group_theory.group_action.fixing_subgroupMathlib.GroupTheory.GroupAction.FixingSubgroup

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2022 Antoine Chambert-Loir. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Antoine Chambert-Loir
 -/
-import Mathbin.GroupTheory.Subgroup.Actions
-import Mathbin.GroupTheory.GroupAction.Basic
+import GroupTheory.Subgroup.Actions
+import GroupTheory.GroupAction.Basic
 
 #align_import group_theory.group_action.fixing_subgroup from "leanprover-community/mathlib"@"fac369018417f980cec5fcdafc766a69f88d8cfe"
 
Diff
@@ -55,7 +55,7 @@ def fixingSubmonoid (s : Set α) : Submonoid M
     where
   carrier := {ϕ : M | ∀ x : s, ϕ • (x : α) = x}
   one_mem' _ := one_smul _ _
-  mul_mem' x y hx hy z := by rw [mul_smul, hy z, hx z]
+  hMul_mem' x y hx hy z := by rw [mul_smul, hy z, hx z]
 #align fixing_submonoid fixingSubmonoid
 #align fixing_add_submonoid fixingAddSubmonoid
 -/
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Antoine Chambert-Loir. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Antoine Chambert-Loir
-
-! This file was ported from Lean 3 source module group_theory.group_action.fixing_subgroup
-! leanprover-community/mathlib commit fac369018417f980cec5fcdafc766a69f88d8cfe
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.GroupTheory.Subgroup.Actions
 import Mathbin.GroupTheory.GroupAction.Basic
 
+#align_import group_theory.group_action.fixing_subgroup from "leanprover-community/mathlib"@"fac369018417f980cec5fcdafc766a69f88d8cfe"
+
 /-!
 
 # Fixing submonoid, fixing subgroup of an action
Diff
@@ -63,10 +63,12 @@ def fixingSubmonoid (s : Set α) : Submonoid M
 #align fixing_add_submonoid fixingAddSubmonoid
 -/
 
+#print mem_fixingSubmonoid_iff /-
 theorem mem_fixingSubmonoid_iff {s : Set α} {m : M} :
     m ∈ fixingSubmonoid M s ↔ ∀ y ∈ s, m • y = y :=
   ⟨fun hg y hy => hg ⟨y, hy⟩, fun h ⟨y, hy⟩ => h y hy⟩
 #align mem_fixing_submonoid_iff mem_fixingSubmonoid_iff
+-/
 
 variable (α)
 
@@ -79,19 +81,25 @@ theorem fixingSubmonoid_fixedPoints_gc :
 #align fixing_submonoid_fixed_points_gc fixingSubmonoid_fixedPoints_gc
 -/
 
+#print fixingSubmonoid_antitone /-
 theorem fixingSubmonoid_antitone : Antitone fun s : Set α => fixingSubmonoid M s :=
   (fixingSubmonoid_fixedPoints_gc M α).monotone_l
 #align fixing_submonoid_antitone fixingSubmonoid_antitone
+-/
 
+#print fixedPoints_antitone /-
 theorem fixedPoints_antitone : Antitone fun P : Submonoid M => fixedPoints P α :=
   (fixingSubmonoid_fixedPoints_gc M α).monotone_u.dual_left
 #align fixed_points_antitone fixedPoints_antitone
+-/
 
+#print fixingSubmonoid_union /-
 /-- Fixing submonoid of union is intersection -/
 theorem fixingSubmonoid_union {s t : Set α} :
     fixingSubmonoid M (s ∪ t) = fixingSubmonoid M s ⊓ fixingSubmonoid M t :=
   (fixingSubmonoid_fixedPoints_gc M α).l_sup
 #align fixing_submonoid_union fixingSubmonoid_union
+-/
 
 #print fixingSubmonoid_iUnion /-
 /-- Fixing submonoid of Union is intersection -/
@@ -101,17 +109,21 @@ theorem fixingSubmonoid_iUnion {ι : Sort _} {s : ι → Set α} :
 #align fixing_submonoid_Union fixingSubmonoid_iUnion
 -/
 
+#print fixedPoints_submonoid_sup /-
 /-- Fixed points of sup of submonoids is intersection -/
 theorem fixedPoints_submonoid_sup {P Q : Submonoid M} :
     fixedPoints (↥(P ⊔ Q)) α = fixedPoints P α ∩ fixedPoints Q α :=
   (fixingSubmonoid_fixedPoints_gc M α).u_inf
 #align fixed_points_submonoid_sup fixedPoints_submonoid_sup
+-/
 
+#print fixedPoints_submonoid_iSup /-
 /-- Fixed points of supr of submonoids is intersection -/
 theorem fixedPoints_submonoid_iSup {ι : Sort _} {P : ι → Submonoid M} :
     fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
   (fixingSubmonoid_fixedPoints_gc M α).u_iInf
 #align fixed_points_submonoid_supr fixedPoints_submonoid_iSup
+-/
 
 end Monoid
 
@@ -130,9 +142,11 @@ def fixingSubgroup (s : Set α) : Subgroup M :=
 #align fixing_add_subgroup fixingAddSubgroup
 -/
 
+#print mem_fixingSubgroup_iff /-
 theorem mem_fixingSubgroup_iff {s : Set α} {m : M} : m ∈ fixingSubgroup M s ↔ ∀ y ∈ s, m • y = y :=
   ⟨fun hg y hy => hg ⟨y, hy⟩, fun h ⟨y, hy⟩ => h y hy⟩
 #align mem_fixing_subgroup_iff mem_fixingSubgroup_iff
+-/
 
 variable (α)
 
@@ -145,19 +159,25 @@ theorem fixingSubgroup_fixedPoints_gc :
 #align fixing_subgroup_fixed_points_gc fixingSubgroup_fixedPoints_gc
 -/
 
+#print fixingSubgroup_antitone /-
 theorem fixingSubgroup_antitone : Antitone (fixingSubgroup M : Set α → Subgroup M) :=
   (fixingSubgroup_fixedPoints_gc M α).monotone_l
 #align fixing_subgroup_antitone fixingSubgroup_antitone
+-/
 
+#print fixedPoints_subgroup_antitone /-
 theorem fixedPoints_subgroup_antitone : Antitone fun P : Subgroup M => fixedPoints P α :=
   (fixingSubgroup_fixedPoints_gc M α).monotone_u.dual_left
 #align fixed_points_subgroup_antitone fixedPoints_subgroup_antitone
+-/
 
+#print fixingSubgroup_union /-
 /-- Fixing subgroup of union is intersection -/
 theorem fixingSubgroup_union {s t : Set α} :
     fixingSubgroup M (s ∪ t) = fixingSubgroup M s ⊓ fixingSubgroup M t :=
   (fixingSubgroup_fixedPoints_gc M α).l_sup
 #align fixing_subgroup_union fixingSubgroup_union
+-/
 
