deprecated.subring ⟷
Mathlib.Deprecated.Subring
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -163,7 +163,7 @@ protected theorem InClosure.recOn {C : R → Prop} {x : R} (hx : x ∈ closure s
have h0 : C 0 := add_neg_self (1 : R) ▸ ha h1 hneg1
rcases exists_list_of_mem_closure hx with ⟨L, HL, rfl⟩; clear hx
induction' L with hd tl ih; · exact h0
- rw [List.forall_mem_cons] at HL
+ rw [List.forall_mem_cons] at HL
suffices C (List.prod hd) by
rw [List.map_cons, List.sum_cons]
exact ha this (ih HL.2)
@@ -171,16 +171,16 @@ protected theorem InClosure.recOn {C : R → Prop} {x : R} (hx : x ∈ closure s
rsuffices ⟨L, HL', HP | HP⟩ :
∃ L : List R, (∀ x ∈ L, x ∈ s) ∧ (List.prod hd = List.prod L ∨ List.prod hd = -List.prod L)
· rw [HP]; clear HP HL hd; induction' L with hd tl ih; · exact h1
- rw [List.forall_mem_cons] at HL'
+ rw [List.forall_mem_cons] at HL'
rw [List.prod_cons]
exact hs _ HL'.1 _ (ih HL'.2)
· rw [HP]; clear HP HL hd; induction' L with hd tl ih; · exact hneg1
rw [List.prod_cons, neg_mul_eq_mul_neg]
- rw [List.forall_mem_cons] at HL'
+ rw [List.forall_mem_cons] at HL'
exact hs _ HL'.1 _ (ih HL'.2)
induction' hd with hd tl ih
· exact ⟨[], List.forall_mem_nil _, Or.inl rfl⟩
- rw [List.forall_mem_cons] at HL
+ rw [List.forall_mem_cons] at HL
rcases ih HL.2 with ⟨L, HL', HP | HP⟩ <;> cases' HL.1 with hhd hhd
·
exact
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2018 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
-import Mathbin.Deprecated.Subgroup
-import Mathbin.Deprecated.Group
-import Mathbin.RingTheory.Subring.Basic
+import Deprecated.Subgroup
+import Deprecated.Group
+import RingTheory.Subring.Basic
#align_import deprecated.subring from "leanprover-community/mathlib"@"23aa88e32dcc9d2a24cca7bc23268567ed4cd7d6"
mathlib commit https://github.com/leanprover-community/mathlib/commit/32a7e535287f9c73f2e4d2aef306a39190f0b504
@@ -51,7 +51,7 @@ def IsSubring.subring {S : Set R} (hs : IsSubring S) : Subring R
where
carrier := S
one_mem' := hs.one_mem
- mul_mem' _ _ := hs.mul_mem
+ hMul_mem' _ _ := hs.hMul_mem
zero_mem' := hs.zero_mem
add_mem' _ _ := hs.add_mem
neg_mem' _ := hs.neg_mem
@@ -201,11 +201,11 @@ theorem closure.isSubring : IsSubring (closure s) :=
AddGroup.closure.isAddSubgroup
_ with
one_mem := AddGroup.mem_closure <| IsSubmonoid.one_mem <| Monoid.closure.isSubmonoid _
- mul_mem := fun a b ha hb =>
+ hMul_mem := fun a b ha hb =>
AddGroup.InClosure.rec_on hb
(fun c hc =>
AddGroup.InClosure.rec_on ha
- (fun d hd => AddGroup.subset_closure ((Monoid.closure.isSubmonoid _).mul_mem hd hc))
+ (fun d hd => AddGroup.subset_closure ((Monoid.closure.isSubmonoid _).hMul_mem hd hc))
((MulZeroClass.zero_mul c).symm ▸ (AddGroup.closure.isAddSubgroup _).zero_mem)
(fun d hd hdc =>
neg_mul_eq_neg_mul d c ▸ (AddGroup.closure.isAddSubgroup _).neg_mem hdc)
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2018 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module deprecated.subring
-! leanprover-community/mathlib commit 23aa88e32dcc9d2a24cca7bc23268567ed4cd7d6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Deprecated.Subgroup
import Mathbin.Deprecated.Group
import Mathbin.RingTheory.Subring.Basic
+#align_import deprecated.subring from "leanprover-community/mathlib"@"23aa88e32dcc9d2a24cca7bc23268567ed4cd7d6"
+
/-!
# Unbundled subrings (deprecated)
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -63,45 +63,57 @@ def IsSubring.subring {S : Set R} (hs : IsSubring S) : Subring R
namespace RingHom
+#print RingHom.isSubring_preimage /-
theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set S}
(hs : IsSubring s) : IsSubring (f ⁻¹' s) :=
{ IsAddGroupHom.preimage f.to_isAddGroupHom hs.to_isAddSubgroup,
IsSubmonoid.preimage f.to_isMonoidHom hs.to_isSubmonoid with }
#align ring_hom.is_subring_preimage RingHom.isSubring_preimage
+-/
+#print RingHom.isSubring_image /-
theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set R}
(hs : IsSubring s) : IsSubring (f '' s) :=
{ IsAddGroupHom.image_addSubgroup f.to_isAddGroupHom hs.to_isAddSubgroup,
IsSubmonoid.image f.to_isMonoidHom hs.to_isSubmonoid with }
#align ring_hom.is_subring_image RingHom.isSubring_image
+-/
+#print RingHom.isSubring_set_range /-
theorem isSubring_set_range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
IsSubring (Set.range f) :=
{ IsAddGroupHom.range_addSubgroup f.to_isAddGroupHom, Range.isSubmonoid f.to_isMonoidHom with }
#align ring_hom.is_subring_set_range RingHom.isSubring_set_range
+-/
end RingHom
variable {cR : Type u} [CommRing cR]
+#print IsSubring.inter /-
theorem IsSubring.inter {S₁ S₂ : Set R} (hS₁ : IsSubring S₁) (hS₂ : IsSubring S₂) :
IsSubring (S₁ ∩ S₂) :=
{ IsAddSubgroup.inter hS₁.to_isAddSubgroup hS₂.to_isAddSubgroup,
IsSubmonoid.inter hS₁.to_isSubmonoid hS₂.to_isSubmonoid with }
#align is_subring.inter IsSubring.inter
+-/
+#print IsSubring.iInter /-
theorem IsSubring.iInter {ι : Sort _} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
IsSubring (Set.iInter S) :=
{ IsAddSubgroup.iInter fun i => (h i).to_isAddSubgroup,
IsSubmonoid.iInter fun i => (h i).to_isSubmonoid with }
#align is_subring.Inter IsSubring.iInter
+-/
+#print isSubring_iUnion_of_directed /-
theorem isSubring_iUnion_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set R}
(h : ∀ i, IsSubring (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
IsSubring (⋃ i, s i) :=
{ to_isAddSubgroup := isAddSubgroup_iUnion_of_directed (fun i => (h i).to_isAddSubgroup) Directed
to_isSubmonoid := isSubmonoid_iUnion_of_directed (fun i => (h i).to_isSubmonoid) Directed }
#align is_subring_Union_of_directed isSubring_iUnion_of_directed
+-/
namespace Ring
@@ -117,6 +129,7 @@ variable {s : Set R}
attribute [local reducible] closure
+#print Ring.exists_list_of_mem_closure /-
theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
∃ L : List (List R), (∀ l ∈ L, ∀ x ∈ l, x ∈ s ∨ x = (-1 : R)) ∧ (L.map List.prod).Sum = a :=
