data.set.intervals.disjointMathlib.Data.Set.Intervals.Disjoint

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -188,7 +188,7 @@ theorem Ioc_disjoint_Ioc : Disjoint (Ioc a₁ a₂) (Ioc b₁ b₂) ↔ min a₂
 theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x₂) (Ico y₁ y₂)) (hx : x₁ < x₂)
     (h2 : x₂ ∈ Ico y₁ y₂) : y₁ = x₂ :=
   by
-  rw [Ico_disjoint_Ico, min_eq_left (le_of_lt h2.2), le_max_iff] at h 
+  rw [Ico_disjoint_Ico, min_eq_left (le_of_lt h2.2), le_max_iff] at h
   apply le_antisymm h2.1
   exact h.elim (fun h => absurd hx (not_lt_of_le h)) id
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 Floris van Doorn. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yury Kudryashov
 -/
-import Mathbin.Data.Set.Lattice
+import Data.Set.Lattice
 
 #align_import data.set.intervals.disjoint from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2019 Floris van Doorn. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yury Kudryashov
-
-! This file was ported from Lean 3 source module data.set.intervals.disjoint
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.Set.Lattice
 
+#align_import data.set.intervals.disjoint from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Extra lemmas about intervals
 
Diff
@@ -36,35 +36,47 @@ section Preorder
 
 variable [Preorder α] {a b c : α}
 
+#print Set.Iic_disjoint_Ioi /-
 @[simp]
 theorem Iic_disjoint_Ioi (h : a ≤ b) : Disjoint (Iic a) (Ioi b) :=
   disjoint_left.mpr fun x ha hb => (h.trans_lt hb).not_le ha
 #align set.Iic_disjoint_Ioi Set.Iic_disjoint_Ioi
+-/
 
+#print Set.Iic_disjoint_Ioc /-
 @[simp]
 theorem Iic_disjoint_Ioc (h : a ≤ b) : Disjoint (Iic a) (Ioc b c) :=
   (Iic_disjoint_Ioi h).mono le_rfl fun _ => And.left
 #align set.Iic_disjoint_Ioc Set.Iic_disjoint_Ioc
+-/
 
+#print Set.Ioc_disjoint_Ioc_same /-
 @[simp]
 theorem Ioc_disjoint_Ioc_same {a b c : α} : Disjoint (Ioc a b) (Ioc b c) :=
   (Iic_disjoint_Ioc (le_refl b)).mono (fun _ => And.right) le_rfl
 #align set.Ioc_disjoint_Ioc_same Set.Ioc_disjoint_Ioc_same
+-/
 
+#print Set.Ico_disjoint_Ico_same /-
 @[simp]
 theorem Ico_disjoint_Ico_same {a b c : α} : Disjoint (Ico a b) (Ico b c) :=
   disjoint_left.mpr fun x hab hbc => hab.2.not_le hbc.1
 #align set.Ico_disjoint_Ico_same Set.Ico_disjoint_Ico_same
+-/
 
+#print Set.Ici_disjoint_Iic /-
 @[simp]
 theorem Ici_disjoint_Iic : Disjoint (Ici a) (Iic b) ↔ ¬a ≤ b := by
   rw [Set.disjoint_iff_inter_eq_empty, Ici_inter_Iic, Icc_eq_empty_iff]
 #align set.Ici_disjoint_Iic Set.Ici_disjoint_Iic
+-/
 
+#print Set.Iic_disjoint_Ici /-
 @[simp]
 theorem Iic_disjoint_Ici : Disjoint (Iic a) (Ici b) ↔ ¬b ≤ a :=
   disjoint_comm.trans Ici_disjoint_Iic
 #align set.Iic_disjoint_Ici Set.Iic_disjoint_Ici
+-/
 
 #print Set.iUnion_Iic /-
 @[simp]
@@ -156,19 +168,24 @@ section LinearOrder
 
 variable [LinearOrder α] {a₁ a₂ b₁ b₂ : α}
 
+#print Set.Ico_disjoint_Ico /-
 @[simp]
 theorem Ico_disjoint_Ico : Disjoint (Ico a₁ a₂) (Ico b₁ b₂) ↔ min a₂ b₂ ≤ max a₁ b₁ := by
   simp_rw [Set.disjoint_iff_inter_eq_empty, Ico_inter_Ico, Ico_eq_empty_iff, inf_eq_min, sup_eq_max,
     not_lt]
 #align set.Ico_disjoint_Ico Set.Ico_disjoint_Ico
+-/
 
+#print Set.Ioc_disjoint_Ioc /-
 @[simp]
 theorem Ioc_disjoint_Ioc : Disjoint (Ioc a₁ a₂) (Ioc b₁ b₂) ↔ min a₂ b₂ ≤ max a₁ b₁ :=
   by
   have h : _ ↔ min (toDual a₁) (toDual b₁) ≤ max (toDual a₂) (toDual b₂) := Ico_disjoint_Ico
   simpa only [dual_Ico] using h
 #align set.Ioc_disjoint_Ioc Set.Ioc_disjoint_Ioc
+-/
 
+#print Set.eq_of_Ico_disjoint /-
 /-- If two half-open intervals are disjoint and the endpoint of one lies in the other,
   then it must be equal to the endpoint of the other. -/
 theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x₂) (Ico y₁ y₂)) (hx : x₁ < x₂)
@@ -178,6 +195,7 @@ theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x
   apply le_antisymm h2.1
   exact h.elim (fun h => absurd hx (not_lt_of_le h)) id
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
+-/
 
 #print Set.iUnion_Ico_eq_Iio_self_iff /-
 @[simp]
@@ -282,27 +300,35 @@ theorem IsLUB.biUnion_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : (⋃ x
 #align is_lub.bUnion_Iic_eq_Iic IsLUB.biUnion_Iic_eq_Iic
 -/
 
+#print iUnion_Ici_eq_Ioi_iInf /-
 theorem iUnion_Ici_eq_Ioi_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_least_elem : (⨅ i, f i) ∉ range f) : (⋃ i : ι, Ici (f i)) = Ioi (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ioi (@isGLB_iInf _ _ _ f) no_least_elem, mem_range,
     Union_exists, Union_Union_eq']
 #align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInf
+-/
 
+#print iUnion_Iic_eq_Iio_iSup /-
 theorem iUnion_Iic_eq_Iio_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_greatest_elem : (⨆ i, f i) ∉ range f) : (⋃ i : ι, Iic (f i)) = Iio (⨆ i, f i) :=
   @iUnion_Ici_eq_Ioi_iInf ι (OrderDual R) _ f no_greatest_elem
 #align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSup
+-/
 
+#print iUnion_Ici_eq_Ici_iInf /-
 theorem iUnion_Ici_eq_Ici_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_least_elem : (⨅ i, f i) ∈ range f) : (⋃ i : ι, Ici (f i)) = Ici (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ici (@isGLB_iInf _ _ _ f) has_least_elem, mem_range,
     Union_exists, Union_Union_eq']
 #align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInf
+-/
 
+#print iUnion_Iic_eq_Iic_iSup /-
 theorem iUnion_Iic_eq_Iic_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_greatest_elem : (⨆ i, f i) ∈ range f) : (⋃ i : ι, Iic (f i)) = Iic (⨆ i, f i) :=
   @iUnion_Ici_eq_Ici_iInf ι (OrderDual R) _ f has_greatest_elem
 #align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSup
+-/
 
 end UnionIxx
 
Diff
@@ -174,7 +174,7 @@ theorem Ioc_disjoint_Ioc : Disjoint (Ioc a₁ a₂) (Ioc b₁ b₂) ↔ min a₂
 theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x₂) (Ico y₁ y₂)) (hx : x₁ < x₂)
     (h2 : x₂ ∈ Ico y₁ y₂) : y₁ = x₂ :=
   by
-  rw [Ico_disjoint_Ico, min_eq_left (le_of_lt h2.2), le_max_iff] at h
+  rw [Ico_disjoint_Ico, min_eq_left (le_of_lt h2.2), le_max_iff] at h 
   apply le_antisymm h2.1
   exact h.elim (fun h => absurd hx (not_lt_of_le h)) id
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
Diff
@@ -108,35 +108,47 @@ theorem iUnion_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
 #align set.Union_Ico_left Set.iUnion_Ico_left
 -/
 
+#print Set.iUnion_Iio /-
 @[simp]
 theorem iUnion_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
   iUnion_eq_univ_iff.2 exists_gt
 #align set.Union_Iio Set.iUnion_Iio
+-/
 
+#print Set.iUnion_Ioi /-
 @[simp]
 theorem iUnion_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
   iUnion_eq_univ_iff.2 exists_lt
 #align set.Union_Ioi Set.iUnion_Ioi
+-/
 
+#print Set.iUnion_Ico_right /-
 @[simp]
 theorem iUnion_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
   simp only [← Ici_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
 #align set.Union_Ico_right Set.iUnion_Ico_right
+-/
 
+#print Set.iUnion_Ioo_right /-
 @[simp]
 theorem iUnion_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
   simp only [← Ioi_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
 #align set.Union_Ioo_right Set.iUnion_Ioo_right
+-/
 
+#print Set.iUnion_Ioc_left /-
 @[simp]
 theorem iUnion_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
   simp only [← Ioi_inter_Iic, ← Union_inter, Union_Ioi, univ_inter]
 #align set.Union_Ioc_left Set.iUnion_Ioc_left
+-/
 
+#print Set.iUnion_Ioo_left /-
 @[simp]
 theorem iUnion_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
   simp only [← Ioi_inter_Iio, ← Union_inter, Union_Ioi, univ_inter]
 #align set.Union_Ioo_left Set.iUnion_Ioo_left
+-/
 
 end Preorder
 
@@ -167,29 +179,37 @@ theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x
   exact h.elim (fun h => absurd hx (not_lt_of_le h)) id
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
 
+#print Set.iUnion_Ico_eq_Iio_self_iff /-
 @[simp]
 theorem iUnion_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ico (f i) a) = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
 #align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iff
+-/
 
+#print Set.iUnion_Ioc_eq_Ioi_self_iff /-
 @[simp]
 theorem iUnion_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ioc a (f i)) = Ioi a ↔ ∀ x, a < x → ∃ i, x ≤ f i := by
   simp [← Ioi_inter_Iic, ← inter_Union, subset_def]
 #align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iff
+-/
 
+#print Set.biUnion_Ico_eq_Iio_self_iff /-
 @[simp]
 theorem biUnion_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ico (f i hi) a) = Iio a ↔ ∀ x < a, ∃ i hi, f i hi ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
 #align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iff
+-/
 
+#print Set.biUnion_Ioc_eq_Ioi_self_iff /-
 @[simp]
 theorem biUnion_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ioc a (f i hi)) = Ioi a ↔ ∀ x, a < x → ∃ i hi, x ≤ f i hi := by
   simp [← Ioi_inter_Iic, ← inter_Union, subset_def]
 #align set.bUnion_Ioc_eq_Ioi_self_iff Set.biUnion_Ioc_eq_Ioi_self_iff
+-/
 
 end LinearOrder
 
Diff
@@ -36,67 +36,31 @@ section Preorder
 
 variable [Preorder α] {a b c : α}
 
-/- warning: set.Iic_disjoint_Ioi -> Set.Iic_disjoint_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioi.{u1} α _inst_1 b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioi.{u1} α _inst_1 b))
-Case conversion may be inaccurate. Consider using '#align set.Iic_disjoint_Ioi Set.Iic_disjoint_Ioiₓ'. -/
 @[simp]
 theorem Iic_disjoint_Ioi (h : a ≤ b) : Disjoint (Iic a) (Ioi b) :=
   disjoint_left.mpr fun x ha hb => (h.trans_lt hb).not_le ha
 #align set.Iic_disjoint_Ioi Set.Iic_disjoint_Ioi
 
-/- warning: set.Iic_disjoint_Ioc -> Set.Iic_disjoint_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioc.{u1} α _inst_1 b c))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioc.{u1} α _inst_1 b c))
-Case conversion may be inaccurate. Consider using '#align set.Iic_disjoint_Ioc Set.Iic_disjoint_Iocₓ'. -/
 @[simp]
 theorem Iic_disjoint_Ioc (h : a ≤ b) : Disjoint (Iic a) (Ioc b c) :=
   (Iic_disjoint_Ioi h).mono le_rfl fun _ => And.left
 #align set.Iic_disjoint_Ioc Set.Iic_disjoint_Ioc
 
-/- warning: set.Ioc_disjoint_Ioc_same -> Set.Ioc_disjoint_Ioc_same is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ioc.{u1} α _inst_1 a b) (Set.Ioc.{u1} α _inst_1 b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ioc.{u1} α _inst_1 a b) (Set.Ioc.{u1} α _inst_1 b c)
-Case conversion may be inaccurate. Consider using '#align set.Ioc_disjoint_Ioc_same Set.Ioc_disjoint_Ioc_sameₓ'. -/
 @[simp]
 theorem Ioc_disjoint_Ioc_same {a b c : α} : Disjoint (Ioc a b) (Ioc b c) :=
   (Iic_disjoint_Ioc (le_refl b)).mono (fun _ => And.right) le_rfl
 #align set.Ioc_disjoint_Ioc_same Set.Ioc_disjoint_Ioc_same
 
-/- warning: set.Ico_disjoint_Ico_same -> Set.Ico_disjoint_Ico_same is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ico.{u1} α _inst_1 a b) (Set.Ico.{u1} α _inst_1 b c)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ico.{u1} α _inst_1 a b) (Set.Ico.{u1} α _inst_1 b c)
-Case conversion may be inaccurate. Consider using '#align set.Ico_disjoint_Ico_same Set.Ico_disjoint_Ico_sameₓ'. -/
 @[simp]
 theorem Ico_disjoint_Ico_same {a b c : α} : Disjoint (Ico a b) (Ico b c) :=
   disjoint_left.mpr fun x hab hbc => hab.2.not_le hbc.1
 #align set.Ico_disjoint_Ico_same Set.Ico_disjoint_Ico_same
 
