deprecated.submonoidMathlib.Deprecated.Submonoid

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -235,7 +235,7 @@ theorem Range.isSubmonoid {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoi
       "An `add_submonoid` is closed under multiplication by naturals."]
 theorem IsSubmonoid.pow_mem {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : ∀ {n : ℕ}, a ^ n ∈ s
   | 0 => by rw [pow_zero]; exact hs.one_mem
-  | n + 1 => by rw [pow_succ]; exact hs.mul_mem h IsSubmonoid.pow_mem
+  | n + 1 => by rw [pow_succ']; exact hs.mul_mem h IsSubmonoid.pow_mem
 #align is_submonoid.pow_mem IsSubmonoid.pow_mem
 -/
 
Diff
@@ -276,7 +276,7 @@ theorem multiset_prod_mem {M} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (m
     (∀ a ∈ m, a ∈ s) → m.Prod ∈ s :=
   by
   refine' Quotient.inductionOn m fun l hl => _
-  rw [Multiset.quot_mk_to_coe, Multiset.coe_prod]
+  rw [Multiset.quot_mk_to_coe, Multiset.prod_coe]
   exact list_prod_mem hs hl
 #align is_submonoid.multiset_prod_mem IsSubmonoid.multiset_prod_mem
 #align is_add_submonoid.multiset_sum_mem IsAddSubmonoid.multiset_sum_mem
Diff
@@ -239,13 +239,13 @@ theorem IsSubmonoid.pow_mem {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : ∀ {n
 #align is_submonoid.pow_mem IsSubmonoid.pow_mem
 -/
 
-#print IsSubmonoid.power_subset /-
+#print IsSubmonoid.powers_subset /-
 /-- The set of natural number powers of an element of a submonoid is a subset of the submonoid. -/
 @[to_additive IsAddSubmonoid.multiples_subset
       "The set of natural number multiples of an element\nof an `add_submonoid` is a subset of the `add_submonoid`."]
-theorem IsSubmonoid.power_subset {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : powers a ⊆ s :=
+theorem IsSubmonoid.powers_subset {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : powers a ⊆ s :=
   fun x ⟨n, hx⟩ => hx ▸ hs.pow_mem h
-#align is_submonoid.power_subset IsSubmonoid.power_subset
+#align is_submonoid.power_subset IsSubmonoid.powers_subset
 #align is_add_submonoid.multiples_subset IsAddSubmonoid.multiples_subset
 -/
 
@@ -379,7 +379,8 @@ theorem closure_mono {s t : Set M} (h : s ⊆ t) : Closure s ⊆ Closure t :=
 theorem closure_singleton {x : M} : Closure ({x} : Set M) = powers x :=
   Set.eq_of_subset_of_subset
       (closure_subset (powers.isSubmonoid x) <| Set.singleton_subset_iff.2 <| powers.self_mem) <|
-    IsSubmonoid.power_subset (closure.isSubmonoid _) <| Set.singleton_subset_iff.1 <| subset_closure
+    IsSubmonoid.powers_subset (closure.isSubmonoid _) <|
+      Set.singleton_subset_iff.1 <| subset_closure
 #align monoid.closure_singleton Monoid.closure_singleton
 #align add_monoid.closure_singleton AddMonoid.closure_singleton
 -/
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2018 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Kenny Lau, Johan Commelin, Mario Carneiro, Kevin Buzzard
 -/
-import Mathbin.GroupTheory.Submonoid.Basic
-import Mathbin.Algebra.BigOperators.Basic
-import Mathbin.Deprecated.Group
+import GroupTheory.Submonoid.Basic
+import Algebra.BigOperators.Basic
+import Deprecated.Group
 
 #align_import deprecated.submonoid from "leanprover-community/mathlib"@"a11f9106a169dd302a285019e5165f8ab32ff433"
 
Diff
@@ -57,7 +57,7 @@ preferred. -/
 @[to_additive]
 structure IsSubmonoid (s : Set M) : Prop where
   one_mem : (1 : M) ∈ s
-  mul_mem {a b} : a ∈ s → b ∈ s → a * b ∈ s
+  hMul_mem {a b} : a ∈ s → b ∈ s → a * b ∈ s
 #align is_submonoid IsSubmonoid
 #align is_add_submonoid IsAddSubmonoid
 -/
@@ -96,7 +96,7 @@ theorem Multiplicative.isSubmonoid_iff {s : Set A} :
 theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂ : IsSubmonoid s₂) :
     IsSubmonoid (s₁ ∩ s₂) :=
   { one_mem := ⟨is₁.one_mem, is₂.one_mem⟩
-    mul_mem := fun x y hx hy => ⟨is₁.mul_mem hx.1 hy.1, is₂.mul_mem hx.2 hy.2⟩ }
+    hMul_mem := fun x y hx hy => ⟨is₁.hMul_mem hx.1 hy.1, is₂.hMul_mem hx.2 hy.2⟩ }
 #align is_submonoid.inter IsSubmonoid.inter
 #align is_add_submonoid.inter IsAddSubmonoid.inter
 -/
@@ -108,8 +108,8 @@ theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂
 theorem IsSubmonoid.iInter {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
     IsSubmonoid (Set.iInter s) :=
   { one_mem := Set.mem_iInter.2 fun y => (h y).one_mem
-    mul_mem := fun x₁ x₂ h₁ h₂ =>
-      Set.mem_iInter.2 fun y => (h y).mul_mem (Set.mem_iInter.1 h₁ y) (Set.mem_iInter.1 h₂ y) }
+    hMul_mem := fun x₁ x₂ h₁ h₂ =>
+      Set.mem_iInter.2 fun y => (h y).hMul_mem (Set.mem_iInter.1 h₁ y) (Set.mem_iInter.1 h₂ y) }
 #align is_submonoid.Inter IsSubmonoid.iInter
 #align is_add_submonoid.Inter IsAddSubmonoid.iInter
 -/
@@ -125,11 +125,11 @@ theorem isSubmonoid_iUnion_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι
   { one_mem :=
       let ⟨i⟩ := hι
       Set.mem_iUnion.2 ⟨i, (hs i).one_mem⟩
-    mul_mem := fun a b ha hb =>
+    hMul_mem := fun a b ha hb =>
       let ⟨i, hi⟩ := Set.mem_iUnion.1 ha
       let ⟨j, hj⟩ := Set.mem_iUnion.1 hb
       let ⟨k, hk⟩ := Directed i j
-      Set.mem_iUnion.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ }
+      Set.mem_iUnion.2 ⟨k, (hs k).hMul_mem (hk.1 hi) (hk.2 hj)⟩ }
 #align is_submonoid_Union_of_directed isSubmonoid_iUnion_of_directed
 #align is_add_submonoid_Union_of_directed isAddSubmonoid_iUnion_of_directed
 -/
@@ -181,7 +181,7 @@ theorem powers.mul_mem {x y z : M} : y ∈ powers x → z ∈ powers x → y * z
       "The set of natural number multiples of an element of\nan `add_monoid` `M` is an `add_submonoid` of `M`."]
 theorem powers.isSubmonoid (x : M) : IsSubmonoid (powers x) :=
   { one_mem := powers.one_mem
-    mul_mem := fun y z => powers.mul_mem }
+    hMul_mem := fun y z => powers.mul_mem }
 #align powers.is_submonoid powers.isSubmonoid
 #align multiples.is_add_submonoid multiples.isAddSubmonoid
 -/
@@ -201,7 +201,7 @@ theorem Univ.isSubmonoid : IsSubmonoid (@Set.univ M) := by constructor <;> simp
 theorem IsSubmonoid.preimage {N : Type _} [Monoid N] {f : M → N} (hf : IsMonoidHom f) {s : Set N}
     (hs : IsSubmonoid s) : IsSubmonoid (f ⁻¹' s) :=
   { one_mem := show f 1 ∈ s by rw [IsMonoidHom.map_one hf] <;> exact hs.one_mem
-    mul_mem := fun a b (ha : f a ∈ s) (hb : f b ∈ s) =>
+    hMul_mem := fun a b (ha : f a ∈ s) (hb : f b ∈ s) =>
       show f (a * b) ∈ s by rw [IsMonoidHom.map_mul' hf] <;> exact hs.mul_mem ha hb }
 #align is_submonoid.preimage IsSubmonoid.preimage
 #align is_add_submonoid.preimage IsAddSubmonoid.preimage
@@ -214,8 +214,8 @@ theorem IsSubmonoid.preimage {N : Type _} [Monoid N] {f : M → N} (hf : IsMonoi
 theorem IsSubmonoid.image {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) {s : Set M}
     (hs : IsSubmonoid s) : IsSubmonoid (f '' s) :=
   { one_mem := ⟨1, hs.one_mem, hf.map_one⟩
-    mul_mem := fun a b ⟨x, hx⟩ ⟨y, hy⟩ =>
-      ⟨x * y, hs.mul_mem hx.1 hy.1, by rw [hf.map_mul, hx.2, hy.2]⟩ }
+    hMul_mem := fun a b ⟨x, hx⟩ ⟨y, hy⟩ =>
+      ⟨x * y, hs.hMul_mem hx.1 hy.1, by rw [hf.map_mul, hx.2, hy.2]⟩ }
 #align is_submonoid.image IsSubmonoid.image
 #align is_add_submonoid.image IsAddSubmonoid.image
 -/
@@ -262,7 +262,7 @@ theorem list_prod_mem (hs : IsSubmonoid s) : ∀ {l : List M}, (∀ x ∈ l, x 
   | a :: l, h =>
     suffices a * l.Prod ∈ s by simpa
     have : a ∈ s ∧ ∀ x ∈ l, x ∈ s := by simpa using h
-    hs.mul_mem this.1 (list_prod_mem this.2)
+    hs.hMul_mem this.1 (list_prod_mem this.2)
 #align is_submonoid.list_prod_mem IsSubmonoid.list_prod_mem
 #align is_add_submonoid.list_sum_mem IsAddSubmonoid.list_sum_mem
 -/
@@ -337,7 +337,7 @@ def Closure (s : Set M) : Set M :=
 @[to_additive]
 theorem closure.isSubmonoid (s : Set M) : IsSubmonoid (Closure s) :=
   { one_mem := InClosure.one
-    mul_mem := fun a b => InClosure.mul }
+    hMul_mem := fun a b => InClosure.mul }
 #align monoid.closure.is_submonoid Monoid.closure.isSubmonoid
 #align add_monoid.closure.is_add_submonoid AddMonoid.closure.isAddSubmonoid
 -/
@@ -355,7 +355,7 @@ theorem subset_closure {s : Set M} : s ⊆ Closure s := fun a => InClosure.basic
 @[to_additive
       "The `add_submonoid` generated by a set is contained in any `add_submonoid` that\ncontains the set."]
 theorem closure_subset {s t : Set M} (ht : IsSubmonoid t) (h : s ⊆ t) : Closure s ⊆ t := fun a ha =>
-  by induction ha <;> simp [h _, *, IsSubmonoid.one_mem, IsSubmonoid.mul_mem]
+  by induction ha <;> simp [h _, *, IsSubmonoid.one_mem, IsSubmonoid.hMul_mem]
 #align monoid.closure_subset Monoid.closure_subset
 #align add_monoid.closure_subset AddMonoid.closure_subset
 -/
@@ -397,7 +397,7 @@ theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f)
       apply in_closure.rec_on hx <;> intros
       · solve_by_elim [subset_closure, Set.mem_image_of_mem]
       · rw [hf.map_one]; apply IsSubmonoid.one_mem (closure.is_submonoid (f '' s))
-      · rw [hf.map_mul]; solve_by_elim [(closure.is_submonoid _).mul_mem])
+      · rw [hf.map_mul]; solve_by_elim [(closure.is_submonoid _).hMul_mem])
     (closure_subset (IsSubmonoid.image hf (closure.isSubmonoid _)) <|
       Set.image_subset _ subset_closure)
 #align monoid.image_closure Monoid.image_closure
@@ -438,20 +438,20 @@ theorem mem_closure_union_iff {M : Type _} [CommMonoid M] {s t : Set M} {x : M}
     HL2 ▸
       List.recOn L
         (fun _ =>
-          ⟨1, (closure.isSubmonoid _).one_mem, 1, (closure.isSubmonoid _).one_mem, mul_one _⟩)
+          ⟨1, (closure.isSubmonoid _).one_mem, 1, (closure.isSubmonoid _).one_mem, hMul_one _⟩)
         (fun hd tl ih HL1 =>
           let ⟨y, hy, z, hz, hyzx⟩ := ih (List.forall_mem_of_forall_mem_cons HL1)
           Or.cases_on (HL1 hd <| List.mem_cons_self _ _)
             (fun hs =>
-              ⟨hd * y, (closure.isSubmonoid _).mul_mem (subset_closure hs) hy, z, hz, by
+              ⟨hd * y, (closure.isSubmonoid _).hMul_mem (subset_closure hs) hy, z, hz, by
                 rw [mul_assoc, List.prod_cons, ← hyzx] <;> rfl⟩)
             fun ht =>
-            ⟨y, hy, z * hd, (closure.isSubmonoid _).mul_mem hz (subset_closure ht), by
+            ⟨y, hy, z * hd, (closure.isSubmonoid _).hMul_mem hz (subset_closure ht), by
               rw [← mul_assoc, List.prod_cons, ← hyzx, mul_comm hd] <;> rfl⟩)
         HL1,
     fun ⟨y, hy, z, hz, hyzx⟩ =>
     hyzx ▸
-      (closure.isSubmonoid _).mul_mem (closure_mono (Set.subset_union_left _ _) hy)
+      (closure.isSubmonoid _).hMul_mem (closure_mono (Set.subset_union_left _ _) hy)
         (closure_mono (Set.subset_union_right _ _) hz)⟩
 #align monoid.mem_closure_union_iff Monoid.mem_closure_union_iff
 #align add_monoid.mem_closure_union_iff AddMonoid.mem_closure_union_iff
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2018 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Kenny Lau, Johan Commelin, Mario Carneiro, Kevin Buzzard
-
-! This file was ported from Lean 3 source module deprecated.submonoid
-! leanprover-community/mathlib commit a11f9106a169dd302a285019e5165f8ab32ff433
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.GroupTheory.Submonoid.Basic
 import Mathbin.Algebra.BigOperators.Basic
 import Mathbin.Deprecated.Group
 