 #print fixingSubgroup_iUnion /-
 /-- Fixing subgroup of Union is intersection -/
@@ -167,17 +187,21 @@ theorem fixingSubgroup_iUnion {ι : Sort _} {s : ι → Set α} :
 #align fixing_subgroup_Union fixingSubgroup_iUnion
 -/
 
+#print fixedPoints_subgroup_sup /-
 /-- Fixed points of sup of subgroups is intersection -/
 theorem fixedPoints_subgroup_sup {P Q : Subgroup M} :
     fixedPoints (↥(P ⊔ Q)) α = fixedPoints P α ∩ fixedPoints Q α :=
   (fixingSubgroup_fixedPoints_gc M α).u_inf
 #align fixed_points_subgroup_sup fixedPoints_subgroup_sup
+-/
 
+#print fixedPoints_subgroup_iSup /-
 /-- Fixed points of supr of subgroups is intersection -/
 theorem fixedPoints_subgroup_iSup {ι : Sort _} {P : ι → Subgroup M} :
     fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
   (fixingSubgroup_fixedPoints_gc M α).u_iInf
 #align fixed_points_subgroup_supr fixedPoints_subgroup_iSup
+-/
 
 end Group
 
Diff
@@ -56,7 +56,7 @@ variable (M : Type _) {α : Type _} [Monoid M] [MulAction M α]
 @[to_additive " The additive submonoid fixing a set under an `add_action`. "]
 def fixingSubmonoid (s : Set α) : Submonoid M
     where
-  carrier := { ϕ : M | ∀ x : s, ϕ • (x : α) = x }
+  carrier := {ϕ : M | ∀ x : s, ϕ • (x : α) = x}
   one_mem' _ := one_smul _ _
   mul_mem' x y hx hy z := by rw [mul_smul, hy z, hx z]
 #align fixing_submonoid fixingSubmonoid
Diff
@@ -63,12 +63,6 @@ def fixingSubmonoid (s : Set α) : Submonoid M
 #align fixing_add_submonoid fixingAddSubmonoid
 -/
 
-/- warning: mem_fixing_submonoid_iff -> mem_fixingSubmonoid_iff is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) {α : Type.{u2}} [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {m : M}, Iff (Membership.Mem.{u1, u1} M (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SetLike.hasMem.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) m (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s)) (forall (y : α), (Membership.Mem.{u2, u2} α (Set.{u2} α) (Set.hasMem.{u2} α) y s) -> (Eq.{succ u2} α (SMul.smul.{u1, u2} M α (MulAction.toHasSmul.{u1, u2} M α _inst_1 _inst_2) m y) y))
-but is expected to have type
-  forall (M : Type.{u1}) {α : Type.{u2}} [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {m : M}, Iff (Membership.mem.{u1, u1} M (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SetLike.instMembership.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) m (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s)) (forall (y : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) y s) -> (Eq.{succ u2} α (HSMul.hSMul.{u1, u2, u2} M α α (instHSMul.{u1, u2} M α (MulAction.toSMul.{u1, u2} M α _inst_1 _inst_2)) m y) y))
-Case conversion may be inaccurate. Consider using '#align mem_fixing_submonoid_iff mem_fixingSubmonoid_iffₓ'. -/
 theorem mem_fixingSubmonoid_iff {s : Set α} {m : M} :
     m ∈ fixingSubmonoid M s ↔ ∀ y ∈ s, m • y = y :=
   ⟨fun hg y hy => hg ⟨y, hy⟩, fun h ⟨y, hy⟩ => h y hy⟩
@@ -85,32 +79,14 @@ theorem fixingSubmonoid_fixedPoints_gc :
 #align fixing_submonoid_fixed_points_gc fixingSubmonoid_fixedPoints_gc
 -/
 
-/- warning: fixing_submonoid_antitone -> fixingSubmonoid_antitone is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1], Antitone.{u2, u1} (Set.{u2} α) (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SetLike.partialOrder.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) (fun (s : Set.{u2} α) => fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s)
-but is expected to have type
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1], Antitone.{u2, u1} (Set.{u2} α) (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeInf.toPartialOrder.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) (fun (s : Set.{u2} α) => fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s)
-Case conversion may be inaccurate. Consider using '#align fixing_submonoid_antitone fixingSubmonoid_antitoneₓ'. -/
 theorem fixingSubmonoid_antitone : Antitone fun s : Set α => fixingSubmonoid M s :=
   (fixingSubmonoid_fixedPoints_gc M α).monotone_l
 #align fixing_submonoid_antitone fixingSubmonoid_antitone
 
-/- warning: fixed_points_antitone -> fixedPoints_antitone is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1], Antitone.{u1, u2} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Set.{u2} α) (PartialOrder.toPreorder.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SetLike.partialOrder.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α))))))) (fun (P : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) P) α (Submonoid.toMonoid.{u1} M _inst_1 P) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 P))
-but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Monoid.{u2} M] [_inst_2 : MulAction.{u2, u1} M α _inst_1], Antitone.{u2, u1} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Set.{u1} α) (PartialOrder.toPreorder.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteSemilatticeInf.toPartialOrder.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (fun (P : Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x P)) α (Submonoid.toMonoid.{u2} M _inst_1 P) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 P))
-Case conversion may be inaccurate. Consider using '#align fixed_points_antitone fixedPoints_antitoneₓ'. -/
 theorem fixedPoints_antitone : Antitone fun P : Submonoid M => fixedPoints P α :=
   (fixingSubmonoid_fixedPoints_gc M α).monotone_u.dual_left
 #align fixed_points_antitone fixedPoints_antitone
 
-/- warning: fixing_submonoid_union -> fixingSubmonoid_union is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.hasUnion.{u2} α) s t)) (Inf.inf.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.hasInf.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 t))
-but is expected to have type
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) (Inf.inf.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.instInfSubmonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 t))
-Case conversion may be inaccurate. Consider using '#align fixing_submonoid_union fixingSubmonoid_unionₓ'. -/
 /-- Fixing submonoid of union is intersection -/
 theorem fixingSubmonoid_union {s t : Set α} :
     fixingSubmonoid M (s ∪ t) = fixingSubmonoid M s ⊓ fixingSubmonoid M t :=
@@ -125,24 +101,12 @@ theorem fixingSubmonoid_iUnion {ι : Sort _} {s : ι → Set α} :
 #align fixing_submonoid_Union fixingSubmonoid_iUnion
 -/
 