-/- warning: set.Ici_disjoint_Iic -> Set.Ici_disjoint_Iic is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ici.{u1} α _inst_1 a) (Set.Iic.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ici.{u1} α _inst_1 a) (Set.Iic.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))
-Case conversion may be inaccurate. Consider using '#align set.Ici_disjoint_Iic Set.Ici_disjoint_Iicₓ'. -/
 @[simp]
 theorem Ici_disjoint_Iic : Disjoint (Ici a) (Iic b) ↔ ¬a ≤ b := by
   rw [Set.disjoint_iff_inter_eq_empty, Ici_inter_Iic, Icc_eq_empty_iff]
 #align set.Ici_disjoint_Iic Set.Ici_disjoint_Iic
 
-/- warning: set.Iic_disjoint_Ici -> Set.Iic_disjoint_Ici is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ici.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Iic.{u1} α _inst_1 a) (Set.Ici.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))
-Case conversion may be inaccurate. Consider using '#align set.Iic_disjoint_Ici Set.Iic_disjoint_Iciₓ'. -/
 @[simp]
 theorem Iic_disjoint_Ici : Disjoint (Iic a) (Ici b) ↔ ¬b ≤ a :=
   disjoint_comm.trans Ici_disjoint_Iic
@@ -144,67 +108,31 @@ theorem iUnion_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
 #align set.Union_Ico_left Set.iUnion_Ico_left
 -/
 
-/- warning: set.Union_Iio -> Set.iUnion_Iio is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Iio.{u1} α _inst_1 a)) (Set.univ.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Iio.{u1} α _inst_1 a)) (Set.univ.{u1} α)
-Case conversion may be inaccurate. Consider using '#align set.Union_Iio Set.iUnion_Iioₓ'. -/
 @[simp]
 theorem iUnion_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
   iUnion_eq_univ_iff.2 exists_gt
 #align set.Union_Iio Set.iUnion_Iio
 
-/- warning: set.Union_Ioi -> Set.iUnion_Ioi is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioi.{u1} α _inst_1 a)) (Set.univ.{u1} α)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioi.{u1} α _inst_1 a)) (Set.univ.{u1} α)
-Case conversion may be inaccurate. Consider using '#align set.Union_Ioi Set.iUnion_Ioiₓ'. -/
 @[simp]
 theorem iUnion_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
   iUnion_eq_univ_iff.2 exists_lt
 #align set.Union_Ioi Set.iUnion_Ioi
 
-/- warning: set.Union_Ico_right -> Set.iUnion_Ico_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ico.{u1} α _inst_1 a b)) (Set.Ici.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ico.{u1} α _inst_1 a b)) (Set.Ici.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.Union_Ico_right Set.iUnion_Ico_rightₓ'. -/
 @[simp]
 theorem iUnion_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
   simp only [← Ici_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
 #align set.Union_Ico_right Set.iUnion_Ico_right
 
-/- warning: set.Union_Ioo_right -> Set.iUnion_Ioo_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Ioi.{u1} α _inst_1 a)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Ioi.{u1} α _inst_1 a)
-Case conversion may be inaccurate. Consider using '#align set.Union_Ioo_right Set.iUnion_Ioo_rightₓ'. -/
 @[simp]
 theorem iUnion_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
   simp only [← Ioi_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
 #align set.Union_Ioo_right Set.iUnion_Ioo_right
 
-/- warning: set.Union_Ioc_left -> Set.iUnion_Ioc_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioc.{u1} α _inst_1 a b)) (Set.Iic.{u1} α _inst_1 b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioc.{u1} α _inst_1 a b)) (Set.Iic.{u1} α _inst_1 b)
-Case conversion may be inaccurate. Consider using '#align set.Union_Ioc_left Set.iUnion_Ioc_leftₓ'. -/
 @[simp]
 theorem iUnion_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
   simp only [← Ioi_inter_Iic, ← Union_inter, Union_Ioi, univ_inter]
 #align set.Union_Ioc_left Set.iUnion_Ioc_left
 
-/- warning: set.Union_Ioo_left -> Set.iUnion_Ioo_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Iio.{u1} α _inst_1 b)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Iio.{u1} α _inst_1 b)
-Case conversion may be inaccurate. Consider using '#align set.Union_Ioo_left Set.iUnion_Ioo_leftₓ'. -/
 @[simp]
 theorem iUnion_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
   simp only [← Ioi_inter_Iio, ← Union_inter, Union_Ioi, univ_inter]
@@ -216,24 +144,12 @@ section LinearOrder
 
 variable [LinearOrder α] {a₁ a₂ b₁ b₂ : α}
 
-/- warning: set.Ico_disjoint_Ico -> Set.Ico_disjoint_Ico is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a₁ a₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b₁ b₂)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (LinearOrder.min.{u1} α _inst_1 a₂ b₂) (LinearOrder.max.{u1} α _inst_1 a₁ b₁))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a₁ a₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b₁ b₂)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a₂ b₂) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a₁ b₁))
-Case conversion may be inaccurate. Consider using '#align set.Ico_disjoint_Ico Set.Ico_disjoint_Icoₓ'. -/
 @[simp]
 theorem Ico_disjoint_Ico : Disjoint (Ico a₁ a₂) (Ico b₁ b₂) ↔ min a₂ b₂ ≤ max a₁ b₁ := by
   simp_rw [Set.disjoint_iff_inter_eq_empty, Ico_inter_Ico, Ico_eq_empty_iff, inf_eq_min, sup_eq_max,
     not_lt]
 #align set.Ico_disjoint_Ico Set.Ico_disjoint_Ico
 
-/- warning: set.Ioc_disjoint_Ioc -> Set.Ioc_disjoint_Ioc is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a₁ a₂) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b₁ b₂)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (LinearOrder.min.{u1} α _inst_1 a₂ b₂) (LinearOrder.max.{u1} α _inst_1 a₁ b₁))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a₁ a₂) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b₁ b₂)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a₂ b₂) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a₁ b₁))
-Case conversion may be inaccurate. Consider using '#align set.Ioc_disjoint_Ioc Set.Ioc_disjoint_Iocₓ'. -/
 @[simp]
 theorem Ioc_disjoint_Ioc : Disjoint (Ioc a₁ a₂) (Ioc b₁ b₂) ↔ min a₂ b₂ ≤ max a₁ b₁ :=
   by
@@ -241,12 +157,6 @@ theorem Ioc_disjoint_Ioc : Disjoint (Ioc a₁ a₂) (Ioc b₁ b₂) ↔ min a₂
   simpa only [dual_Ico] using h
 #align set.Ioc_disjoint_Ioc Set.Ioc_disjoint_Ioc
 
-/- warning: set.eq_of_Ico_disjoint -> Set.eq_of_Ico_disjoint is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {x₁ : α} {x₂ : α} {y₁ : α} {y₂ : α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) x₁ x₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) y₁ y₂)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x₁ x₂) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x₂ (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) y₁ y₂)) -> (Eq.{succ u1} α y₁ x₂)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {x₁ : α} {x₂ : α} {y₁ : α} {y₂ : α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) x₁ x₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) y₁ y₂)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x₁ x₂) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x₂ (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) y₁ y₂)) -> (Eq.{succ u1} α y₁ x₂)
-Case conversion may be inaccurate. Consider using '#align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjointₓ'. -/
 /-- If two half-open intervals are disjoint and the endpoint of one lies in the other,
   then it must be equal to the endpoint of the other. -/
 theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x₂) (Ico y₁ y₂)) (hx : x₁ < x₂)
@@ -257,48 +167,24 @@ theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x
   exact h.elim (fun h => absurd hx (not_lt_of_le h)) id
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
 
-/- warning: set.Union_Ico_eq_Iio_self_iff -> Set.iUnion_Ico_eq_Iio_self_iff is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) (f i) a)) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x a) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (f i) x)))
-but is expected to have type
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (f i) a)) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x a) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (f i) x)))
-Case conversion may be inaccurate. Consider using '#align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iffₓ'. -/
 @[simp]
 theorem iUnion_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ico (f i) a) = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
 #align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iff
 
-/- warning: set.Union_Ioc_eq_Ioi_self_iff -> Set.iUnion_Ioc_eq_Ioi_self_iff is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a (f i))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) a x) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x (f i))))
-but is expected to have type
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a (f i))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a x) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x (f i))))
-Case conversion may be inaccurate. Consider using '#align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iffₓ'. -/
 @[simp]
 theorem iUnion_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ioc a (f i)) = Ioi a ↔ ∀ x, a < x → ∃ i, x ≤ f i := by
   simp [← Ioi_inter_Iic, ← inter_Union, subset_def]
 #align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iff
 
-/- warning: set.bUnion_Ico_eq_Iio_self_iff -> Set.biUnion_Ico_eq_Iio_self_iff is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) (f i hi) a))) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x a) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (f i hi) x))))
-but is expected to have type
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (f i hi) a))) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x a) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (f i hi) x))))
-Case conversion may be inaccurate. Consider using '#align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iffₓ'. -/
 @[simp]
 theorem biUnion_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ico (f i hi) a) = Iio a ↔ ∀ x < a, ∃ i hi, f i hi ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
 #align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iff
 
-/- warning: set.bUnion_Ioc_eq_Ioi_self_iff -> Set.biUnion_Ioc_eq_Ioi_self_iff is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a (f i hi)))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) a x) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x (f i hi)))))
-but is expected to have type
-  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a (f i hi)))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a x) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x (f i hi)))))
-Case conversion may be inaccurate. Consider using '#align set.bUnion_Ioc_eq_Ioi_self_iff Set.biUnion_Ioc_eq_Ioi_self_iffₓ'. -/
 @[simp]
 theorem biUnion_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ioc a (f i hi)) = Ioi a ↔ ∀ x, a < x → ∃ i hi, x ≤ f i hi := by
@@ -376,47 +262,23 @@ theorem IsLUB.biUnion_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : (⋃ x
 #align is_lub.bUnion_Iic_eq_Iic IsLUB.biUnion_Iic_eq_Iic
 -/
 
-/- warning: Union_Ici_eq_Ioi_infi -> iUnion_Ici_eq_Ioi_iInf is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Not (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f))) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Ioi.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
-but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Not (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f))) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Ioi.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInfₓ'. -/
 theorem iUnion_Ici_eq_Ioi_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_least_elem : (⨅ i, f i) ∉ range f) : (⋃ i : ι, Ici (f i)) = Ioi (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ioi (@isGLB_iInf _ _ _ f) no_least_elem, mem_range,
     Union_exists, Union_Union_eq']
 #align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInf
 
-/- warning: Union_Iic_eq_Iio_supr -> iUnion_Iic_eq_Iio_iSup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Not (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f))) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Iio.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
-but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Not (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f))) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Iio.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSupₓ'. -/
 theorem iUnion_Iic_eq_Iio_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_greatest_elem : (⨆ i, f i) ∉ range f) : (⋃ i : ι, Iic (f i)) = Iio (⨆ i, f i) :=
   @iUnion_Ici_eq_Ioi_iInf ι (OrderDual R) _ f no_greatest_elem
 #align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSup
 
-/- warning: Union_Ici_eq_Ici_infi -> iUnion_Ici_eq_Ici_iInf is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f)) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
-but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f)) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInfₓ'. -/
 theorem iUnion_Ici_eq_Ici_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_least_elem : (⨅ i, f i) ∈ range f) : (⋃ i : ι, Ici (f i)) = Ici (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ici (@isGLB_iInf _ _ _ f) has_least_elem, mem_range,
     Union_exists, Union_Union_eq']
 #align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInf
 
-/- warning: Union_Iic_eq_Iic_supr -> iUnion_Iic_eq_Iic_iSup is a dubious translation:
-lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f)) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
-but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f)) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSupₓ'. -/
 theorem iUnion_Iic_eq_Iic_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_greatest_elem : (⨆ i, f i) ∈ range f) : (⋃ i : ι, Iic (f i)) = Iic (⨆ i, f i) :=
   @iUnion_Ici_eq_Ici_iInf ι (OrderDual R) _ f has_greatest_elem
Diff
@@ -38,7 +38,7 @@ variable [Preorder α] {a b c : α}
 
 /- warning: set.Iic_disjoint_Ioi -> Set.Iic_disjoint_Ioi is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioi.{u1} α _inst_1 b))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioi.{u1} α _inst_1 b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioi.{u1} α _inst_1 b))
 Case conversion may be inaccurate. Consider using '#align set.Iic_disjoint_Ioi Set.Iic_disjoint_Ioiₓ'. -/
@@ -49,7 +49,7 @@ theorem Iic_disjoint_Ioi (h : a ≤ b) : Disjoint (Iic a) (Ioi b) :=
 
 /- warning: set.Iic_disjoint_Ioc -> Set.Iic_disjoint_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioc.{u1} α _inst_1 b c))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioc.{u1} α _inst_1 b c))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α} {c : α}, (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Iic.{u1} α _inst_1 a) (Set.Ioc.{u1} α _inst_1 b c))
 Case conversion may be inaccurate. Consider using '#align set.Iic_disjoint_Ioc Set.Iic_disjoint_Iocₓ'. -/
@@ -82,7 +82,7 @@ theorem Ico_disjoint_Ico_same {a b c : α} : Disjoint (Ico a b) (Ico b c) :=
 
