geometry.euclidean.sphere.power
⟷
Mathlib.Geometry.Euclidean.Sphere.Power
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -98,8 +98,8 @@ theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧
rw [midpoint_vsub_left, ← right_vsub_midpoint, add_comm, vsub_add_vsub_cancel]
iterate 4 rw [dist_eq_norm_vsub V]
rw [← h1, ← h2, h, h]
- rw [← h1, h] at hp
- rw [dist_eq_norm_vsub V a q, dist_eq_norm_vsub V b q, ← h3, h] at hq
+ rw [← h1, h] at hp
+ rw [dist_eq_norm_vsub V a q, dist_eq_norm_vsub V b q, ← h3, h] at hq
exact mul_norm_eq_abs_sub_sq_norm hp hq
#align euclidean_geometry.mul_dist_eq_abs_sub_sq_dist EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist
-/
@@ -114,8 +114,8 @@ theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a
by
obtain ⟨q, r, h'⟩ := (cospherical_def {a, b, c, d}).mp h
obtain ⟨ha, hb, hc, hd⟩ := h' a _, h' b _, h' c _, h' d _
- · rw [← hd] at hc
- rw [← hb] at ha
+ · rw [← hd] at hc
+ rw [← hb] at ha
rw [mul_dist_eq_abs_sub_sq_dist hapb ha, hb, mul_dist_eq_abs_sub_sq_dist hcpd hc, hd]
all_goals simp
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2021 Manuel Candales. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
-/
-import Mathbin.Geometry.Euclidean.Angle.Unoriented.Affine
-import Mathbin.Geometry.Euclidean.Sphere.Basic
+import Geometry.Euclidean.Angle.Unoriented.Affine
+import Geometry.Euclidean.Sphere.Basic
#align_import geometry.euclidean.sphere.power from "leanprover-community/mathlib"@"f60c6087a7275b72d5db3c5a1d0e19e35a429c0a"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2021 Manuel Candales. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
-
-! This file was ported from Lean 3 source module geometry.euclidean.sphere.power
-! leanprover-community/mathlib commit f60c6087a7275b72d5db3c5a1d0e19e35a429c0a
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Geometry.Euclidean.Angle.Unoriented.Affine
import Mathbin.Geometry.Euclidean.Sphere.Basic
+#align_import geometry.euclidean.sphere.power from "leanprover-community/mathlib"@"f60c6087a7275b72d5db3c5a1d0e19e35a429c0a"
+
/-!
# Power of a point (intersecting chords and secants)
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -43,6 +43,7 @@ which are used to deduce corresponding results for Euclidean affine spaces.
-/
+#print InnerProductGeometry.mul_norm_eq_abs_sub_sq_norm /-
theorem mul_norm_eq_abs_sub_sq_norm {x y z : V} (h₁ : ∃ k : ℝ, k ≠ 1 ∧ x + y = k • (x - y))
(h₂ : ‖z - y‖ = ‖z + y‖) : ‖x - y‖ * ‖x + y‖ = |‖z + y‖ ^ 2 - ‖z - x‖ ^ 2| :=
by
@@ -71,6 +72,7 @@ theorem mul_norm_eq_abs_sub_sq_norm {x y z : V} (h₁ : ∃ k : ℝ, k ≠ 1 ∧
_ = |‖z + y‖ ^ 2 - ‖z - x‖ ^ 2| := by
simp [norm_add_sq_real, norm_sub_sq_real, hzy, hzx, abs_sub_comm]
#align inner_product_geometry.mul_norm_eq_abs_sub_sq_norm InnerProductGeometry.mul_norm_eq_abs_sub_sq_norm
+-/
end InnerProductGeometry
@@ -87,8 +89,7 @@ open InnerProductGeometry
variable {P : Type _} [MetricSpace P] [NormedAddTorsor V P]
-include V
-
+#print EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist /-
/-- If `P` is a point on the line `AB` and `Q` is equidistant from `A` and `B`, then
`AP * BP = abs (BQ ^ 2 - PQ ^ 2)`. -/
theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧ b -ᵥ p = k • (a -ᵥ p))
@@ -104,7 +105,9 @@ theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧
rw [dist_eq_norm_vsub V a q, dist_eq_norm_vsub V b q, ← h3, h] at hq
exact mul_norm_eq_abs_sub_sq_norm hp hq
#align euclidean_geometry.mul_dist_eq_abs_sub_sq_dist EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist
+-/
+#print EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical /-
/-- If `A`, `B`, `C`, `D` are cospherical and `P` is on both lines `AB` and `CD`, then
`AP * BP = CP * DP`. -/
theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a, b, c, d} : Set P))
@@ -119,7 +122,9 @@ theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a
