group_theory.group_action.groupMathlib.GroupTheory.GroupAction.Group

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(measure_theory/measure/haar_quotient): the Unfolding Trick (#18863)

We prove the "unfolding trick": Given a subgroup Γ of a group G, the integral of a function f on G times the lift to G of a function g on the coset space G ⧸ Γ with respect to a right-invariant measure μ on G, is equal to the integral over the coset space of the automorphization of f times g.

We also prove the following simplified version: Given a subgroup Γ of a group G, the integral of a function f on G with respect to a right-invariant measure μ is equal to the integral over the coset space G ⧸ Γ of the automorphization of f.

A question: is it possible to deduce ae_strongly_measurable (quotient_group.automorphize f) μ_𝓕 from ae_strongly_measurable f μ (as opposed to assuming it as a hypothesis in the main theorem)? It seems quite plausible...

Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com>

Co-authored-by: Alex Kontorovich <58564076+AlexKontorovich@users.noreply.github.com> Co-authored-by: AlexKontorovich <58564076+AlexKontorovich@users.noreply.github.com>

Diff
@@ -191,6 +191,17 @@ def distrib_mul_action.to_add_equiv (x : α) : β ≃+ β :=
 { .. distrib_mul_action.to_add_monoid_hom β x,
   .. mul_action.to_perm_hom α β x }
 
+/-- Each non-zero element of a `group_with_zero` defines an additive monoid isomorphism of an
+`add_monoid` on which it acts distributively.
+
+This is a stronger version of `distrib_mul_action.to_add_monoid_hom`. -/
+def distrib_mul_action.to_add_equiv₀ {α : Type*} (β : Type*) [group_with_zero α] [add_monoid β]
+  [distrib_mul_action α β] (x : α) (hx : x ≠ 0) : β ≃+ β :=
+{ inv_fun := λ b, x⁻¹ • b,
+  left_inv := inv_smul_smul₀ hx,
+  right_inv := smul_inv_smul₀ hx,
+  .. distrib_mul_action.to_add_monoid_hom β x, }
+
 variables (α β)
 
 /-- Each element of the group defines an additive monoid isomorphism.

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes
 -/
-import Algebra.Hom.Aut
+import Algebra.Group.Aut
 import GroupTheory.GroupAction.Units
 
 #align_import group_theory.group_action.group from "leanprover-community/mathlib"@"3b52265189f3fb43aa631edffce5d060fafaf82f"
Diff
@@ -369,16 +369,16 @@ section Gwz
 
 variable [GroupWithZero α] [AddMonoid β] [DistribMulAction α β]
 
-#print smul_eq_zero_iff_eq' /-
-theorem smul_eq_zero_iff_eq' {a : α} (ha : a ≠ 0) {x : β} : a • x = 0 ↔ x = 0 :=
+#print smul_eq_zero_iff_right /-
+theorem smul_eq_zero_iff_right {a : α} (ha : a ≠ 0) {x : β} : a • x = 0 ↔ x = 0 :=
   show Units.mk0 a ha • x = 0 ↔ x = 0 from smul_eq_zero_iff_eq _
-#align smul_eq_zero_iff_eq' smul_eq_zero_iff_eq'
+#align smul_eq_zero_iff_eq' smul_eq_zero_iff_right
 -/
 
-#print smul_ne_zero_iff_ne' /-
-theorem smul_ne_zero_iff_ne' {a : α} (ha : a ≠ 0) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
+#print smul_ne_zero_iff_right /-
+theorem smul_ne_zero_iff_right {a : α} (ha : a ≠ 0) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
   show Units.mk0 a ha • x ≠ 0 ↔ x ≠ 0 from smul_ne_zero_iff_ne _
-#align smul_ne_zero_iff_ne' smul_ne_zero_iff_ne'
+#align smul_ne_zero_iff_ne' smul_ne_zero_iff_right
 -/
 
 end Gwz
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes
 -/
-import Mathbin.Algebra.Hom.Aut
-import Mathbin.GroupTheory.GroupAction.Units
+import Algebra.Hom.Aut
+import GroupTheory.GroupAction.Units
 
 #align_import group_theory.group_action.group from "leanprover-community/mathlib"@"3b52265189f3fb43aa631edffce5d060fafaf82f"
 
Diff
@@ -318,6 +318,7 @@ def DistribMulAction.toAddEquiv (x : α) : β ≃+ β :=
 #align distrib_mul_action.to_add_equiv DistribMulAction.toAddEquiv
 -/
 
+#print DistribMulAction.toAddEquiv₀ /-
 /-- Each non-zero element of a `group_with_zero` defines an additive monoid isomorphism of an
 `add_monoid` on which it acts distributively.
 