+#align_import deprecated.submonoid from "leanprover-community/mathlib"@"a11f9106a169dd302a285019e5165f8ab32ff433"
+
 /-!
 # Unbundled submonoids (deprecated)
 
Diff
@@ -92,6 +92,7 @@ theorem Multiplicative.isSubmonoid_iff {s : Set A} :
 #align multiplicative.is_submonoid_iff Multiplicative.isSubmonoid_iff
 -/
 
+#print IsSubmonoid.inter /-
 /-- The intersection of two submonoids of a monoid `M` is a submonoid of `M`. -/
 @[to_additive
       "The intersection of two `add_submonoid`s of an `add_monoid` `M` is\nan `add_submonoid` of M."]
@@ -101,6 +102,7 @@ theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂
     mul_mem := fun x y hx hy => ⟨is₁.mul_mem hx.1 hy.1, is₂.mul_mem hx.2 hy.2⟩ }
 #align is_submonoid.inter IsSubmonoid.inter
 #align is_add_submonoid.inter IsAddSubmonoid.inter
+-/
 
 #print IsSubmonoid.iInter /-
 /-- The intersection of an indexed set of submonoids of a monoid `M` is a submonoid of `M`. -/
@@ -147,12 +149,14 @@ def powers (x : M) : Set M :=
 #align multiples multiples
 -/
 
+#print powers.one_mem /-
 /-- 1 is in the set of natural number powers of an element of a monoid. -/
 @[to_additive "0 is in the set of natural number multiples of an element of an `add_monoid`."]
 theorem powers.one_mem {x : M} : (1 : M) ∈ powers x :=
   ⟨0, pow_zero _⟩
 #align powers.one_mem powers.one_mem
 #align multiples.zero_mem multiples.zero_mem
+-/
 
 #print powers.self_mem /-
 /-- An element of a monoid is in the set of that element's natural number powers. -/
@@ -164,6 +168,7 @@ theorem powers.self_mem {x : M} : x ∈ powers x :=
 #align multiples.self_mem multiples.self_mem
 -/
 
+#print powers.mul_mem /-
 /-- The set of natural number powers of an element of a monoid is closed under multiplication. -/
 @[to_additive
       "The set of natural number multiples of an element of an `add_monoid` is closed under addition."]
@@ -171,6 +176,7 @@ theorem powers.mul_mem {x y z : M} : y ∈ powers x → z ∈ powers x → y * z
   fun ⟨n₁, h₁⟩ ⟨n₂, h₂⟩ => ⟨n₁ + n₂, by simp only [pow_add, *]⟩
 #align powers.mul_mem powers.mul_mem
 #align multiples.add_mem multiples.add_mem
+-/
 
 #print powers.isSubmonoid /-
 /-- The set of natural number powers of an element of a monoid `M` is a submonoid of `M`. -/
@@ -250,6 +256,7 @@ end powers
 
 namespace IsSubmonoid
 
+#print IsSubmonoid.list_prod_mem /-
 /-- The product of a list of elements of a submonoid is an element of the submonoid. -/
 @[to_additive
       "The sum of a list of elements of an `add_submonoid` is an element of the\n`add_submonoid`."]
@@ -261,6 +268,7 @@ theorem list_prod_mem (hs : IsSubmonoid s) : ∀ {l : List M}, (∀ x ∈ l, x 
     hs.mul_mem this.1 (list_prod_mem this.2)
 #align is_submonoid.list_prod_mem IsSubmonoid.list_prod_mem
 #align is_add_submonoid.list_sum_mem IsAddSubmonoid.list_sum_mem
+-/
 
 #print IsSubmonoid.multiset_prod_mem /-
 /-- The product of a multiset of elements of a submonoid of a `comm_monoid` is an element of
@@ -277,6 +285,7 @@ theorem multiset_prod_mem {M} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (m
 #align is_add_submonoid.multiset_sum_mem IsAddSubmonoid.multiset_sum_mem
 -/
 
+#print IsSubmonoid.finset_prod_mem /-
 /-- The product of elements of a submonoid of a `comm_monoid` indexed by a `finset` is an element
 of the submonoid. -/
 @[to_additive
@@ -286,6 +295,7 @@ theorem finset_prod_mem {M A} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (f
   | ⟨m, hm⟩, _ => multiset_prod_mem hs _ (by simpa)
 #align is_submonoid.finset_prod_mem IsSubmonoid.finset_prod_mem
 #align is_add_submonoid.finset_sum_mem IsAddSubmonoid.finset_sum_mem
+-/
 
 end IsSubmonoid
 
@@ -397,6 +407,7 @@ theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f)
 #align add_monoid.image_closure AddMonoid.image_closure
 -/
 
+#print Monoid.exists_list_of_mem_closure /-
 /-- Given an element `a` of the submonoid of a monoid `M` generated by a set `s`, there exists
 a list of elements of `s` whose product is `a`. -/
 @[to_additive
@@ -415,7 +426,9 @@ theorem exists_list_of_mem_closure {s : Set M} {a : M} (h : a ∈ Closure s) :
     exact fun a => ⟨ha a, hb a⟩
 #align monoid.exists_list_of_mem_closure Monoid.exists_list_of_mem_closure
 #align add_monoid.exists_list_of_mem_closure AddMonoid.exists_list_of_mem_closure
+-/
 
+#print Monoid.mem_closure_union_iff /-
 /-- Given sets `s, t` of a commutative monoid `M`, `x ∈ M` is in the submonoid of `M` generated by
     `s ∪ t` iff there exists an element of the submonoid generated by `s` and an element of the
     submonoid generated by `t` whose product is `x`. -/
@@ -445,6 +458,7 @@ theorem mem_closure_union_iff {M : Type _} [CommMonoid M] {s t : Set M} {x : M}
         (closure_mono (Set.subset_union_right _ _) hz)⟩
 #align monoid.mem_closure_union_iff Monoid.mem_closure_union_iff
 #align add_monoid.mem_closure_union_iff AddMonoid.mem_closure_union_iff
+-/
 
 end Monoid
 
@@ -457,9 +471,11 @@ def Submonoid.of {s : Set M} (h : IsSubmonoid s) : Submonoid M :=
 #align add_submonoid.of AddSubmonoid.of
 -/
 
+#print Submonoid.isSubmonoid /-
 @[to_additive]
 theorem Submonoid.isSubmonoid (S : Submonoid M) : IsSubmonoid (S : Set M) :=
   ⟨S.3, fun _ _ => S.2⟩
 #align submonoid.is_submonoid Submonoid.isSubmonoid
 #align add_submonoid.is_add_submonoid AddSubmonoid.isAddSubmonoid
+-/
 
Diff
@@ -282,7 +282,7 @@ of the submonoid. -/
 @[to_additive
       "The sum of elements of an `add_submonoid` of an `add_comm_monoid` indexed by\na `finset` is an element of the `add_submonoid`."]
 theorem finset_prod_mem {M A} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (f : A → M) :
-    ∀ t : Finset A, (∀ b ∈ t, f b ∈ s) → (∏ b in t, f b) ∈ s
+    ∀ t : Finset A, (∀ b ∈ t, f b ∈ s) → ∏ b in t, f b ∈ s
   | ⟨m, hm⟩, _ => multiset_prod_mem hs _ (by simpa)
 #align is_submonoid.finset_prod_mem IsSubmonoid.finset_prod_mem
 #align is_add_submonoid.finset_sum_mem IsAddSubmonoid.finset_sum_mem
Diff
@@ -142,7 +142,7 @@ section powers
 @[to_additive multiples
       "The set of natural number multiples `0, x, 2x, ...` of an element `x` of an `add_monoid`."]
 def powers (x : M) : Set M :=
-  { y | ∃ n : ℕ, x ^ n = y }
+  {y | ∃ n : ℕ, x ^ n = y}
 #align powers powers
 #align multiples multiples
 -/
@@ -321,7 +321,7 @@ inductive InClosure (s : Set M) : M → Prop
 /-- The inductively defined submonoid generated by a subset of a monoid. -/
 @[to_additive "The inductively defined `add_submonoid` genrated by a subset of an `add_monoid`."]
 def Closure (s : Set M) : Set M :=
-  { a | InClosure s a }
+  {a | InClosure s a}
 #align monoid.closure Monoid.Closure
 #align add_monoid.closure AddMonoid.Closure
 -/
@@ -390,7 +390,7 @@ theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f)
       apply in_closure.rec_on hx <;> intros
       · solve_by_elim [subset_closure, Set.mem_image_of_mem]
       · rw [hf.map_one]; apply IsSubmonoid.one_mem (closure.is_submonoid (f '' s))
-      · rw [hf.map_mul]; solve_by_elim [(closure.is_submonoid _).mul_mem] )
+      · rw [hf.map_mul]; solve_by_elim [(closure.is_submonoid _).mul_mem])
     (closure_subset (IsSubmonoid.image hf (closure.isSubmonoid _)) <|
       Set.image_subset _ subset_closure)
 #align monoid.image_closure Monoid.image_closure
Diff
@@ -37,7 +37,7 @@ submonoid, submonoids, is_submonoid
 -/
 