rw [mul_dist_eq_abs_sub_sq_dist hapb ha, hb, mul_dist_eq_abs_sub_sq_dist hcpd hc, hd]
all_goals simp
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical
+-/
+#print EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi /-
/-- **Intersecting Chords Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
(h : Cospherical ({a, b, c, d} : Set P)) (hapb : ∠ a p b = π) (hcpd : ∠ c p d = π) :
@@ -129,7 +134,9 @@ theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
obtain ⟨-, k₂, _, hcd⟩ := angle_eq_pi_iff.mp hcpd
exact mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, by linarith, hab⟩ ⟨k₂, by linarith, hcd⟩
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi
+-/
+#print EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero /-
/-- **Intersecting Secants Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
(h : Cospherical ({a, b, c, d} : Set P)) (hab : a ≠ b) (hcd : c ≠ d) (hapb : ∠ a p b = 0)
@@ -141,6 +148,7 @@ theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
simp_all only [Classical.not_not, one_smul]
exacts [hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm]
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero
+-/
end EuclideanGeometry
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -57,7 +57,6 @@ theorem mul_norm_eq_abs_sub_sq_norm {x y z : V} (h₁ : ∃ k : ℝ, k ≠ 1 ∧
_ = k • x - k • y - (x + y) := by simp_rw [← sub_sub, sub_right_comm]
_ = k • (x - y) - (x + y) := by rw [← smul_sub k x y]
_ = 0 := sub_eq_zero.mpr hk.symm
-
have hzy : ⟪z, y⟫ = 0 := by
rwa [inner_eq_zero_iff_angle_eq_pi_div_two, ← norm_add_eq_norm_sub_iff_angle_eq_pi_div_two,
eq_comm]
@@ -71,7 +70,6 @@ theorem mul_norm_eq_abs_sub_sq_norm {x y z : V} (h₁ : ∃ k : ℝ, k ≠ 1 ∧
_ = |‖x‖ ^ 2 - ‖y‖ ^ 2| := by simp [hxy, norm_smul, mul_pow, sq_abs]
_ = |‖z + y‖ ^ 2 - ‖z - x‖ ^ 2| := by
simp [norm_add_sq_real, norm_sub_sq_real, hzy, hzx, abs_sub_comm]
-
#align inner_product_geometry.mul_norm_eq_abs_sub_sq_norm InnerProductGeometry.mul_norm_eq_abs_sub_sq_norm
end InnerProductGeometry
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -102,8 +102,8 @@ theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧
rw [midpoint_vsub_left, ← right_vsub_midpoint, add_comm, vsub_add_vsub_cancel]
iterate 4 rw [dist_eq_norm_vsub V]
rw [← h1, ← h2, h, h]
- rw [← h1, h] at hp
- rw [dist_eq_norm_vsub V a q, dist_eq_norm_vsub V b q, ← h3, h] at hq
+ rw [← h1, h] at hp
+ rw [dist_eq_norm_vsub V a q, dist_eq_norm_vsub V b q, ← h3, h] at hq
exact mul_norm_eq_abs_sub_sq_norm hp hq
#align euclidean_geometry.mul_dist_eq_abs_sub_sq_dist EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist
@@ -116,8 +116,8 @@ theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a
by
obtain ⟨q, r, h'⟩ := (cospherical_def {a, b, c, d}).mp h
obtain ⟨ha, hb, hc, hd⟩ := h' a _, h' b _, h' c _, h' d _
- · rw [← hd] at hc
- rw [← hb] at ha
+ · rw [← hd] at hc
+ rw [← hb] at ha
rw [mul_dist_eq_abs_sub_sq_dist hapb ha, hb, mul_dist_eq_abs_sub_sq_dist hcpd hc, hd]
all_goals simp
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical
@@ -141,7 +141,7 @@ theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
obtain ⟨-, k₂, -, hcd₁⟩ := angle_eq_zero_iff.mp hcpd
refine' mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, _, hab₁⟩ ⟨k₂, _, hcd₁⟩ <;> by_contra hnot <;>
simp_all only [Classical.not_not, one_smul]
- exacts[hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm]
+ exacts [hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm]
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero
end EuclideanGeometry
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
! This file was ported from Lean 3 source module geometry.euclidean.sphere.power
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
+! leanprover-community/mathlib commit f60c6087a7275b72d5db3c5a1d0e19e35a429c0a
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -14,6 +14,9 @@ import Mathbin.Geometry.Euclidean.Sphere.Basic
/-!