AddGroup.InClosure.rec_on h
@@ -141,9 +154,11 @@ theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
| _, _, ⟨L1, h1, rfl⟩, ⟨L2, h2, rfl⟩ =>
⟨L1 ++ L2, List.forall_mem_append.2 ⟨h1, h2⟩, by rw [List.map_append, List.sum_append]⟩
#align ring.exists_list_of_mem_closure Ring.exists_list_of_mem_closure
+-/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print Ring.InClosure.recOn /-
@[elab_as_elim]
protected theorem InClosure.recOn {C : R → Prop} {x : R} (hx : x ∈ closure s) (h1 : C 1)
(hneg1 : C (-1)) (hs : ∀ z ∈ s, ∀ n, C n → C (z * n)) (ha : ∀ {x y}, C x → C y → C (x + y)) :
@@ -181,6 +196,7 @@ protected theorem InClosure.recOn {C : R → Prop} {x : R} (hx : x ∈ closure s
Or.inr <| by rw [List.prod_cons, List.prod_cons, HP, neg_mul_eq_mul_neg]⟩
· exact ⟨L, HL', Or.inl <| by rw [List.prod_cons, hhd, HP, neg_one_mul, neg_neg]⟩
#align ring.in_closure.rec_on Ring.InClosure.recOn
+-/
#print Ring.closure.isSubring /-
theorem closure.isSubring : IsSubring (closure s) :=
@@ -235,6 +251,7 @@ theorem closure_mono {s t : Set R} (H : s ⊆ t) : closure s ⊆ closure t :=
#align ring.closure_mono Ring.closure_mono
-/
+#print Ring.image_closure /-
theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
f '' closure s = closure (f '' s) :=
le_antisymm
@@ -252,6 +269,7 @@ theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
(closure_subset (RingHom.isSubring_image _ closure.isSubring) <|
Set.image_subset _ subset_closure)
#align ring.image_closure Ring.image_closure
+-/
end Ring
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -151,7 +151,7 @@ protected theorem InClosure.recOn {C : R → Prop} {x : R} (hx : x ∈ closure s
have h0 : C 0 := add_neg_self (1 : R) ▸ ha h1 hneg1
rcases exists_list_of_mem_closure hx with ⟨L, HL, rfl⟩; clear hx
induction' L with hd tl ih; · exact h0
- rw [List.forall_mem_cons] at HL
+ rw [List.forall_mem_cons] at HL
suffices C (List.prod hd) by
rw [List.map_cons, List.sum_cons]
exact ha this (ih HL.2)
@@ -159,16 +159,16 @@ protected theorem InClosure.recOn {C : R → Prop} {x : R} (hx : x ∈ closure s
rsuffices ⟨L, HL', HP | HP⟩ :
∃ L : List R, (∀ x ∈ L, x ∈ s) ∧ (List.prod hd = List.prod L ∨ List.prod hd = -List.prod L)
· rw [HP]; clear HP HL hd; induction' L with hd tl ih; · exact h1
- rw [List.forall_mem_cons] at HL'
+ rw [List.forall_mem_cons] at HL'
rw [List.prod_cons]
exact hs _ HL'.1 _ (ih HL'.2)
· rw [HP]; clear HP HL hd; induction' L with hd tl ih; · exact hneg1
rw [List.prod_cons, neg_mul_eq_mul_neg]
- rw [List.forall_mem_cons] at HL'
+ rw [List.forall_mem_cons] at HL'
exact hs _ HL'.1 _ (ih HL'.2)
induction' hd with hd tl ih
· exact ⟨[], List.forall_mem_nil _, Or.inl rfl⟩
- rw [List.forall_mem_cons] at HL
+ rw [List.forall_mem_cons] at HL
rcases ih HL.2 with ⟨L, HL', HP | HP⟩ <;> cases' HL.1 with hhd hhd
·
exact
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -63,36 +63,18 @@ def IsSubring.subring {S : Set R} (hs : IsSubring S) : Subring R
namespace RingHom
-/- warning: ring_hom.is_subring_preimage -> RingHom.isSubring_preimage is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
-but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
-Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_preimage RingHom.isSubring_preimageₓ'. -/
theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set S}
(hs : IsSubring s) : IsSubring (f ⁻¹' s) :=
{ IsAddGroupHom.preimage f.to_isAddGroupHom hs.to_isAddSubgroup,
IsSubmonoid.preimage f.to_isMonoidHom hs.to_isSubmonoid with }
#align ring_hom.is_subring_preimage RingHom.isSubring_preimage
-/- warning: ring_hom.is_subring_image -> RingHom.isSubring_image is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
-but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
-Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_image RingHom.isSubring_imageₓ'. -/
theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set R}
(hs : IsSubring s) : IsSubring (f '' s) :=
{ IsAddGroupHom.image_addSubgroup f.to_isAddGroupHom hs.to_isAddSubgroup,
IsSubmonoid.image f.to_isMonoidHom hs.to_isSubmonoid with }
#align ring_hom.is_subring_image RingHom.isSubring_image
-/- warning: ring_hom.is_subring_set_range -> RingHom.isSubring_set_range is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f))
-but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f))
-Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_set_range RingHom.isSubring_set_rangeₓ'. -/
theorem isSubring_set_range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
IsSubring (Set.range f) :=
{ IsAddGroupHom.range_addSubgroup f.to_isAddGroupHom, Range.isSubmonoid f.to_isMonoidHom with }
@@ -102,36 +84,18 @@ end RingHom
variable {cR : Type u} [CommRing cR]
-/- warning: is_subring.inter -> IsSubring.inter is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S₁ : Set.{u1} R} {S₂ : Set.{u1} R}, (IsSubring.{u1} R _inst_1 S₁) -> (IsSubring.{u1} R _inst_1 S₂) -> (IsSubring.{u1} R _inst_1 (Inter.inter.{u1} (Set.{u1} R) (Set.hasInter.{u1} R) S₁ S₂))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S₁ : Set.{u1} R} {S₂ : Set.{u1} R}, (IsSubring.{u1} R _inst_1 S₁) -> (IsSubring.{u1} R _inst_1 S₂) -> (IsSubring.{u1} R _inst_1 (Inter.inter.{u1} (Set.{u1} R) (Set.instInterSet.{u1} R) S₁ S₂))
-Case conversion may be inaccurate. Consider using '#align is_subring.inter IsSubring.interₓ'. -/
theorem IsSubring.inter {S₁ S₂ : Set R} (hS₁ : IsSubring S₁) (hS₂ : IsSubring S₂) :
IsSubring (S₁ ∩ S₂) :=
{ IsAddSubgroup.inter hS₁.to_isAddSubgroup hS₂.to_isAddSubgroup,
IsSubmonoid.inter hS₁.to_isSubmonoid hS₂.to_isSubmonoid with }
#align is_subring.inter IsSubring.inter
-/- warning: is_subring.Inter -> IsSubring.iInter is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {ι : Sort.{u2}} {S : ι -> (Set.{u1} R)}, (forall (y : ι), IsSubring.{u1} R _inst_1 (S y)) -> (IsSubring.{u1} R _inst_1 (Set.iInter.{u1, u2} R ι S))