-/- warning: fixed_points_submonoid_sup -> fixedPoints_submonoid_sup is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {P : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)} {Q : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (Sup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q)) α (Submonoid.toMonoid.{u1} M _inst_1 (Sup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (Sup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q))) (Inter.inter.{u2} (Set.{u2} α) (Set.hasInter.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) P) α (Submonoid.toMonoid.{u1} M _inst_1 P) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 P)) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) Q) α (Submonoid.toMonoid.{u1} M _inst_1 Q) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 Q)))
-but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Monoid.{u2} M] [_inst_2 : MulAction.{u2, u1} M α _inst_1] {P : Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)} {Q : Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (Sup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q))) α (Submonoid.toMonoid.{u2} M _inst_1 (Sup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (Sup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q))) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x P)) α (Submonoid.toMonoid.{u2} M _inst_1 P) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 P)) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x Q)) α (Submonoid.toMonoid.{u2} M _inst_1 Q) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 Q)))
-Case conversion may be inaccurate. Consider using '#align fixed_points_submonoid_sup fixedPoints_submonoid_supₓ'. -/
 /-- Fixed points of sup of submonoids is intersection -/
 theorem fixedPoints_submonoid_sup {P Q : Submonoid M} :
     fixedPoints (↥(P ⊔ Q)) α = fixedPoints P α ∩ fixedPoints Q α :=
   (fixingSubmonoid_fixedPoints_gc M α).u_inf
 #align fixed_points_submonoid_sup fixedPoints_submonoid_sup
 
-/- warning: fixed_points_submonoid_supr -> fixedPoints_submonoid_iSup is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {ι : Sort.{u3}} {P : ι -> (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (iSup.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P)) α (Submonoid.toMonoid.{u1} M _inst_1 (iSup.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (iSup.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P))) (Set.iInter.{u2, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (P i)) α (Submonoid.toMonoid.{u1} M _inst_1 (P i)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (P i))))
-but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Monoid.{u2} M] [_inst_2 : MulAction.{u2, u1} M α _inst_1] {ι : Sort.{u3}} {P : ι -> (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (iSup.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P))) α (Submonoid.toMonoid.{u2} M _inst_1 (iSup.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (iSup.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P))) (Set.iInter.{u1, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (P i))) α (Submonoid.toMonoid.{u2} M _inst_1 (P i)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (P i))))
-Case conversion may be inaccurate. Consider using '#align fixed_points_submonoid_supr fixedPoints_submonoid_iSupₓ'. -/
 /-- Fixed points of supr of submonoids is intersection -/
 theorem fixedPoints_submonoid_iSup {ι : Sort _} {P : ι → Submonoid M} :
     fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
@@ -166,12 +130,6 @@ def fixingSubgroup (s : Set α) : Subgroup M :=
 #align fixing_add_subgroup fixingAddSubgroup
 -/
 
-/- warning: mem_fixing_subgroup_iff -> mem_fixingSubgroup_iff is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) {α : Type.{u2}} [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {m : M}, Iff (Membership.Mem.{u1, u1} M (Subgroup.{u1} M _inst_1) (SetLike.hasMem.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) m (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s)) (forall (y : α), (Membership.Mem.{u2, u2} α (Set.{u2} α) (Set.hasMem.{u2} α) y s) -> (Eq.{succ u2} α (SMul.smul.{u1, u2} M α (MulAction.toHasSmul.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1)) _inst_2) m y) y))
-but is expected to have type
-  forall (M : Type.{u1}) {α : Type.{u2}} [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {m : M}, Iff (Membership.mem.{u1, u1} M (Subgroup.{u1} M _inst_1) (SetLike.instMembership.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u1} M _inst_1)) m (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s)) (forall (y : α), (Membership.mem.{u2, u2} α (Set.{u2} α) (Set.instMembershipSet.{u2} α) y s) -> (Eq.{succ u2} α (HSMul.hSMul.{u1, u2, u2} M α α (instHSMul.{u1, u2} M α (MulAction.toSMul.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1)) _inst_2)) m y) y))
-Case conversion may be inaccurate. Consider using '#align mem_fixing_subgroup_iff mem_fixingSubgroup_iffₓ'. -/
 theorem mem_fixingSubgroup_iff {s : Set α} {m : M} : m ∈ fixingSubgroup M s ↔ ∀ y ∈ s, m • y = y :=
   ⟨fun hg y hy => hg ⟨y, hy⟩, fun h ⟨y, hy⟩ => h y hy⟩
 #align mem_fixing_subgroup_iff mem_fixingSubgroup_iff
@@ -187,32 +145,14 @@ theorem fixingSubgroup_fixedPoints_gc :
 #align fixing_subgroup_fixed_points_gc fixingSubgroup_fixedPoints_gc
 -/
 
-/- warning: fixing_subgroup_antitone -> fixingSubgroup_antitone is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))], Antitone.{u2, u1} (Set.{u2} α) (Subgroup.{u1} M _inst_1) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Subgroup.{u1} M _inst_1) (SetLike.partialOrder.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1))) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2)
-but is expected to have type
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))], Antitone.{u2, u1} (Set.{u2} α) (Subgroup.{u1} M _inst_1) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.instCompleteBooleanAlgebraSet.{u2} α))))))) (PartialOrder.toPreorder.{u1} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeInf.toPartialOrder.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u1} M _inst_1)))) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2)
-Case conversion may be inaccurate. Consider using '#align fixing_subgroup_antitone fixingSubgroup_antitoneₓ'. -/
 theorem fixingSubgroup_antitone : Antitone (fixingSubgroup M : Set α → Subgroup M) :=
   (fixingSubgroup_fixedPoints_gc M α).monotone_l
 #align fixing_subgroup_antitone fixingSubgroup_antitone
 
-/- warning: fixed_points_subgroup_antitone -> fixedPoints_subgroup_antitone is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))], Antitone.{u1, u2} (Subgroup.{u1} M _inst_1) (Set.{u2} α) (PartialOrder.toPreorder.{u1} (Subgroup.{u1} M _inst_1) (SetLike.partialOrder.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1))) (PartialOrder.toPreorder.{u2} (Set.{u2} α) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} α) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} α) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} α) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} α) (Set.completeBooleanAlgebra.{u2} α))))))) (fun (P : Subgroup.{u1} M _inst_1) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Subgroup.toGroup.{u1} M _inst_1 P))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 P))
-but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Group.{u2} M] [_inst_2 : MulAction.{u2, u1} M α (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1))], Antitone.{u2, u1} (Subgroup.{u2} M _inst_1) (Set.{u1} α) (PartialOrder.toPreorder.{u2} (Subgroup.{u2} M _inst_1) (CompleteSemilatticeInf.toPartialOrder.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) (fun (P : Subgroup.{u2} M _inst_1) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x P)) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 P)) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 P))
-Case conversion may be inaccurate. Consider using '#align fixed_points_subgroup_antitone fixedPoints_subgroup_antitoneₓ'. -/
 theorem fixedPoints_subgroup_antitone : Antitone fun P : Subgroup M => fixedPoints P α :=
   (fixingSubgroup_fixedPoints_gc M α).monotone_u.dual_left
 #align fixed_points_subgroup_antitone fixedPoints_subgroup_antitone
 
-/- warning: fixing_subgroup_union -> fixingSubgroup_union is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Subgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.hasUnion.{u2} α) s t)) (Inf.inf.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.hasInf.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 t))
-but is expected to have type
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Subgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) (Inf.inf.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.instInfSubgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 t))
-Case conversion may be inaccurate. Consider using '#align fixing_subgroup_union fixingSubgroup_unionₓ'. -/
 /-- Fixing subgroup of union is intersection -/
 theorem fixingSubgroup_union {s t : Set α} :
     fixingSubgroup M (s ∪ t) = fixingSubgroup M s ⊓ fixingSubgroup M t :=
@@ -227,24 +167,12 @@ theorem fixingSubgroup_iUnion {ι : Sort _} {s : ι → Set α} :
 #align fixing_subgroup_Union fixingSubgroup_iUnion
 -/
 