# Power of a point (intersecting chords and secants)
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file proves basic geometrical results about power of a point (intersecting chords and
secants) in spheres in real inner product spaces and Euclidean affine spaces.
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -26,7 +26,7 @@ secants) in spheres in real inner product spaces and Euclidean affine spaces.
open Real
-open EuclideanGeometry RealInnerProductSpace Real
+open scoped EuclideanGeometry RealInnerProductSpace Real
variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace ℝ V]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -40,9 +40,6 @@ which are used to deduce corresponding results for Euclidean affine spaces.
-/
-/- warning: inner_product_geometry.mul_norm_eq_abs_sub_sq_norm -> InnerProductGeometry.mul_norm_eq_abs_sub_sq_norm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align inner_product_geometry.mul_norm_eq_abs_sub_sq_norm InnerProductGeometry.mul_norm_eq_abs_sub_sq_normₓ'. -/
theorem mul_norm_eq_abs_sub_sq_norm {x y z : V} (h₁ : ∃ k : ℝ, k ≠ 1 ∧ x + y = k • (x - y))
(h₂ : ‖z - y‖ = ‖z + y‖) : ‖x - y‖ * ‖x + y‖ = |‖z + y‖ ^ 2 - ‖z - x‖ ^ 2| :=
by
@@ -91,9 +88,6 @@ variable {P : Type _} [MetricSpace P] [NormedAddTorsor V P]
include V
-/- warning: euclidean_geometry.mul_dist_eq_abs_sub_sq_dist -> EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_abs_sub_sq_dist EuclideanGeometry.mul_dist_eq_abs_sub_sq_distₓ'. -/
/-- If `P` is a point on the line `AB` and `Q` is equidistant from `A` and `B`, then
`AP * BP = abs (BQ ^ 2 - PQ ^ 2)`. -/
theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧ b -ᵥ p = k • (a -ᵥ p))
@@ -110,9 +104,6 @@ theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧
exact mul_norm_eq_abs_sub_sq_norm hp hq
#align euclidean_geometry.mul_dist_eq_abs_sub_sq_dist EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist
-/- warning: euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical -> EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_eq_mul_dist_of_cosphericalₓ'. -/
/-- If `A`, `B`, `C`, `D` are cospherical and `P` is on both lines `AB` and `CD`, then
`AP * BP = CP * DP`. -/
theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a, b, c, d} : Set P))
@@ -128,12 +119,6 @@ theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a
all_goals simp
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical
-/- warning: euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi -> EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi is a dubious translation:
-lean 3 declaration is
- forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.hasSingleton.{u2} P) d))))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) Real.pi) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) Real.pi) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
-but is expected to have type
- forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.instSingletonSet.{u2} P) d))))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) Real.pi) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) Real.pi) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
-Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_piₓ'. -/
/-- **Intersecting Chords Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
(h : Cospherical ({a, b, c, d} : Set P)) (hapb : ∠ a p b = π) (hcpd : ∠ c p d = π) :
@@ -144,12 +129,6 @@ theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
exact mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, by linarith, hab⟩ ⟨k₂, by linarith, hcd⟩
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi
-/- warning: euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero -> EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero is a dubious translation:
-lean 3 declaration is
- forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.hasSingleton.{u2} P) d))))) -> (Ne.{succ u2} P a b) -> (Ne.{succ u2} P c d) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
-but is expected to have type
- forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.instSingletonSet.{u2} P) d))))) -> (Ne.{succ u2} P a b) -> (Ne.{succ u2} P c d) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
-Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zeroₓ'. -/
/-- **Intersecting Secants Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
(h : Cospherical ({a, b, c, d} : Set P)) (hab : a ≠ b) (hcd : c ≠ d) (hapb : ∠ a p b = 0)
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -40,6 +40,9 @@ which are used to deduce corresponding results for Euclidean affine spaces.