-but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {ι : Sort.{u1}} {S : ι -> (Set.{u2} R)}, (forall (y : ι), IsSubring.{u2} R _inst_1 (S y)) -> (IsSubring.{u2} R _inst_1 (Set.iInter.{u2, u1} R ι S))
-Case conversion may be inaccurate. Consider using '#align is_subring.Inter IsSubring.iInterₓ'. -/
theorem IsSubring.iInter {ι : Sort _} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
IsSubring (Set.iInter S) :=
{ IsAddSubgroup.iInter fun i => (h i).to_isAddSubgroup,
IsSubmonoid.iInter fun i => (h i).to_isSubmonoid with }
#align is_subring.Inter IsSubring.iInter
-/- warning: is_subring_Union_of_directed -> isSubring_iUnion_of_directed is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {ι : Type.{u2}} [hι : Nonempty.{succ u2} ι] {s : ι -> (Set.{u1} R)}, (forall (i : ι), IsSubring.{u1} R _inst_1 (s i)) -> (forall (i : ι) (j : ι), Exists.{succ u2} ι (fun (k : ι) => And (HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) (s i) (s k)) (HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) (s j) (s k)))) -> (IsSubring.{u1} R _inst_1 (Set.iUnion.{u1, succ u2} R ι (fun (i : ι) => s i)))
-but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {ι : Type.{u1}} [hι : Nonempty.{succ u1} ι] {s : ι -> (Set.{u2} R)}, (forall (i : ι), IsSubring.{u2} R _inst_1 (s i)) -> (forall (i : ι) (j : ι), Exists.{succ u1} ι (fun (k : ι) => And (HasSubset.Subset.{u2} (Set.{u2} R) (Set.instHasSubsetSet.{u2} R) (s i) (s k)) (HasSubset.Subset.{u2} (Set.{u2} R) (Set.instHasSubsetSet.{u2} R) (s j) (s k)))) -> (IsSubring.{u2} R _inst_1 (Set.iUnion.{u2, succ u1} R ι (fun (i : ι) => s i)))
-Case conversion may be inaccurate. Consider using '#align is_subring_Union_of_directed isSubring_iUnion_of_directedₓ'. -/
theorem isSubring_iUnion_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set R}
(h : ∀ i, IsSubring (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
IsSubring (⋃ i, s i) :=
@@ -153,12 +117,6 @@ variable {s : Set R}
attribute [local reducible] closure
-/- warning: ring.exists_list_of_mem_closure -> Ring.exists_list_of_mem_closure is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.Mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.hasMem.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.Mem.{u1, u1} R (List.{u1} R) (List.hasMem.{u1} R) x l) -> (Or (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) L)) a)))
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.instMembershipList.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.mem.{u1, u1} R (List.{u1} R) (List.instMembershipList.{u1} R) x l) -> (Or (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))) L)) a)))
-Case conversion may be inaccurate. Consider using '#align ring.exists_list_of_mem_closure Ring.exists_list_of_mem_closureₓ'. -/
theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
∃ L : List (List R), (∀ l ∈ L, ∀ x ∈ l, x ∈ s ∨ x = (-1 : R)) ∧ (L.map List.prod).Sum = a :=
AddGroup.InClosure.rec_on h
@@ -184,12 +142,6 @@ theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
⟨L1 ++ L2, List.forall_mem_append.2 ⟨h1, h2⟩, by rw [List.map_append, List.sum_append]⟩
#align ring.exists_list_of_mem_closure Ring.exists_list_of_mem_closure
-/- warning: ring.in_closure.rec_on -> Ring.InClosure.recOn is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))) -> (C (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))))))) -> (forall (z : R), (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1))) x y))) -> (C x)
-but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) -> (C (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) -> (forall (z : R), (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y))) -> (C x)
-Case conversion may be inaccurate. Consider using '#align ring.in_closure.rec_on Ring.InClosure.recOnₓ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
@[elab_as_elim]
@@ -283,12 +235,6 @@ theorem closure_mono {s t : Set R} (H : s ⊆ t) : closure s ⊆ closure t :=
#align ring.closure_mono Ring.closure_mono
-/
-/- warning: ring.image_closure -> Ring.image_closure is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Type.{u2}} [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (s : Set.{u1} R), Eq.{succ u2} (Set.{u2} S) (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) (Ring.closure.{u1} R _inst_1 s)) (Ring.closure.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
-but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) s))
-Case conversion may be inaccurate. Consider using '#align ring.image_closure Ring.image_closureₓ'. -/
theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
f '' closure s = closure (f '' s) :=
le_antisymm
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -197,29 +197,20 @@ protected theorem InClosure.recOn {C : R → Prop} {x : R} (hx : x ∈ closure s
(hneg1 : C (-1)) (hs : ∀ z ∈ s, ∀ n, C n → C (z * n)) (ha : ∀ {x y}, C x → C y → C (x + y)) :
C x := by
have h0 : C 0 := add_neg_self (1 : R) ▸ ha h1 hneg1
- rcases exists_list_of_mem_closure hx with ⟨L, HL, rfl⟩
- clear hx
- induction' L with hd tl ih
- · exact h0
+ rcases exists_list_of_mem_closure hx with ⟨L, HL, rfl⟩; clear hx
+ induction' L with hd tl ih; · exact h0
rw [List.forall_mem_cons] at HL
suffices C (List.prod hd) by
rw [List.map_cons, List.sum_cons]
exact ha this (ih HL.2)
- replace HL := HL.1
- clear ih tl
+ replace HL := HL.1; clear ih tl
rsuffices ⟨L, HL', HP | HP⟩ :
∃ L : List R, (∀ x ∈ L, x ∈ s) ∧ (List.prod hd = List.prod L ∨ List.prod hd = -List.prod L)
- · rw [HP]
- clear HP HL hd
- induction' L with hd tl ih
- · exact h1
+ · rw [HP]; clear HP HL hd; induction' L with hd tl ih; · exact h1
rw [List.forall_mem_cons] at HL'
rw [List.prod_cons]
exact hs _ HL'.1 _ (ih HL'.2)
- · rw [HP]
- clear HP HL hd
- induction' L with hd tl ih
- · exact hneg1
+ · rw [HP]; clear HP HL hd; induction' L with hd tl ih; · exact hneg1
rw [List.prod_cons, neg_mul_eq_mul_neg]