-/- warning: fixed_points_subgroup_sup -> fixedPoints_subgroup_sup is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {P : Subgroup.{u1} M _inst_1} {Q : Subgroup.{u1} M _inst_1}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) (Subgroup.toGroup.{u1} M _inst_1 (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q))) (Inter.inter.{u2} (Set.{u2} α) (Set.hasInter.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Subgroup.toGroup.{u1} M _inst_1 P))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 P)) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) (Subgroup.toGroup.{u1} M _inst_1 Q))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 Q)))
-but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Group.{u2} M] [_inst_2 : MulAction.{u2, u1} M α (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1))] {P : Subgroup.{u2} M _inst_1} {Q : Subgroup.{u2} M _inst_1}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (Sup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (Sup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (Sup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x P)) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 P)) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 P)) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x Q)) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 Q)) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 Q)))
-Case conversion may be inaccurate. Consider using '#align fixed_points_subgroup_sup fixedPoints_subgroup_supₓ'. -/
 /-- Fixed points of sup of subgroups is intersection -/
 theorem fixedPoints_subgroup_sup {P Q : Subgroup M} :
     fixedPoints (↥(P ⊔ Q)) α = fixedPoints P α ∩ fixedPoints Q α :=
   (fixingSubgroup_fixedPoints_gc M α).u_inf
 #align fixed_points_subgroup_sup fixedPoints_subgroup_sup
 
-/- warning: fixed_points_subgroup_supr -> fixedPoints_subgroup_iSup is a dubious translation:
-lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {ι : Sort.{u3}} {P : ι -> (Subgroup.{u1} M _inst_1)}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) (Subgroup.toGroup.{u1} M _inst_1 (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P))) (Set.iInter.{u2, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) (Subgroup.toGroup.{u1} M _inst_1 (P i)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (P i))))
-but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Group.{u2} M] [_inst_2 : MulAction.{u2, u1} M α (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1))] {ι : Sort.{u3}} {P : ι -> (Subgroup.{u2} M _inst_1)}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (iSup.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (iSup.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (iSup.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) (Set.iInter.{u1, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (P i))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (P i))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (P i))))
-Case conversion may be inaccurate. Consider using '#align fixed_points_subgroup_supr fixedPoints_subgroup_iSupₓ'. -/
 /-- Fixed points of supr of subgroups is intersection -/
 theorem fixedPoints_subgroup_iSup {ι : Sort _} {P : ι → Subgroup M} :
     fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
Diff
@@ -117,12 +117,12 @@ theorem fixingSubmonoid_union {s t : Set α} :
   (fixingSubmonoid_fixedPoints_gc M α).l_sup
 #align fixing_submonoid_union fixingSubmonoid_union
 
-#print fixingSubmonoid_unionᵢ /-
+#print fixingSubmonoid_iUnion /-
 /-- Fixing submonoid of Union is intersection -/
-theorem fixingSubmonoid_unionᵢ {ι : Sort _} {s : ι → Set α} :
+theorem fixingSubmonoid_iUnion {ι : Sort _} {s : ι → Set α} :
     fixingSubmonoid M (⋃ i, s i) = ⨅ i, fixingSubmonoid M (s i) :=
-  (fixingSubmonoid_fixedPoints_gc M α).l_supᵢ
-#align fixing_submonoid_Union fixingSubmonoid_unionᵢ
+  (fixingSubmonoid_fixedPoints_gc M α).l_iSup
+#align fixing_submonoid_Union fixingSubmonoid_iUnion
 -/
 
 /- warning: fixed_points_submonoid_sup -> fixedPoints_submonoid_sup is a dubious translation:
@@ -137,17 +137,17 @@ theorem fixedPoints_submonoid_sup {P Q : Submonoid M} :
   (fixingSubmonoid_fixedPoints_gc M α).u_inf
 #align fixed_points_submonoid_sup fixedPoints_submonoid_sup
 
-/- warning: fixed_points_submonoid_supr -> fixedPoints_submonoid_supᵢ is a dubious translation:
+/- warning: fixed_points_submonoid_supr -> fixedPoints_submonoid_iSup is a dubious translation:
 lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {ι : Sort.{u3}} {P : ι -> (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (supᵢ.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P)) α (Submonoid.toMonoid.{u1} M _inst_1 (supᵢ.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (supᵢ.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P))) (Set.interᵢ.{u2, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (P i)) α (Submonoid.toMonoid.{u1} M _inst_1 (P i)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (P i))))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {ι : Sort.{u3}} {P : ι -> (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (iSup.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P)) α (Submonoid.toMonoid.{u1} M _inst_1 (iSup.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (iSup.{u1, u3} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteSemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)))) ι P))) (Set.iInter.{u2, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (P i)) α (Submonoid.toMonoid.{u1} M _inst_1 (P i)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (P i))))
 but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Monoid.{u2} M] [_inst_2 : MulAction.{u2, u1} M α _inst_1] {ι : Sort.{u3}} {P : ι -> (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (supᵢ.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P))) α (Submonoid.toMonoid.{u2} M _inst_1 (supᵢ.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (supᵢ.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P))) (Set.interᵢ.{u1, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (P i))) α (Submonoid.toMonoid.{u2} M _inst_1 (P i)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (P i))))
-Case conversion may be inaccurate. Consider using '#align fixed_points_submonoid_supr fixedPoints_submonoid_supᵢₓ'. -/
+  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Monoid.{u2} M] [_inst_2 : MulAction.{u2, u1} M α _inst_1] {ι : Sort.{u3}} {P : ι -> (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (iSup.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P))) α (Submonoid.toMonoid.{u2} M _inst_1 (iSup.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (iSup.{u2, u3} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toSupSet.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) ι P))) (Set.iInter.{u1, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (P i))) α (Submonoid.toMonoid.{u2} M _inst_1 (P i)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (P i))))
+Case conversion may be inaccurate. Consider using '#align fixed_points_submonoid_supr fixedPoints_submonoid_iSupₓ'. -/
 /-- Fixed points of supr of submonoids is intersection -/
-theorem fixedPoints_submonoid_supᵢ {ι : Sort _} {P : ι → Submonoid M} :
-    fixedPoints (↥(supᵢ P)) α = ⋂ i, fixedPoints (P i) α :=
-  (fixingSubmonoid_fixedPoints_gc M α).u_infᵢ
-#align fixed_points_submonoid_supr fixedPoints_submonoid_supᵢ
+theorem fixedPoints_submonoid_iSup {ι : Sort _} {P : ι → Submonoid M} :
+    fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
+  (fixingSubmonoid_fixedPoints_gc M α).u_iInf
+#align fixed_points_submonoid_supr fixedPoints_submonoid_iSup
 
 end Monoid
 
@@ -219,12 +219,12 @@ theorem fixingSubgroup_union {s t : Set α} :
   (fixingSubgroup_fixedPoints_gc M α).l_sup
 #align fixing_subgroup_union fixingSubgroup_union
 