 /- warning: set.Ici_disjoint_Iic -> Set.Ici_disjoint_Iic is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ici.{u1} α _inst_1 a) (Set.Iic.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ici.{u1} α _inst_1 a) (Set.Iic.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) a b))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ici.{u1} α _inst_1 a) (Set.Iic.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) a b))
 Case conversion may be inaccurate. Consider using '#align set.Ici_disjoint_Iic Set.Ici_disjoint_Iicₓ'. -/
@@ -93,7 +93,7 @@ theorem Ici_disjoint_Iic : Disjoint (Ici a) (Iic b) ↔ ¬a ≤ b := by
 
 /- warning: set.Iic_disjoint_Ici -> Set.Iic_disjoint_Ici is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ici.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Iic.{u1} α _inst_1 a) (Set.Ici.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toHasLe.{u1} α _inst_1) b a))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] {a : α} {b : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Iic.{u1} α _inst_1 a) (Set.Ici.{u1} α _inst_1 b)) (Not (LE.le.{u1} α (Preorder.toLE.{u1} α _inst_1) b a))
 Case conversion may be inaccurate. Consider using '#align set.Iic_disjoint_Ici Set.Iic_disjoint_Iciₓ'. -/
@@ -144,47 +144,71 @@ theorem iUnion_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
 #align set.Union_Ico_left Set.iUnion_Ico_left
 -/
 
-#print Set.iUnion_Iio /-
+/- warning: set.Union_Iio -> Set.iUnion_Iio is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Iio.{u1} α _inst_1 a)) (Set.univ.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Iio.{u1} α _inst_1 a)) (Set.univ.{u1} α)
+Case conversion may be inaccurate. Consider using '#align set.Union_Iio Set.iUnion_Iioₓ'. -/
 @[simp]
 theorem iUnion_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
   iUnion_eq_univ_iff.2 exists_gt
 #align set.Union_Iio Set.iUnion_Iio
--/
 
-#print Set.iUnion_Ioi /-
+/- warning: set.Union_Ioi -> Set.iUnion_Ioi is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioi.{u1} α _inst_1 a)) (Set.univ.{u1} α)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)], Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioi.{u1} α _inst_1 a)) (Set.univ.{u1} α)
+Case conversion may be inaccurate. Consider using '#align set.Union_Ioi Set.iUnion_Ioiₓ'. -/
 @[simp]
 theorem iUnion_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
   iUnion_eq_univ_iff.2 exists_lt
 #align set.Union_Ioi Set.iUnion_Ioi
--/
 
-#print Set.iUnion_Ico_right /-
+/- warning: set.Union_Ico_right -> Set.iUnion_Ico_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ico.{u1} α _inst_1 a b)) (Set.Ici.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ico.{u1} α _inst_1 a b)) (Set.Ici.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.Union_Ico_right Set.iUnion_Ico_rightₓ'. -/
 @[simp]
 theorem iUnion_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
   simp only [← Ici_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
 #align set.Union_Ico_right Set.iUnion_Ico_right
--/
 
-#print Set.iUnion_Ioo_right /-
+/- warning: set.Union_Ioo_right -> Set.iUnion_Ioo_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Ioi.{u1} α _inst_1 a)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMaxOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (a : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (b : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Ioi.{u1} α _inst_1 a)
+Case conversion may be inaccurate. Consider using '#align set.Union_Ioo_right Set.iUnion_Ioo_rightₓ'. -/
 @[simp]
 theorem iUnion_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
   simp only [← Ioi_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
 #align set.Union_Ioo_right Set.iUnion_Ioo_right
--/
 
-#print Set.iUnion_Ioc_left /-
+/- warning: set.Union_Ioc_left -> Set.iUnion_Ioc_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioc.{u1} α _inst_1 a b)) (Set.Iic.{u1} α _inst_1 b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioc.{u1} α _inst_1 a b)) (Set.Iic.{u1} α _inst_1 b)
+Case conversion may be inaccurate. Consider using '#align set.Union_Ioc_left Set.iUnion_Ioc_leftₓ'. -/
 @[simp]
 theorem iUnion_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
   simp only [← Ioi_inter_Iic, ← Union_inter, Union_Ioi, univ_inter]
 #align set.Union_Ioc_left Set.iUnion_Ioc_left
--/
 
-#print Set.iUnion_Ioo_left /-
+/- warning: set.Union_Ioo_left -> Set.iUnion_Ioo_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toHasLt.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Iio.{u1} α _inst_1 b)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : Preorder.{u1} α] [_inst_2 : NoMinOrder.{u1} α (Preorder.toLT.{u1} α _inst_1)] (b : α), Eq.{succ u1} (Set.{u1} α) (Set.iUnion.{u1, succ u1} α α (fun (a : α) => Set.Ioo.{u1} α _inst_1 a b)) (Set.Iio.{u1} α _inst_1 b)
+Case conversion may be inaccurate. Consider using '#align set.Union_Ioo_left Set.iUnion_Ioo_leftₓ'. -/
 @[simp]
 theorem iUnion_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
   simp only [← Ioi_inter_Iio, ← Union_inter, Union_Ioi, univ_inter]
 #align set.Union_Ioo_left Set.iUnion_Ioo_left
--/
 
 end Preorder
 
@@ -194,7 +218,7 @@ variable [LinearOrder α] {a₁ a₂ b₁ b₂ : α}
 
 /- warning: set.Ico_disjoint_Ico -> Set.Ico_disjoint_Ico is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a₁ a₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b₁ b₂)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (LinearOrder.min.{u1} α _inst_1 a₂ b₂) (LinearOrder.max.{u1} α _inst_1 a₁ b₁))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a₁ a₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b₁ b₂)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (LinearOrder.min.{u1} α _inst_1 a₂ b₂) (LinearOrder.max.{u1} α _inst_1 a₁ b₁))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a₁ a₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b₁ b₂)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a₂ b₂) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a₁ b₁))
 Case conversion may be inaccurate. Consider using '#align set.Ico_disjoint_Ico Set.Ico_disjoint_Icoₓ'. -/
@@ -206,7 +230,7 @@ theorem Ico_disjoint_Ico : Disjoint (Ico a₁ a₂) (Ico b₁ b₂) ↔ min a₂
 
 /- warning: set.Ioc_disjoint_Ioc -> Set.Ioc_disjoint_Ioc is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a₁ a₂) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b₁ b₂)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (LinearOrder.min.{u1} α _inst_1 a₂ b₂) (LinearOrder.max.{u1} α _inst_1 a₁ b₁))
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) a₁ a₂) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) b₁ b₂)) (LE.le.{u1} α (Preorder.toHasLe.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) (LinearOrder.min.{u1} α _inst_1 a₂ b₂) (LinearOrder.max.{u1} α _inst_1 a₁ b₁))
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α}, Iff (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) a₁ a₂) (Set.Ioc.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) b₁ b₂)) (LE.le.{u1} α (Preorder.toLE.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) (Min.min.{u1} α (LinearOrder.toMin.{u1} α _inst_1) a₂ b₂) (Max.max.{u1} α (LinearOrder.toMax.{u1} α _inst_1) a₁ b₁))
 Case conversion may be inaccurate. Consider using '#align set.Ioc_disjoint_Ioc Set.Ioc_disjoint_Iocₓ'. -/
@@ -219,7 +243,7 @@ theorem Ioc_disjoint_Ioc : Disjoint (Ioc a₁ a₂) (Ioc b₁ b₂) ↔ min a₂
 
 /- warning: set.eq_of_Ico_disjoint -> Set.eq_of_Ico_disjoint is a dubious translation:
 lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {x₁ : α} {x₂ : α} {y₁ : α} {y₂ : α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) x₁ x₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) y₁ y₂)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x₁ x₂) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x₂ (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) y₁ y₂)) -> (Eq.{succ u1} α y₁ x₂)
+  forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {x₁ : α} {x₂ : α} {y₁ : α} {y₂ : α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) x₁ x₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) y₁ y₂)) -> (LT.lt.{u1} α (Preorder.toHasLt.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1))))) x₁ x₂) -> (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x₂ (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (LinearOrder.toLattice.{u1} α _inst_1)))) y₁ y₂)) -> (Eq.{succ u1} α y₁ x₂)
 but is expected to have type
   forall {α : Type.{u1}} [_inst_1 : LinearOrder.{u1} α] {x₁ : α} {x₂ : α} {y₁ : α} {y₂ : α}, (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) x₁ x₂) (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) y₁ y₂)) -> (LT.lt.{u1} α (Preorder.toLT.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1)))))) x₁ x₂) -> (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x₂ (Set.Ico.{u1} α (PartialOrder.toPreorder.{u1} α (SemilatticeInf.toPartialOrder.{u1} α (Lattice.toSemilatticeInf.{u1} α (DistribLattice.toLattice.{u1} α (instDistribLattice.{u1} α _inst_1))))) y₁ y₂)) -> (Eq.{succ u1} α y₁ x₂)
 Case conversion may be inaccurate. Consider using '#align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjointₓ'. -/
@@ -233,37 +257,53 @@ theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x
   exact h.elim (fun h => absurd hx (not_lt_of_le h)) id
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
 
-#print Set.iUnion_Ico_eq_Iio_self_iff /-
+/- warning: set.Union_Ico_eq_Iio_self_iff -> Set.iUnion_Ico_eq_Iio_self_iff is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) (f i) a)) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x a) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (f i) x)))
+but is expected to have type
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (f i) a)) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x a) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (f i) x)))
+Case conversion may be inaccurate. Consider using '#align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iffₓ'. -/
 @[simp]
 theorem iUnion_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ico (f i) a) = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
 #align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iff
--/
 
-#print Set.iUnion_Ioc_eq_Ioi_self_iff /-
+/- warning: set.Union_Ioc_eq_Ioi_self_iff -> Set.iUnion_Ioc_eq_Ioi_self_iff is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a (f i))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) a x) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x (f i))))
+but is expected to have type
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {f : ι -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a (f i))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a x) -> (Exists.{u1} ι (fun (i : ι) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x (f i))))
+Case conversion may be inaccurate. Consider using '#align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iffₓ'. -/
 @[simp]
 theorem iUnion_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ioc a (f i)) = Ioi a ↔ ∀ x, a < x → ∃ i, x ≤ f i := by
   simp [← Ioi_inter_Iic, ← inter_Union, subset_def]
 #align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iff
--/
 
-#print Set.biUnion_Ico_eq_Iio_self_iff /-
+/- warning: set.bUnion_Ico_eq_Iio_self_iff -> Set.biUnion_Ico_eq_Iio_self_iff is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) (f i hi) a))) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x a) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) (f i hi) x))))
+but is expected to have type
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ico.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) (f i hi) a))) (Set.Iio.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x a) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) (f i hi) x))))
+Case conversion may be inaccurate. Consider using '#align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iffₓ'. -/
 @[simp]
 theorem biUnion_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ico (f i hi) a) = Iio a ↔ ∀ x < a, ∃ i hi, f i hi ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
 #align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iff
--/
 
-#print Set.biUnion_Ioc_eq_Ioi_self_iff /-
+/- warning: set.bUnion_Ioc_eq_Ioi_self_iff -> Set.biUnion_Ioc_eq_Ioi_self_iff is a dubious translation:
+lean 3 declaration is
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a (f i hi)))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1)))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toHasLt.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) a x) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toHasLe.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (LinearOrder.toLattice.{u2} α _inst_1))))) x (f i hi)))))
+but is expected to have type
+  forall {ι : Sort.{u1}} {α : Type.{u2}} [_inst_1 : LinearOrder.{u2} α] {p : ι -> Prop} {f : forall (i : ι), (p i) -> α} {a : α}, Iff (Eq.{succ u2} (Set.{u2} α) (Set.iUnion.{u2, u1} α ι (fun (i : ι) => Set.iUnion.{u2, 0} α (p i) (fun (hi : p i) => Set.Ioc.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a (f i hi)))) (Set.Ioi.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1))))) a)) (forall (x : α), (LT.lt.{u2} α (Preorder.toLT.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) a x) -> (Exists.{u1} ι (fun (i : ι) => Exists.{0} (p i) (fun (hi : p i) => LE.le.{u2} α (Preorder.toLE.{u2} α (PartialOrder.toPreorder.{u2} α (SemilatticeInf.toPartialOrder.{u2} α (Lattice.toSemilatticeInf.{u2} α (DistribLattice.toLattice.{u2} α (instDistribLattice.{u2} α _inst_1)))))) x (f i hi)))))
+Case conversion may be inaccurate. Consider using '#align set.bUnion_Ioc_eq_Ioi_self_iff Set.biUnion_Ioc_eq_Ioi_self_iffₓ'. -/
 @[simp]
 theorem biUnion_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ioc a (f i hi)) = Ioi a ↔ ∀ x, a < x → ∃ i hi, x ≤ f i hi := by
   simp [← Ioi_inter_Iic, ← inter_Union, subset_def]
 #align set.bUnion_Ioc_eq_Ioi_self_iff Set.biUnion_Ioc_eq_Ioi_self_iff
--/
 
 end LinearOrder
 
Diff
@@ -102,88 +102,88 @@ theorem Iic_disjoint_Ici : Disjoint (Iic a) (Ici b) ↔ ¬b ≤ a :=
   disjoint_comm.trans Ici_disjoint_Iic
 #align set.Iic_disjoint_Ici Set.Iic_disjoint_Ici
 
-#print Set.unionᵢ_Iic /-
+#print Set.iUnion_Iic /-
 @[simp]
-theorem unionᵢ_Iic : (⋃ a : α, Iic a) = univ :=
-  unionᵢ_eq_univ_iff.2 fun x => ⟨x, right_mem_Iic⟩
-#align set.Union_Iic Set.unionᵢ_Iic
+theorem iUnion_Iic : (⋃ a : α, Iic a) = univ :=
+  iUnion_eq_univ_iff.2 fun x => ⟨x, right_mem_Iic⟩
+#align set.Union_Iic Set.iUnion_Iic
 -/
 