rw [List.forall_mem_cons] at HL'
exact hs _ HL'.1 _ (ih HL'.2)
@@ -304,17 +295,14 @@ theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
(by
rintro _ ⟨x, hx, rfl⟩
apply in_closure.rec_on hx <;> intros
- · rw [f.map_one]
- apply closure.is_subring.to_is_submonoid.one_mem
+ · rw [f.map_one]; apply closure.is_subring.to_is_submonoid.one_mem
· rw [f.map_neg, f.map_one]
apply closure.is_subring.to_is_add_subgroup.neg_mem
apply closure.is_subring.to_is_submonoid.one_mem
· rw [f.map_mul]
apply closure.is_subring.to_is_submonoid.mul_mem <;>
solve_by_elim [subset_closure, Set.mem_image_of_mem]
- · rw [f.map_add]
- apply closure.is_subring.to_is_add_submonoid.add_mem
- assumption')
+ · rw [f.map_add]; apply closure.is_subring.to_is_add_submonoid.add_mem; assumption')
(closure_subset (RingHom.isSubring_image _ closure.isSubring) <|
Set.image_subset _ subset_closure)
#align ring.image_closure Ring.image_closure
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -67,7 +67,7 @@ namespace RingHom
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_preimage RingHom.isSubring_preimageₓ'. -/
theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set S}
(hs : IsSubring s) : IsSubring (f ⁻¹' s) :=
@@ -79,7 +79,7 @@ theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_image RingHom.isSubring_imageₓ'. -/
theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set R}
(hs : IsSubring s) : IsSubring (f '' s) :=
@@ -91,7 +91,7 @@ theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+*
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_set_range RingHom.isSubring_set_rangeₓ'. -/
theorem isSubring_set_range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
IsSubring (Set.range f) :=
@@ -296,7 +296,7 @@ theorem closure_mono {s t : Set R} (H : s ⊆ t) : closure s ⊆ closure t :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Type.{u2}} [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (s : Set.{u1} R), Eq.{succ u2} (Set.{u2} S) (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) (Ring.closure.{u1} R _inst_1 s)) (Ring.closure.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) s))
+ forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring.image_closure Ring.image_closureₓ'. -/
theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
f '' closure s = closure (f '' s) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -114,30 +114,30 @@ theorem IsSubring.inter {S₁ S₂ : Set R} (hS₁ : IsSubring S₁) (hS₂ : Is
IsSubmonoid.inter hS₁.to_isSubmonoid hS₂.to_isSubmonoid with }
#align is_subring.inter IsSubring.inter
-/- warning: is_subring.Inter -> IsSubring.interᵢ is a dubious translation:
+/- warning: is_subring.Inter -> IsSubring.iInter is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {ι : Sort.{u2}} {S : ι -> (Set.{u1} R)}, (forall (y : ι), IsSubring.{u1} R _inst_1 (S y)) -> (IsSubring.{u1} R _inst_1 (Set.interᵢ.{u1, u2} R ι S))
+ forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {ι : Sort.{u2}} {S : ι -> (Set.{u1} R)}, (forall (y : ι), IsSubring.{u1} R _inst_1 (S y)) -> (IsSubring.{u1} R _inst_1 (Set.iInter.{u1, u2} R ι S))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {ι : Sort.{u1}} {S : ι -> (Set.{u2} R)}, (forall (y : ι), IsSubring.{u2} R _inst_1 (S y)) -> (IsSubring.{u2} R _inst_1 (Set.interᵢ.{u2, u1} R ι S))
-Case conversion may be inaccurate. Consider using '#align is_subring.Inter IsSubring.interᵢₓ'. -/
-theorem IsSubring.interᵢ {ι : Sort _} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
- IsSubring (Set.interᵢ S) :=
- { IsAddSubgroup.interᵢ fun i => (h i).to_isAddSubgroup,
- IsSubmonoid.interᵢ fun i => (h i).to_isSubmonoid with }
-#align is_subring.Inter IsSubring.interᵢ
-
-/- warning: is_subring_Union_of_directed -> isSubring_unionᵢ_of_directed is a dubious translation:
+ forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {ι : Sort.{u1}} {S : ι -> (Set.{u2} R)}, (forall (y : ι), IsSubring.{u2} R _inst_1 (S y)) -> (IsSubring.{u2} R _inst_1 (Set.iInter.{u2, u1} R ι S))
+Case conversion may be inaccurate. Consider using '#align is_subring.Inter IsSubring.iInterₓ'. -/
+theorem IsSubring.iInter {ι : Sort _} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
+ IsSubring (Set.iInter S) :=
+ { IsAddSubgroup.iInter fun i => (h i).to_isAddSubgroup,
+ IsSubmonoid.iInter fun i => (h i).to_isSubmonoid with }
+#align is_subring.Inter IsSubring.iInter
+
+/- warning: is_subring_Union_of_directed -> isSubring_iUnion_of_directed is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {ι : Type.{u2}} [hι : Nonempty.{succ u2} ι] {s : ι -> (Set.{u1} R)}, (forall (i : ι), IsSubring.{u1} R _inst_1 (s i)) -> (forall (i : ι) (j : ι), Exists.{succ u2} ι (fun (k : ι) => And (HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) (s i) (s k)) (HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) (s j) (s k)))) -> (IsSubring.{u1} R _inst_1 (Set.unionᵢ.{u1, succ u2} R ι (fun (i : ι) => s i)))
+ forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {ι : Type.{u2}} [hι : Nonempty.{succ u2} ι] {s : ι -> (Set.{u1} R)}, (forall (i : ι), IsSubring.{u1} R _inst_1 (s i)) -> (forall (i : ι) (j : ι), Exists.{succ u2} ι (fun (k : ι) => And (HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) (s i) (s k)) (HasSubset.Subset.{u1} (Set.{u1} R) (Set.hasSubset.{u1} R) (s j) (s k)))) -> (IsSubring.{u1} R _inst_1 (Set.iUnion.{u1, succ u2} R ι (fun (i : ι) => s i)))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {ι : Type.{u1}} [hι : Nonempty.{succ u1} ι] {s : ι -> (Set.{u2} R)}, (forall (i : ι), IsSubring.{u2} R _inst_1 (s i)) -> (forall (i : ι) (j : ι), Exists.{succ u1} ι (fun (k : ι) => And (HasSubset.Subset.{u2} (Set.{u2} R) (Set.instHasSubsetSet.{u2} R) (s i) (s k)) (HasSubset.Subset.{u2} (Set.{u2} R) (Set.instHasSubsetSet.{u2} R) (s j) (s k)))) -> (IsSubring.{u2} R _inst_1 (Set.unionᵢ.{u2, succ u1} R ι (fun (i : ι) => s i)))