-#print fixingSubgroup_unionᵢ /-
+#print fixingSubgroup_iUnion /-
 /-- Fixing subgroup of Union is intersection -/
-theorem fixingSubgroup_unionᵢ {ι : Sort _} {s : ι → Set α} :
+theorem fixingSubgroup_iUnion {ι : Sort _} {s : ι → Set α} :
     fixingSubgroup M (⋃ i, s i) = ⨅ i, fixingSubgroup M (s i) :=
-  (fixingSubgroup_fixedPoints_gc M α).l_supᵢ
-#align fixing_subgroup_Union fixingSubgroup_unionᵢ
+  (fixingSubgroup_fixedPoints_gc M α).l_iSup
+#align fixing_subgroup_Union fixingSubgroup_iUnion
 -/
 
 /- warning: fixed_points_subgroup_sup -> fixedPoints_subgroup_sup is a dubious translation:
@@ -239,17 +239,17 @@ theorem fixedPoints_subgroup_sup {P Q : Subgroup M} :
   (fixingSubgroup_fixedPoints_gc M α).u_inf
 #align fixed_points_subgroup_sup fixedPoints_subgroup_sup
 
-/- warning: fixed_points_subgroup_supr -> fixedPoints_subgroup_supᵢ is a dubious translation:
+/- warning: fixed_points_subgroup_supr -> fixedPoints_subgroup_iSup is a dubious translation:
 lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {ι : Sort.{u3}} {P : ι -> (Subgroup.{u1} M _inst_1)}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (supᵢ.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (supᵢ.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (supᵢ.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) (Subgroup.toGroup.{u1} M _inst_1 (supᵢ.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (supᵢ.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P))) (Set.interᵢ.{u2, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) (Subgroup.toGroup.{u1} M _inst_1 (P i)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (P i))))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {ι : Sort.{u3}} {P : ι -> (Subgroup.{u1} M _inst_1)}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)) (Subgroup.toGroup.{u1} M _inst_1 (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (iSup.{u1, u3} (Subgroup.{u1} M _inst_1) (CompleteSemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toCompleteSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1))) ι P))) (Set.iInter.{u2, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (P i)) (Subgroup.toGroup.{u1} M _inst_1 (P i)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (P i))))
 but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Group.{u2} M] [_inst_2 : MulAction.{u2, u1} M α (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1))] {ι : Sort.{u3}} {P : ι -> (Subgroup.{u2} M _inst_1)}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (supᵢ.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (supᵢ.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (supᵢ.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) (Set.interᵢ.{u1, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (P i))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (P i))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (P i))))
-Case conversion may be inaccurate. Consider using '#align fixed_points_subgroup_supr fixedPoints_subgroup_supᵢₓ'. -/
+  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Group.{u2} M] [_inst_2 : MulAction.{u2, u1} M α (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1))] {ι : Sort.{u3}} {P : ι -> (Subgroup.{u2} M _inst_1)}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (iSup.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (iSup.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (iSup.{u2, u3} (Subgroup.{u2} M _inst_1) (CompleteLattice.toSupSet.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)) ι P))) (Set.iInter.{u1, u3} α ι (fun (i : ι) => MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (P i))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (P i))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (P i))))
+Case conversion may be inaccurate. Consider using '#align fixed_points_subgroup_supr fixedPoints_subgroup_iSupₓ'. -/
 /-- Fixed points of supr of subgroups is intersection -/
-theorem fixedPoints_subgroup_supᵢ {ι : Sort _} {P : ι → Subgroup M} :
-    fixedPoints (↥(supᵢ P)) α = ⋂ i, fixedPoints (P i) α :=
-  (fixingSubgroup_fixedPoints_gc M α).u_infᵢ
-#align fixed_points_subgroup_supr fixedPoints_subgroup_supᵢ
+theorem fixedPoints_subgroup_iSup {ι : Sort _} {P : ι → Subgroup M} :
+    fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
+  (fixingSubgroup_fixedPoints_gc M α).u_iInf
+#align fixed_points_subgroup_supr fixedPoints_subgroup_iSup
 
 end Group
 
Diff
@@ -107,9 +107,9 @@ theorem fixedPoints_antitone : Antitone fun P : Submonoid M => fixedPoints P α
 
 /- warning: fixing_submonoid_union -> fixingSubmonoid_union is a dubious translation:
 lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.hasUnion.{u2} α) s t)) (HasInf.inf.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.hasInf.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 t))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.hasUnion.{u2} α) s t)) (Inf.inf.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.hasInf.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 t))
 but is expected to have type
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) (HasInf.inf.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.instHasInfSubmonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 t))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) (Inf.inf.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.instInfSubmonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubmonoid.{u1, u2} M α _inst_1 _inst_2 t))
 Case conversion may be inaccurate. Consider using '#align fixing_submonoid_union fixingSubmonoid_unionₓ'. -/
 /-- Fixing submonoid of union is intersection -/
 theorem fixingSubmonoid_union {s t : Set α} :
@@ -127,9 +127,9 @@ theorem fixingSubmonoid_unionᵢ {ι : Sort _} {s : ι → Set α} :
 