-#print Set.unionᵢ_Ici /-
+#print Set.iUnion_Ici /-
 @[simp]
-theorem unionᵢ_Ici : (⋃ a : α, Ici a) = univ :=
-  unionᵢ_eq_univ_iff.2 fun x => ⟨x, left_mem_Ici⟩
-#align set.Union_Ici Set.unionᵢ_Ici
+theorem iUnion_Ici : (⋃ a : α, Ici a) = univ :=
+  iUnion_eq_univ_iff.2 fun x => ⟨x, left_mem_Ici⟩
+#align set.Union_Ici Set.iUnion_Ici
 -/
 
-#print Set.unionᵢ_Icc_right /-
+#print Set.iUnion_Icc_right /-
 @[simp]
-theorem unionᵢ_Icc_right (a : α) : (⋃ b, Icc a b) = Ici a := by
+theorem iUnion_Icc_right (a : α) : (⋃ b, Icc a b) = Ici a := by
   simp only [← Ici_inter_Iic, ← inter_Union, Union_Iic, inter_univ]
-#align set.Union_Icc_right Set.unionᵢ_Icc_right
+#align set.Union_Icc_right Set.iUnion_Icc_right
 -/
 
-#print Set.unionᵢ_Ioc_right /-
+#print Set.iUnion_Ioc_right /-
 @[simp]
-theorem unionᵢ_Ioc_right (a : α) : (⋃ b, Ioc a b) = Ioi a := by
+theorem iUnion_Ioc_right (a : α) : (⋃ b, Ioc a b) = Ioi a := by
   simp only [← Ioi_inter_Iic, ← inter_Union, Union_Iic, inter_univ]
-#align set.Union_Ioc_right Set.unionᵢ_Ioc_right
+#align set.Union_Ioc_right Set.iUnion_Ioc_right
 -/
 
-#print Set.unionᵢ_Icc_left /-
+#print Set.iUnion_Icc_left /-
 @[simp]
-theorem unionᵢ_Icc_left (b : α) : (⋃ a, Icc a b) = Iic b := by
+theorem iUnion_Icc_left (b : α) : (⋃ a, Icc a b) = Iic b := by
   simp only [← Ici_inter_Iic, ← Union_inter, Union_Ici, univ_inter]
-#align set.Union_Icc_left Set.unionᵢ_Icc_left
+#align set.Union_Icc_left Set.iUnion_Icc_left
 -/
 
-#print Set.unionᵢ_Ico_left /-
+#print Set.iUnion_Ico_left /-
 @[simp]
-theorem unionᵢ_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
+theorem iUnion_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
   simp only [← Ici_inter_Iio, ← Union_inter, Union_Ici, univ_inter]
-#align set.Union_Ico_left Set.unionᵢ_Ico_left
+#align set.Union_Ico_left Set.iUnion_Ico_left
 -/
 
-#print Set.unionᵢ_Iio /-
+#print Set.iUnion_Iio /-
 @[simp]
-theorem unionᵢ_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
-  unionᵢ_eq_univ_iff.2 exists_gt
-#align set.Union_Iio Set.unionᵢ_Iio
+theorem iUnion_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
+  iUnion_eq_univ_iff.2 exists_gt
+#align set.Union_Iio Set.iUnion_Iio
 -/
 
-#print Set.unionᵢ_Ioi /-
+#print Set.iUnion_Ioi /-
 @[simp]
-theorem unionᵢ_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
-  unionᵢ_eq_univ_iff.2 exists_lt
-#align set.Union_Ioi Set.unionᵢ_Ioi
+theorem iUnion_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
+  iUnion_eq_univ_iff.2 exists_lt
+#align set.Union_Ioi Set.iUnion_Ioi
 -/
 
-#print Set.unionᵢ_Ico_right /-
+#print Set.iUnion_Ico_right /-
 @[simp]
-theorem unionᵢ_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
+theorem iUnion_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
   simp only [← Ici_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
-#align set.Union_Ico_right Set.unionᵢ_Ico_right
+#align set.Union_Ico_right Set.iUnion_Ico_right
 -/
 
-#print Set.unionᵢ_Ioo_right /-
+#print Set.iUnion_Ioo_right /-
 @[simp]
-theorem unionᵢ_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
+theorem iUnion_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
   simp only [← Ioi_inter_Iio, ← inter_Union, Union_Iio, inter_univ]
-#align set.Union_Ioo_right Set.unionᵢ_Ioo_right
+#align set.Union_Ioo_right Set.iUnion_Ioo_right
 -/
 
-#print Set.unionᵢ_Ioc_left /-
+#print Set.iUnion_Ioc_left /-
 @[simp]
-theorem unionᵢ_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
+theorem iUnion_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
   simp only [← Ioi_inter_Iic, ← Union_inter, Union_Ioi, univ_inter]
-#align set.Union_Ioc_left Set.unionᵢ_Ioc_left
+#align set.Union_Ioc_left Set.iUnion_Ioc_left
 -/
 
-#print Set.unionᵢ_Ioo_left /-
+#print Set.iUnion_Ioo_left /-
 @[simp]
-theorem unionᵢ_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
+theorem iUnion_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
   simp only [← Ioi_inter_Iio, ← Union_inter, Union_Ioi, univ_inter]
-#align set.Union_Ioo_left Set.unionᵢ_Ioo_left
+#align set.Union_Ioo_left Set.iUnion_Ioo_left
 -/
 
 end Preorder
@@ -233,36 +233,36 @@ theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x
   exact h.elim (fun h => absurd hx (not_lt_of_le h)) id
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
 
-#print Set.unionᵢ_Ico_eq_Iio_self_iff /-
+#print Set.iUnion_Ico_eq_Iio_self_iff /-
 @[simp]
-theorem unionᵢ_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
+theorem iUnion_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ico (f i) a) = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
-#align set.Union_Ico_eq_Iio_self_iff Set.unionᵢ_Ico_eq_Iio_self_iff
+#align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iff
 -/
 
-#print Set.unionᵢ_Ioc_eq_Ioi_self_iff /-
+#print Set.iUnion_Ioc_eq_Ioi_self_iff /-
 @[simp]
-theorem unionᵢ_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
+theorem iUnion_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ioc a (f i)) = Ioi a ↔ ∀ x, a < x → ∃ i, x ≤ f i := by
   simp [← Ioi_inter_Iic, ← inter_Union, subset_def]
-#align set.Union_Ioc_eq_Ioi_self_iff Set.unionᵢ_Ioc_eq_Ioi_self_iff
+#align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iff
 -/
 
-#print Set.bunionᵢ_Ico_eq_Iio_self_iff /-
+#print Set.biUnion_Ico_eq_Iio_self_iff /-
 @[simp]
-theorem bunionᵢ_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
+theorem biUnion_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ico (f i hi) a) = Iio a ↔ ∀ x < a, ∃ i hi, f i hi ≤ x := by
   simp [← Ici_inter_Iio, ← Union_inter, subset_def]
-#align set.bUnion_Ico_eq_Iio_self_iff Set.bunionᵢ_Ico_eq_Iio_self_iff
+#align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iff
 -/
 
-#print Set.bunionᵢ_Ioc_eq_Ioi_self_iff /-
+#print Set.biUnion_Ioc_eq_Ioi_self_iff /-
 @[simp]
-theorem bunionᵢ_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
+theorem biUnion_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ioc a (f i hi)) = Ioi a ↔ ∀ x, a < x → ∃ i hi, x ≤ f i hi := by
   simp [← Ioi_inter_Iic, ← inter_Union, subset_def]
-#align set.bUnion_Ioc_eq_Ioi_self_iff Set.bunionᵢ_Ioc_eq_Ioi_self_iff
+#align set.bUnion_Ioc_eq_Ioi_self_iff Set.biUnion_Ioc_eq_Ioi_self_iff
 -/
 
 end LinearOrder
@@ -273,36 +273,36 @@ section UnionIxx
 
 variable [LinearOrder α] {s : Set α} {a : α} {f : ι → α}
 
-#print IsGLB.bunionᵢ_Ioi_eq /-
-theorem IsGLB.bunionᵢ_Ioi_eq (h : IsGLB s a) : (⋃ x ∈ s, Ioi x) = Ioi a :=
+#print IsGLB.biUnion_Ioi_eq /-
+theorem IsGLB.biUnion_Ioi_eq (h : IsGLB s a) : (⋃ x ∈ s, Ioi x) = Ioi a :=
   by
   refine' (Union₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ioi_subset_Ioi (h.1 hx)
   · rcases h.exists_between hx with ⟨y, hys, hay, hyx⟩
     exact mem_bUnion hys hyx
-#align is_glb.bUnion_Ioi_eq IsGLB.bunionᵢ_Ioi_eq
+#align is_glb.bUnion_Ioi_eq IsGLB.biUnion_Ioi_eq
 -/
 
-#print IsGLB.unionᵢ_Ioi_eq /-
-theorem IsGLB.unionᵢ_Ioi_eq (h : IsGLB (range f) a) : (⋃ x, Ioi (f x)) = Ioi a :=
-  bunionᵢ_range.symm.trans h.bunionᵢ_Ioi_eq
-#align is_glb.Union_Ioi_eq IsGLB.unionᵢ_Ioi_eq
+#print IsGLB.iUnion_Ioi_eq /-
+theorem IsGLB.iUnion_Ioi_eq (h : IsGLB (range f) a) : (⋃ x, Ioi (f x)) = Ioi a :=
+  biUnion_range.symm.trans h.biUnion_Ioi_eq
+#align is_glb.Union_Ioi_eq IsGLB.iUnion_Ioi_eq
 -/
 
-#print IsLUB.bunionᵢ_Iio_eq /-
-theorem IsLUB.bunionᵢ_Iio_eq (h : IsLUB s a) : (⋃ x ∈ s, Iio x) = Iio a :=
-  h.dual.bunionᵢ_Ioi_eq
-#align is_lub.bUnion_Iio_eq IsLUB.bunionᵢ_Iio_eq
+#print IsLUB.biUnion_Iio_eq /-
+theorem IsLUB.biUnion_Iio_eq (h : IsLUB s a) : (⋃ x ∈ s, Iio x) = Iio a :=
+  h.dual.biUnion_Ioi_eq
+#align is_lub.bUnion_Iio_eq IsLUB.biUnion_Iio_eq
 -/
 
-#print IsLUB.unionᵢ_Iio_eq /-
-theorem IsLUB.unionᵢ_Iio_eq (h : IsLUB (range f) a) : (⋃ x, Iio (f x)) = Iio a :=
-  h.dual.unionᵢ_Ioi_eq
-#align is_lub.Union_Iio_eq IsLUB.unionᵢ_Iio_eq
+#print IsLUB.iUnion_Iio_eq /-
+theorem IsLUB.iUnion_Iio_eq (h : IsLUB (range f) a) : (⋃ x, Iio (f x)) = Iio a :=
+  h.dual.iUnion_Ioi_eq
+#align is_lub.Union_Iio_eq IsLUB.iUnion_Iio_eq
 -/
 
-#print IsGLB.bunionᵢ_Ici_eq_Ioi /-
-theorem IsGLB.bunionᵢ_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
+#print IsGLB.biUnion_Ici_eq_Ioi /-
+theorem IsGLB.biUnion_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
     (⋃ x ∈ s, Ici x) = Ioi a :=
   by
   refine' (Union₂_subset fun x hx => _).antisymm fun x hx => _
@@ -310,77 +310,77 @@ theorem IsGLB.bunionᵢ_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
   · rcases a_glb.exists_between hx with ⟨y, hys, hay, hyx⟩
     apply mem_Union₂.mpr
     refine' ⟨y, hys, hyx.le⟩
-#align is_glb.bUnion_Ici_eq_Ioi IsGLB.bunionᵢ_Ici_eq_Ioi
+#align is_glb.bUnion_Ici_eq_Ioi IsGLB.biUnion_Ici_eq_Ioi
 -/
 
-#print IsGLB.bunionᵢ_Ici_eq_Ici /-
-theorem IsGLB.bunionᵢ_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) : (⋃ x ∈ s, Ici x) = Ici a :=
+#print IsGLB.biUnion_Ici_eq_Ici /-
+theorem IsGLB.biUnion_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) : (⋃ x ∈ s, Ici x) = Ici a :=
   by
   refine' (Union₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ici.mpr (mem_lower_bounds.mp a_glb.1 x hx)
   · apply mem_Union₂.mpr
     refine' ⟨a, a_mem, hx⟩
-#align is_glb.bUnion_Ici_eq_Ici IsGLB.bunionᵢ_Ici_eq_Ici
+#align is_glb.bUnion_Ici_eq_Ici IsGLB.biUnion_Ici_eq_Ici
 -/
 
-#print IsLUB.bunionᵢ_Iic_eq_Iio /-
-theorem IsLUB.bunionᵢ_Iic_eq_Iio (a_lub : IsLUB s a) (a_not_mem : a ∉ s) :
+#print IsLUB.biUnion_Iic_eq_Iio /-
+theorem IsLUB.biUnion_Iic_eq_Iio (a_lub : IsLUB s a) (a_not_mem : a ∉ s) :
     (⋃ x ∈ s, Iic x) = Iio a :=
-  a_lub.dual.bunionᵢ_Ici_eq_Ioi a_not_mem
-#align is_lub.bUnion_Iic_eq_Iio IsLUB.bunionᵢ_Iic_eq_Iio
+  a_lub.dual.biUnion_Ici_eq_Ioi a_not_mem
+#align is_lub.bUnion_Iic_eq_Iio IsLUB.biUnion_Iic_eq_Iio
 -/
 