-Case conversion may be inaccurate. Consider using '#align is_subring_Union_of_directed isSubring_unionᵢ_of_directedₓ'. -/
-theorem isSubring_unionᵢ_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set R}
+ forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {ι : Type.{u1}} [hι : Nonempty.{succ u1} ι] {s : ι -> (Set.{u2} R)}, (forall (i : ι), IsSubring.{u2} R _inst_1 (s i)) -> (forall (i : ι) (j : ι), Exists.{succ u1} ι (fun (k : ι) => And (HasSubset.Subset.{u2} (Set.{u2} R) (Set.instHasSubsetSet.{u2} R) (s i) (s k)) (HasSubset.Subset.{u2} (Set.{u2} R) (Set.instHasSubsetSet.{u2} R) (s j) (s k)))) -> (IsSubring.{u2} R _inst_1 (Set.iUnion.{u2, succ u1} R ι (fun (i : ι) => s i)))
+Case conversion may be inaccurate. Consider using '#align is_subring_Union_of_directed isSubring_iUnion_of_directedₓ'. -/
+theorem isSubring_iUnion_of_directed {ι : Type _} [hι : Nonempty ι] {s : ι → Set R}
(h : ∀ i, IsSubring (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
IsSubring (⋃ i, s i) :=
- { to_isAddSubgroup := isAddSubgroup_unionᵢ_of_directed (fun i => (h i).to_isAddSubgroup) Directed
- to_isSubmonoid := isSubmonoid_unionᵢ_of_directed (fun i => (h i).to_isSubmonoid) Directed }
-#align is_subring_Union_of_directed isSubring_unionᵢ_of_directed
+ { to_isAddSubgroup := isAddSubgroup_iUnion_of_directed (fun i => (h i).to_isAddSubgroup) Directed
+ to_isSubmonoid := isSubmonoid_iUnion_of_directed (fun i => (h i).to_isSubmonoid) Directed }
+#align is_subring_Union_of_directed isSubring_iUnion_of_directed
namespace Ring
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -67,7 +67,7 @@ namespace RingHom
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_preimage RingHom.isSubring_preimageₓ'. -/
theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set S}
(hs : IsSubring s) : IsSubring (f ⁻¹' s) :=
@@ -79,7 +79,7 @@ theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_image RingHom.isSubring_imageₓ'. -/
theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set R}
(hs : IsSubring s) : IsSubring (f '' s) :=
@@ -91,7 +91,7 @@ theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+*
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (Semiring.toNonAssocSemiring.{u1} R (Ring.toSemiring.{u1} R _inst_2)) (Semiring.toNonAssocSemiring.{u2} S (Ring.toSemiring.{u2} S _inst_3)))))) f))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_set_range RingHom.isSubring_set_rangeₓ'. -/
theorem isSubring_set_range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
IsSubring (Set.range f) :=
@@ -157,7 +157,7 @@ attribute [local reducible] closure
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.Mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.hasMem.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.Mem.{u1, u1} R (List.{u1} R) (List.hasMem.{u1} R) x l) -> (Or (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) L)) a)))
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.instMembershipList.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.mem.{u1, u1} R (List.{u1} R) (List.instMembershipList.{u1} R) x l) -> (Or (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) L)) a)))
+ forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.instMembershipList.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.mem.{u1, u1} R (List.{u1} R) (List.instMembershipList.{u1} R) x l) -> (Or (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))) L)) a)))
Case conversion may be inaccurate. Consider using '#align ring.exists_list_of_mem_closure Ring.exists_list_of_mem_closureₓ'. -/
theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
∃ L : List (List R), (∀ l ∈ L, ∀ x ∈ l, x ∈ s ∨ x = (-1 : R)) ∧ (L.map List.prod).Sum = a :=
@@ -188,7 +188,7 @@ theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))) -> (C (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))))))) -> (forall (z : R), (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1))) x y))) -> (C x)
but is expected to have type
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) -> (C (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) -> (forall (z : R), (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y))) -> (C x)
+ forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1))))) -> (C (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (Semiring.toOne.{u1} R (Ring.toSemiring.{u1} R _inst_1)))))) -> (forall (z : R), (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y))) -> (C x)
Case conversion may be inaccurate. Consider using '#align ring.in_closure.rec_on Ring.InClosure.recOnₓ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
@@ -296,7 +296,7 @@ theorem closure_mono {s t : Set R} (H : s ⊆ t) : closure s ⊆ closure t :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Type.{u2}} [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (s : Set.{u1} R), Eq.{succ u2} (Set.{u2} S) (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) (Ring.closure.{u1} R _inst_1 s)) (Ring.closure.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) s))
+ forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3))) R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (Semiring.toNonAssocSemiring.{u2} R (Ring.toSemiring.{u2} R _inst_1)) (Semiring.toNonAssocSemiring.{u1} S (Ring.toSemiring.{u1} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring.image_closure Ring.image_closureₓ'. -/
theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
f '' closure s = closure (f '' s) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -171,7 +171,7 @@ theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
match b, ih with
| _, ⟨L1, h1, rfl⟩ =>
⟨L1.map (List.cons (-1)), fun L2 h2 =>
- match L2, List.mem_map'.1 h2 with
+ match L2, List.mem_map.1 h2 with
| _, ⟨L3, h3, rfl⟩ => List.forall_mem_cons.2 ⟨Or.inr rfl, h1 L3 h3⟩,
by
simp only [List.map_map, (· ∘ ·), List.prod_cons, neg_one_mul] <;>