 
-open BigOperators
+open scoped BigOperators
 
 variable {M : Type _} [Monoid M] {s : Set M}
 
Diff
@@ -92,12 +92,6 @@ theorem Multiplicative.isSubmonoid_iff {s : Set A} :
 #align multiplicative.is_submonoid_iff Multiplicative.isSubmonoid_iff
 -/
 
-/- warning: is_submonoid.inter -> IsSubmonoid.inter is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {s₁ : Set.{u1} M} {s₂ : Set.{u1} M}, (IsSubmonoid.{u1} M _inst_1 s₁) -> (IsSubmonoid.{u1} M _inst_1 s₂) -> (IsSubmonoid.{u1} M _inst_1 (Inter.inter.{u1} (Set.{u1} M) (Set.hasInter.{u1} M) s₁ s₂))
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {s₁ : Set.{u1} M} {s₂ : Set.{u1} M}, (IsSubmonoid.{u1} M _inst_1 s₁) -> (IsSubmonoid.{u1} M _inst_1 s₂) -> (IsSubmonoid.{u1} M _inst_1 (Inter.inter.{u1} (Set.{u1} M) (Set.instInterSet.{u1} M) s₁ s₂))
-Case conversion may be inaccurate. Consider using '#align is_submonoid.inter IsSubmonoid.interₓ'. -/
 /-- The intersection of two submonoids of a monoid `M` is a submonoid of `M`. -/
 @[to_additive
       "The intersection of two `add_submonoid`s of an `add_monoid` `M` is\nan `add_submonoid` of M."]
@@ -153,12 +147,6 @@ def powers (x : M) : Set M :=
 #align multiples multiples
 -/
 
-/- warning: powers.one_mem -> powers.one_mem is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {x : M}, Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) (OfNat.ofNat.{u1} M 1 (OfNat.mk.{u1} M 1 (One.one.{u1} M (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) (powers.{u1} M _inst_1 x)
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {x : M}, Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) (OfNat.ofNat.{u1} M 1 (One.toOfNat1.{u1} M (Monoid.toOne.{u1} M _inst_1))) (powers.{u1} M _inst_1 x)
-Case conversion may be inaccurate. Consider using '#align powers.one_mem powers.one_memₓ'. -/
 /-- 1 is in the set of natural number powers of an element of a monoid. -/
 @[to_additive "0 is in the set of natural number multiples of an element of an `add_monoid`."]
 theorem powers.one_mem {x : M} : (1 : M) ∈ powers x :=
@@ -176,12 +164,6 @@ theorem powers.self_mem {x : M} : x ∈ powers x :=
 #align multiples.self_mem multiples.self_mem
 -/
 
-/- warning: powers.mul_mem -> powers.mul_mem is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {x : M} {y : M} {z : M}, (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) y (powers.{u1} M _inst_1 x)) -> (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) z (powers.{u1} M _inst_1 x)) -> (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) y z) (powers.{u1} M _inst_1 x))
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {x : M} {y : M} {z : M}, (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) y (powers.{u1} M _inst_1 x)) -> (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) z (powers.{u1} M _inst_1 x)) -> (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) y z) (powers.{u1} M _inst_1 x))
-Case conversion may be inaccurate. Consider using '#align powers.mul_mem powers.mul_memₓ'. -/
 /-- The set of natural number powers of an element of a monoid is closed under multiplication. -/
 @[to_additive
       "The set of natural number multiples of an element of an `add_monoid` is closed under addition."]
@@ -268,12 +250,6 @@ end powers
 
 namespace IsSubmonoid
 
-/- warning: is_submonoid.list_prod_mem -> IsSubmonoid.list_prod_mem is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {s : Set.{u1} M}, (IsSubmonoid.{u1} M _inst_1 s) -> (forall {l : List.{u1} M}, (forall (x : M), (Membership.Mem.{u1, u1} M (List.{u1} M) (List.hasMem.{u1} M) x l) -> (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) x s)) -> (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) (List.prod.{u1} M (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) l) s))
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {s : Set.{u1} M}, (IsSubmonoid.{u1} M _inst_1 s) -> (forall {l : List.{u1} M}, (forall (x : M), (Membership.mem.{u1, u1} M (List.{u1} M) (List.instMembershipList.{u1} M) x l) -> (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) x s)) -> (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) (List.prod.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Monoid.toOne.{u1} M _inst_1) l) s))
-Case conversion may be inaccurate. Consider using '#align is_submonoid.list_prod_mem IsSubmonoid.list_prod_memₓ'. -/
 /-- The product of a list of elements of a submonoid is an element of the submonoid. -/
 @[to_additive
       "The sum of a list of elements of an `add_submonoid` is an element of the\n`add_submonoid`."]
@@ -301,12 +277,6 @@ theorem multiset_prod_mem {M} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (m
 #align is_add_submonoid.multiset_sum_mem IsAddSubmonoid.multiset_sum_mem
 -/
 
-/- warning: is_submonoid.finset_prod_mem -> IsSubmonoid.finset_prod_mem is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} {A : Type.{u2}} [_inst_3 : CommMonoid.{u1} M] {s : Set.{u1} M}, (IsSubmonoid.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) s) -> (forall (f : A -> M) (t : Finset.{u2} A), (forall (b : A), (Membership.Mem.{u2, u2} A (Finset.{u2} A) (Finset.hasMem.{u2} A) b t) -> (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) (f b) s)) -> (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) (Finset.prod.{u1, u2} M A _inst_3 t (fun (b : A) => f b)) s))
-but is expected to have type
-  forall {M : Type.{u2}} {A : Type.{u1}} [_inst_3 : CommMonoid.{u2} M] {s : Set.{u2} M}, (IsSubmonoid.{u2} M (CommMonoid.toMonoid.{u2} M _inst_3) s) -> (forall (f : A -> M) (t : Finset.{u1} A), (forall (b : A), (Membership.mem.{u1, u1} A (Finset.{u1} A) (Finset.instMembershipFinset.{u1} A) b t) -> (Membership.mem.{u2, u2} M (Set.{u2} M) (Set.instMembershipSet.{u2} M) (f b) s)) -> (Membership.mem.{u2, u2} M (Set.{u2} M) (Set.instMembershipSet.{u2} M) (Finset.prod.{u2, u1} M A _inst_3 t (fun (b : A) => f b)) s))
-Case conversion may be inaccurate. Consider using '#align is_submonoid.finset_prod_mem IsSubmonoid.finset_prod_memₓ'. -/
 /-- The product of elements of a submonoid of a `comm_monoid` indexed by a `finset` is an element
 of the submonoid. -/
 @[to_additive
@@ -427,12 +397,6 @@ theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f)
 #align add_monoid.image_closure AddMonoid.image_closure
 -/
 
-/- warning: monoid.exists_list_of_mem_closure -> Monoid.exists_list_of_mem_closure is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {s : Set.{u1} M} {a : M}, (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) a (Monoid.Closure.{u1} M _inst_1 s)) -> (Exists.{succ u1} (List.{u1} M) (fun (l : List.{u1} M) => And (forall (x : M), (Membership.Mem.{u1, u1} M (List.{u1} M) (List.hasMem.{u1} M) x l) -> (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) x s)) (Eq.{succ u1} M (List.prod.{u1} M (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (MulOneClass.toHasOne.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) l) a)))
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] {s : Set.{u1} M} {a : M}, (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) a (Monoid.Closure.{u1} M _inst_1 s)) -> (Exists.{succ u1} (List.{u1} M) (fun (l : List.{u1} M) => And (forall (x : M), (Membership.mem.{u1, u1} M (List.{u1} M) (List.instMembershipList.{u1} M) x l) -> (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) x s)) (Eq.{succ u1} M (List.prod.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Monoid.toOne.{u1} M _inst_1) l) a)))
-Case conversion may be inaccurate. Consider using '#align monoid.exists_list_of_mem_closure Monoid.exists_list_of_mem_closureₓ'. -/
 /-- Given an element `a` of the submonoid of a monoid `M` generated by a set `s`, there exists
 a list of elements of `s` whose product is `a`. -/
 @[to_additive
@@ -452,12 +416,6 @@ theorem exists_list_of_mem_closure {s : Set M} {a : M} (h : a ∈ Closure s) :
 #align monoid.exists_list_of_mem_closure Monoid.exists_list_of_mem_closure
 #align add_monoid.exists_list_of_mem_closure AddMonoid.exists_list_of_mem_closure
 
-/- warning: monoid.mem_closure_union_iff -> Monoid.mem_closure_union_iff is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_3 : CommMonoid.{u1} M] {s : Set.{u1} M} {t : Set.{u1} M} {x : M}, Iff (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) x (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) (Union.union.{u1} (Set.{u1} M) (Set.hasUnion.{u1} M) s t))) (Exists.{succ u1} M (fun (y : M) => Exists.{0} (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) y (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) s)) (fun (H : Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) y (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) s)) => Exists.{succ u1} M (fun (z : M) => Exists.{0} (Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) z (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) t)) (fun (H : Membership.Mem.{u1, u1} M (Set.{u1} M) (Set.hasMem.{u1} M) z (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) t)) => Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toHasMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3)))) y z) x)))))
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_3 : CommMonoid.{u1} M] {s : Set.{u1} M} {t : Set.{u1} M} {x : M}, Iff (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) x (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) (Union.union.{u1} (Set.{u1} M) (Set.instUnionSet.{u1} M) s t))) (Exists.{succ u1} M (fun (y : M) => And (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) y (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) s)) (Exists.{succ u1} M (fun (z : M) => And (Membership.mem.{u1, u1} M (Set.{u1} M) (Set.instMembershipSet.{u1} M) z (Monoid.Closure.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3) t)) (Eq.{succ u1} M (HMul.hMul.{u1, u1, u1} M M M (instHMul.{u1} M (MulOneClass.toMul.{u1} M (Monoid.toMulOneClass.{u1} M (CommMonoid.toMonoid.{u1} M _inst_3)))) y z) x)))))
-Case conversion may be inaccurate. Consider using '#align monoid.mem_closure_union_iff Monoid.mem_closure_union_iffₓ'. -/
 /-- Given sets `s, t` of a commutative monoid `M`, `x ∈ M` is in the submonoid of `M` generated by
     `s ∪ t` iff there exists an element of the submonoid generated by `s` and an element of the
     submonoid generated by `t` whose product is `x`. -/
@@ -499,12 +457,6 @@ def Submonoid.of {s : Set M} (h : IsSubmonoid s) : Submonoid M :=
 #align add_submonoid.of AddSubmonoid.of
 -/
 