-#print IsLUB.bunionᵢ_Iic_eq_Iic /-
-theorem IsLUB.bunionᵢ_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : (⋃ x ∈ s, Iic x) = Iic a :=
-  a_lub.dual.bunionᵢ_Ici_eq_Ici a_mem
-#align is_lub.bUnion_Iic_eq_Iic IsLUB.bunionᵢ_Iic_eq_Iic
+#print IsLUB.biUnion_Iic_eq_Iic /-
+theorem IsLUB.biUnion_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : (⋃ x ∈ s, Iic x) = Iic a :=
+  a_lub.dual.biUnion_Ici_eq_Ici a_mem
+#align is_lub.bUnion_Iic_eq_Iic IsLUB.biUnion_Iic_eq_Iic
 -/
 
-/- warning: Union_Ici_eq_Ioi_infi -> unionᵢ_Ici_eq_Ioi_infᵢ is a dubious translation:
+/- warning: Union_Ici_eq_Ioi_infi -> iUnion_Ici_eq_Ioi_iInf is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Not (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (infᵢ.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f))) -> (Eq.{succ u2} (Set.{u2} R) (Set.unionᵢ.{u2, u1} R ι (fun (i : ι) => Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Ioi.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (infᵢ.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
+  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Not (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f))) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Ioi.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
 but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Not (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (infᵢ.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f))) -> (Eq.{succ u1} (Set.{u1} R) (Set.unionᵢ.{u1, u2} R ι (fun (i : ι) => Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Ioi.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (infᵢ.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Ici_eq_Ioi_infi unionᵢ_Ici_eq_Ioi_infᵢₓ'. -/
-theorem unionᵢ_Ici_eq_Ioi_infᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Not (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f))) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Ioi.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInfₓ'. -/
+theorem iUnion_Ici_eq_Ioi_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_least_elem : (⨅ i, f i) ∉ range f) : (⋃ i : ι, Ici (f i)) = Ioi (⨅ i, f i) := by
-  simp only [← IsGLB.bunionᵢ_Ici_eq_Ioi (@isGLB_infᵢ _ _ _ f) no_least_elem, mem_range,
+  simp only [← IsGLB.biUnion_Ici_eq_Ioi (@isGLB_iInf _ _ _ f) no_least_elem, mem_range,
     Union_exists, Union_Union_eq']
-#align Union_Ici_eq_Ioi_infi unionᵢ_Ici_eq_Ioi_infᵢ
+#align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInf
 
-/- warning: Union_Iic_eq_Iio_supr -> unionᵢ_Iic_eq_Iio_supᵢ is a dubious translation:
+/- warning: Union_Iic_eq_Iio_supr -> iUnion_Iic_eq_Iio_iSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Not (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (supᵢ.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f))) -> (Eq.{succ u2} (Set.{u2} R) (Set.unionᵢ.{u2, u1} R ι (fun (i : ι) => Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Iio.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (supᵢ.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
+  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Not (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f))) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Iio.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
 but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Not (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (supᵢ.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f))) -> (Eq.{succ u1} (Set.{u1} R) (Set.unionᵢ.{u1, u2} R ι (fun (i : ι) => Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Iio.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (supᵢ.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Iic_eq_Iio_supr unionᵢ_Iic_eq_Iio_supᵢₓ'. -/
-theorem unionᵢ_Iic_eq_Iio_supᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Not (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f))) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Iio.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSupₓ'. -/
+theorem iUnion_Iic_eq_Iio_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_greatest_elem : (⨆ i, f i) ∉ range f) : (⋃ i : ι, Iic (f i)) = Iio (⨆ i, f i) :=
-  @unionᵢ_Ici_eq_Ioi_infᵢ ι (OrderDual R) _ f no_greatest_elem
-#align Union_Iic_eq_Iio_supr unionᵢ_Iic_eq_Iio_supᵢ
+  @iUnion_Ici_eq_Ioi_iInf ι (OrderDual R) _ f no_greatest_elem
+#align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSup
 
-/- warning: Union_Ici_eq_Ici_infi -> unionᵢ_Ici_eq_Ici_infᵢ is a dubious translation:
+/- warning: Union_Ici_eq_Ici_infi -> iUnion_Ici_eq_Ici_iInf is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (infᵢ.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f)) -> (Eq.{succ u2} (Set.{u2} R) (Set.unionᵢ.{u2, u1} R ι (fun (i : ι) => Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (infᵢ.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
+  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f)) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Ici.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iInf.{u2, u1} R (CompleteSemilatticeInf.toHasInf.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
 but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (infᵢ.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f)) -> (Eq.{succ u1} (Set.{u1} R) (Set.unionᵢ.{u1, u2} R ι (fun (i : ι) => Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (infᵢ.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Ici_eq_Ici_infi unionᵢ_Ici_eq_Ici_infᵢₓ'. -/
-theorem unionᵢ_Ici_eq_Ici_infᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f)) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Ici.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iInf.{u1, u2} R (CompleteLattice.toInfSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInfₓ'. -/
+theorem iUnion_Ici_eq_Ici_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_least_elem : (⨅ i, f i) ∈ range f) : (⋃ i : ι, Ici (f i)) = Ici (⨅ i, f i) := by
-  simp only [← IsGLB.bunionᵢ_Ici_eq_Ici (@isGLB_infᵢ _ _ _ f) has_least_elem, mem_range,
+  simp only [← IsGLB.biUnion_Ici_eq_Ici (@isGLB_iInf _ _ _ f) has_least_elem, mem_range,
     Union_exists, Union_Union_eq']
-#align Union_Ici_eq_Ici_infi unionᵢ_Ici_eq_Ici_infᵢ
+#align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInf
 
-/- warning: Union_Iic_eq_Iic_supr -> unionᵢ_Iic_eq_Iic_supᵢ is a dubious translation:
+/- warning: Union_Iic_eq_Iic_supr -> iUnion_Iic_eq_Iic_iSup is a dubious translation:
 lean 3 declaration is
-  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (supᵢ.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f)) -> (Eq.{succ u2} (Set.{u2} R) (Set.unionᵢ.{u2, u1} R ι (fun (i : ι) => Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (supᵢ.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
+  forall {ι : Sort.{u1}} {R : Type.{u2}} [_inst_2 : CompleteLinearOrder.{u2} R] {f : ι -> R}, (Membership.Mem.{u2, u2} R (Set.{u2} R) (Set.hasMem.{u2} R) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i)) (Set.range.{u2, u1} R ι f)) -> (Eq.{succ u2} (Set.{u2} R) (Set.iUnion.{u2, u1} R ι (fun (i : ι) => Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (f i))) (Set.Iic.{u2} R (PartialOrder.toPreorder.{u2} R (CompleteSemilatticeInf.toPartialOrder.{u2} R (CompleteLattice.toCompleteSemilatticeInf.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2)))) (iSup.{u2, u1} R (CompleteSemilatticeSup.toHasSup.{u2} R (CompleteLattice.toCompleteSemilatticeSup.{u2} R (CompleteLinearOrder.toCompleteLattice.{u2} R _inst_2))) ι (fun (i : ι) => f i))))
 but is expected to have type
-  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (supᵢ.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f)) -> (Eq.{succ u1} (Set.{u1} R) (Set.unionᵢ.{u1, u2} R ι (fun (i : ι) => Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (supᵢ.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
-Case conversion may be inaccurate. Consider using '#align Union_Iic_eq_Iic_supr unionᵢ_Iic_eq_Iic_supᵢₓ'. -/
-theorem unionᵢ_Iic_eq_Iic_supᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+  forall {ι : Sort.{u2}} {R : Type.{u1}} [_inst_2 : CompleteLinearOrder.{u1} R] {f : ι -> R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i)) (Set.range.{u1, u2} R ι f)) -> (Eq.{succ u1} (Set.{u1} R) (Set.iUnion.{u1, u2} R ι (fun (i : ι) => Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (f i))) (Set.Iic.{u1} R (PartialOrder.toPreorder.{u1} R (CompleteSemilatticeInf.toPartialOrder.{u1} R (CompleteLattice.toCompleteSemilatticeInf.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)))) (iSup.{u1, u2} R (CompleteLattice.toSupSet.{u1} R (CompleteLinearOrder.toCompleteLattice.{u1} R _inst_2)) ι (fun (i : ι) => f i))))
+Case conversion may be inaccurate. Consider using '#align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSupₓ'. -/
+theorem iUnion_Iic_eq_Iic_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_greatest_elem : (⨆ i, f i) ∈ range f) : (⋃ i : ι, Iic (f i)) = Iic (⨆ i, f i) :=
-  @unionᵢ_Ici_eq_Ici_infᵢ ι (OrderDual R) _ f has_greatest_elem
-#align Union_Iic_eq_Iic_supr unionᵢ_Iic_eq_Iic_supᵢ
+  @iUnion_Ici_eq_Ici_iInf ι (OrderDual R) _ f has_greatest_elem
+#align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSup
 
 end UnionIxx
 

Changes in mathlib4

mathlib3
mathlib4
chore: Move intervals (#11765)

Move Set.Ixx, Finset.Ixx, Multiset.Ixx together under two different folders:

  • Order.Interval for their definition and basic properties
  • Algebra.Order.Interval for their algebraic properties

Move the definitions of Multiset.Ixx to what is now Order.Interval.Multiset. I believe we could just delete this file in a later PR as nothing uses it (and I already had doubts when defining Multiset.Ixx three years ago).

Move the algebraic results out of what is now Order.Interval.Finset.Basic to a new file Algebra.Order.Interval.Finset.Basic.

Diff
@@ -10,7 +10,7 @@ import Mathlib.Data.Set.Lattice
 /-!
 # Extra lemmas about intervals
 
-This file contains lemmas about intervals that cannot be included into `Data.Set.Intervals.Basic`
+This file contains lemmas about intervals that cannot be included into `Order.Interval.Set.Basic`
 because this would create an `import` cycle. Namely, lemmas in this file can use definitions
 from `Data.Set.Lattice`, including `Disjoint`.
 
chore(*Set): golf (#12117)
  • Golf Directed.exists_mem_subset_of_finset_subset_biUnion using induction tactic.
  • Golf Set.fintype.
  • Reduce abuse of Set α = α → Prop defeq.
Diff
@@ -43,12 +43,12 @@ theorem Iio_disjoint_Ici (h : a ≤ b) : Disjoint (Iio a) (Ici b) :=
 
 @[simp]
 theorem Iic_disjoint_Ioc (h : a ≤ b) : Disjoint (Iic a) (Ioc b c) :=
-  (Iic_disjoint_Ioi h).mono le_rfl fun _ => And.left
+  (Iic_disjoint_Ioi h).mono le_rfl Ioc_subset_Ioi_self
 #align set.Iic_disjoint_Ioc Set.Iic_disjoint_Ioc
 
 @[simp]
 theorem Ioc_disjoint_Ioc_same : Disjoint (Ioc a b) (Ioc b c) :=
-  (Iic_disjoint_Ioc (le_refl b)).mono (fun _ => And.right) le_rfl
+  (Iic_disjoint_Ioc le_rfl).mono Ioc_subset_Iic_self le_rfl
 #align set.Ioc_disjoint_Ioc_same Set.Ioc_disjoint_Ioc_same
 
 @[simp]
feat: add Ioo_disjoint_Ioo (#11903)

Without the DenselyOrdered-hypothesis, this is false in general.

Co-authored-by: sven-manthe <147848313+sven-manthe@users.noreply.github.com>

Diff
@@ -151,6 +151,12 @@ theorem Ioc_disjoint_Ioc : Disjoint (Ioc a₁ a₂) (Ioc b₁ b₂) ↔ min a₂
   simpa only [dual_Ico] using h
 #align set.Ioc_disjoint_Ioc Set.Ioc_disjoint_Ioc
 
+@[simp]
+theorem Ioo_disjoint_Ioo [DenselyOrdered α] :
+    Disjoint (Set.Ioo a₁ a₂) (Set.Ioo b₁ b₂) ↔ min a₂ b₂ ≤ max a₁ b₁ := by
+  simp_rw [Set.disjoint_iff_inter_eq_empty, Ioo_inter_Ioo, Ioo_eq_empty_iff, inf_eq_min, sup_eq_max,
+    not_lt]
+
 /-- If two half-open intervals are disjoint and the endpoint of one lies in the other,
   then it must be equal to the endpoint of the other. -/
 theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x₂) (Ico y₁ y₂)) (hx : x₁ < x₂)
feat(Data/Set/Intervals/Disjoint): i[Inter|Union]_Ii[c|o]... (#10298)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -13,6 +13,8 @@ import Mathlib.Data.Set.Lattice
 This file contains lemmas about intervals that cannot be included into `Data.Set.Intervals.Basic`
 because this would create an `import` cycle. Namely, lemmas in this file can use definitions
 from `Data.Set.Lattice`, including `Disjoint`.
+
+We consider various intersections and unions of half infinite intervals.
 -/
 
 
@@ -256,4 +258,21 @@ theorem iUnion_Iic_eq_Iic_iSup {R : Type*} [CompleteLinearOrder R] {f : ι → R
   @iUnion_Ici_eq_Ici_iInf ι (OrderDual R) _ f has_greatest_elem
 #align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSup
 
+theorem iUnion_Iio_eq_univ_iff : ⋃ i, Iio (f i) = univ ↔ (¬ BddAbove (range f)) := by
+  simp [not_bddAbove_iff, Set.eq_univ_iff_forall]
+
+theorem iUnion_Iic_of_not_bddAbove_range (hf : ¬ BddAbove (range f)) : ⋃ i, Iic (f i) = univ := by
+  refine  Set.eq_univ_of_subset ?_ (iUnion_Iio_eq_univ_iff.mpr hf)
+  gcongr
+  exact Iio_subset_Iic_self
+
+theorem iInter_Iic_eq_empty_iff : ⋂ i, Iic (f i) = ∅ ↔ ¬ BddBelow (range f) := by
+  simp [not_bddBelow_iff, Set.eq_empty_iff_forall_not_mem]
+
+theorem iInter_Iio_of_not_bddBelow_range (hf : ¬ BddBelow (range f)) : ⋂ i, Iio (f i) = ∅ := by
+  refine' eq_empty_of_subset_empty _
+  rw [← iInter_Iic_eq_empty_iff.mpr hf]
+  gcongr
+  exact Iio_subset_Iic_self
+
 end UnionIxx
golf: replace some apply foo.mpr by rw [foo] (#11515)

Sometimes, that line can be golfed into the next line. Inspired by a comment of @loefflerd; any decisions are my own.