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce86f4e05e9a9b8da5e316b22c76ce76440c56a1
@@ -155,7 +155,7 @@ attribute [local reducible] closure
/- warning: ring.exists_list_of_mem_closure -> Ring.exists_list_of_mem_closure is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.Mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.hasMem.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.Mem.{u1, u1} R (List.{u1} R) (List.hasMem.{u1} R) x l) -> (Or (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) L)) a)))
+ forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.Mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.hasMem.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.Mem.{u1, u1} R (List.{u1} R) (List.hasMem.{u1} R) x l) -> (Or (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (MulZeroClass.toHasZero.{u1} R (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1)) (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) L)) a)))
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {a : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) a (Ring.closure.{u1} R _inst_1 s)) -> (Exists.{succ u1} (List.{u1} (List.{u1} R)) (fun (L : List.{u1} (List.{u1} R)) => And (forall (l : List.{u1} R), (Membership.mem.{u1, u1} (List.{u1} R) (List.{u1} (List.{u1} R)) (List.instMembershipList.{u1} (List.{u1} R)) l L) -> (forall (x : R), (Membership.mem.{u1, u1} R (List.{u1} R) (List.instMembershipList.{u1} R) x l) -> (Or (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x s) (Eq.{succ u1} R x (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))))))) (Eq.{succ u1} R (List.sum.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (MonoidWithZero.toZero.{u1} R (Semiring.toMonoidWithZero.{u1} R (Ring.toSemiring.{u1} R _inst_1))) (List.map.{u1, u1} (List.{u1} R) R (List.prod.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))) L)) a)))
Case conversion may be inaccurate. Consider using '#align ring.exists_list_of_mem_closure Ring.exists_list_of_mem_closureₓ'. -/
@@ -186,7 +186,7 @@ theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
/- warning: ring.in_closure.rec_on -> Ring.InClosure.recOn is a dubious translation:
lean 3 declaration is
- forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))))) -> (C (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (NonAssocRing.toAddGroupWithOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))))))) -> (forall (z : R), (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1))) x y))) -> (C x)
+ forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1)))))))) -> (C (Neg.neg.{u1} R (SubNegMonoid.toHasNeg.{u1} R (AddGroup.toSubNegMonoid.{u1} R (AddGroupWithOne.toAddGroup.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))) (OfNat.ofNat.{u1} R 1 (OfNat.mk.{u1} R 1 (One.one.{u1} R (AddMonoidWithOne.toOne.{u1} R (AddGroupWithOne.toAddMonoidWithOne.{u1} R (AddCommGroupWithOne.toAddGroupWithOne.{u1} R (Ring.toAddCommGroupWithOne.{u1} R _inst_1))))))))) -> (forall (z : R), (Membership.Mem.{u1, u1} R (Set.{u1} R) (Set.hasMem.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (Distrib.toHasMul.{u1} R (Ring.toDistrib.{u1} R _inst_1))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toHasAdd.{u1} R (Ring.toDistrib.{u1} R _inst_1))) x y))) -> (C x)
but is expected to have type
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {s : Set.{u1} R} {C : R -> Prop} {x : R}, (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) x (Ring.closure.{u1} R _inst_1 s)) -> (C (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1))))) -> (C (Neg.neg.{u1} R (Ring.toNeg.{u1} R _inst_1) (OfNat.ofNat.{u1} R 1 (One.toOfNat1.{u1} R (NonAssocRing.toOne.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) -> (forall (z : R), (Membership.mem.{u1, u1} R (Set.{u1} R) (Set.instMembershipSet.{u1} R) z s) -> (forall (n : R), (C n) -> (C (HMul.hMul.{u1, u1, u1} R R R (instHMul.{u1} R (NonUnitalNonAssocRing.toMul.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))) z n)))) -> (forall {x : R} {y : R}, (C x) -> (C y) -> (C (HAdd.hAdd.{u1, u1, u1} R R R (instHAdd.{u1} R (Distrib.toAdd.{u1} R (NonUnitalNonAssocSemiring.toDistrib.{u1} R (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonUnitalNonAssocRing.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)))))) x y))) -> (C x)
Case conversion may be inaccurate. Consider using '#align ring.in_closure.rec_on Ring.InClosure.recOnₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -67,7 +67,7 @@ namespace RingHom
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_preimage RingHom.isSubring_preimageₓ'. -/
theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set S}
(hs : IsSubring s) : IsSubring (f ⁻¹' s) :=
@@ -79,7 +79,7 @@ theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_image RingHom.isSubring_imageₓ'. -/
theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set R}
(hs : IsSubring s) : IsSubring (f '' s) :=
@@ -91,7 +91,7 @@ theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+*
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_set_range RingHom.isSubring_set_rangeₓ'. -/
theorem isSubring_set_range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
IsSubring (Set.range f) :=
@@ -296,7 +296,7 @@ theorem closure_mono {s t : Set R} (H : s ⊆ t) : closure s ⊆ closure t :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Type.{u2}} [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (s : Set.{u1} R), Eq.{succ u2} (Set.{u2} S) (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) (Ring.closure.{u1} R _inst_1 s)) (Ring.closure.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) s))
+ forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring.image_closure Ring.image_closureₓ'. -/
theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