-/
+/- warning: inner_product_geometry.mul_norm_eq_abs_sub_sq_norm -> InnerProductGeometry.mul_norm_eq_abs_sub_sq_norm is a dubious translation:
+<too large>
+Case conversion may be inaccurate. Consider using '#align inner_product_geometry.mul_norm_eq_abs_sub_sq_norm InnerProductGeometry.mul_norm_eq_abs_sub_sq_normₓ'. -/
theorem mul_norm_eq_abs_sub_sq_norm {x y z : V} (h₁ : ∃ k : ℝ, k ≠ 1 ∧ x + y = k • (x - y))
(h₂ : ‖z - y‖ = ‖z + y‖) : ‖x - y‖ * ‖x + y‖ = |‖z + y‖ ^ 2 - ‖z - x‖ ^ 2| :=
by
@@ -88,6 +91,9 @@ variable {P : Type _} [MetricSpace P] [NormedAddTorsor V P]
include V
+/- warning: euclidean_geometry.mul_dist_eq_abs_sub_sq_dist -> EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist is a dubious translation:
+<too large>
+Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_abs_sub_sq_dist EuclideanGeometry.mul_dist_eq_abs_sub_sq_distₓ'. -/
/-- If `P` is a point on the line `AB` and `Q` is equidistant from `A` and `B`, then
`AP * BP = abs (BQ ^ 2 - PQ ^ 2)`. -/
theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧ b -ᵥ p = k • (a -ᵥ p))
@@ -104,6 +110,9 @@ theorem mul_dist_eq_abs_sub_sq_dist {a b p q : P} (hp : ∃ k : ℝ, k ≠ 1 ∧
exact mul_norm_eq_abs_sub_sq_norm hp hq
#align euclidean_geometry.mul_dist_eq_abs_sub_sq_dist EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist
+/- warning: euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical -> EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical is a dubious translation:
+<too large>
+Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_eq_mul_dist_of_cosphericalₓ'. -/
/-- If `A`, `B`, `C`, `D` are cospherical and `P` is on both lines `AB` and `CD`, then
`AP * BP = CP * DP`. -/
theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a, b, c, d} : Set P))
@@ -119,6 +128,12 @@ theorem mul_dist_eq_mul_dist_of_cospherical {a b c d p : P} (h : Cospherical ({a
all_goals simp
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical
+/- warning: euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi -> EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi is a dubious translation:
+lean 3 declaration is
+ forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.hasSingleton.{u2} P) d))))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) Real.pi) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) Real.pi) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
+but is expected to have type
+ forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.instSingletonSet.{u2} P) d))))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) Real.pi) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) Real.pi) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
+Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_piₓ'. -/
/-- **Intersecting Chords Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
(h : Cospherical ({a, b, c, d} : Set P)) (hapb : ∠ a p b = π) (hcpd : ∠ c p d = π) :
@@ -129,6 +144,12 @@ theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
exact mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, by linarith, hab⟩ ⟨k₂, by linarith, hcd⟩
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi
+/- warning: euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero -> EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero is a dubious translation:
+lean 3 declaration is
+ forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.hasInsert.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.hasSingleton.{u2} P) d))))) -> (Ne.{succ u2} P a b) -> (Ne.{succ u2} P c d) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero)))) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toHasDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
+but is expected to have type