@@ -331,6 +332,7 @@ def DistribMulAction.toAddEquiv₀ {α : Type _} (β : Type _) [GroupWithZero α
     left_inv := inv_smul_smul₀ hx
     right_inv := smul_inv_smul₀ hx }
 #align distrib_mul_action.to_add_equiv₀ DistribMulAction.toAddEquiv₀
+-/
 
 variable (α β)
 
Diff
@@ -85,7 +85,7 @@ def MulAction.toPermHom : α →* Equiv.Perm β
     where
   toFun := MulAction.toPerm
   map_one' := Equiv.ext <| one_smul α
-  map_mul' u₁ u₂ := Equiv.ext <| mul_smul (u₁ : α) u₂
+  map_mul' u₁ u₂ := Equiv.ext <| hMul_smul (u₁ : α) u₂
 #align mul_action.to_perm_hom MulAction.toPermHom
 -/
 
@@ -109,7 +109,7 @@ instance Equiv.Perm.applyMulAction (α : Type _) : MulAction (Equiv.Perm α) α
     where
   smul f a := f a
   one_smul _ := rfl
-  mul_smul _ _ _ := rfl
+  hMul_smul _ _ _ := rfl
 #align equiv.perm.apply_mul_action Equiv.Perm.applyMulAction
 -/
 
@@ -343,7 +343,7 @@ def DistribMulAction.toAddAut : α →* AddAut β
     where
   toFun := DistribMulAction.toAddEquiv β
   map_one' := AddEquiv.ext (one_smul _)
-  map_mul' a₁ a₂ := AddEquiv.ext (mul_smul _ _)
+  map_mul' a₁ a₂ := AddEquiv.ext (hMul_smul _ _)
 #align distrib_mul_action.to_add_aut DistribMulAction.toAddAut
 -/
 
@@ -410,7 +410,7 @@ def MulDistribMulAction.toMulAut : α →* MulAut β
     where
   toFun := MulDistribMulAction.toMulEquiv β
   map_one' := MulEquiv.ext (one_smul _)
-  map_mul' a₁ a₂ := MulEquiv.ext (mul_smul _ _)
+  map_mul' a₁ a₂ := MulEquiv.ext (hMul_smul _ _)
 #align mul_distrib_mul_action.to_mul_aut MulDistribMulAction.toMulAut
 -/
 
@@ -429,7 +429,7 @@ def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction
     where
   smul g F a := F (g⁻¹ • a)
   one_smul := by intro; simp only [inv_one, one_smul]
-  mul_smul := by intros; simp only [mul_smul, mul_inv_rev]
+  hMul_smul := by intros; simp only [mul_smul, mul_inv_rev]
 #align arrow_action arrowAction
 #align arrow_add_action arrowAddAction
 -/
@@ -441,7 +441,7 @@ attribute [local instance] arrowAction
 def arrowMulDistribMulAction {G A B : Type _} [Group G] [MulAction G A] [Monoid B] :
     MulDistribMulAction G (A → B) where
   smul_one g := rfl
-  smul_mul g f₁ f₂ := rfl
+  smul_hMul g f₁ f₂ := rfl
 #align arrow_mul_distrib_mul_action arrowMulDistribMulAction
 -/
 
Diff
@@ -6,7 +6,7 @@ Authors: Chris Hughes
 import Mathbin.Algebra.Hom.Aut
 import Mathbin.GroupTheory.GroupAction.Units
 
-#align_import group_theory.group_action.group from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+#align_import group_theory.group_action.group from "leanprover-community/mathlib"@"3b52265189f3fb43aa631edffce5d060fafaf82f"
 
 /-!
 # Group actions applied to various types of group
@@ -318,6 +318,20 @@ def DistribMulAction.toAddEquiv (x : α) : β ≃+ β :=
 #align distrib_mul_action.to_add_equiv DistribMulAction.toAddEquiv
 -/
 
+/-- Each non-zero element of a `group_with_zero` defines an additive monoid isomorphism of an
+`add_monoid` on which it acts distributively.
+
+This is a stronger version of `distrib_mul_action.to_add_monoid_hom`. -/
+def DistribMulAction.toAddEquiv₀ {α : Type _} (β : Type _) [GroupWithZero α] [AddMonoid β]
+    [DistribMulAction α β] (x : α) (hx : x ≠ 0) : β ≃+ β :=
+  {
+    DistribMulAction.toAddMonoidHom β
+      x with
+    invFun := fun b => x⁻¹ • b
+    left_inv := inv_smul_smul₀ hx
+    right_inv := smul_inv_smul₀ hx }
+#align distrib_mul_action.to_add_equiv₀ DistribMulAction.toAddEquiv₀
+
 variable (α β)
 