f '' closure s = closure (f '' s) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -250,12 +250,12 @@ theorem closure.isSubring : IsSubring (closure s) :=
(fun c hc =>
AddGroup.InClosure.rec_on ha
(fun d hd => AddGroup.subset_closure ((Monoid.closure.isSubmonoid _).mul_mem hd hc))
- ((zero_mul c).symm ▸ (AddGroup.closure.isAddSubgroup _).zero_mem)
+ ((MulZeroClass.zero_mul c).symm ▸ (AddGroup.closure.isAddSubgroup _).zero_mem)
(fun d hd hdc =>
neg_mul_eq_neg_mul d c ▸ (AddGroup.closure.isAddSubgroup _).neg_mem hdc)
fun d e hd he hdc hec =>
(add_mul d e c).symm ▸ (AddGroup.closure.isAddSubgroup _).add_mem hdc hec)
- ((mul_zero a).symm ▸ (AddGroup.closure.isAddSubgroup _).zero_mem)
+ ((MulZeroClass.mul_zero a).symm ▸ (AddGroup.closure.isAddSubgroup _).zero_mem)
(fun c hc hac => neg_mul_eq_mul_neg a c ▸ (AddGroup.closure.isAddSubgroup _).neg_mem hac)
fun c d hc hd hac had =>
(mul_add a c d).symm ▸ (AddGroup.closure.isAddSubgroup _).add_mem hac had }
mathlib commit https://github.com/leanprover-community/mathlib/commit/38f16f960f5006c6c0c2bac7b0aba5273188f4e5
@@ -67,7 +67,7 @@ namespace RingHom
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u2} S}, (IsSubring.{u2} S _inst_3 s) -> (IsSubring.{u1} R _inst_2 (Set.preimage.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_preimage RingHom.isSubring_preimageₓ'. -/
theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set S}
(hs : IsSubring s) : IsSubring (f ⁻¹' s) :=
@@ -79,7 +79,7 @@ theorem isSubring_preimage {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) {s : Set.{u1} R}, (IsSubring.{u1} R _inst_2 s) -> (IsSubring.{u2} S _inst_3 (Set.image.{u1, u2} R S (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_image RingHom.isSubring_imageₓ'. -/
theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) {s : Set R}
(hs : IsSubring s) : IsSubring (f '' s) :=
@@ -91,7 +91,7 @@ theorem isSubring_image {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+*
lean 3 declaration is
forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f))
but is expected to have type
- forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f))
+ forall {R : Type.{u1}} {S : Type.{u2}} [_inst_2 : Ring.{u1} R] [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))), IsSubring.{u2} S _inst_3 (Set.range.{u2, succ u1} S R (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)))) (NonUnitalNonAssocSemiring.toMul.{u2} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} S (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)) (RingHom.instRingHomClassRingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_2)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3)))))) f))
Case conversion may be inaccurate. Consider using '#align ring_hom.is_subring_set_range RingHom.isSubring_set_rangeₓ'. -/
theorem isSubring_set_range {R : Type u} {S : Type v} [Ring R] [Ring S] (f : R →+* S) :
IsSubring (Set.range f) :=
@@ -296,7 +296,7 @@ theorem closure_mono {s t : Set R} (H : s ⊆ t) : closure s ⊆ closure t :=
lean 3 declaration is
forall {R : Type.{u1}} [_inst_1 : Ring.{u1} R] {S : Type.{u2}} [_inst_3 : Ring.{u2} S] (f : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (s : Set.{u1} R), Eq.{succ u2} (Set.{u2} S) (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) (Ring.closure.{u1} R _inst_1 s)) (Ring.closure.{u2} S _inst_3 (Set.image.{u1, u2} R S (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) (fun (_x : RingHom.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) => R -> S) (RingHom.hasCoeToFun.{u1, u2} R S (NonAssocRing.toNonAssocSemiring.{u1} R (Ring.toNonAssocRing.{u1} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u2} S (Ring.toNonAssocRing.{u2} S _inst_3))) f) s))
but is expected to have type
- forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2398 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) s))
+ forall {R : Type.{u2}} [_inst_1 : Ring.{u2} R] {S : Type.{u1}} [_inst_3 : Ring.{u1} S] (f : RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (s : Set.{u2} R), Eq.{succ u1} (Set.{u1} S) (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) (Ring.closure.{u2} R _inst_1 s)) (Ring.closure.{u1} S _inst_3 (Set.image.{u2, u1} R S (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2372 : R) => S) _x) (MulHomClass.toFunLike.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonUnitalNonAssocSemiring.toMul.{u2} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)))) (NonUnitalNonAssocSemiring.toMul.{u1} S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))) (NonUnitalRingHomClass.toMulHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} R (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} S (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) (RingHomClass.toNonUnitalRingHomClass.{max u2 u1, u2, u1} (RingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3))) R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)) (RingHom.instRingHomClassRingHom.{u2, u1} R S (NonAssocRing.toNonAssocSemiring.{u2} R (Ring.toNonAssocRing.{u2} R _inst_1)) (NonAssocRing.toNonAssocSemiring.{u1} S (Ring.toNonAssocRing.{u1} S _inst_3)))))) f) s))
Case conversion may be inaccurate. Consider using '#align ring.image_closure Ring.image_closureₓ'. -/
theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
f '' closure s = closure (f '' s) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/3ade05ac9447ae31a22d2ea5423435e054131240
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module deprecated.subring
-! leanprover-community/mathlib commit 3d7987cda72abc473c7cdbbb075170e9ac620042
+! leanprover-community/mathlib commit 23aa88e32dcc9d2a24cca7bc23268567ed4cd7d6
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.RingTheory.Subring.Basic
/-!
# Unbundled subrings (deprecated)
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Type _ and Sort _ (#6499)
We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.
This has nice performance benefits.