 /- warning: fixed_points_submonoid_sup -> fixedPoints_submonoid_sup is a dubious translation:
 lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {P : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)} {Q : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (HasSup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q)) α (Submonoid.toMonoid.{u1} M _inst_1 (HasSup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (HasSup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q))) (Inter.inter.{u2} (Set.{u2} α) (Set.hasInter.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) P) α (Submonoid.toMonoid.{u1} M _inst_1 P) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 P)) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) Q) α (Submonoid.toMonoid.{u1} M _inst_1 Q) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 Q)))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Monoid.{u1} M] [_inst_2 : MulAction.{u1, u2} M α _inst_1] {P : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)} {Q : Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) (Sup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q)) α (Submonoid.toMonoid.{u1} M _inst_1 (Sup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q)) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 (Sup.sup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (SemilatticeSup.toHasSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Lattice.toSemilatticeSup.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (CompleteLattice.toLattice.{u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) (Submonoid.completeLattice.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))))) P Q))) (Inter.inter.{u2} (Set.{u2} α) (Set.hasInter.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) P) α (Submonoid.toMonoid.{u1} M _inst_1 P) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 P)) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Submonoid.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1)) M (Submonoid.setLike.{u1} M (Monoid.toMulOneClass.{u1} M _inst_1))) Q) α (Submonoid.toMonoid.{u1} M _inst_1 Q) (Submonoid.mulAction.{u1, u2} M α _inst_1 _inst_2 Q)))
 but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Monoid.{u2} M] [_inst_2 : MulAction.{u2, u1} M α _inst_1] {P : Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)} {Q : Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (HasSup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toHasSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q))) α (Submonoid.toMonoid.{u2} M _inst_1 (HasSup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toHasSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (HasSup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toHasSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q))) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x P)) α (Submonoid.toMonoid.{u2} M _inst_1 P) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 P)) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x Q)) α (Submonoid.toMonoid.{u2} M _inst_1 Q) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 Q)))
+  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Monoid.{u2} M] [_inst_2 : MulAction.{u2, u1} M α _inst_1] {P : Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)} {Q : Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x (Sup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q))) α (Submonoid.toMonoid.{u2} M _inst_1 (Sup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q)) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 (Sup.sup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SemilatticeSup.toSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Lattice.toSemilatticeSup.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (CompleteLattice.toLattice.{u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (Submonoid.instCompleteLatticeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))))) P Q))) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x P)) α (Submonoid.toMonoid.{u2} M _inst_1 P) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 P)) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) (SetLike.instMembership.{u2, u2} (Submonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1)) M (Submonoid.instSetLikeSubmonoid.{u2} M (Monoid.toMulOneClass.{u2} M _inst_1))) x Q)) α (Submonoid.toMonoid.{u2} M _inst_1 Q) (Submonoid.mulAction.{u2, u1} M α _inst_1 _inst_2 Q)))
 Case conversion may be inaccurate. Consider using '#align fixed_points_submonoid_sup fixedPoints_submonoid_supₓ'. -/
 /-- Fixed points of sup of submonoids is intersection -/
 theorem fixedPoints_submonoid_sup {P Q : Submonoid M} :
@@ -209,9 +209,9 @@ theorem fixedPoints_subgroup_antitone : Antitone fun P : Subgroup M => fixedPoin
 
 /- warning: fixing_subgroup_union -> fixingSubgroup_union is a dubious translation:
 lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Subgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.hasUnion.{u2} α) s t)) (HasInf.inf.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.hasInf.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 t))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Subgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.hasUnion.{u2} α) s t)) (Inf.inf.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.hasInf.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 t))
 but is expected to have type
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Subgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) (HasInf.inf.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.instHasInfSubgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 t))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {s : Set.{u2} α} {t : Set.{u2} α}, Eq.{succ u1} (Subgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} α) (Set.instUnionSet.{u2} α) s t)) (Inf.inf.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.instInfSubgroup.{u1} M _inst_1) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 s) (fixingSubgroup.{u1, u2} M α _inst_1 _inst_2 t))
 Case conversion may be inaccurate. Consider using '#align fixing_subgroup_union fixingSubgroup_unionₓ'. -/
 /-- Fixing subgroup of union is intersection -/
 theorem fixingSubgroup_union {s t : Set α} :
@@ -229,9 +229,9 @@ theorem fixingSubgroup_unionᵢ {ι : Sort _} {s : ι → Set α} :
 
 /- warning: fixed_points_subgroup_sup -> fixedPoints_subgroup_sup is a dubious translation:
 lean 3 declaration is
-  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {P : Subgroup.{u1} M _inst_1} {Q : Subgroup.{u1} M _inst_1}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (HasSup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (HasSup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (HasSup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) (Subgroup.toGroup.{u1} M _inst_1 (HasSup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (HasSup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q))) (Inter.inter.{u2} (Set.{u2} α) (Set.hasInter.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Subgroup.toGroup.{u1} M _inst_1 P))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 P)) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) (Subgroup.toGroup.{u1} M _inst_1 Q))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 Q)))
+  forall (M : Type.{u1}) (α : Type.{u2}) [_inst_1 : Group.{u1} M] [_inst_2 : MulAction.{u1, u2} M α (DivInvMonoid.toMonoid.{u1} M (Group.toDivInvMonoid.{u1} M _inst_1))] {P : Subgroup.{u1} M _inst_1} {Q : Subgroup.{u1} M _inst_1}, Eq.{succ u2} (Set.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)) (Subgroup.toGroup.{u1} M _inst_1 (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q)))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 (Sup.sup.{u1} (Subgroup.{u1} M _inst_1) (SemilatticeSup.toHasSup.{u1} (Subgroup.{u1} M _inst_1) (Lattice.toSemilatticeSup.{u1} (Subgroup.{u1} M _inst_1) (CompleteLattice.toLattice.{u1} (Subgroup.{u1} M _inst_1) (Subgroup.completeLattice.{u1} M _inst_1)))) P Q))) (Inter.inter.{u2} (Set.{u2} α) (Set.hasInter.{u2} α) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) P) (Subgroup.toGroup.{u1} M _inst_1 P))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 P)) (MulAction.fixedPoints.{u1, u2} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) α (DivInvMonoid.toMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) (Group.toDivInvMonoid.{u1} (coeSort.{succ u1, succ (succ u1)} (Subgroup.{u1} M _inst_1) Type.{u1} (SetLike.hasCoeToSort.{u1, u1} (Subgroup.{u1} M _inst_1) M (Subgroup.setLike.{u1} M _inst_1)) Q) (Subgroup.toGroup.{u1} M _inst_1 Q))) (Subgroup.mulAction.{u1, u2} M _inst_1 α _inst_2 Q)))
 but is expected to have type
-  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Group.{u2} M] [_inst_2 : MulAction.{u2, u1} M α (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1))] {P : Subgroup.{u2} M _inst_1} {Q : Subgroup.{u2} M _inst_1}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (HasSup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toHasSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (HasSup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toHasSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (HasSup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toHasSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x P)) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 P)) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 P)) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x Q)) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 Q)) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 Q)))
+  forall (M : Type.{u2}) (α : Type.{u1}) [_inst_1 : Group.{u2} M] [_inst_2 : MulAction.{u2, u1} M α (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1))] {P : Subgroup.{u2} M _inst_1} {Q : Subgroup.{u2} M _inst_1}, Eq.{succ u1} (Set.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x (Sup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 (Sup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 (Sup.sup.{u2} (Subgroup.{u2} M _inst_1) (SemilatticeSup.toSup.{u2} (Subgroup.{u2} M _inst_1) (Lattice.toSemilatticeSup.{u2} (Subgroup.{u2} M _inst_1) (CompleteLattice.toLattice.{u2} (Subgroup.{u2} M _inst_1) (Subgroup.instCompleteLatticeSubgroup.{u2} M _inst_1)))) P Q))) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x P)) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 P)) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 P)) (MulAction.fixedPoints.{u2, u1} (Subtype.{succ u2} M (fun (x : M) => Membership.mem.{u2, u2} M (Subgroup.{u2} M _inst_1) (SetLike.instMembership.{u2, u2} (Subgroup.{u2} M _inst_1) M (Subgroup.instSetLikeSubgroup.{u2} M _inst_1)) x Q)) α (Submonoid.toMonoid.{u2} M (DivInvMonoid.toMonoid.{u2} M (Group.toDivInvMonoid.{u2} M _inst_1)) (Subgroup.toSubmonoid.{u2} M _inst_1 Q)) (Subgroup.instMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid.{u2, u1} M _inst_1 α _inst_2 Q)))
 Case conversion may be inaccurate. Consider using '#align fixed_points_subgroup_sup fixedPoints_subgroup_supₓ'. -/
 /-- Fixed points of sup of subgroups is intersection -/
 theorem fixedPoints_subgroup_sup {P Q : Subgroup M} :

Changes in mathlib4

mathlib3
mathlib4
feat(GroupTheory/GroupAction): new FixedPoints module with a few basic properties of fixedBy (#9477)

Introduces a new module, Mathlib.GroupTheory.GroupAction.FixedPoints, which contains some properties of MulAction.fixedBy that wouldn't quite belong to Mathlib.GroupTheory.GroupAction.Basic.