 #print DistribMulAction.toAddAut /-
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes
-
-! This file was ported from Lean 3 source module group_theory.group_action.group
-! leanprover-community/mathlib commit c3291da49cfa65f0d43b094750541c0731edc932
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Algebra.Hom.Aut
 import Mathbin.GroupTheory.GroupAction.Units
 
+#align_import group_theory.group_action.group from "leanprover-community/mathlib"@"c3291da49cfa65f0d43b094750541c0731edc932"
+
 /-!
 # Group actions applied to various types of group
 
Diff
@@ -29,27 +29,33 @@ variable {α : Type u} {β : Type v} {γ : Type w}
 
 section MulAction
 
+#print RightCancelMonoid.faithfulSMul /-
 /-- `monoid.to_mul_action` is faithful on cancellative monoids. -/
 @[to_additive " `add_monoid.to_add_action` is faithful on additive cancellative monoids. "]
 instance RightCancelMonoid.faithfulSMul [RightCancelMonoid α] : FaithfulSMul α α :=
   ⟨fun x y h => mul_right_cancel (h 1)⟩
 #align right_cancel_monoid.to_has_faithful_smul RightCancelMonoid.faithfulSMul
 #align add_right_cancel_monoid.to_has_faithful_vadd AddRightCancelMonoid.faithfulVAdd
+-/
 
 section Group
 
 variable [Group α] [MulAction α β]
 
+#print inv_smul_smul /-
 @[simp, to_additive]
 theorem inv_smul_smul (c : α) (x : β) : c⁻¹ • c • x = x := by rw [smul_smul, mul_left_inv, one_smul]
 #align inv_smul_smul inv_smul_smul
 #align neg_vadd_vadd neg_vadd_vadd
+-/
 
+#print smul_inv_smul /-
 @[simp, to_additive]
 theorem smul_inv_smul (c : α) (x : β) : c • c⁻¹ • x = x := by
   rw [smul_smul, mul_right_inv, one_smul]
 #align smul_inv_smul smul_inv_smul
 #align vadd_neg_vadd vadd_neg_vadd
+-/
 
 #print MulAction.toPerm /-
 /-- Given an action of a group `α` on `β`, each `g : α` defines a permutation of `β`. -/
@@ -126,26 +132,34 @@ instance Equiv.Perm.applyFaithfulSMul (α : Type _) : FaithfulSMul (Equiv.Perm 
 
 variable {α} {β}
 
+#print inv_smul_eq_iff /-
 @[to_additive]
 theorem inv_smul_eq_iff {a : α} {x y : β} : a⁻¹ • x = y ↔ x = a • y :=
   (MulAction.toPerm a).symm_apply_eq
 #align inv_smul_eq_iff inv_smul_eq_iff
 #align neg_vadd_eq_iff neg_vadd_eq_iff
+-/
 
+#print eq_inv_smul_iff /-
 @[to_additive]
 theorem eq_inv_smul_iff {a : α} {x y : β} : x = a⁻¹ • y ↔ a • x = y :=
   (MulAction.toPerm a).eq_symm_apply
 #align eq_inv_smul_iff eq_inv_smul_iff
 #align eq_neg_vadd_iff eq_neg_vadd_iff
+-/
 
+#print smul_inv /-
 theorem smul_inv [Group β] [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) :
     (c • x)⁻¹ = c⁻¹ • x⁻¹ := by
   rw [inv_eq_iff_mul_eq_one, smul_mul_smul, mul_right_inv, mul_right_inv, one_smul]
 #align smul_inv smul_inv
+-/
 
+#print smul_zpow /-
 theorem smul_zpow [Group β] [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) (p : ℤ) :
     (c • x) ^ p = c ^ p • x ^ p := by cases p <;> simp [smul_pow, smul_inv]
 #align smul_zpow smul_zpow
+-/
 
 #print Commute.smul_right_iff /-
 @[simp]
@@ -203,65 +217,87 @@ theorem smul_left_cancel_iff (g : α) {x y : β} : g • x = g • y ↔ x = y :
 #align vadd_left_cancel_iff vadd_left_cancel_iff
 -/
 