@@ -79,13 +79,13 @@ theorem IsSubring.inter {S₁ S₂ : Set R} (hS₁ : IsSubring S₁) (hS₂ : Is
IsSubmonoid.inter hS₁.toIsSubmonoid hS₂.toIsSubmonoid with }
#align is_subring.inter IsSubring.inter
-theorem IsSubring.iInter {ι : Sort _} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
+theorem IsSubring.iInter {ι : Sort*} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
IsSubring (Set.iInter S) :=
{ IsAddSubgroup.iInter fun i ↦ (h i).toIsAddSubgroup,
IsSubmonoid.iInter fun i ↦ (h i).toIsSubmonoid with }
#align is_subring.Inter IsSubring.iInter
-theorem isSubring_iUnion_of_directed {ι : Type _} [Nonempty ι] {s : ι → Set R}
+theorem isSubring_iUnion_of_directed {ι : Type*} [Nonempty ι] {s : ι → Set R}
(h : ∀ i, IsSubring (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
IsSubring (⋃ i, s i) :=
{ toIsAddSubgroup := isAddSubgroup_iUnion_of_directed (fun i ↦ (h i).toIsAddSubgroup) directed
@@ -202,7 +202,7 @@ theorem closure_mono {s t : Set R} (H : s ⊆ t) : closure s ⊆ closure t :=
closure_subset closure.isSubring <| Set.Subset.trans H subset_closure
#align ring.closure_mono Ring.closure_mono
-theorem image_closure {S : Type _} [Ring S] (f : R →+* S) (s : Set R) :
+theorem image_closure {S : Type*} [Ring S] (f : R →+* S) (s : Set R) :
f '' closure s = closure (f '' s) := by
refine' le_antisymm _ (closure_subset (RingHom.isSubring_image _ closure.isSubring) <|
Set.image_subset _ subset_closure)
@@ -2,16 +2,13 @@
Copyright (c) 2018 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module deprecated.subring
-! leanprover-community/mathlib commit 2738d2ca56cbc63be80c3bd48e9ed90ad94e947d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Deprecated.Subgroup
import Mathlib.Deprecated.Group
import Mathlib.RingTheory.Subring.Basic
+#align_import deprecated.subring from "leanprover-community/mathlib"@"2738d2ca56cbc63be80c3bd48e9ed90ad94e947d"
+
/-!
# Unbundled subrings (deprecated)
sSup/iSup (#3938)
As discussed on Zulip
supₛ → sSupinfₛ → sInfsupᵢ → iSupinfᵢ → iInfbsupₛ → bsSupbinfₛ → bsInfbsupᵢ → biSupbinfᵢ → biInfcsupₛ → csSupcinfₛ → csInfcsupᵢ → ciSupcinfᵢ → ciInfunionₛ → sUnioninterₛ → sInterunionᵢ → iUnioninterᵢ → iInterbunionₛ → bsUnionbinterₛ → bsInterbunionᵢ → biUnionbinterᵢ → biInterCo-authored-by: Parcly Taxel <reddeloostw@gmail.com>
@@ -82,18 +82,18 @@ theorem IsSubring.inter {S₁ S₂ : Set R} (hS₁ : IsSubring S₁) (hS₂ : Is
IsSubmonoid.inter hS₁.toIsSubmonoid hS₂.toIsSubmonoid with }
#align is_subring.inter IsSubring.inter
-theorem IsSubring.interᵢ {ι : Sort _} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
- IsSubring (Set.interᵢ S) :=
- { IsAddSubgroup.interᵢ fun i ↦ (h i).toIsAddSubgroup,
- IsSubmonoid.interᵢ fun i ↦ (h i).toIsSubmonoid with }
-#align is_subring.Inter IsSubring.interᵢ
+theorem IsSubring.iInter {ι : Sort _} {S : ι → Set R} (h : ∀ y : ι, IsSubring (S y)) :
+ IsSubring (Set.iInter S) :=
+ { IsAddSubgroup.iInter fun i ↦ (h i).toIsAddSubgroup,
+ IsSubmonoid.iInter fun i ↦ (h i).toIsSubmonoid with }
+#align is_subring.Inter IsSubring.iInter
-theorem isSubring_unionᵢ_of_directed {ι : Type _} [Nonempty ι] {s : ι → Set R}
+theorem isSubring_iUnion_of_directed {ι : Type _} [Nonempty ι] {s : ι → Set R}
(h : ∀ i, IsSubring (s i)) (directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
IsSubring (⋃ i, s i) :=
- { toIsAddSubgroup := isAddSubgroup_unionᵢ_of_directed (fun i ↦ (h i).toIsAddSubgroup) directed
- toIsSubmonoid := isSubmonoid_unionᵢ_of_directed (fun i ↦ (h i).toIsSubmonoid) directed }
-#align is_subring_Union_of_directed isSubring_unionᵢ_of_directed
+ { toIsAddSubgroup := isAddSubgroup_iUnion_of_directed (fun i ↦ (h i).toIsAddSubgroup) directed
+ toIsSubmonoid := isSubmonoid_iUnion_of_directed (fun i ↦ (h i).toIsSubmonoid) directed }
+#align is_subring_Union_of_directed isSubring_iUnion_of_directed
namespace Ring
Notably incorporates https://github.com/leanprover/std4/pull/98 and https://github.com/leanprover/std4/pull/109.
https://github.com/leanprover/std4/pull/98 moves a number of lemmas from Mathlib to Std, so the bump requires deleting them in Mathlib. I did check on each lemma whether its attributes were kept in the move (and gave attribute markings in Mathlib if they were not present in Std), but a reviewer may wish to re-check.
List.mem_map changed statement from b ∈ l.map f ↔ ∃ a, a ∈ l ∧ b = f a to b ∈ l.map f ↔ ∃ a, a ∈ l ∧ f a = b. Similarly for List.exists_of_mem_map. This was a deliberate change, so I have simply adjusted proofs (many become simpler, which supports the change). I also deleted List.mem_map', List.exists_of_mem_map', which were temporary versions in Mathlib while waiting for this change (replacing their uses with the unprimed versions).
Also, the lemma sublist_nil_iff_eq_nil seems to have been renamed to sublist_nil during the move, so I added an alias for the old name.
(another issue fixed during review by @digama0) List.Sublist.filter had an argument change from explicit to implicit. This appears to have been an oversight (cc @JamesGallicchio). I have temporarily introduced List.Sublist.filter' with the argument explicit, and replaced Mathlib uses of Sublist.filter with Sublist.filter'. Later we can fix the argument in Std, and then delete List.Sublist.filter'.
@@ -116,7 +116,7 @@ theorem exists_list_of_mem_closure {a : R} (h : a ∈ closure s) :
fun {b} _ ih ↦ match b, ih with
| _, ⟨L1, h1, rfl⟩ =>
⟨L1.map (List.cons (-1)),
- fun L2 h2 ↦ match L2, List.mem_map'.1 h2 with
+ fun L2 h2 ↦ match L2, List.mem_map.1 h2 with
| _, ⟨L3, h3, rfl⟩ => List.forall_mem_cons.2 ⟨Or.inr rfl, h1 L3 h3⟩, by
simp only [List.map_map, (· ∘ ·), List.prod_cons, neg_one_mul]
refine' List.recOn L1 neg_zero.symm fun hd tl ih ↦ _
@@ -28,7 +28,7 @@ of the ring `R`. The bundled variant `Subring R` should be used in preference to
## Tags
-is_subring
+IsSubring
-/
The unported dependencies are