-/- warning: submonoid.is_submonoid -> Submonoid.isSubmonoid is a dubious translation:
-lean 3 declaration is
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] (S : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)), IsSubmonoid.{u1} M _inst_1 ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Set.{u1} M) (HasLiftT.mk.{succ u1, succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Set.{u1} M) (CoeTCₓ.coe.{succ u1, succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Set.{u1} M) (SetLike.Set.hasCoeT.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) S)
-but is expected to have type
-  forall {M : Type.{u1}} [_inst_1 : Monoid.{u1} M] (S : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)), IsSubmonoid.{u1} M _inst_1 (SetLike.coe.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) S)
-Case conversion may be inaccurate. Consider using '#align submonoid.is_submonoid Submonoid.isSubmonoidₓ'. -/
 @[to_additive]
 theorem Submonoid.isSubmonoid (S : Submonoid M) : IsSubmonoid (S : Set M) :=
   ⟨S.3, fun _ _ => S.2⟩
Diff
@@ -239,9 +239,7 @@ theorem IsSubmonoid.image {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoi
 /-- The image of a monoid hom is a submonoid of the codomain. -/
 @[to_additive "The image of an `add_monoid` hom is an `add_submonoid`\nof the codomain."]
 theorem Range.isSubmonoid {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) :
-    IsSubmonoid (Set.range f) := by
-  rw [← Set.image_univ]
-  exact univ.is_submonoid.image hf
+    IsSubmonoid (Set.range f) := by rw [← Set.image_univ]; exact univ.is_submonoid.image hf
 #align range.is_submonoid Range.isSubmonoid
 #align range.is_add_submonoid Range.isAddSubmonoid
 -/
@@ -251,12 +249,8 @@ theorem Range.isSubmonoid {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoi
 @[to_additive IsAddSubmonoid.smul_mem
       "An `add_submonoid` is closed under multiplication by naturals."]
 theorem IsSubmonoid.pow_mem {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : ∀ {n : ℕ}, a ^ n ∈ s
-  | 0 => by
-    rw [pow_zero]
-    exact hs.one_mem
-  | n + 1 => by
-    rw [pow_succ]
-    exact hs.mul_mem h IsSubmonoid.pow_mem
+  | 0 => by rw [pow_zero]; exact hs.one_mem
+  | n + 1 => by rw [pow_succ]; exact hs.mul_mem h IsSubmonoid.pow_mem
 #align is_submonoid.pow_mem IsSubmonoid.pow_mem
 -/
 
@@ -425,10 +419,8 @@ theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f)
       rintro _ ⟨x, hx, rfl⟩
       apply in_closure.rec_on hx <;> intros
       · solve_by_elim [subset_closure, Set.mem_image_of_mem]
-      · rw [hf.map_one]
-        apply IsSubmonoid.one_mem (closure.is_submonoid (f '' s))
-      · rw [hf.map_mul]
-        solve_by_elim [(closure.is_submonoid _).mul_mem] )
+      · rw [hf.map_one]; apply IsSubmonoid.one_mem (closure.is_submonoid (f '' s))
+      · rw [hf.map_mul]; solve_by_elim [(closure.is_submonoid _).mul_mem] )
     (closure_subset (IsSubmonoid.image hf (closure.isSubmonoid _)) <|
       Set.image_subset _ subset_closure)
 #align monoid.image_closure Monoid.image_closure
Diff
@@ -108,37 +108,37 @@ theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂
 #align is_submonoid.inter IsSubmonoid.inter
 #align is_add_submonoid.inter IsAddSubmonoid.inter
 
-#print IsSubmonoid.interᵢ /-
+#print IsSubmonoid.iInter /-
 /-- The intersection of an indexed set of submonoids of a monoid `M` is a submonoid of `M`. -/
 @[to_additive
       "The intersection of an indexed set of `add_submonoid`s of an `add_monoid` `M` is\nan `add_submonoid` of `M`."]
-theorem IsSubmonoid.interᵢ {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
-    IsSubmonoid (Set.interᵢ s) :=
-  { one_mem := Set.mem_interᵢ.2 fun y => (h y).one_mem
+theorem IsSubmonoid.iInter {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
+    IsSubmonoid (Set.iInter s) :=
+  { one_mem := Set.mem_iInter.2 fun y => (h y).one_mem
     mul_mem := fun x₁ x₂ h₁ h₂ =>
-      Set.mem_interᵢ.2 fun y => (h y).mul_mem (Set.mem_interᵢ.1 h₁ y) (Set.mem_interᵢ.1 h₂ y) }
-#align is_submonoid.Inter IsSubmonoid.interᵢ
-#align is_add_submonoid.Inter IsAddSubmonoid.interᵢ
+      Set.mem_iInter.2 fun y => (h y).mul_mem (Set.mem_iInter.1 h₁ y) (Set.mem_iInter.1 h₂ y) }
+#align is_submonoid.Inter IsSubmonoid.iInter
+#align is_add_submonoid.Inter IsAddSubmonoid.iInter
 -/
 
-#print isSubmonoid_unionᵢ_of_directed /-
+#print isSubmonoid_iUnion_of_directed /-
 /-- The union of an indexed, directed, nonempty set of submonoids of a monoid `M` is a submonoid
     of `M`. -/
 @[to_additive
       "The union of an indexed, directed, nonempty set\nof `add_submonoid`s of an `add_monoid` `M` is an `add_submonoid` of `M`. "]
-theorem isSubmonoid_unionᵢ_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set M}
+theorem isSubmonoid_iUnion_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set M}
     (hs : ∀ i, IsSubmonoid (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
     IsSubmonoid (⋃ i, s i) :=
   { one_mem :=
       let ⟨i⟩ := hι
-      Set.mem_unionᵢ.2 ⟨i, (hs i).one_mem⟩
+      Set.mem_iUnion.2 ⟨i, (hs i).one_mem⟩
     mul_mem := fun a b ha hb =>
-      let ⟨i, hi⟩ := Set.mem_unionᵢ.1 ha
-      let ⟨j, hj⟩ := Set.mem_unionᵢ.1 hb
+      let ⟨i, hi⟩ := Set.mem_iUnion.1 ha
+      let ⟨j, hj⟩ := Set.mem_iUnion.1 hb
       let ⟨k, hk⟩ := Directed i j
-      Set.mem_unionᵢ.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ }
-#align is_submonoid_Union_of_directed isSubmonoid_unionᵢ_of_directed
-#align is_add_submonoid_Union_of_directed isAddSubmonoid_unionᵢ_of_directed
+      Set.mem_iUnion.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ }
+#align is_submonoid_Union_of_directed isSubmonoid_iUnion_of_directed
+#align is_add_submonoid_Union_of_directed isAddSubmonoid_iUnion_of_directed
 -/
 
 section powers

Changes in mathlib4

mathlib3
mathlib4
chore: unify date formatting in lemma deprecations (#12334)
  • consistently use the YYYY-MM-DD format
  • when easily possible, put the date on the same line as the deprecated attribute
  • when easily possible, format the entire declaration on the same line

Why these changes?

  • consistency makes it easier for tools to parse this information
  • compactness: I don't see a good reason for these declarations taking up more space than needed; as I understand it, deprecated lemmas are not supposed to be used in mathlib anyway
  • putting the date on the same line as the attribute makes it easier to discover un-dated deprecations; they also ease writing a tool to replace these by a machine-readable version using leanprover/lean4#3968
Diff
@@ -222,7 +222,7 @@ theorem IsSubmonoid.powers_subset {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : p
   fun _ ⟨_, hx⟩ => hx ▸ hs.pow_mem h
 #align is_submonoid.power_subset IsSubmonoid.powers_subset
 #align is_add_submonoid.multiples_subset IsAddSubmonoid.multiples_subset
-/- 2024-02-21 -/ @[deprecated] alias IsSubmonoid.power_subset := IsSubmonoid.powers_subset
+@[deprecated] alias IsSubmonoid.power_subset := IsSubmonoid.powers_subset -- 2024-02-21
 
 end powers
 
style: replace '.-/' by '. -/' (#11938)

Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.

Diff
@@ -269,7 +269,7 @@ end IsSubmonoid
 namespace AddMonoid
 
 /-- The inductively defined membership predicate for the submonoid generated by a subset of a
-    monoid.-/
+    monoid. -/
 inductive InClosure (s : Set A) : A → Prop
   | basic {a : A} : a ∈ s → InClosure _ a
   | zero : InClosure _ 0
change the order of operation in zsmulRec and nsmulRec (#11451)

We change the following field in the definition of an additive commutative monoid:

 nsmul_succ : ∀ (n : ℕ) (x : G),
-  AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+  AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x

where the latter is more natural

We adjust the definitions of ^ in monoids, groups, etc. Originally there was a warning comment about why this natural order was preferred

use x * npowRec n x and not npowRec n x * x in the definition to make sure that definitional unfolding of npowRec is blocked, to avoid deep recursion issues.

but it seems to no longer apply.

Remarks on the PR :

  • pow_succ and pow_succ' have switched their meanings.
  • Most of the time, the proofs were adjusted by priming/unpriming one lemma, or exchanging left and right; a few proofs were more complicated to adjust.
  • In particular, [Mathlib/NumberTheory/RamificationInertia.lean] used Ideal.IsPrime.mul_mem_pow which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul.
  • the docstring for Cauchy condensation test in [Mathlib/Analysis/PSeries.lean] was mathematically incorrect, I added the mention that the function is antitone.
Diff
@@ -210,7 +210,7 @@ theorem IsSubmonoid.pow_mem {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : ∀ {n
     exact hs.one_mem
   | n + 1 => by
     rw [pow_succ]
-    exact hs.mul_mem h (IsSubmonoid.pow_mem hs h)
+    exact hs.mul_mem (IsSubmonoid.pow_mem hs h) h
 #align is_submonoid.pow_mem IsSubmonoid.pow_mem
 
 /-- The set of natural number powers of an element of a `Submonoid` is a subset of the
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -34,7 +34,6 @@ Submonoid, Submonoids, IsSubmonoid
 open BigOperators
 
 variable {M : Type*} [Monoid M] {s : Set M}
-
 variable {A : Type*} [AddMonoid A] {t : Set A}
 
 /-- `s` is an additive submonoid: a set containing 0 and closed under addition.
chore: Rename lemmas about the coercion List → Multiset (#11099)

These did not respect the naming convention by having the coe as a prefix instead of a suffix, or vice-versa. Also add a bunch of norm_cast