Diff
@@ -5,6 +5,7 @@ Authors: Antoine Chambert-Loir
 -/
 import Mathlib.GroupTheory.Subgroup.Actions
 import Mathlib.GroupTheory.GroupAction.Basic
+import Mathlib.GroupTheory.GroupAction.FixedPoints
 
 #align_import group_theory.group_action.fixing_subgroup from "leanprover-community/mathlib"@"f93c11933efbc3c2f0299e47b8ff83e9b539cbf6"
 
@@ -36,6 +37,8 @@ TODO :
 
 * Treat semigroups ?
 
+* add `to_additive` for the various lemmas
+
 -/
 
 
@@ -120,6 +123,14 @@ theorem mem_fixingSubgroup_iff {s : Set α} {m : M} : m ∈ fixingSubgroup M s 
   ⟨fun hg y hy => hg ⟨y, hy⟩, fun h ⟨y, hy⟩ => h y hy⟩
 #align mem_fixing_subgroup_iff mem_fixingSubgroup_iff
 
+theorem mem_fixingSubgroup_iff_subset_fixedBy {s : Set α} {m : M} :
+    m ∈ fixingSubgroup M s ↔ s ⊆ fixedBy α m := by
+  simp_rw [mem_fixingSubgroup_iff, Set.subset_def, mem_fixedBy]
+
+theorem mem_fixingSubgroup_compl_iff_movedBy_subset {s : Set α} {m : M} :
+    m ∈ fixingSubgroup M sᶜ ↔ (fixedBy α m)ᶜ ⊆ s := by
+  rw [mem_fixingSubgroup_iff_subset_fixedBy, Set.compl_subset_comm]
+
 variable (α)
 
 /-- The Galois connection between fixing subgroups and fixed points of a group action -/
@@ -161,4 +172,13 @@ theorem fixedPoints_subgroup_iSup {ι : Sort*} {P : ι → Subgroup M} :
   (fixingSubgroup_fixedPoints_gc M α).u_iInf
 #align fixed_points_subgroup_supr fixedPoints_subgroup_iSup
 
+/-- The orbit of the fixing subgroup of `sᶜ` (ie. the moving subgroup of `s`) is a subset of `s` -/
+theorem orbit_fixingSubgroup_compl_subset {s : Set α} {a : α} (a_in_s : a ∈ s) :
+    MulAction.orbit (fixingSubgroup M sᶜ) a ⊆ s := by
+  intro b b_in_orbit
+  let ⟨⟨g, g_fixing⟩, g_eq⟩ := MulAction.mem_orbit_iff.mp b_in_orbit
+  rw [Submonoid.mk_smul] at g_eq
+  rw [mem_fixingSubgroup_compl_iff_movedBy_subset] at g_fixing
+  rwa [← g_eq, smul_mem_of_set_mem_fixedBy (set_mem_fixedBy_of_movedBy_subset g_fixing)]
+
 end Group
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -43,7 +43,7 @@ section Monoid
 
 open MulAction
 
-variable (M : Type _) {α : Type _} [Monoid M] [MulAction M α]
+variable (M : Type*) {α : Type*} [Monoid M] [MulAction M α]
 
 /-- The submonoid fixing a set under a `MulAction`. -/
 @[to_additive " The additive submonoid fixing a set under an `AddAction`. "]
@@ -84,7 +84,7 @@ theorem fixingSubmonoid_union {s t : Set α} :
 #align fixing_submonoid_union fixingSubmonoid_union
 
 /-- Fixing submonoid of iUnion is intersection -/
-theorem fixingSubmonoid_iUnion {ι : Sort _} {s : ι → Set α} :
+theorem fixingSubmonoid_iUnion {ι : Sort*} {s : ι → Set α} :
     fixingSubmonoid M (⋃ i, s i) = ⨅ i, fixingSubmonoid M (s i) :=
   (fixingSubmonoid_fixedPoints_gc M α).l_iSup
 #align fixing_submonoid_Union fixingSubmonoid_iUnion
@@ -96,7 +96,7 @@ theorem fixedPoints_submonoid_sup {P Q : Submonoid M} :
 #align fixed_points_submonoid_sup fixedPoints_submonoid_sup
 
 /-- Fixed points of iSup of submonoids is intersection -/
-theorem fixedPoints_submonoid_iSup {ι : Sort _} {P : ι → Submonoid M} :
+theorem fixedPoints_submonoid_iSup {ι : Sort*} {P : ι → Submonoid M} :
     fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
   (fixingSubmonoid_fixedPoints_gc M α).u_iInf
 #align fixed_points_submonoid_supr fixedPoints_submonoid_iSup
@@ -107,7 +107,7 @@ section Group
 
 open MulAction
 
-variable (M : Type _) {α : Type _} [Group M] [MulAction M α]
+variable (M : Type*) {α : Type*} [Group M] [MulAction M α]
 
 /-- The subgroup fixing a set under a `MulAction`. -/
 @[to_additive " The additive subgroup fixing a set under an `AddAction`. "]
@@ -144,7 +144,7 @@ theorem fixingSubgroup_union {s t : Set α} :
 #align fixing_subgroup_union fixingSubgroup_union
 
 /-- Fixing subgroup of iUnion is intersection -/
-theorem fixingSubgroup_iUnion {ι : Sort _} {s : ι → Set α} :
+theorem fixingSubgroup_iUnion {ι : Sort*} {s : ι → Set α} :
     fixingSubgroup M (⋃ i, s i) = ⨅ i, fixingSubgroup M (s i) :=
   (fixingSubgroup_fixedPoints_gc M α).l_iSup
 #align fixing_subgroup_Union fixingSubgroup_iUnion
@@ -156,7 +156,7 @@ theorem fixedPoints_subgroup_sup {P Q : Subgroup M} :
 #align fixed_points_subgroup_sup fixedPoints_subgroup_sup
 
 /-- Fixed points of iSup of subgroups is intersection -/
-theorem fixedPoints_subgroup_iSup {ι : Sort _} {P : ι → Subgroup M} :
+theorem fixedPoints_subgroup_iSup {ι : Sort*} {P : ι → Subgroup M} :
     fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
   (fixingSubgroup_fixedPoints_gc M α).u_iInf
 #align fixed_points_subgroup_supr fixedPoints_subgroup_iSup
chore: fix grammar mistakes (#6121)
Diff
@@ -12,7 +12,7 @@ import Mathlib.GroupTheory.GroupAction.Basic
 