+ forall {V : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u1} V] [_inst_2 : InnerProductSpace.{0, u1} Real V Real.isROrC _inst_1] {P : Type.{u2}} [_inst_3 : MetricSpace.{u2} P] [_inst_4 : NormedAddTorsor.{u1, u2} V P (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_1) (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)] {a : P} {b : P} {c : P} {d : P} {p : P}, (EuclideanGeometry.Cospherical.{u2} P _inst_3 (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) a (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) b (Insert.insert.{u2, u2} P (Set.{u2} P) (Set.instInsertSet.{u2} P) c (Singleton.singleton.{u2, u2} P (Set.{u2} P) (Set.instSingletonSet.{u2} P) d))))) -> (Ne.{succ u2} P a b) -> (Ne.{succ u2} P c d) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 a p b) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Eq.{1} Real (EuclideanGeometry.angle.{u1, u2} V P _inst_1 _inst_2 _inst_3 _inst_4 c p d) (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal))) -> (Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) a p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) b p)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) c p) (Dist.dist.{u2} P (PseudoMetricSpace.toDist.{u2} P (MetricSpace.toPseudoMetricSpace.{u2} P _inst_3)) d p)))
+Case conversion may be inaccurate. Consider using '#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zeroₓ'. -/
/-- **Intersecting Secants Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
(h : Cospherical ({a, b, c, d} : Set P)) (hab : a ≠ b) (hcd : c ≠ d) (hapb : ∠ a p b = 0)
mathlib commit https://github.com/leanprover-community/mathlib/commit/55d771df074d0dd020139ee1cd4b95521422df9f
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
! This file was ported from Lean 3 source module geometry.euclidean.sphere.power
-! leanprover-community/mathlib commit eea141bc9cf205beebfd46e2068c7c01ee8db4f6
+! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -28,7 +28,7 @@ open Real
open EuclideanGeometry RealInnerProductSpace Real
-variable {V : Type _} [InnerProductSpace ℝ V]
+variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace ℝ V]
namespace InnerProductGeometry
mathlib commit https://github.com/leanprover-community/mathlib/commit/da3fc4a33ff6bc75f077f691dc94c217b8d41559
@@ -3,45 +3,24 @@ Copyright (c) 2021 Manuel Candales. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
-! This file was ported from Lean 3 source module geometry.euclidean.sphere
-! leanprover-community/mathlib commit 17ef379e997badd73e5eabb4d38f11919ab3c4b3
+! This file was ported from Lean 3 source module geometry.euclidean.sphere.power
+! leanprover-community/mathlib commit eea141bc9cf205beebfd46e2068c7c01ee8db4f6
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
-import Mathbin.Geometry.Euclidean.Basic
-import Mathbin.Geometry.Euclidean.Triangle
+import Mathbin.Geometry.Euclidean.Angle.Unoriented.Affine
+import Mathbin.Geometry.Euclidean.Sphere.Basic
/-!
-# Spheres
+# Power of a point (intersecting chords and secants)
-This file proves basic geometrical results about distances and angles
-in spheres in real inner product spaces and Euclidean affine spaces.
+This file proves basic geometrical results about power of a point (intersecting chords and
+secants) in spheres in real inner product spaces and Euclidean affine spaces.
## Main theorems
* `mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi`: Intersecting Chords Theorem (Freek No. 55).
* `mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero`: Intersecting Secants Theorem.
-* `mul_dist_add_mul_dist_eq_mul_dist_of_cospherical`: Ptolemy’s Theorem (Freek No. 95).
-
-TODO: The current statement of Ptolemy’s theorem works around the lack of a "cyclic polygon" concept
-in mathlib, which is what the theorem statement would naturally use (or two such concepts, since
-both a strict version, where all vertices must be distinct, and a weak version, where consecutive
-vertices may be equal, would be useful; Ptolemy's theorem should then use the weak one).
-
-An API needs to be built around that concept, which would include:
-- strict cyclic implies weak cyclic,
-- weak cyclic and consecutive points distinct implies strict cyclic,
-- weak/strict cyclic implies weak/strict cyclic for any subsequence,
-- any three points on a sphere are weakly or strictly cyclic according to whether they are distinct,
-- any number of points on a sphere intersected with a two-dimensional affine subspace are cyclic in
- some order,
-- a list of points is cyclic if and only if its reversal is,
-- a list of points is cyclic if and only if any cyclic permutation is, while other permutations
- are not when the points are distinct,
-- a point P where the diagonals of a cyclic polygon cross exists (and is unique) with weak/strict
- betweenness depending on weak/strict cyclicity,
-- four points on a sphere with such a point P are cyclic in the appropriate order,
-and so on.
