := by
@@ -940,6 +941,7 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
exact ε0.le.trans (h _ hj)
· refine' Setoid.trans (inf_equiv_inf (Setoid.symm h) (Setoid.refl _)) _
rw [CauSeq.inf_idem]
+ exact Setoid.refl _
#align cau_seq.inf_eq_right CauSeq.inf_eq_right
protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by
@@ -928,7 +928,6 @@ protected theorem sup_eq_right {a b : CauSeq α abs} (h : a ≤ b) : a ⊔ b ≈
exact ε0.le.trans (h _ hj)
· refine' Setoid.trans (sup_equiv_sup h (Setoid.refl _)) _
rw [CauSeq.sup_idem]
- exact Setoid.refl _
#align cau_seq.sup_eq_right CauSeq.sup_eq_right
protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈ b := by
@@ -941,7 +940,6 @@ protected theorem inf_eq_right {a b : CauSeq α abs} (h : b ≤ a) : a ⊓ b ≈
exact ε0.le.trans (h _ hj)
· refine' Setoid.trans (inf_equiv_inf (Setoid.symm h) (Setoid.refl _)) _
rw [CauSeq.inf_idem]
- exact Setoid.refl _
#align cau_seq.inf_eq_right CauSeq.inf_eq_right
protected theorem sup_eq_left {a b : CauSeq α abs} (h : b ≤ a) : a ⊔ b ≈ a := by
This PR fixes two things:
align
statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align
). This is often seen in the mathport output after ending calc
blocks.#align
statements. (This was needed for a script I wrote for #3630.)@@ -730,7 +730,6 @@ theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f <
show Pos (h - f) by
convert pos_add_limZero fg (neg_limZero gh) using 1
simp
-
#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eq
theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f < h := by
congr!
and convert
(#2606)
congr!
, convert
, and convert_to
to control parts of the congruence algorithm, in particular transparency settings when applying congruence lemmas.congr!
now applies congruence lemmas with reducible transparency by default. This prevents it from unfolding definitions when applying congruence lemmas. It also now tries both the LHS-biased and RHS-biased simp congruence lemmas, with a configuration option to set which it should try first.HEq
congruence lemma generator that gives each hypothesis access to the proofs of previous hypotheses. This means that if you have an equality ⊢ ⟨a, x⟩ = ⟨b, y⟩
of sigma types, congr!
turns this into goals ⊢ a = b
and ⊢ a = b → HEq x y
(note that congr!
will also auto-introduce a = b
for you in the second goal). This congruence lemma generator applies to more cases than the simp congruence lemma generator does.congr!
(and hence convert
) are more careful about applying lemmas that don't force definitions to unfold. There were a number of cases in mathlib where the implementation of congr
was being abused to unfold definitions.set_option trace.congr! true
you can see what congr!
sees when it is deciding on congruence lemmas.convert_to
to do using 1
when there is no using
clause, to match its documentation.Note that congr!
is more capable than congr
at finding a way to equate left-hand sides and right-hand sides, so you will frequently need to limit its depth with a using
clause. However, there is also a new heuristic to prevent considering unlikely-to-be-provable type equalities (controlled by the typeEqs
option), which can help limit the depth automatically.
There is also a predefined configuration that you can invoke with, for example, convert (config := .unfoldSameFun) h
, that causes it to behave more like congr
, including using default transparency when unfolding.
@@ -728,7 +728,7 @@ instance : LE (CauSeq α abs) :=
theorem lt_of_lt_of_eq {f g h : CauSeq α abs} (fg : f < g) (gh : g ≈ h) : f < h :=
show Pos (h - f) by
- convert pos_add_limZero fg (neg_limZero gh)
+ convert pos_add_limZero fg (neg_limZero gh) using 1
simp
#align cau_seq.lt_of_lt_of_eq CauSeq.lt_of_lt_of_eq
@@ -740,7 +740,7 @@ theorem lt_of_eq_of_lt {f g h : CauSeq α abs} (fg : f ≈ g) (gh : g < h) : f <
theorem lt_trans {f g h : CauSeq α abs} (fg : f < g) (gh : g < h) : f < h :=
show Pos (h - f) by
- convert add_pos fg gh
+ convert add_pos fg gh using 1
simp
#align cau_seq.lt_trans CauSeq.lt_trans
@@ -824,14 +824,14 @@ theorem rat_inf_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
(abs_min_sub_min_le_max _ _ _ _).trans_lt (max_lt h₁ h₂)
#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemma
-instance : HasSup (CauSeq α abs) :=
+instance : Sup (CauSeq α abs) :=
⟨fun f g =>
⟨f ⊔ g, fun _ ε0 =>
(exists_forall_ge_and (f.cauchy₃ ε0) (g.cauchy₃ ε0)).imp fun _ H _ ij =>
let ⟨H₁, H₂⟩ := H _ le_rfl
rat_sup_continuous_lemma (H₁ _ ij) (H₂ _ ij)⟩⟩
-instance : HasInf (CauSeq α abs) :=
+instance : Inf (CauSeq α abs) :=
⟨fun f g =>
⟨f ⊓ g, fun _ ε0 =>
(exists_forall_ge_and (f.cauchy₃ ε0) (g.cauchy₃ ε0)).imp fun _ H _ ij =>
@@ -816,13 +816,13 @@ theorem exists_lt (f : CauSeq α abs) : ∃ a : α, const a < f :=
theorem rat_sup_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊔ a₂ - b₁ ⊔ b₂) < ε := fun h₁ h₂ =>
(abs_max_sub_max_le_max _ _ _ _).trans_lt (max_lt h₁ h₂)
-#align cau_seq.rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemma
+#align rat_sup_continuous_lemma CauSeq.rat_sup_continuous_lemma
-- so named to match `rat_add_continuous_lemma`
theorem rat_inf_continuous_lemma {ε : α} {a₁ a₂ b₁ b₂ : α} :
abs (a₁ - b₁) < ε → abs (a₂ - b₂) < ε → abs (a₁ ⊓ a₂ - b₁ ⊓ b₂) < ε := fun h₁ h₂ =>
(abs_min_sub_min_le_max _ _ _ _).trans_lt (max_lt h₁ h₂)
-#align cau_seq.rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemma
+#align rat_inf_continuous_lemma CauSeq.rat_inf_continuous_lemma
instance : HasSup (CauSeq α abs) :=
⟨fun f g =>
Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com> Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com> Co-authored-by: Chris Hughes <33847686+ChrisHughes24@users.noreply.github.com>
The unported dependencies are