Diff
@@ -249,7 +249,7 @@ the submonoid. -/
 theorem multiset_prod_mem {M} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (m : Multiset M) :
     (∀ a ∈ m, a ∈ s) → m.prod ∈ s := by
   refine' Quotient.inductionOn m fun l hl => _
-  rw [Multiset.quot_mk_to_coe, Multiset.coe_prod]
+  rw [Multiset.quot_mk_to_coe, Multiset.prod_coe]
   exact list_prod_mem hs hl
 #align is_submonoid.multiset_prod_mem IsSubmonoid.multiset_prod_mem
 #align is_add_submonoid.multiset_sum_mem IsAddSubmonoid.multiset_sum_mem
add two to_additive name translations (#10831)
  • Remove manual translations that are now guessed correctly
  • Fix some names that were incorrectly guessed by humans (and in one case fix the multiplicative name). Add deprecations for all name changes.
  • Remove a couple manually additivized lemmas.
Diff
@@ -122,7 +122,7 @@ theorem isSubmonoid_iUnion_of_directed {ι : Type*} [hι : Nonempty ι] {s : ι
 section powers
 
 /-- The set of natural number powers `1, x, x², ...` of an element `x` of a monoid. -/
-@[to_additive multiples
+@[to_additive
       "The set of natural number multiples `0, x, 2x, ...` of an element `x` of an `AddMonoid`."]
 def powers (x : M) : Set M :=
   { y | ∃ n : ℕ, x ^ n = y }
@@ -214,14 +214,16 @@ theorem IsSubmonoid.pow_mem {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : ∀ {n
     exact hs.mul_mem h (IsSubmonoid.pow_mem hs h)
 #align is_submonoid.pow_mem IsSubmonoid.pow_mem
 
-/-- The set of natural number powers of an element of a submonoid is a subset of the submonoid. -/
-@[to_additive IsAddSubmonoid.multiples_subset
+/-- The set of natural number powers of an element of a `Submonoid` is a subset of the
+`Submonoid`. -/
+@[to_additive
       "The set of natural number multiples of an element of an `AddSubmonoid` is a subset of
       the `AddSubmonoid`."]
-theorem IsSubmonoid.power_subset {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : powers a ⊆ s :=
+theorem IsSubmonoid.powers_subset {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : powers a ⊆ s :=
   fun _ ⟨_, hx⟩ => hx ▸ hs.pow_mem h
-#align is_submonoid.power_subset IsSubmonoid.power_subset
+#align is_submonoid.power_subset IsSubmonoid.powers_subset
 #align is_add_submonoid.multiples_subset IsAddSubmonoid.multiples_subset
+/- 2024-02-21 -/ @[deprecated] alias IsSubmonoid.power_subset := IsSubmonoid.powers_subset
 
 end powers
 
@@ -337,7 +339,7 @@ theorem closure_mono {s t : Set M} (h : s ⊆ t) : Closure s ⊆ Closure t :=
 theorem closure_singleton {x : M} : Closure ({x} : Set M) = powers x :=
   Set.eq_of_subset_of_subset
       (closure_subset (powers.isSubmonoid x) <| Set.singleton_subset_iff.2 <| powers.self_mem) <|
-    IsSubmonoid.power_subset (closure.isSubmonoid _) <|
+    IsSubmonoid.powers_subset (closure.isSubmonoid _) <|
       Set.singleton_subset_iff.1 <| subset_closure
 #align monoid.closure_singleton Monoid.closure_singleton
 #align add_monoid.closure_singleton AddMonoid.closure_singleton
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -425,6 +425,6 @@ def Submonoid.of {s : Set M} (h : IsSubmonoid s) : Submonoid M :=
 
 @[to_additive]
 theorem Submonoid.isSubmonoid (S : Submonoid M) : IsSubmonoid (S : Set M) := by
-  refine' ⟨S.2, S.1.2⟩
+  exact ⟨S.2, S.1.2⟩
 #align submonoid.is_submonoid Submonoid.isSubmonoid
 #align add_submonoid.is_add_submonoid AddSubmonoid.isAddSubmonoid
chore(*): use α → β instead of ∀ _ : α, β (#9529)
Diff
@@ -59,7 +59,7 @@ structure IsSubmonoid (s : Set M) : Prop where
 #align is_submonoid IsSubmonoid
 
 theorem Additive.isAddSubmonoid {s : Set M} :
-    ∀ _ : IsSubmonoid s, @IsAddSubmonoid (Additive M) _ s
+    IsSubmonoid s → @IsAddSubmonoid (Additive M) _ s
   | ⟨h₁, h₂⟩ => ⟨h₁, @h₂⟩
 #align additive.is_add_submonoid Additive.isAddSubmonoid
 
@@ -69,7 +69,7 @@ theorem Additive.isAddSubmonoid_iff {s : Set M} :
 #align additive.is_add_submonoid_iff Additive.isAddSubmonoid_iff
 
 theorem Multiplicative.isSubmonoid {s : Set A} :
-    ∀ _ : IsAddSubmonoid s, @IsSubmonoid (Multiplicative A) _ s
+    IsAddSubmonoid s → @IsSubmonoid (Multiplicative A) _ s
   | ⟨h₁, h₂⟩ => ⟨h₁, @h₂⟩
 #align multiplicative.is_submonoid Multiplicative.isSubmonoid
 
style: use cases x with | ... instead of cases x; case => ... (#9321)

This converts usages of the pattern

cases h
case inl h' => ...
case inr h' => ...

which derive from mathported code, to the "structured cases" syntax:

cases h with
| inl h' => ...
| inr h' => ...

The case where the subgoals are handled with · instead of case is more contentious (and much more numerous) so I left those alone. This pattern also appears with cases', induction, induction', and rcases. Furthermore, there is a similar transformation for by_cases:

by_cases h : cond
case pos => ...
case neg => ...

is replaced by:

if h : cond then
  ...
else
  ...

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -370,10 +370,10 @@ a list of elements of `s` whose product is `a`. -/
       a set `s`, there exists a list of elements of `s` whose sum is `a`."]
 theorem exists_list_of_mem_closure {s : Set M} {a : M} (h : a ∈ Closure s) :
     ∃ l : List M, (∀ x ∈ l, x ∈ s) ∧ l.prod = a := by
-  induction h
-  case basic a ha => exists [a]; simp [ha]
-  case one => exists []; simp
-  case mul a b _ _ ha hb =>
+  induction h with
+  | @basic a ha => exists [a]; simp [ha]
+  | one => exists []; simp
+  | mul _ _ ha hb =>
     rcases ha with ⟨la, ha, eqa⟩
     rcases hb with ⟨lb, hb, eqb⟩
     exists la ++ lb
chore: remove nonterminal simp (#7580)

Removes nonterminal simps on lines looking like simp [...]

Diff
@@ -377,7 +377,7 @@ theorem exists_list_of_mem_closure {s : Set M} {a : M} (h : a ∈ Closure s) :
     rcases ha with ⟨la, ha, eqa⟩
     rcases hb with ⟨lb, hb, eqb⟩
     exists la ++ lb
-    simp [eqa.symm, eqb.symm, or_imp]
+    simp only [List.mem_append, or_imp, List.prod_append, eqa.symm, eqb.symm, and_true]
     exact fun a => ⟨ha a, hb a⟩
 #align monoid.exists_list_of_mem_closure Monoid.exists_list_of_mem_closure
 #align add_monoid.exists_list_of_mem_closure AddMonoid.exists_list_of_mem_closure
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -33,9 +33,9 @@ Submonoid, Submonoids, IsSubmonoid
 
 open BigOperators
 
-variable {M : Type _} [Monoid M] {s : Set M}
+variable {M : Type*} [Monoid M] {s : Set M}
 
-variable {A : Type _} [AddMonoid A] {t : Set A}
+variable {A : Type*} [AddMonoid A] {t : Set A}
 
 /-- `s` is an additive submonoid: a set containing 0 and closed under addition.
 Note that this structure is deprecated, and the bundled variant `AddSubmonoid A` should be
@@ -92,7 +92,7 @@ theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂
 @[to_additive
       "The intersection of an indexed set of `AddSubmonoid`s of an `AddMonoid` `M` is
       an `AddSubmonoid` of `M`."]
-theorem IsSubmonoid.iInter {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
+theorem IsSubmonoid.iInter {ι : Sort*} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
     IsSubmonoid (Set.iInter s) :=
   { one_mem := Set.mem_iInter.2 fun y => (h y).one_mem
     mul_mem := fun h₁ h₂ =>
@@ -105,7 +105,7 @@ theorem IsSubmonoid.iInter {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsS
 @[to_additive
       "The union of an indexed, directed, nonempty set of `AddSubmonoid`s of an `AddMonoid` `M`
       is an `AddSubmonoid` of `M`. "]
-theorem isSubmonoid_iUnion_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set M}
+theorem isSubmonoid_iUnion_of_directed {ι : Type*} [hι : Nonempty ι] {s : ι → Set M}
     (hs : ∀ i, IsSubmonoid (s i)) (Directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
     IsSubmonoid (⋃ i, s i) :=
   { one_mem :=
@@ -173,7 +173,7 @@ theorem Univ.isSubmonoid : IsSubmonoid (@Set.univ M) := by constructor <;> simp
 @[to_additive
       "The preimage of an `AddSubmonoid` under an `AddMonoid` hom is
       an `AddSubmonoid` of the domain."]
-theorem IsSubmonoid.preimage {N : Type _} [Monoid N] {f : M → N} (hf : IsMonoidHom f) {s : Set N}
+theorem IsSubmonoid.preimage {N : Type*} [Monoid N] {f : M → N} (hf : IsMonoidHom f) {s : Set N}
     (hs : IsSubmonoid s) : IsSubmonoid (f ⁻¹' s) :=
   { one_mem := show f 1 ∈ s by (rw [IsMonoidHom.map_one hf]; exact hs.one_mem)
     mul_mem := fun {a b} (ha : f a ∈ s) (hb : f b ∈ s) =>
@@ -185,7 +185,7 @@ theorem IsSubmonoid.preimage {N : Type _} [Monoid N] {f : M → N} (hf : IsMonoi
 @[to_additive
       "The image of an `AddSubmonoid` under an `AddMonoid` hom is an `AddSubmonoid` of the
       codomain."]
-theorem IsSubmonoid.image {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) {s : Set M}
+theorem IsSubmonoid.image {γ : Type*} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) {s : Set M}
     (hs : IsSubmonoid s) : IsSubmonoid (f '' s) :=
   { one_mem := ⟨1, hs.one_mem, hf.map_one⟩
     mul_mem := @fun a b ⟨x, hx⟩ ⟨y, hy⟩ =>
@@ -195,7 +195,7 @@ theorem IsSubmonoid.image {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoi
 