Diff
@@ -214,7 +214,7 @@ theorem IsGLB.biUnion_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
   refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ioi.mpr (lt_of_le_of_ne (a_glb.1 hx) fun h => (h ▸ a_not_mem) hx)
   · rcases a_glb.exists_between hx with ⟨y, hys, _, hyx⟩
-    apply mem_iUnion₂.mpr
+    rw [mem_iUnion₂]
     exact ⟨y, hys, hyx.le⟩
 #align is_glb.bUnion_Ici_eq_Ioi IsGLB.biUnion_Ici_eq_Ioi
 
@@ -222,8 +222,7 @@ theorem IsGLB.biUnion_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) :
     ⋃ x ∈ s, Ici x = Ici a := by
   refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ici.mpr (mem_lowerBounds.mp a_glb.1 x hx)
-  · apply mem_iUnion₂.mpr
-    exact ⟨a, a_mem, hx⟩
+  · exact mem_iUnion₂.mpr ⟨a, a_mem, hx⟩
 #align is_glb.bUnion_Ici_eq_Ici IsGLB.biUnion_Ici_eq_Ici
 
 theorem IsLUB.biUnion_Iic_eq_Iio (a_lub : IsLUB s a) (a_not_mem : a ∉ s) :
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -215,7 +215,7 @@ theorem IsGLB.biUnion_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
   · exact Ici_subset_Ioi.mpr (lt_of_le_of_ne (a_glb.1 hx) fun h => (h ▸ a_not_mem) hx)
   · rcases a_glb.exists_between hx with ⟨y, hys, _, hyx⟩
     apply mem_iUnion₂.mpr
-    refine' ⟨y, hys, hyx.le⟩
+    exact ⟨y, hys, hyx.le⟩
 #align is_glb.bUnion_Ici_eq_Ioi IsGLB.biUnion_Ici_eq_Ioi
 
 theorem IsGLB.biUnion_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) :
@@ -223,7 +223,7 @@ theorem IsGLB.biUnion_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) :
   refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ici.mpr (mem_lowerBounds.mp a_glb.1 x hx)
   · apply mem_iUnion₂.mpr
-    refine' ⟨a, a_mem, hx⟩
+    exact ⟨a, a_mem, hx⟩
 #align is_glb.bUnion_Ici_eq_Ici IsGLB.biUnion_Ici_eq_Ici
 
 theorem IsLUB.biUnion_Iic_eq_Iio (a_lub : IsLUB s a) (a_not_mem : a ∉ s) :
feat(MeasureTheory/Integral/IntervalIntegral): integral_Iic_add_Ioi (#10485)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -35,6 +35,10 @@ theorem Iic_disjoint_Ioi (h : a ≤ b) : Disjoint (Iic a) (Ioi b) :=
   disjoint_left.mpr fun _ ha hb => (h.trans_lt hb).not_le ha
 #align set.Iic_disjoint_Ioi Set.Iic_disjoint_Ioi
 
+@[simp]
+theorem Iio_disjoint_Ici (h : a ≤ b) : Disjoint (Iio a) (Ici b) :=
+  disjoint_left.mpr fun _ ha hb => (h.trans_lt' ha).not_le hb
+
 @[simp]
 theorem Iic_disjoint_Ioc (h : a ≤ b) : Disjoint (Iic a) (Ioc b c) :=
   (Iic_disjoint_Ioi h).mono le_rfl fun _ => And.left
feat: remove sigma-finiteness assumption in layercake formula (#7454)

Currently, the layercake formula for the Lebesgue integral assumes sigma-finiteness of the measure, while the layercake formula for the Bochner integral (and integrable functions) doesn't. At the cost of a more complicated proof, we remove the sigma-finiteness also from the Lebesgue measure case.

Co-authored-by: Kalle <kalle.kytola@aalto.fi>

Diff
@@ -41,12 +41,12 @@ theorem Iic_disjoint_Ioc (h : a ≤ b) : Disjoint (Iic a) (Ioc b c) :=
 #align set.Iic_disjoint_Ioc Set.Iic_disjoint_Ioc
 
 @[simp]
-theorem Ioc_disjoint_Ioc_same {a b c : α} : Disjoint (Ioc a b) (Ioc b c) :=
+theorem Ioc_disjoint_Ioc_same : Disjoint (Ioc a b) (Ioc b c) :=
   (Iic_disjoint_Ioc (le_refl b)).mono (fun _ => And.right) le_rfl
 #align set.Ioc_disjoint_Ioc_same Set.Ioc_disjoint_Ioc_same
 
 @[simp]
-theorem Ico_disjoint_Ico_same {a b c : α} : Disjoint (Ico a b) (Ico b c) :=
+theorem Ico_disjoint_Ico_same : Disjoint (Ico a b) (Ico b c) :=
   disjoint_left.mpr fun _ hab hbc => hab.2.not_le hbc.1
 #align set.Ico_disjoint_Ico_same Set.Ico_disjoint_Ico_same
 
@@ -60,6 +60,13 @@ theorem Iic_disjoint_Ici : Disjoint (Iic a) (Ici b) ↔ ¬b ≤ a :=
   disjoint_comm.trans Ici_disjoint_Iic
 #align set.Iic_disjoint_Ici Set.Iic_disjoint_Ici
 
+@[simp]
+theorem Ioc_disjoint_Ioi (h : b ≤ c) : Disjoint (Ioc a b) (Ioi c) :=
+  disjoint_left.mpr (fun _ hx hy ↦ (hx.2.trans h).not_lt hy)
+
+theorem Ioc_disjoint_Ioi_same : Disjoint (Ioc a b) (Ioi b) :=
+  Ioc_disjoint_Ioi le_rfl
+
 @[simp]
 theorem iUnion_Iic : ⋃ a : α, Iic a = univ :=
   iUnion_eq_univ_iff.2 fun x => ⟨x, right_mem_Iic⟩
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -224,24 +224,24 @@ theorem IsLUB.biUnion_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : ⋃ x 
   a_lub.dual.biUnion_Ici_eq_Ici a_mem
 #align is_lub.bUnion_Iic_eq_Iic IsLUB.biUnion_Iic_eq_Iic
 
-theorem iUnion_Ici_eq_Ioi_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Ici_eq_Ioi_iInf {R : Type*} [CompleteLinearOrder R] {f : ι → R}
     (no_least_elem : ⨅ i, f i ∉ range f) : ⋃ i : ι, Ici (f i) = Ioi (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ioi (@isGLB_iInf _ _ _ f) no_least_elem, mem_range,
     iUnion_exists, iUnion_iUnion_eq']
 #align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInf
 
-theorem iUnion_Iic_eq_Iio_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Iic_eq_Iio_iSup {R : Type*} [CompleteLinearOrder R] {f : ι → R}
     (no_greatest_elem : (⨆ i, f i) ∉ range f) : ⋃ i : ι, Iic (f i) = Iio (⨆ i, f i) :=
   @iUnion_Ici_eq_Ioi_iInf ι (OrderDual R) _ f no_greatest_elem
 #align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSup
 
-theorem iUnion_Ici_eq_Ici_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Ici_eq_Ici_iInf {R : Type*} [CompleteLinearOrder R] {f : ι → R}
     (has_least_elem : (⨅ i, f i) ∈ range f) : ⋃ i : ι, Ici (f i) = Ici (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ici (@isGLB_iInf _ _ _ f) has_least_elem, mem_range,
     iUnion_exists, iUnion_iUnion_eq']
 #align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInf
 
-theorem iUnion_Iic_eq_Iic_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Iic_eq_Iic_iSup {R : Type*} [CompleteLinearOrder R] {f : ι → R}
     (has_greatest_elem : (⨆ i, f i) ∈ range f) : ⋃ i : ι, Iic (f i) = Iic (⨆ i, f i) :=
   @iUnion_Ici_eq_Ici_iInf ι (OrderDual R) _ f has_greatest_elem
 #align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSup
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2019 Floris van Doorn. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Floris van Doorn, Yury Kudryashov
-
-! This file was ported from Lean 3 source module data.set.intervals.disjoint
-! leanprover-community/mathlib commit 207cfac9fcd06138865b5d04f7091e46d9320432
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.Set.Lattice
 
+#align_import data.set.intervals.disjoint from "leanprover-community/mathlib"@"207cfac9fcd06138865b5d04f7091e46d9320432"
+
 /-!
 # Extra lemmas about intervals
 
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -64,62 +64,62 @@ theorem Iic_disjoint_Ici : Disjoint (Iic a) (Ici b) ↔ ¬b ≤ a :=
 #align set.Iic_disjoint_Ici Set.Iic_disjoint_Ici
 
 @[simp]
-theorem iUnion_Iic : (⋃ a : α, Iic a) = univ :=
+theorem iUnion_Iic : ⋃ a : α, Iic a = univ :=
   iUnion_eq_univ_iff.2 fun x => ⟨x, right_mem_Iic⟩
 #align set.Union_Iic Set.iUnion_Iic
 
 @[simp]
-theorem iUnion_Ici : (⋃ a : α, Ici a) = univ :=
+theorem iUnion_Ici : ⋃ a : α, Ici a = univ :=
   iUnion_eq_univ_iff.2 fun x => ⟨x, left_mem_Ici⟩
 #align set.Union_Ici Set.iUnion_Ici
 
 @[simp]
-theorem iUnion_Icc_right (a : α) : (⋃ b, Icc a b) = Ici a := by
+theorem iUnion_Icc_right (a : α) : ⋃ b, Icc a b = Ici a := by
   simp only [← Ici_inter_Iic, ← inter_iUnion, iUnion_Iic, inter_univ]
 #align set.Union_Icc_right Set.iUnion_Icc_right
 
 @[simp]
-theorem iUnion_Ioc_right (a : α) : (⋃ b, Ioc a b) = Ioi a := by
+theorem iUnion_Ioc_right (a : α) : ⋃ b, Ioc a b = Ioi a := by
   simp only [← Ioi_inter_Iic, ← inter_iUnion, iUnion_Iic, inter_univ]
 #align set.Union_Ioc_right Set.iUnion_Ioc_right
 
 @[simp]
-theorem iUnion_Icc_left (b : α) : (⋃ a, Icc a b) = Iic b := by
+theorem iUnion_Icc_left (b : α) : ⋃ a, Icc a b = Iic b := by
   simp only [← Ici_inter_Iic, ← iUnion_inter, iUnion_Ici, univ_inter]
 #align set.Union_Icc_left Set.iUnion_Icc_left
 
 @[simp]
-theorem iUnion_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
+theorem iUnion_Ico_left (b : α) : ⋃ a, Ico a b = Iio b := by
   simp only [← Ici_inter_Iio, ← iUnion_inter, iUnion_Ici, univ_inter]
 #align set.Union_Ico_left Set.iUnion_Ico_left
 
 @[simp]
-theorem iUnion_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
+theorem iUnion_Iio [NoMaxOrder α] : ⋃ a : α, Iio a = univ :=
   iUnion_eq_univ_iff.2 exists_gt
 #align set.Union_Iio Set.iUnion_Iio
 
 @[simp]
-theorem iUnion_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
+theorem iUnion_Ioi [NoMinOrder α] : ⋃ a : α, Ioi a = univ :=
   iUnion_eq_univ_iff.2 exists_lt
 #align set.Union_Ioi Set.iUnion_Ioi
 
 @[simp]
-theorem iUnion_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
+theorem iUnion_Ico_right [NoMaxOrder α] (a : α) : ⋃ b, Ico a b = Ici a := by
   simp only [← Ici_inter_Iio, ← inter_iUnion, iUnion_Iio, inter_univ]
 #align set.Union_Ico_right Set.iUnion_Ico_right
 
 @[simp]
-theorem iUnion_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
+theorem iUnion_Ioo_right [NoMaxOrder α] (a : α) : ⋃ b, Ioo a b = Ioi a := by
   simp only [← Ioi_inter_Iio, ← inter_iUnion, iUnion_Iio, inter_univ]
 #align set.Union_Ioo_right Set.iUnion_Ioo_right
 
 @[simp]
-theorem iUnion_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
+theorem iUnion_Ioc_left [NoMinOrder α] (b : α) : ⋃ a, Ioc a b = Iic b := by
   simp only [← Ioi_inter_Iic, ← iUnion_inter, iUnion_Ioi, univ_inter]
 #align set.Union_Ioc_left Set.iUnion_Ioc_left
 
 @[simp]
-theorem iUnion_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
+theorem iUnion_Ioo_left [NoMinOrder α] (b : α) : ⋃ a, Ioo a b = Iio b := by
   simp only [← Ioi_inter_Iio, ← iUnion_inter, iUnion_Ioi, univ_inter]
 #align set.Union_Ioo_left Set.iUnion_Ioo_left
 
@@ -152,25 +152,25 @@ theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x
 
 @[simp]
 theorem iUnion_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
-    (⋃ i, Ico (f i) a) = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x := by
+    ⋃ i, Ico (f i) a = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x := by
   simp [← Ici_inter_Iio, ← iUnion_inter, subset_def]
 #align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iff
 