+#print smul_eq_iff_eq_inv_smul /-
 @[to_additive]
 theorem smul_eq_iff_eq_inv_smul (g : α) {x y : β} : g • x = y ↔ x = g⁻¹ • y :=
   (MulAction.toPerm g).apply_eq_iff_eq_symm_apply
 #align smul_eq_iff_eq_inv_smul smul_eq_iff_eq_inv_smul
 #align vadd_eq_iff_eq_neg_vadd vadd_eq_iff_eq_neg_vadd
+-/
 
 end Group
 
+#print CancelMonoidWithZero.faithfulSMul /-
 /-- `monoid.to_mul_action` is faithful on nontrivial cancellative monoids with zero. -/
 instance CancelMonoidWithZero.faithfulSMul [CancelMonoidWithZero α] [Nontrivial α] :
     FaithfulSMul α α :=
   ⟨fun x y h => mul_left_injective₀ one_ne_zero (h 1)⟩
 #align cancel_monoid_with_zero.to_has_faithful_smul CancelMonoidWithZero.faithfulSMul
+-/
 
 section Gwz
 
 variable [GroupWithZero α] [MulAction α β] {a : α}
 
+#print inv_smul_smul₀ /-
 @[simp]
 theorem inv_smul_smul₀ {c : α} (hc : c ≠ 0) (x : β) : c⁻¹ • c • x = x :=
   inv_smul_smul (Units.mk0 c hc) x
 #align inv_smul_smul₀ inv_smul_smul₀
+-/
 
+#print smul_inv_smul₀ /-
 @[simp]
 theorem smul_inv_smul₀ {c : α} (hc : c ≠ 0) (x : β) : c • c⁻¹ • x = x :=
   smul_inv_smul (Units.mk0 c hc) x
 #align smul_inv_smul₀ smul_inv_smul₀
+-/
 
+#print inv_smul_eq_iff₀ /-
 theorem inv_smul_eq_iff₀ {a : α} (ha : a ≠ 0) {x y : β} : a⁻¹ • x = y ↔ x = a • y :=
   (MulAction.toPerm (Units.mk0 a ha)).symm_apply_eq
 #align inv_smul_eq_iff₀ inv_smul_eq_iff₀
+-/
 
+#print eq_inv_smul_iff₀ /-
 theorem eq_inv_smul_iff₀ {a : α} (ha : a ≠ 0) {x y : β} : x = a⁻¹ • y ↔ a • x = y :=
   (MulAction.toPerm (Units.mk0 a ha)).eq_symm_apply
 #align eq_inv_smul_iff₀ eq_inv_smul_iff₀
+-/
 
+#print Commute.smul_right_iff₀ /-
 @[simp]
 theorem Commute.smul_right_iff₀ [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {a b : β}
     {c : α} (hc : c ≠ 0) : Commute a (c • b) ↔ Commute a b :=
   Commute.smul_right_iff (Units.mk0 c hc)
 #align commute.smul_right_iff₀ Commute.smul_right_iff₀
+-/
 
+#print Commute.smul_left_iff₀ /-
 @[simp]
 theorem Commute.smul_left_iff₀ [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {a b : β} {c : α}
     (hc : c ≠ 0) : Commute (c • a) b ↔ Commute a b :=
   Commute.smul_left_iff (Units.mk0 c hc)
 #align commute.smul_left_iff₀ Commute.smul_left_iff₀
+-/
 
+#print MulAction.bijective₀ /-
 protected theorem MulAction.bijective₀ (ha : a ≠ 0) : Bijective ((· • ·) a : β → β) :=
   MulAction.bijective <| Units.mk0 a ha
 #align mul_action.bijective₀ MulAction.bijective₀
+-/
 
+#print MulAction.injective₀ /-
 protected theorem MulAction.injective₀ (ha : a ≠ 0) : Injective ((· • ·) a : β → β) :=
   (MulAction.bijective₀ ha).Injective
 #align mul_action.injective₀ MulAction.injective₀
+-/
 
+#print MulAction.surjective₀ /-
 protected theorem MulAction.surjective₀ (ha : a ≠ 0) : Surjective ((· • ·) a : β → β) :=
   (MulAction.bijective₀ ha).Surjective
 #align mul_action.surjective₀ MulAction.surjective₀
+-/
 
 end Gwz
 
@@ -275,6 +311,7 @@ variable [Group α] [AddMonoid β] [DistribMulAction α β]
 
 variable (β)
 