 /-- The image of a monoid hom is a submonoid of the codomain. -/
 @[to_additive "The image of an `AddMonoid` hom is an `AddSubmonoid` of the codomain."]
-theorem Range.isSubmonoid {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) :
+theorem Range.isSubmonoid {γ : Type*} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) :
     IsSubmonoid (Set.range f) := by
   rw [← Set.image_univ]
   exact Univ.isSubmonoid.image hf
@@ -347,7 +347,7 @@ theorem closure_singleton {x : M} : Closure ({x} : Set M) = powers x :=
 @[to_additive
       "The image under an `AddMonoid` hom of the `AddSubmonoid` generated by a set equals
       the `AddSubmonoid` generated by the image of the set under the `AddMonoid` hom."]
-theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f) (s : Set M) :
+theorem image_closure {A : Type*} [Monoid A] {f : M → A} (hf : IsMonoidHom f) (s : Set M) :
     f '' Closure s = Closure (f '' s) :=
   le_antisymm
     (by
@@ -389,7 +389,7 @@ theorem exists_list_of_mem_closure {s : Set M} {a : M} (h : a ∈ Closure s) :
       "Given sets `s, t` of a commutative `AddMonoid M`, `x ∈ M` is in the `AddSubmonoid`
       of `M` generated by `s ∪ t` iff there exists an element of the `AddSubmonoid` generated by `s`
       and an element of the `AddSubmonoid` generated by `t` whose sum is `x`."]
-theorem mem_closure_union_iff {M : Type _} [CommMonoid M] {s t : Set M} {x : M} :
+theorem mem_closure_union_iff {M : Type*} [CommMonoid M] {s t : Set M} {x : M} :
     x ∈ Closure (s ∪ t) ↔ ∃ y ∈ Closure s, ∃ z ∈ Closure t, y * z = x :=
   ⟨fun hx =>
     let ⟨L, HL1, HL2⟩ := exists_list_of_mem_closure hx
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2018 Johannes Hölzl. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Kenny Lau, Johan Commelin, Mario Carneiro, Kevin Buzzard
-
-! This file was ported from Lean 3 source module deprecated.submonoid
-! leanprover-community/mathlib commit 509de852e1de55e1efa8eacfa11df0823f26f226
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.GroupTheory.Submonoid.Basic
 import Mathlib.Algebra.BigOperators.Basic
 import Mathlib.Deprecated.Group
 
+#align_import deprecated.submonoid from "leanprover-community/mathlib"@"509de852e1de55e1efa8eacfa11df0823f26f226"
+
 /-!
 # Unbundled submonoids (deprecated)
 
chore: fix typos (#4518)

I ran codespell Mathlib and got tired halfway through the suggestions.

Diff
@@ -293,7 +293,7 @@ inductive InClosure (s : Set M) : M → Prop
 
 /-- The inductively defined submonoid generated by a subset of a monoid. -/
 @[to_additive
-      "The inductively defined `AddSubmonoid` genrated by a subset of an `AddMonoid`."]
+      "The inductively defined `AddSubmonoid` generated by a subset of an `AddMonoid`."]
 def Closure (s : Set M) : Set M :=
   { a | InClosure s a }
 #align monoid.closure Monoid.Closure
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -95,32 +95,32 @@ theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂
 @[to_additive
       "The intersection of an indexed set of `AddSubmonoid`s of an `AddMonoid` `M` is
       an `AddSubmonoid` of `M`."]
-theorem IsSubmonoid.interᵢ {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
-    IsSubmonoid (Set.interᵢ s) :=
-  { one_mem := Set.mem_interᵢ.2 fun y => (h y).one_mem
+theorem IsSubmonoid.iInter {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
+    IsSubmonoid (Set.iInter s) :=
+  { one_mem := Set.mem_iInter.2 fun y => (h y).one_mem
     mul_mem := fun h₁ h₂ =>
-      Set.mem_interᵢ.2 fun y => (h y).mul_mem (Set.mem_interᵢ.1 h₁ y) (Set.mem_interᵢ.1 h₂ y) }
-#align is_submonoid.Inter IsSubmonoid.interᵢ
-#align is_add_submonoid.Inter IsAddSubmonoid.interᵢ
+      Set.mem_iInter.2 fun y => (h y).mul_mem (Set.mem_iInter.1 h₁ y) (Set.mem_iInter.1 h₂ y) }
+#align is_submonoid.Inter IsSubmonoid.iInter
+#align is_add_submonoid.Inter IsAddSubmonoid.iInter
 
 /-- The union of an indexed, directed, nonempty set of submonoids of a monoid `M` is a submonoid
     of `M`. -/
 @[to_additive
       "The union of an indexed, directed, nonempty set of `AddSubmonoid`s of an `AddMonoid` `M`
       is an `AddSubmonoid` of `M`. "]
-theorem isSubmonoid_unionᵢ_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set M}
+theorem isSubmonoid_iUnion_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set M}
     (hs : ∀ i, IsSubmonoid (s i)) (Directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
     IsSubmonoid (⋃ i, s i) :=
   { one_mem :=
       let ⟨i⟩ := hι
-      Set.mem_unionᵢ.2 ⟨i, (hs i).one_mem⟩
+      Set.mem_iUnion.2 ⟨i, (hs i).one_mem⟩
     mul_mem := fun ha hb =>
-      let ⟨i, hi⟩ := Set.mem_unionᵢ.1 ha
-      let ⟨j, hj⟩ := Set.mem_unionᵢ.1 hb
+      let ⟨i, hi⟩ := Set.mem_iUnion.1 ha
+      let ⟨j, hj⟩ := Set.mem_iUnion.1 hb
       let ⟨k, hk⟩ := Directed i j
-      Set.mem_unionᵢ.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ }
-#align is_submonoid_Union_of_directed isSubmonoid_unionᵢ_of_directed
-#align is_add_submonoid_Union_of_directed isAddSubmonoid_unionᵢ_of_directed
+      Set.mem_iUnion.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ }
+#align is_submonoid_Union_of_directed isSubmonoid_iUnion_of_directed
+#align is_add_submonoid_Union_of_directed isAddSubmonoid_iUnion_of_directed
 
 section powers
 
chore: tidy various files (#2251)
Diff
@@ -66,10 +66,10 @@ theorem Additive.isAddSubmonoid {s : Set M} :
   | ⟨h₁, h₂⟩ => ⟨h₁, @h₂⟩
 #align additive.is_add_submonoid Additive.isAddSubmonoid
 
-theorem Additive.is_add_submonoid_iff {s : Set M} :
+theorem Additive.isAddSubmonoid_iff {s : Set M} :
     @IsAddSubmonoid (Additive M) _ s ↔ IsSubmonoid s :=
   ⟨fun ⟨h₁, h₂⟩ => ⟨h₁, @h₂⟩, Additive.isAddSubmonoid⟩
-#align additive.is_add_submonoid_iff Additive.is_add_submonoid_iff
+#align additive.is_add_submonoid_iff Additive.isAddSubmonoid_iff
 
 theorem Multiplicative.isSubmonoid {s : Set A} :
     ∀ _ : IsAddSubmonoid s, @IsSubmonoid (Multiplicative A) _ s
@@ -95,32 +95,32 @@ theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂
 @[to_additive
       "The intersection of an indexed set of `AddSubmonoid`s of an `AddMonoid` `M` is
       an `AddSubmonoid` of `M`."]
-theorem IsSubmonoid.Inter {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
+theorem IsSubmonoid.interᵢ {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSubmonoid (s y)) :
     IsSubmonoid (Set.interᵢ s) :=
   { one_mem := Set.mem_interᵢ.2 fun y => (h y).one_mem
-    mul_mem := @fun _ _ h₁ h₂ =>
+    mul_mem := fun h₁ h₂ =>
       Set.mem_interᵢ.2 fun y => (h y).mul_mem (Set.mem_interᵢ.1 h₁ y) (Set.mem_interᵢ.1 h₂ y) }
-#align is_submonoid.Inter IsSubmonoid.Inter
-#align is_add_submonoid.Inter IsAddSubmonoid.Inter
+#align is_submonoid.Inter IsSubmonoid.interᵢ
+#align is_add_submonoid.Inter IsAddSubmonoid.interᵢ
 
 /-- The union of an indexed, directed, nonempty set of submonoids of a monoid `M` is a submonoid
     of `M`. -/
 @[to_additive
       "The union of an indexed, directed, nonempty set of `AddSubmonoid`s of an `AddMonoid` `M`
       is an `AddSubmonoid` of `M`. "]
-theorem is_submonoid_Union_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set M}
+theorem isSubmonoid_unionᵢ_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set M}
     (hs : ∀ i, IsSubmonoid (s i)) (Directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
     IsSubmonoid (⋃ i, s i) :=
   { one_mem :=
       let ⟨i⟩ := hι
       Set.mem_unionᵢ.2 ⟨i, (hs i).one_mem⟩
-    mul_mem := @fun _ _ ha hb =>
+    mul_mem := fun ha hb =>
       let ⟨i, hi⟩ := Set.mem_unionᵢ.1 ha
       let ⟨j, hj⟩ := Set.mem_unionᵢ.1 hb
       let ⟨k, hk⟩ := Directed i j
       Set.mem_unionᵢ.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ }
-#align is_submonoid_Union_of_directed is_submonoid_Union_of_directed
-#align is_add_submonoid_Union_of_directed is_addSubmonoid_Union_of_directed
+#align is_submonoid_Union_of_directed isSubmonoid_unionᵢ_of_directed
+#align is_add_submonoid_Union_of_directed isAddSubmonoid_unionᵢ_of_directed
 
 section powers
 
@@ -160,17 +160,17 @@ theorem powers.mul_mem {x y z : M} : y ∈ powers x → z ∈ powers x → y * z
 @[to_additive
       "The set of natural number multiples of an element of an `AddMonoid` `M` is
       an `AddSubmonoid` of `M`."]
-theorem powers.is_submonoid (x : M) : IsSubmonoid (powers x) :=
+theorem powers.isSubmonoid (x : M) : IsSubmonoid (powers x) :=
   { one_mem := powers.one_mem
-    mul_mem := @fun _ _ => powers.mul_mem }
-#align powers.is_submonoid powers.is_submonoid
-#align multiples.is_add_submonoid multiples.is_addSubmonoid
+    mul_mem := powers.mul_mem }
+#align powers.is_submonoid powers.isSubmonoid
+#align multiples.is_add_submonoid multiples.isAddSubmonoid
 
 /-- A monoid is a submonoid of itself. -/
-@[to_additive "An `add_monoid` is an `add_submonoid` of itself."]
-theorem Univ.IsSubmonoid : IsSubmonoid (@Set.univ M) := by constructor <;> simp
-#align univ.is_submonoid Univ.IsSubmonoid
-#align univ.is_add_submonoid Univ.IsAddSubmonoid
+@[to_additive "An `AddMonoid` is an `AddSubmonoid` of itself."]
+theorem Univ.isSubmonoid : IsSubmonoid (@Set.univ M) := by constructor <;> simp
+#align univ.is_submonoid Univ.isSubmonoid
+#align univ.is_add_submonoid Univ.isAddSubmonoid
 
 /-- The preimage of a submonoid under a monoid hom is a submonoid of the domain. -/
 @[to_additive
@@ -179,7 +179,7 @@ theorem Univ.IsSubmonoid : IsSubmonoid (@Set.univ M) := by constructor <;> simp
 theorem IsSubmonoid.preimage {N : Type _} [Monoid N] {f : M → N} (hf : IsMonoidHom f) {s : Set N}
     (hs : IsSubmonoid s) : IsSubmonoid (f ⁻¹' s) :=
   { one_mem := show f 1 ∈ s by (rw [IsMonoidHom.map_one hf]; exact hs.one_mem)
-    mul_mem := @fun a b (ha : f a ∈ s) (hb : f b ∈ s) =>
+    mul_mem := fun {a b} (ha : f a ∈ s) (hb : f b ∈ s) =>
       show f (a * b) ∈ s by (rw [IsMonoidHom.map_mul' hf]; exact hs.mul_mem ha hb) }
 #align is_submonoid.preimage IsSubmonoid.preimage
 #align is_add_submonoid.preimage IsAddSubmonoid.preimage
@@ -198,12 +198,12 @@ theorem IsSubmonoid.image {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoi
 