 # Fixing submonoid, fixing subgroup of an action
 
-In the presence of of an action of a monoid or a group,
+In the presence of an action of a monoid or a group,
 this file defines the fixing submonoid or the fixing subgroup,
 and relates it to the set of fixed points via a Galois connection.
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2022 Antoine Chambert-Loir. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Antoine Chambert-Loir
-
-! This file was ported from Lean 3 source module group_theory.group_action.fixing_subgroup
-! leanprover-community/mathlib commit f93c11933efbc3c2f0299e47b8ff83e9b539cbf6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.GroupTheory.Subgroup.Actions
 import Mathlib.GroupTheory.GroupAction.Basic
 
+#align_import group_theory.group_action.fixing_subgroup from "leanprover-community/mathlib"@"f93c11933efbc3c2f0299e47b8ff83e9b539cbf6"
+
 /-!
 
 # Fixing submonoid, fixing subgroup of an action
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -21,7 +21,7 @@ and relates it to the set of fixed points via a Galois connection.
 
 ## Main definitions
 
-* `fixingSubmonoid M s` : in the presence of `MulAction M α` (with `monoid M`)
+* `fixingSubmonoid M s` : in the presence of `MulAction M α` (with `Monoid M`)
   it is the `Submonoid M` consisting of elements which fix `s : Set α` pointwise.
 
 * `fixingSubmonoid_fixedPoints_gc M α` is the `GaloisConnection`
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supₛsSup
  • infₛsInf
  • supᵢiSup
  • infᵢiInf
  • bsupₛbsSup
  • binfₛbsInf
  • bsupᵢbiSup
  • binfᵢbiInf
  • csupₛcsSup
  • cinfₛcsInf
  • csupᵢciSup
  • cinfᵢciInf
  • unionₛsUnion
  • interₛsInter
  • unionᵢiUnion
  • interᵢiInter
  • bunionₛbsUnion
  • binterₛbsInter
  • bunionᵢbiUnion
  • binterᵢbiInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -86,11 +86,11 @@ theorem fixingSubmonoid_union {s t : Set α} :
   (fixingSubmonoid_fixedPoints_gc M α).l_sup
 #align fixing_submonoid_union fixingSubmonoid_union
 
-/-- Fixing submonoid of unionᵢ is intersection -/
-theorem fixingSubmonoid_unionᵢ {ι : Sort _} {s : ι → Set α} :
+/-- Fixing submonoid of iUnion is intersection -/
+theorem fixingSubmonoid_iUnion {ι : Sort _} {s : ι → Set α} :
     fixingSubmonoid M (⋃ i, s i) = ⨅ i, fixingSubmonoid M (s i) :=
-  (fixingSubmonoid_fixedPoints_gc M α).l_supᵢ
-#align fixing_submonoid_Union fixingSubmonoid_unionᵢ
+  (fixingSubmonoid_fixedPoints_gc M α).l_iSup
+#align fixing_submonoid_Union fixingSubmonoid_iUnion
 
 /-- Fixed points of sup of submonoids is intersection -/
 theorem fixedPoints_submonoid_sup {P Q : Submonoid M} :
@@ -98,11 +98,11 @@ theorem fixedPoints_submonoid_sup {P Q : Submonoid M} :
   (fixingSubmonoid_fixedPoints_gc M α).u_inf
 #align fixed_points_submonoid_sup fixedPoints_submonoid_sup
 
-/-- Fixed points of supᵢ of submonoids is intersection -/
-theorem fixedPoints_submonoid_supᵢ {ι : Sort _} {P : ι → Submonoid M} :
-    fixedPoints (↥(supᵢ P)) α = ⋂ i, fixedPoints (P i) α :=
-  (fixingSubmonoid_fixedPoints_gc M α).u_infᵢ
-#align fixed_points_submonoid_supr fixedPoints_submonoid_supᵢ
+/-- Fixed points of iSup of submonoids is intersection -/
+theorem fixedPoints_submonoid_iSup {ι : Sort _} {P : ι → Submonoid M} :
+    fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
+  (fixingSubmonoid_fixedPoints_gc M α).u_iInf
+#align fixed_points_submonoid_supr fixedPoints_submonoid_iSup
 
 end Monoid
 
@@ -146,11 +146,11 @@ theorem fixingSubgroup_union {s t : Set α} :
   (fixingSubgroup_fixedPoints_gc M α).l_sup
 #align fixing_subgroup_union fixingSubgroup_union
 
-/-- Fixing subgroup of unionᵢ is intersection -/
-theorem fixingSubgroup_unionᵢ {ι : Sort _} {s : ι → Set α} :
+/-- Fixing subgroup of iUnion is intersection -/
+theorem fixingSubgroup_iUnion {ι : Sort _} {s : ι → Set α} :
     fixingSubgroup M (⋃ i, s i) = ⨅ i, fixingSubgroup M (s i) :=
-  (fixingSubgroup_fixedPoints_gc M α).l_supᵢ
-#align fixing_subgroup_Union fixingSubgroup_unionᵢ
+  (fixingSubgroup_fixedPoints_gc M α).l_iSup
+#align fixing_subgroup_Union fixingSubgroup_iUnion
 
 /-- Fixed points of sup of subgroups is intersection -/
 theorem fixedPoints_subgroup_sup {P Q : Subgroup M} :
@@ -158,10 +158,10 @@ theorem fixedPoints_subgroup_sup {P Q : Subgroup M} :
   (fixingSubgroup_fixedPoints_gc M α).u_inf
 #align fixed_points_subgroup_sup fixedPoints_subgroup_sup
 
-/-- Fixed points of supᵢ of subgroups is intersection -/
-theorem fixedPoints_subgroup_supᵢ {ι : Sort _} {P : ι → Subgroup M} :
-    fixedPoints (↥(supᵢ P)) α = ⋂ i, fixedPoints (P i) α :=
-  (fixingSubgroup_fixedPoints_gc M α).u_infᵢ
-#align fixed_points_subgroup_supr fixedPoints_subgroup_supᵢ
+/-- Fixed points of iSup of subgroups is intersection -/
+theorem fixedPoints_subgroup_iSup {ι : Sort _} {P : ι → Subgroup M} :
+    fixedPoints (↥(iSup P)) α = ⋂ i, fixedPoints (P i) α :=
+  (fixingSubgroup_fixedPoints_gc M α).u_iInf
+#align fixed_points_subgroup_supr fixedPoints_subgroup_iSup
 
 end Group
feat: Port/GroupTheory.GroupAction.FixingSubgroup (#1868)

port of group_theory.group_action.fixing_subgroup

Co-authored-by: Johan Commelin <johan@commelin.net>

Dependencies 4 + 233

234 files ported (98.3%)
103189 lines ported (98.9%)
Show graph

The unported dependencies are