 @[simp]
 theorem iUnion_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
-    (⋃ i, Ioc a (f i)) = Ioi a ↔ ∀ x, a < x → ∃ i, x ≤ f i := by
+    ⋃ i, Ioc a (f i) = Ioi a ↔ ∀ x, a < x → ∃ i, x ≤ f i := by
   simp [← Ioi_inter_Iic, ← inter_iUnion, subset_def]
 #align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iff
 
 @[simp]
 theorem biUnion_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
-    (⋃ (i) (hi : p i), Ico (f i hi) a) = Iio a ↔ ∀ x < a, ∃ i hi, f i hi ≤ x := by
+    ⋃ (i) (hi : p i), Ico (f i hi) a = Iio a ↔ ∀ x < a, ∃ i hi, f i hi ≤ x := by
   simp [← Ici_inter_Iio, ← iUnion_inter, subset_def]
 #align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iff
 
 @[simp]
 theorem biUnion_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
-    (⋃ (i) (hi : p i), Ioc a (f i hi)) = Ioi a ↔ ∀ x, a < x → ∃ i hi, x ≤ f i hi := by
+    ⋃ (i) (hi : p i), Ioc a (f i hi) = Ioi a ↔ ∀ x, a < x → ∃ i hi, x ≤ f i hi := by
   simp [← Ioi_inter_Iic, ← inter_iUnion, subset_def]
 #align set.bUnion_Ioc_eq_Ioi_self_iff Set.biUnion_Ioc_eq_Ioi_self_iff
 
@@ -182,27 +182,27 @@ section UnionIxx
 
 variable [LinearOrder α] {s : Set α} {a : α} {f : ι → α}
 
-theorem IsGLB.biUnion_Ioi_eq (h : IsGLB s a) : (⋃ x ∈ s, Ioi x) = Ioi a := by
+theorem IsGLB.biUnion_Ioi_eq (h : IsGLB s a) : ⋃ x ∈ s, Ioi x = Ioi a := by
   refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ioi_subset_Ioi (h.1 hx)
   · rcases h.exists_between hx with ⟨y, hys, _, hyx⟩
     exact mem_biUnion hys hyx
 #align is_glb.bUnion_Ioi_eq IsGLB.biUnion_Ioi_eq
 
-theorem IsGLB.iUnion_Ioi_eq (h : IsGLB (range f) a) : (⋃ x, Ioi (f x)) = Ioi a :=
+theorem IsGLB.iUnion_Ioi_eq (h : IsGLB (range f) a) : ⋃ x, Ioi (f x) = Ioi a :=
   biUnion_range.symm.trans h.biUnion_Ioi_eq
 #align is_glb.Union_Ioi_eq IsGLB.iUnion_Ioi_eq
 
-theorem IsLUB.biUnion_Iio_eq (h : IsLUB s a) : (⋃ x ∈ s, Iio x) = Iio a :=
+theorem IsLUB.biUnion_Iio_eq (h : IsLUB s a) : ⋃ x ∈ s, Iio x = Iio a :=
   h.dual.biUnion_Ioi_eq
 #align is_lub.bUnion_Iio_eq IsLUB.biUnion_Iio_eq
 
-theorem IsLUB.iUnion_Iio_eq (h : IsLUB (range f) a) : (⋃ x, Iio (f x)) = Iio a :=
+theorem IsLUB.iUnion_Iio_eq (h : IsLUB (range f) a) : ⋃ x, Iio (f x) = Iio a :=
   h.dual.iUnion_Ioi_eq
 #align is_lub.Union_Iio_eq IsLUB.iUnion_Iio_eq
 
 theorem IsGLB.biUnion_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
-    (⋃ x ∈ s, Ici x) = Ioi a := by
+    ⋃ x ∈ s, Ici x = Ioi a := by
   refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ioi.mpr (lt_of_le_of_ne (a_glb.1 hx) fun h => (h ▸ a_not_mem) hx)
   · rcases a_glb.exists_between hx with ⟨y, hys, _, hyx⟩
@@ -211,7 +211,7 @@ theorem IsGLB.biUnion_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
 #align is_glb.bUnion_Ici_eq_Ioi IsGLB.biUnion_Ici_eq_Ioi
 
 theorem IsGLB.biUnion_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) :
-    (⋃ x ∈ s, Ici x) = Ici a := by
+    ⋃ x ∈ s, Ici x = Ici a := by
   refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ici.mpr (mem_lowerBounds.mp a_glb.1 x hx)
   · apply mem_iUnion₂.mpr
@@ -219,33 +219,33 @@ theorem IsGLB.biUnion_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) :
 #align is_glb.bUnion_Ici_eq_Ici IsGLB.biUnion_Ici_eq_Ici
 
 theorem IsLUB.biUnion_Iic_eq_Iio (a_lub : IsLUB s a) (a_not_mem : a ∉ s) :
-    (⋃ x ∈ s, Iic x) = Iio a :=
+    ⋃ x ∈ s, Iic x = Iio a :=
   a_lub.dual.biUnion_Ici_eq_Ioi a_not_mem
 #align is_lub.bUnion_Iic_eq_Iio IsLUB.biUnion_Iic_eq_Iio
 
-theorem IsLUB.biUnion_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : (⋃ x ∈ s, Iic x) = Iic a :=
+theorem IsLUB.biUnion_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : ⋃ x ∈ s, Iic x = Iic a :=
   a_lub.dual.biUnion_Ici_eq_Ici a_mem
 #align is_lub.bUnion_Iic_eq_Iic IsLUB.biUnion_Iic_eq_Iic
 
 theorem iUnion_Ici_eq_Ioi_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
-    (no_least_elem : (⨅ i, f i) ∉ range f) : (⋃ i : ι, Ici (f i)) = Ioi (⨅ i, f i) := by
+    (no_least_elem : ⨅ i, f i ∉ range f) : ⋃ i : ι, Ici (f i) = Ioi (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ioi (@isGLB_iInf _ _ _ f) no_least_elem, mem_range,
     iUnion_exists, iUnion_iUnion_eq']
 #align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInf
 
 theorem iUnion_Iic_eq_Iio_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
-    (no_greatest_elem : (⨆ i, f i) ∉ range f) : (⋃ i : ι, Iic (f i)) = Iio (⨆ i, f i) :=
+    (no_greatest_elem : (⨆ i, f i) ∉ range f) : ⋃ i : ι, Iic (f i) = Iio (⨆ i, f i) :=
   @iUnion_Ici_eq_Ioi_iInf ι (OrderDual R) _ f no_greatest_elem
 #align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSup
 
 theorem iUnion_Ici_eq_Ici_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
-    (has_least_elem : (⨅ i, f i) ∈ range f) : (⋃ i : ι, Ici (f i)) = Ici (⨅ i, f i) := by
+    (has_least_elem : (⨅ i, f i) ∈ range f) : ⋃ i : ι, Ici (f i) = Ici (⨅ i, f i) := by
   simp only [← IsGLB.biUnion_Ici_eq_Ici (@isGLB_iInf _ _ _ f) has_least_elem, mem_range,
     iUnion_exists, iUnion_iUnion_eq']
 #align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInf
 
 theorem iUnion_Iic_eq_Iic_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
-    (has_greatest_elem : (⨆ i, f i) ∈ range f) : (⋃ i : ι, Iic (f i)) = Iic (⨆ i, f i) :=
+    (has_greatest_elem : (⨆ i, f i) ∈ range f) : ⋃ i : ι, Iic (f i) = Iic (⨆ i, f i) :=
   @iUnion_Ici_eq_Ici_iInf ι (OrderDual R) _ f has_greatest_elem
 #align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSup
 
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -64,64 +64,64 @@ theorem Iic_disjoint_Ici : Disjoint (Iic a) (Ici b) ↔ ¬b ≤ a :=
 #align set.Iic_disjoint_Ici Set.Iic_disjoint_Ici
 
 @[simp]
-theorem unionᵢ_Iic : (⋃ a : α, Iic a) = univ :=
-  unionᵢ_eq_univ_iff.2 fun x => ⟨x, right_mem_Iic⟩
-#align set.Union_Iic Set.unionᵢ_Iic
+theorem iUnion_Iic : (⋃ a : α, Iic a) = univ :=
+  iUnion_eq_univ_iff.2 fun x => ⟨x, right_mem_Iic⟩
+#align set.Union_Iic Set.iUnion_Iic
 
 @[simp]
-theorem unionᵢ_Ici : (⋃ a : α, Ici a) = univ :=
-  unionᵢ_eq_univ_iff.2 fun x => ⟨x, left_mem_Ici⟩
-#align set.Union_Ici Set.unionᵢ_Ici
+theorem iUnion_Ici : (⋃ a : α, Ici a) = univ :=
+  iUnion_eq_univ_iff.2 fun x => ⟨x, left_mem_Ici⟩
+#align set.Union_Ici Set.iUnion_Ici
 
 @[simp]
-theorem unionᵢ_Icc_right (a : α) : (⋃ b, Icc a b) = Ici a := by
-  simp only [← Ici_inter_Iic, ← inter_unionᵢ, unionᵢ_Iic, inter_univ]
-#align set.Union_Icc_right Set.unionᵢ_Icc_right
+theorem iUnion_Icc_right (a : α) : (⋃ b, Icc a b) = Ici a := by
+  simp only [← Ici_inter_Iic, ← inter_iUnion, iUnion_Iic, inter_univ]
+#align set.Union_Icc_right Set.iUnion_Icc_right
 
 @[simp]
-theorem unionᵢ_Ioc_right (a : α) : (⋃ b, Ioc a b) = Ioi a := by
-  simp only [← Ioi_inter_Iic, ← inter_unionᵢ, unionᵢ_Iic, inter_univ]
-#align set.Union_Ioc_right Set.unionᵢ_Ioc_right
+theorem iUnion_Ioc_right (a : α) : (⋃ b, Ioc a b) = Ioi a := by
+  simp only [← Ioi_inter_Iic, ← inter_iUnion, iUnion_Iic, inter_univ]
+#align set.Union_Ioc_right Set.iUnion_Ioc_right
 
 @[simp]
-theorem unionᵢ_Icc_left (b : α) : (⋃ a, Icc a b) = Iic b := by
-  simp only [← Ici_inter_Iic, ← unionᵢ_inter, unionᵢ_Ici, univ_inter]
-#align set.Union_Icc_left Set.unionᵢ_Icc_left
+theorem iUnion_Icc_left (b : α) : (⋃ a, Icc a b) = Iic b := by
+  simp only [← Ici_inter_Iic, ← iUnion_inter, iUnion_Ici, univ_inter]
+#align set.Union_Icc_left Set.iUnion_Icc_left
 
 @[simp]
-theorem unionᵢ_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
-  simp only [← Ici_inter_Iio, ← unionᵢ_inter, unionᵢ_Ici, univ_inter]
-#align set.Union_Ico_left Set.unionᵢ_Ico_left
+theorem iUnion_Ico_left (b : α) : (⋃ a, Ico a b) = Iio b := by
+  simp only [← Ici_inter_Iio, ← iUnion_inter, iUnion_Ici, univ_inter]
+#align set.Union_Ico_left Set.iUnion_Ico_left
 
 @[simp]
-theorem unionᵢ_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
-  unionᵢ_eq_univ_iff.2 exists_gt
-#align set.Union_Iio Set.unionᵢ_Iio
+theorem iUnion_Iio [NoMaxOrder α] : (⋃ a : α, Iio a) = univ :=
+  iUnion_eq_univ_iff.2 exists_gt
+#align set.Union_Iio Set.iUnion_Iio
 
 @[simp]
-theorem unionᵢ_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
-  unionᵢ_eq_univ_iff.2 exists_lt
-#align set.Union_Ioi Set.unionᵢ_Ioi
+theorem iUnion_Ioi [NoMinOrder α] : (⋃ a : α, Ioi a) = univ :=
+  iUnion_eq_univ_iff.2 exists_lt
+#align set.Union_Ioi Set.iUnion_Ioi
 
 @[simp]
-theorem unionᵢ_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
-  simp only [← Ici_inter_Iio, ← inter_unionᵢ, unionᵢ_Iio, inter_univ]
-#align set.Union_Ico_right Set.unionᵢ_Ico_right
+theorem iUnion_Ico_right [NoMaxOrder α] (a : α) : (⋃ b, Ico a b) = Ici a := by
+  simp only [← Ici_inter_Iio, ← inter_iUnion, iUnion_Iio, inter_univ]
+#align set.Union_Ico_right Set.iUnion_Ico_right
 
 @[simp]
-theorem unionᵢ_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
-  simp only [← Ioi_inter_Iio, ← inter_unionᵢ, unionᵢ_Iio, inter_univ]
-#align set.Union_Ioo_right Set.unionᵢ_Ioo_right
+theorem iUnion_Ioo_right [NoMaxOrder α] (a : α) : (⋃ b, Ioo a b) = Ioi a := by
+  simp only [← Ioi_inter_Iio, ← inter_iUnion, iUnion_Iio, inter_univ]
+#align set.Union_Ioo_right Set.iUnion_Ioo_right
 
 @[simp]
-theorem unionᵢ_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
-  simp only [← Ioi_inter_Iic, ← unionᵢ_inter, unionᵢ_Ioi, univ_inter]
-#align set.Union_Ioc_left Set.unionᵢ_Ioc_left
+theorem iUnion_Ioc_left [NoMinOrder α] (b : α) : (⋃ a, Ioc a b) = Iic b := by
+  simp only [← Ioi_inter_Iic, ← iUnion_inter, iUnion_Ioi, univ_inter]
+#align set.Union_Ioc_left Set.iUnion_Ioc_left
 