 /-- The image of a monoid hom is a submonoid of the codomain. -/
 @[to_additive "The image of an `AddMonoid` hom is an `AddSubmonoid` of the codomain."]
-theorem Range.is_submonoid {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) :
+theorem Range.isSubmonoid {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoidHom f) :
     IsSubmonoid (Set.range f) := by
   rw [← Set.image_univ]
-  exact Univ.IsSubmonoid.image hf
-#align range.is_submonoid Range.is_submonoid
-#align range.is_add_submonoid Range.is_addSubmonoid
+  exact Univ.isSubmonoid.image hf
+#align range.is_submonoid Range.isSubmonoid
+#align range.is_add_submonoid Range.isAddSubmonoid
 
 /-- Submonoids are closed under natural powers. -/
 @[to_additive
@@ -255,11 +255,11 @@ theorem multiset_prod_mem {M} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (m
 #align is_submonoid.multiset_prod_mem IsSubmonoid.multiset_prod_mem
 #align is_add_submonoid.multiset_sum_mem IsAddSubmonoid.multiset_sum_mem
 
-/-- The product of elements of a submonoid of a `comm_monoid` indexed by a `finset` is an element
+/-- The product of elements of a submonoid of a `CommMonoid` indexed by a `Finset` is an element
 of the submonoid. -/
 @[to_additive
       "The sum of elements of an `AddSubmonoid` of an `AddCommMonoid` indexed by
-      a `finset` is an element of the `AddSubmonoid`."]
+      a `Finset` is an element of the `AddSubmonoid`."]
 theorem finset_prod_mem {M A} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (f : A → M) :
     ∀ t : Finset A, (∀ b ∈ t, f b ∈ s) → (∏ b in t, f b) ∈ s
   | ⟨m, hm⟩, _ => multiset_prod_mem hs _ (by simpa)
@@ -300,13 +300,11 @@ def Closure (s : Set M) : Set M :=
 #align add_monoid.closure AddMonoid.Closure
 
 @[to_additive]
--- porting note (TODO): here the error is `unknown constant 'AddMonoid.InClosure.one'`, but above
--- we defined `AddMonoid.InClosure.zero`, should that be helpful here somehow?
-theorem closure.IsSubmonoid (s : Set M) : IsSubmonoid (Closure s) :=
+theorem closure.isSubmonoid (s : Set M) : IsSubmonoid (Closure s) :=
   { one_mem := InClosure.one
-    mul_mem := @fun _ _ => InClosure.mul }
-#align monoid.closure.is_submonoid Monoid.closure.IsSubmonoid
-#align add_monoid.closure.is_add_submonoid AddMonoid.closure.IsAddSubmonoid
+    mul_mem := InClosure.mul }
+#align monoid.closure.is_submonoid Monoid.closure.isSubmonoid
+#align add_monoid.closure.is_add_submonoid AddMonoid.closure.isAddSubmonoid
 
 /-- A subset of a monoid is contained in the submonoid it generates. -/
 @[to_additive
@@ -330,7 +328,7 @@ theorem closure_subset {s t : Set M} (ht : IsSubmonoid t) (h : s ⊆ t) : Closur
       "Given subsets `t` and `s` of an `AddMonoid M`, if `s ⊆ t`, the `AddSubmonoid`
       of `M` generated by `s` is contained in the `AddSubmonoid` generated by `t`."]
 theorem closure_mono {s t : Set M} (h : s ⊆ t) : Closure s ⊆ Closure t :=
-  closure_subset (closure.IsSubmonoid t) <| Set.Subset.trans h subset_closure
+  closure_subset (closure.isSubmonoid t) <| Set.Subset.trans h subset_closure
 #align monoid.closure_mono Monoid.closure_mono
 #align add_monoid.closure_mono AddMonoid.closure_mono
 
@@ -341,8 +339,8 @@ theorem closure_mono {s t : Set M} (h : s ⊆ t) : Closure s ⊆ Closure t :=
       natural number multiples of the element."]
 theorem closure_singleton {x : M} : Closure ({x} : Set M) = powers x :=
   Set.eq_of_subset_of_subset
-      (closure_subset (powers.is_submonoid x) <| Set.singleton_subset_iff.2 <| powers.self_mem) <|
-    IsSubmonoid.power_subset (closure.IsSubmonoid _) <|
+      (closure_subset (powers.isSubmonoid x) <| Set.singleton_subset_iff.2 <| powers.self_mem) <|
+    IsSubmonoid.power_subset (closure.isSubmonoid _) <|
       Set.singleton_subset_iff.1 <| subset_closure
 #align monoid.closure_singleton Monoid.closure_singleton
 #align add_monoid.closure_singleton AddMonoid.closure_singleton
@@ -360,10 +358,10 @@ theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f)
       induction' hx with z hz
       · solve_by_elim [subset_closure, Set.mem_image_of_mem]
       · rw [hf.map_one]
-        apply IsSubmonoid.one_mem (closure.IsSubmonoid (f '' s))
+        apply IsSubmonoid.one_mem (closure.isSubmonoid (f '' s))
       · rw [hf.map_mul]
-        solve_by_elim [(closure.IsSubmonoid _).mul_mem] )
-    (closure_subset (IsSubmonoid.image hf (closure.IsSubmonoid _)) <|
+        solve_by_elim [(closure.isSubmonoid _).mul_mem] )
+    (closure_subset (IsSubmonoid.image hf (closure.isSubmonoid _)) <|
       Set.image_subset _ subset_closure)
 #align monoid.image_closure Monoid.image_closure
 #align add_monoid.image_closure AddMonoid.image_closure
@@ -401,20 +399,20 @@ theorem mem_closure_union_iff {M : Type _} [CommMonoid M] {s t : Set M} {x : M}
     HL2 ▸
       List.recOn L
         (fun _ =>
-          ⟨1, (closure.IsSubmonoid _).one_mem, 1, (closure.IsSubmonoid _).one_mem, mul_one _⟩)
+          ⟨1, (closure.isSubmonoid _).one_mem, 1, (closure.isSubmonoid _).one_mem, mul_one _⟩)
         (fun hd tl ih HL1 =>
           let ⟨y, hy, z, hz, hyzx⟩ := ih (List.forall_mem_of_forall_mem_cons HL1)
           Or.casesOn (HL1 hd <| List.mem_cons_self _ _)
             (fun hs =>
-              ⟨hd * y, (closure.IsSubmonoid _).mul_mem (subset_closure hs) hy, z, hz, by
+              ⟨hd * y, (closure.isSubmonoid _).mul_mem (subset_closure hs) hy, z, hz, by
                 rw [mul_assoc, List.prod_cons, ← hyzx]⟩)
             fun ht =>
-            ⟨y, hy, z * hd, (closure.IsSubmonoid _).mul_mem hz (subset_closure ht), by
+            ⟨y, hy, z * hd, (closure.isSubmonoid _).mul_mem hz (subset_closure ht), by
               rw [← mul_assoc, List.prod_cons, ← hyzx, mul_comm hd]⟩)
         HL1,
     fun ⟨y, hy, z, hz, hyzx⟩ =>
     hyzx ▸
-      (closure.IsSubmonoid _).mul_mem (closure_mono (Set.subset_union_left _ _) hy)
+      (closure.isSubmonoid _).mul_mem (closure_mono (Set.subset_union_left _ _) hy)
         (closure_mono (Set.subset_union_right _ _) hz)⟩
 #align monoid.mem_closure_union_iff Monoid.mem_closure_union_iff
 #align add_monoid.mem_closure_union_iff AddMonoid.mem_closure_union_iff
@@ -429,7 +427,7 @@ def Submonoid.of {s : Set M} (h : IsSubmonoid s) : Submonoid M :=
 #align add_submonoid.of AddSubmonoid.of
 
 @[to_additive]
-theorem Submonoid.is_submonoid (S : Submonoid M) : IsSubmonoid (S : Set M) := by
+theorem Submonoid.isSubmonoid (S : Submonoid M) : IsSubmonoid (S : Set M) := by
   refine' ⟨S.2, S.1.2⟩
-#align submonoid.is_submonoid Submonoid.is_submonoid
-#align add_submonoid.is_add_submonoid AddSubmonoid.is_addSubmonoid
+#align submonoid.is_submonoid Submonoid.isSubmonoid
+#align add_submonoid.is_add_submonoid AddSubmonoid.isAddSubmonoid
chore: scoped BigOperators notation (#1952)
Diff
@@ -34,7 +34,7 @@ Submonoid, Submonoids, IsSubmonoid
 -/
 
 
--- open BigOperators -- Porting note: commented out locale
+open BigOperators
 
 variable {M : Type _} [Monoid M] {s : Set M}
 
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -89,6 +89,7 @@ theorem IsSubmonoid.inter {s₁ s₂ : Set M} (is₁ : IsSubmonoid s₁) (is₂
   { one_mem := ⟨is₁.one_mem, is₂.one_mem⟩
     mul_mem := @fun _ _ hx hy => ⟨is₁.mul_mem hx.1 hy.1, is₂.mul_mem hx.2 hy.2⟩ }
 #align is_submonoid.inter IsSubmonoid.inter
+#align is_add_submonoid.inter IsAddSubmonoid.inter
 
 /-- The intersection of an indexed set of submonoids of a monoid `M` is a submonoid of `M`. -/
 @[to_additive
@@ -100,6 +101,7 @@ theorem IsSubmonoid.Inter {ι : Sort _} {s : ι → Set M} (h : ∀ y : ι, IsSu
     mul_mem := @fun _ _ h₁ h₂ =>
       Set.mem_interᵢ.2 fun y => (h y).mul_mem (Set.mem_interᵢ.1 h₁ y) (Set.mem_interᵢ.1 h₂ y) }
 #align is_submonoid.Inter IsSubmonoid.Inter
+#align is_add_submonoid.Inter IsAddSubmonoid.Inter
 
 /-- The union of an indexed, directed, nonempty set of submonoids of a monoid `M` is a submonoid
     of `M`. -/
@@ -118,6 +120,7 @@ theorem is_submonoid_Union_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι
       let ⟨k, hk⟩ := Directed i j
       Set.mem_unionᵢ.2 ⟨k, (hs k).mul_mem (hk.1 hi) (hk.2 hj)⟩ }
 #align is_submonoid_Union_of_directed is_submonoid_Union_of_directed
+#align is_add_submonoid_Union_of_directed is_addSubmonoid_Union_of_directed
 
 section powers
 
@@ -127,12 +130,14 @@ section powers
 def powers (x : M) : Set M :=
   { y | ∃ n : ℕ, x ^ n = y }
 #align powers powers
+#align multiples multiples
 
 /-- 1 is in the set of natural number powers of an element of a monoid. -/
 @[to_additive "0 is in the set of natural number multiples of an element of an `AddMonoid`."]
 theorem powers.one_mem {x : M} : (1 : M) ∈ powers x :=
   ⟨0, pow_zero _⟩
 #align powers.one_mem powers.one_mem
+#align multiples.zero_mem multiples.zero_mem
 