-/
@@ -162,30 +141,5 @@ theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
exacts[hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm]
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero
-/-- **Ptolemy’s Theorem**. -/
-theorem mul_dist_add_mul_dist_eq_mul_dist_of_cospherical {a b c d p : P}
- (h : Cospherical ({a, b, c, d} : Set P)) (hapc : ∠ a p c = π) (hbpd : ∠ b p d = π) :
- dist a b * dist c d + dist b c * dist d a = dist a c * dist b d :=
- by
- have h' : cospherical ({a, c, b, d} : Set P) := by rwa [Set.insert_comm c b {d}]
- have hmul := mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi h' hapc hbpd
- have hbp := left_dist_ne_zero_of_angle_eq_pi hbpd
- have h₁ : dist c d = dist c p / dist b p * dist a b :=
- by
- rw [dist_mul_of_eq_angle_of_dist_mul b p a c p d, dist_comm a b]
- · rw [angle_eq_angle_of_angle_eq_pi_of_angle_eq_pi hbpd hapc, angle_comm]
- all_goals field_simp [mul_comm, hmul]
- have h₂ : dist d a = dist a p / dist b p * dist b c :=
- by
- rw [dist_mul_of_eq_angle_of_dist_mul c p b d p a, dist_comm c b]
- · rwa [angle_comm, angle_eq_angle_of_angle_eq_pi_of_angle_eq_pi]
- rwa [angle_comm]
- all_goals field_simp [mul_comm, hmul]
- have h₃ : dist d p = dist a p * dist c p / dist b p := by field_simp [mul_comm, hmul]
- have h₄ : ∀ x y : ℝ, x * (y * x) = x * x * y := fun x y => by rw [mul_left_comm, mul_comm]
- field_simp [h₁, h₂, dist_eq_add_dist_of_angle_eq_pi hbpd, h₃, hbp, dist_comm a b, h₄, ← sq,
- dist_sq_mul_dist_add_dist_sq_mul_dist b, hapc]
-#align euclidean_geometry.mul_dist_add_mul_dist_eq_mul_dist_of_cospherical EuclideanGeometry.mul_dist_add_mul_dist_eq_mul_dist_of_cospherical
-
end EuclideanGeometry
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -52,7 +52,7 @@ theorem mul_norm_eq_abs_sub_sq_norm {x y z : V} (h₁ : ∃ k : ℝ, k ≠ 1 ∧
have hzy : ⟪z, y⟫ = 0 := by
rwa [inner_eq_zero_iff_angle_eq_pi_div_two, ← norm_add_eq_norm_sub_iff_angle_eq_pi_div_two,
eq_comm]
- have hzx : ⟪z, x⟫ = 0 := by rw [hxy, inner_smul_right, hzy, MulZeroClass.mul_zero]
+ have hzx : ⟪z, x⟫ = 0 := by rw [hxy, inner_smul_right, hzy, mul_zero]
calc
‖x - y‖ * ‖x + y‖ = ‖(r - 1) • y‖ * ‖(r + 1) • y‖ := by simp [sub_smul, add_smul, hxy]
_ = ‖r - 1‖ * ‖y‖ * (‖r + 1‖ * ‖y‖) := by simp_rw [norm_smul]
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -25,7 +25,7 @@ open Real
open EuclideanGeometry RealInnerProductSpace Real
-variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace ℝ V]
+variable {V : Type*} [NormedAddCommGroup V] [InnerProductSpace ℝ V]
namespace InnerProductGeometry
@@ -77,7 +77,7 @@ This section develops some results on spheres in Euclidean affine spaces.
open InnerProductGeometry
-variable {P : Type _} [MetricSpace P] [NormedAddTorsor V P]
+variable {P : Type*} [MetricSpace P] [NormedAddTorsor V P]
/-- If `P` is a point on the line `AB` and `Q` is equidistant from `A` and `B`, then
`AP * BP = abs (BQ ^ 2 - PQ ^ 2)`. -/
@@ -2,15 +2,12 @@
Copyright (c) 2021 Manuel Candales. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
-
-! This file was ported from Lean 3 source module geometry.euclidean.sphere.power
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Geometry.Euclidean.Angle.Unoriented.Affine
import Mathlib.Geometry.Euclidean.Sphere.Basic
+#align_import geometry.euclidean.sphere.power from "leanprover-community/mathlib"@"46b633fd842bef9469441c0209906f6dddd2b4f5"
+
/-!
# Power of a point (intersecting chords and secants)
@@ -129,7 +129,7 @@ theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
obtain ⟨-, k₂, -, hcd₁⟩ := angle_eq_zero_iff.mp hcpd
refine' mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, _, hab₁⟩ ⟨k₂, _, hcd₁⟩ <;> by_contra hnot <;>
simp_all only [Classical.not_not, one_smul]
- exacts[hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm]
+ exacts [hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm]
#align euclidean_geometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero EuclideanGeometry.mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero
end EuclideanGeometry
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file