 @[simp]
-theorem unionᵢ_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
-  simp only [← Ioi_inter_Iio, ← unionᵢ_inter, unionᵢ_Ioi, univ_inter]
-#align set.Union_Ioo_left Set.unionᵢ_Ioo_left
+theorem iUnion_Ioo_left [NoMinOrder α] (b : α) : (⋃ a, Ioo a b) = Iio b := by
+  simp only [← Ioi_inter_Iio, ← iUnion_inter, iUnion_Ioi, univ_inter]
+#align set.Union_Ioo_left Set.iUnion_Ioo_left
 
 end Preorder
 
@@ -151,28 +151,28 @@ theorem eq_of_Ico_disjoint {x₁ x₂ y₁ y₂ : α} (h : Disjoint (Ico x₁ x
 #align set.eq_of_Ico_disjoint Set.eq_of_Ico_disjoint
 
 @[simp]
-theorem unionᵢ_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
+theorem iUnion_Ico_eq_Iio_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ico (f i) a) = Iio a ↔ ∀ x < a, ∃ i, f i ≤ x := by
-  simp [← Ici_inter_Iio, ← unionᵢ_inter, subset_def]
-#align set.Union_Ico_eq_Iio_self_iff Set.unionᵢ_Ico_eq_Iio_self_iff
+  simp [← Ici_inter_Iio, ← iUnion_inter, subset_def]
+#align set.Union_Ico_eq_Iio_self_iff Set.iUnion_Ico_eq_Iio_self_iff
 
 @[simp]
-theorem unionᵢ_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
+theorem iUnion_Ioc_eq_Ioi_self_iff {f : ι → α} {a : α} :
     (⋃ i, Ioc a (f i)) = Ioi a ↔ ∀ x, a < x → ∃ i, x ≤ f i := by
-  simp [← Ioi_inter_Iic, ← inter_unionᵢ, subset_def]
-#align set.Union_Ioc_eq_Ioi_self_iff Set.unionᵢ_Ioc_eq_Ioi_self_iff
+  simp [← Ioi_inter_Iic, ← inter_iUnion, subset_def]
+#align set.Union_Ioc_eq_Ioi_self_iff Set.iUnion_Ioc_eq_Ioi_self_iff
 
 @[simp]
-theorem bunionᵢ_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
+theorem biUnion_Ico_eq_Iio_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ico (f i hi) a) = Iio a ↔ ∀ x < a, ∃ i hi, f i hi ≤ x := by
-  simp [← Ici_inter_Iio, ← unionᵢ_inter, subset_def]
-#align set.bUnion_Ico_eq_Iio_self_iff Set.bunionᵢ_Ico_eq_Iio_self_iff
+  simp [← Ici_inter_Iio, ← iUnion_inter, subset_def]
+#align set.bUnion_Ico_eq_Iio_self_iff Set.biUnion_Ico_eq_Iio_self_iff
 
 @[simp]
-theorem bunionᵢ_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
+theorem biUnion_Ioc_eq_Ioi_self_iff {p : ι → Prop} {f : ∀ i, p i → α} {a : α} :
     (⋃ (i) (hi : p i), Ioc a (f i hi)) = Ioi a ↔ ∀ x, a < x → ∃ i hi, x ≤ f i hi := by
-  simp [← Ioi_inter_Iic, ← inter_unionᵢ, subset_def]
-#align set.bUnion_Ioc_eq_Ioi_self_iff Set.bunionᵢ_Ioc_eq_Ioi_self_iff
+  simp [← Ioi_inter_Iic, ← inter_iUnion, subset_def]
+#align set.bUnion_Ioc_eq_Ioi_self_iff Set.biUnion_Ioc_eq_Ioi_self_iff
 
 end LinearOrder
 
@@ -182,71 +182,71 @@ section UnionIxx
 
 variable [LinearOrder α] {s : Set α} {a : α} {f : ι → α}
 
-theorem IsGLB.bunionᵢ_Ioi_eq (h : IsGLB s a) : (⋃ x ∈ s, Ioi x) = Ioi a := by
-  refine' (unionᵢ₂_subset fun x hx => _).antisymm fun x hx => _
+theorem IsGLB.biUnion_Ioi_eq (h : IsGLB s a) : (⋃ x ∈ s, Ioi x) = Ioi a := by
+  refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ioi_subset_Ioi (h.1 hx)
   · rcases h.exists_between hx with ⟨y, hys, _, hyx⟩
-    exact mem_bunionᵢ hys hyx
-#align is_glb.bUnion_Ioi_eq IsGLB.bunionᵢ_Ioi_eq
+    exact mem_biUnion hys hyx
+#align is_glb.bUnion_Ioi_eq IsGLB.biUnion_Ioi_eq
 
-theorem IsGLB.unionᵢ_Ioi_eq (h : IsGLB (range f) a) : (⋃ x, Ioi (f x)) = Ioi a :=
-  bunionᵢ_range.symm.trans h.bunionᵢ_Ioi_eq
-#align is_glb.Union_Ioi_eq IsGLB.unionᵢ_Ioi_eq
+theorem IsGLB.iUnion_Ioi_eq (h : IsGLB (range f) a) : (⋃ x, Ioi (f x)) = Ioi a :=
+  biUnion_range.symm.trans h.biUnion_Ioi_eq
+#align is_glb.Union_Ioi_eq IsGLB.iUnion_Ioi_eq
 
-theorem IsLUB.bunionᵢ_Iio_eq (h : IsLUB s a) : (⋃ x ∈ s, Iio x) = Iio a :=
-  h.dual.bunionᵢ_Ioi_eq
-#align is_lub.bUnion_Iio_eq IsLUB.bunionᵢ_Iio_eq
+theorem IsLUB.biUnion_Iio_eq (h : IsLUB s a) : (⋃ x ∈ s, Iio x) = Iio a :=
+  h.dual.biUnion_Ioi_eq
+#align is_lub.bUnion_Iio_eq IsLUB.biUnion_Iio_eq
 
-theorem IsLUB.unionᵢ_Iio_eq (h : IsLUB (range f) a) : (⋃ x, Iio (f x)) = Iio a :=
-  h.dual.unionᵢ_Ioi_eq
-#align is_lub.Union_Iio_eq IsLUB.unionᵢ_Iio_eq
+theorem IsLUB.iUnion_Iio_eq (h : IsLUB (range f) a) : (⋃ x, Iio (f x)) = Iio a :=
+  h.dual.iUnion_Ioi_eq
+#align is_lub.Union_Iio_eq IsLUB.iUnion_Iio_eq
 
-theorem IsGLB.bunionᵢ_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
+theorem IsGLB.biUnion_Ici_eq_Ioi (a_glb : IsGLB s a) (a_not_mem : a ∉ s) :
     (⋃ x ∈ s, Ici x) = Ioi a := by
-  refine' (unionᵢ₂_subset fun x hx => _).antisymm fun x hx => _
+  refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ioi.mpr (lt_of_le_of_ne (a_glb.1 hx) fun h => (h ▸ a_not_mem) hx)
   · rcases a_glb.exists_between hx with ⟨y, hys, _, hyx⟩
-    apply mem_unionᵢ₂.mpr
+    apply mem_iUnion₂.mpr
     refine' ⟨y, hys, hyx.le⟩
-#align is_glb.bUnion_Ici_eq_Ioi IsGLB.bunionᵢ_Ici_eq_Ioi
+#align is_glb.bUnion_Ici_eq_Ioi IsGLB.biUnion_Ici_eq_Ioi
 
-theorem IsGLB.bunionᵢ_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) :
+theorem IsGLB.biUnion_Ici_eq_Ici (a_glb : IsGLB s a) (a_mem : a ∈ s) :
     (⋃ x ∈ s, Ici x) = Ici a := by
-  refine' (unionᵢ₂_subset fun x hx => _).antisymm fun x hx => _
+  refine' (iUnion₂_subset fun x hx => _).antisymm fun x hx => _
   · exact Ici_subset_Ici.mpr (mem_lowerBounds.mp a_glb.1 x hx)
-  · apply mem_unionᵢ₂.mpr
+  · apply mem_iUnion₂.mpr
     refine' ⟨a, a_mem, hx⟩
-#align is_glb.bUnion_Ici_eq_Ici IsGLB.bunionᵢ_Ici_eq_Ici
+#align is_glb.bUnion_Ici_eq_Ici IsGLB.biUnion_Ici_eq_Ici
 
-theorem IsLUB.bunionᵢ_Iic_eq_Iio (a_lub : IsLUB s a) (a_not_mem : a ∉ s) :
+theorem IsLUB.biUnion_Iic_eq_Iio (a_lub : IsLUB s a) (a_not_mem : a ∉ s) :
     (⋃ x ∈ s, Iic x) = Iio a :=
-  a_lub.dual.bunionᵢ_Ici_eq_Ioi a_not_mem
-#align is_lub.bUnion_Iic_eq_Iio IsLUB.bunionᵢ_Iic_eq_Iio
+  a_lub.dual.biUnion_Ici_eq_Ioi a_not_mem
+#align is_lub.bUnion_Iic_eq_Iio IsLUB.biUnion_Iic_eq_Iio
 
-theorem IsLUB.bunionᵢ_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : (⋃ x ∈ s, Iic x) = Iic a :=
-  a_lub.dual.bunionᵢ_Ici_eq_Ici a_mem
-#align is_lub.bUnion_Iic_eq_Iic IsLUB.bunionᵢ_Iic_eq_Iic
+theorem IsLUB.biUnion_Iic_eq_Iic (a_lub : IsLUB s a) (a_mem : a ∈ s) : (⋃ x ∈ s, Iic x) = Iic a :=
+  a_lub.dual.biUnion_Ici_eq_Ici a_mem
+#align is_lub.bUnion_Iic_eq_Iic IsLUB.biUnion_Iic_eq_Iic
 
-theorem unionᵢ_Ici_eq_Ioi_infᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Ici_eq_Ioi_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_least_elem : (⨅ i, f i) ∉ range f) : (⋃ i : ι, Ici (f i)) = Ioi (⨅ i, f i) := by
-  simp only [← IsGLB.bunionᵢ_Ici_eq_Ioi (@isGLB_infᵢ _ _ _ f) no_least_elem, mem_range,
-    unionᵢ_exists, unionᵢ_unionᵢ_eq']
-#align Union_Ici_eq_Ioi_infi unionᵢ_Ici_eq_Ioi_infᵢ
+  simp only [← IsGLB.biUnion_Ici_eq_Ioi (@isGLB_iInf _ _ _ f) no_least_elem, mem_range,
+    iUnion_exists, iUnion_iUnion_eq']
+#align Union_Ici_eq_Ioi_infi iUnion_Ici_eq_Ioi_iInf
 
-theorem unionᵢ_Iic_eq_Iio_supᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Iic_eq_Iio_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (no_greatest_elem : (⨆ i, f i) ∉ range f) : (⋃ i : ι, Iic (f i)) = Iio (⨆ i, f i) :=
-  @unionᵢ_Ici_eq_Ioi_infᵢ ι (OrderDual R) _ f no_greatest_elem
-#align Union_Iic_eq_Iio_supr unionᵢ_Iic_eq_Iio_supᵢ
+  @iUnion_Ici_eq_Ioi_iInf ι (OrderDual R) _ f no_greatest_elem
+#align Union_Iic_eq_Iio_supr iUnion_Iic_eq_Iio_iSup
 
-theorem unionᵢ_Ici_eq_Ici_infᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Ici_eq_Ici_iInf {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_least_elem : (⨅ i, f i) ∈ range f) : (⋃ i : ι, Ici (f i)) = Ici (⨅ i, f i) := by
-  simp only [← IsGLB.bunionᵢ_Ici_eq_Ici (@isGLB_infᵢ _ _ _ f) has_least_elem, mem_range,
-    unionᵢ_exists, unionᵢ_unionᵢ_eq']
-#align Union_Ici_eq_Ici_infi unionᵢ_Ici_eq_Ici_infᵢ
+  simp only [← IsGLB.biUnion_Ici_eq_Ici (@isGLB_iInf _ _ _ f) has_least_elem, mem_range,
+    iUnion_exists, iUnion_iUnion_eq']
+#align Union_Ici_eq_Ici_infi iUnion_Ici_eq_Ici_iInf
 
-theorem unionᵢ_Iic_eq_Iic_supᵢ {R : Type _} [CompleteLinearOrder R] {f : ι → R}
+theorem iUnion_Iic_eq_Iic_iSup {R : Type _} [CompleteLinearOrder R] {f : ι → R}
     (has_greatest_elem : (⨆ i, f i) ∈ range f) : (⋃ i : ι, Iic (f i)) = Iic (⨆ i, f i) :=
-  @unionᵢ_Ici_eq_Ici_infᵢ ι (OrderDual R) _ f has_greatest_elem
-#align Union_Iic_eq_Iic_supr unionᵢ_Iic_eq_Iic_supᵢ
+  @iUnion_Ici_eq_Ici_iInf ι (OrderDual R) _ f has_greatest_elem
+#align Union_Iic_eq_Iic_supr iUnion_Iic_eq_Iic_iSup
 
 end UnionIxx
Diff
@@ -60,7 +60,7 @@ theorem Ici_disjoint_Iic : Disjoint (Ici a) (Iic b) ↔ ¬a ≤ b := by
 
 @[simp]
 theorem Iic_disjoint_Ici : Disjoint (Iic a) (Ici b) ↔ ¬b ≤ a :=
-  Disjoint.comm.trans Ici_disjoint_Iic
+  disjoint_comm.trans Ici_disjoint_Iic
 #align set.Iic_disjoint_Ici Set.Iic_disjoint_Ici
 
 @[simp]
feat: port Data.Set.Intervals.Disjoint (#1198)

Dependencies 59

60 files ported (100.0%)
33716 lines ported (100.0%)

All dependencies are ported!