 /-- An element of a monoid is in the set of that element's natural number powers. -/
 @[to_additive
@@ -140,6 +145,7 @@ theorem powers.one_mem {x : M} : (1 : M) ∈ powers x :=
 theorem powers.self_mem {x : M} : x ∈ powers x :=
   ⟨1, pow_one _⟩
 #align powers.self_mem powers.self_mem
+#align multiples.self_mem multiples.self_mem
 
 /-- The set of natural number powers of an element of a monoid is closed under multiplication. -/
 @[to_additive
@@ -148,6 +154,7 @@ theorem powers.self_mem {x : M} : x ∈ powers x :=
 theorem powers.mul_mem {x y z : M} : y ∈ powers x → z ∈ powers x → y * z ∈ powers x :=
   fun ⟨n₁, h₁⟩ ⟨n₂, h₂⟩ => ⟨n₁ + n₂, by simp only [pow_add, *]⟩
 #align powers.mul_mem powers.mul_mem
+#align multiples.add_mem multiples.add_mem
 
 /-- The set of natural number powers of an element of a monoid `M` is a submonoid of `M`. -/
 @[to_additive
@@ -157,11 +164,13 @@ theorem powers.is_submonoid (x : M) : IsSubmonoid (powers x) :=
   { one_mem := powers.one_mem
     mul_mem := @fun _ _ => powers.mul_mem }
 #align powers.is_submonoid powers.is_submonoid
+#align multiples.is_add_submonoid multiples.is_addSubmonoid
 
 /-- A monoid is a submonoid of itself. -/
 @[to_additive "An `add_monoid` is an `add_submonoid` of itself."]
 theorem Univ.IsSubmonoid : IsSubmonoid (@Set.univ M) := by constructor <;> simp
 #align univ.is_submonoid Univ.IsSubmonoid
+#align univ.is_add_submonoid Univ.IsAddSubmonoid
 
 /-- The preimage of a submonoid under a monoid hom is a submonoid of the domain. -/
 @[to_additive
@@ -173,6 +182,7 @@ theorem IsSubmonoid.preimage {N : Type _} [Monoid N] {f : M → N} (hf : IsMonoi
     mul_mem := @fun a b (ha : f a ∈ s) (hb : f b ∈ s) =>
       show f (a * b) ∈ s by (rw [IsMonoidHom.map_mul' hf]; exact hs.mul_mem ha hb) }
 #align is_submonoid.preimage IsSubmonoid.preimage
+#align is_add_submonoid.preimage IsAddSubmonoid.preimage
 
 /-- The image of a submonoid under a monoid hom is a submonoid of the codomain. -/
 @[to_additive
@@ -184,6 +194,7 @@ theorem IsSubmonoid.image {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMonoi
     mul_mem := @fun a b ⟨x, hx⟩ ⟨y, hy⟩ =>
       ⟨x * y, hs.mul_mem hx.1 hy.1, by rw [hf.map_mul, hx.2, hy.2]⟩ }
 #align is_submonoid.image IsSubmonoid.image
+#align is_add_submonoid.image IsAddSubmonoid.image
 
 /-- The image of a monoid hom is a submonoid of the codomain. -/
 @[to_additive "The image of an `AddMonoid` hom is an `AddSubmonoid` of the codomain."]
@@ -192,6 +203,7 @@ theorem Range.is_submonoid {γ : Type _} [Monoid γ] {f : M → γ} (hf : IsMono
   rw [← Set.image_univ]
   exact Univ.IsSubmonoid.image hf
 #align range.is_submonoid Range.is_submonoid
+#align range.is_add_submonoid Range.is_addSubmonoid
 
 /-- Submonoids are closed under natural powers. -/
 @[to_additive
@@ -212,6 +224,7 @@ theorem IsSubmonoid.pow_mem {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : ∀ {n
 theorem IsSubmonoid.power_subset {a : M} (hs : IsSubmonoid s) (h : a ∈ s) : powers a ⊆ s :=
   fun _ ⟨_, hx⟩ => hx ▸ hs.pow_mem h
 #align is_submonoid.power_subset IsSubmonoid.power_subset
+#align is_add_submonoid.multiples_subset IsAddSubmonoid.multiples_subset
 
 end powers
 
@@ -227,6 +240,7 @@ theorem list_prod_mem (hs : IsSubmonoid s) : ∀ {l : List M}, (∀ x ∈ l, x 
     have : a ∈ s ∧ ∀ x ∈ l, x ∈ s := by simpa using h
     hs.mul_mem this.1 (list_prod_mem hs this.2)
 #align is_submonoid.list_prod_mem IsSubmonoid.list_prod_mem
+#align is_add_submonoid.list_sum_mem IsAddSubmonoid.list_sum_mem
 
 /-- The product of a multiset of elements of a submonoid of a `CommMonoid` is an element of
 the submonoid. -/
@@ -239,6 +253,7 @@ theorem multiset_prod_mem {M} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (m
   rw [Multiset.quot_mk_to_coe, Multiset.coe_prod]
   exact list_prod_mem hs hl
 #align is_submonoid.multiset_prod_mem IsSubmonoid.multiset_prod_mem
+#align is_add_submonoid.multiset_sum_mem IsAddSubmonoid.multiset_sum_mem
 
 /-- The product of elements of a submonoid of a `comm_monoid` indexed by a `finset` is an element
 of the submonoid. -/
@@ -249,6 +264,7 @@ theorem finset_prod_mem {M A} [CommMonoid M] {s : Set M} (hs : IsSubmonoid s) (f
     ∀ t : Finset A, (∀ b ∈ t, f b ∈ s) → (∏ b in t, f b) ∈ s
   | ⟨m, hm⟩, _ => multiset_prod_mem hs _ (by simpa)
 #align is_submonoid.finset_prod_mem IsSubmonoid.finset_prod_mem
+#align is_add_submonoid.finset_sum_mem IsAddSubmonoid.finset_sum_mem
 
 end IsSubmonoid
 
@@ -290,12 +306,14 @@ theorem closure.IsSubmonoid (s : Set M) : IsSubmonoid (Closure s) :=
   { one_mem := InClosure.one
     mul_mem := @fun _ _ => InClosure.mul }
 #align monoid.closure.is_submonoid Monoid.closure.IsSubmonoid
+#align add_monoid.closure.is_add_submonoid AddMonoid.closure.IsAddSubmonoid
 
 /-- A subset of a monoid is contained in the submonoid it generates. -/
 @[to_additive
     "A subset of an `AddMonoid` is contained in the `AddSubmonoid` it generates."]
 theorem subset_closure {s : Set M} : s ⊆ Closure s := fun _ => InClosure.basic
 #align monoid.subset_closure Monoid.subset_closure
+#align add_monoid.subset_closure AddMonoid.subset_closure
 
 /-- The submonoid generated by a set is contained in any submonoid that contains the set. -/
 @[to_additive
@@ -304,6 +322,7 @@ theorem subset_closure {s : Set M} : s ⊆ Closure s := fun _ => InClosure.basic
 theorem closure_subset {s t : Set M} (ht : IsSubmonoid t) (h : s ⊆ t) : Closure s ⊆ t := fun a ha =>
   by induction ha <;> simp [h _, *, IsSubmonoid.one_mem, IsSubmonoid.mul_mem]
 #align monoid.closure_subset Monoid.closure_subset
+#align add_monoid.closure_subset AddMonoid.closure_subset
 
 /-- Given subsets `t` and `s` of a monoid `M`, if `s ⊆ t`, the submonoid of `M` generated by `s` is
     contained in the submonoid generated by `t`. -/
@@ -313,6 +332,7 @@ theorem closure_subset {s t : Set M} (ht : IsSubmonoid t) (h : s ⊆ t) : Closur
 theorem closure_mono {s t : Set M} (h : s ⊆ t) : Closure s ⊆ Closure t :=
   closure_subset (closure.IsSubmonoid t) <| Set.Subset.trans h subset_closure
 #align monoid.closure_mono Monoid.closure_mono
+#align add_monoid.closure_mono AddMonoid.closure_mono
 
 /-- The submonoid generated by an element of a monoid equals the set of natural number powers of
     the element. -/
@@ -325,6 +345,7 @@ theorem closure_singleton {x : M} : Closure ({x} : Set M) = powers x :=
     IsSubmonoid.power_subset (closure.IsSubmonoid _) <|
       Set.singleton_subset_iff.1 <| subset_closure
 #align monoid.closure_singleton Monoid.closure_singleton
+#align add_monoid.closure_singleton AddMonoid.closure_singleton
 
 /-- The image under a monoid hom of the submonoid generated by a set equals the submonoid generated
     by the image of the set under the monoid hom. -/
@@ -345,6 +366,7 @@ theorem image_closure {A : Type _} [Monoid A] {f : M → A} (hf : IsMonoidHom f)
     (closure_subset (IsSubmonoid.image hf (closure.IsSubmonoid _)) <|
       Set.image_subset _ subset_closure)
 #align monoid.image_closure Monoid.image_closure
+#align add_monoid.image_closure AddMonoid.image_closure
 
 /-- Given an element `a` of the submonoid of a monoid `M` generated by a set `s`, there exists
 a list of elements of `s` whose product is `a`. -/
@@ -363,6 +385,7 @@ theorem exists_list_of_mem_closure {s : Set M} {a : M} (h : a ∈ Closure s) :
     simp [eqa.symm, eqb.symm, or_imp]
     exact fun a => ⟨ha a, hb a⟩
 #align monoid.exists_list_of_mem_closure Monoid.exists_list_of_mem_closure
+#align add_monoid.exists_list_of_mem_closure AddMonoid.exists_list_of_mem_closure
 
 /-- Given sets `s, t` of a commutative monoid `M`, `x ∈ M` is in the submonoid of `M` generated by
     `s ∪ t` iff there exists an element of the submonoid generated by `s` and an element of the
@@ -394,6 +417,7 @@ theorem mem_closure_union_iff {M : Type _} [CommMonoid M] {s t : Set M} {x : M}
       (closure.IsSubmonoid _).mul_mem (closure_mono (Set.subset_union_left _ _) hy)
         (closure_mono (Set.subset_union_right _ _) hz)⟩
 #align monoid.mem_closure_union_iff Monoid.mem_closure_union_iff
+#align add_monoid.mem_closure_union_iff AddMonoid.mem_closure_union_iff
 
 end Monoid
 
@@ -402,8 +426,10 @@ end Monoid
 def Submonoid.of {s : Set M} (h : IsSubmonoid s) : Submonoid M :=
   ⟨⟨s, @fun _ _ => h.2⟩, h.1⟩
 #align submonoid.of Submonoid.of
+#align add_submonoid.of AddSubmonoid.of
 
 @[to_additive]
 theorem Submonoid.is_submonoid (S : Submonoid M) : IsSubmonoid (S : Set M) := by
   refine' ⟨S.2, S.1.2⟩
 #align submonoid.is_submonoid Submonoid.is_submonoid
+#align add_submonoid.is_add_submonoid AddSubmonoid.is_addSubmonoid
feat: port Deprecated.Submonoid (#1666)

Co-authored-by: Moritz Firsching <firsching@google.com>

Dependencies 3 + 203

204 files ported (98.6%)
92388 lines ported (98.9%)
Show graph

The unported dependencies are