+#print DistribMulAction.toAddEquiv /-
 /-- Each element of the group defines an additive monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm`. -/
@@ -282,9 +319,11 @@ This is a stronger version of `mul_action.to_perm`. -/
 def DistribMulAction.toAddEquiv (x : α) : β ≃+ β :=
   { DistribMulAction.toAddMonoidHom β x, MulAction.toPermHom α β x with }
 #align distrib_mul_action.to_add_equiv DistribMulAction.toAddEquiv
+-/
 
 variable (α β)
 
+#print DistribMulAction.toAddAut /-
 /-- Each element of the group defines an additive monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm_hom`. -/
@@ -295,16 +334,21 @@ def DistribMulAction.toAddAut : α →* AddAut β
   map_one' := AddEquiv.ext (one_smul _)
   map_mul' a₁ a₂ := AddEquiv.ext (mul_smul _ _)
 #align distrib_mul_action.to_add_aut DistribMulAction.toAddAut
+-/
 
 variable {α β}
 
+#print smul_eq_zero_iff_eq /-
 theorem smul_eq_zero_iff_eq (a : α) {x : β} : a • x = 0 ↔ x = 0 :=
   ⟨fun h => by rw [← inv_smul_smul a x, h, smul_zero], fun h => h.symm ▸ smul_zero _⟩
 #align smul_eq_zero_iff_eq smul_eq_zero_iff_eq
+-/
 
+#print smul_ne_zero_iff_ne /-
 theorem smul_ne_zero_iff_ne (a : α) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
   not_congr <| smul_eq_zero_iff_eq a
 #align smul_ne_zero_iff_ne smul_ne_zero_iff_ne
+-/
 
 end Group
 
@@ -312,13 +356,17 @@ section Gwz
 
 variable [GroupWithZero α] [AddMonoid β] [DistribMulAction α β]
 
+#print smul_eq_zero_iff_eq' /-
 theorem smul_eq_zero_iff_eq' {a : α} (ha : a ≠ 0) {x : β} : a • x = 0 ↔ x = 0 :=
   show Units.mk0 a ha • x = 0 ↔ x = 0 from smul_eq_zero_iff_eq _
 #align smul_eq_zero_iff_eq' smul_eq_zero_iff_eq'
+-/
 
+#print smul_ne_zero_iff_ne' /-
 theorem smul_ne_zero_iff_ne' {a : α} (ha : a ≠ 0) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
   show Units.mk0 a ha • x ≠ 0 ↔ x ≠ 0 from smul_ne_zero_iff_ne _
 #align smul_ne_zero_iff_ne' smul_ne_zero_iff_ne'
+-/
 
 end Gwz
 
@@ -330,6 +378,7 @@ variable [Group α] [Monoid β] [MulDistribMulAction α β]
 
 variable (β)
 
+#print MulDistribMulAction.toMulEquiv /-
 /-- Each element of the group defines a multiplicative monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm`. -/
@@ -337,9 +386,11 @@ This is a stronger version of `mul_action.to_perm`. -/
 def MulDistribMulAction.toMulEquiv (x : α) : β ≃* β :=
   { MulDistribMulAction.toMonoidHom β x, MulAction.toPermHom α β x with }
 #align mul_distrib_mul_action.to_mul_equiv MulDistribMulAction.toMulEquiv
+-/
 
 variable (α β)
 
+#print MulDistribMulAction.toMulAut /-
 /-- Each element of the group defines an multiplicative monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm_hom`. -/
@@ -350,6 +401,7 @@ def MulDistribMulAction.toMulAut : α →* MulAut β
   map_one' := MulEquiv.ext (one_smul _)
   map_mul' a₁ a₂ := MulEquiv.ext (mul_smul _ _)
 #align mul_distrib_mul_action.to_mul_aut MulDistribMulAction.toMulAut
+-/
 
 variable {α β}
 
@@ -384,12 +436,14 @@ def arrowMulDistribMulAction {G A B : Type _} [Group G] [MulAction G A] [Monoid
 
 attribute [local instance] arrowMulDistribMulAction
 
+#print mulAutArrow /-
 /-- Given groups `G H` with `G` acting on `A`, `G` acts by
   multiplicative automorphisms on `A → H`. -/
 @[simps]
 def mulAutArrow {G A H} [Group G] [MulAction G A] [Monoid H] : G →* MulAut (A → H) :=
   MulDistribMulAction.toMulAut _ _
 #align mul_aut_arrow mulAutArrow
+-/
 
 end Arrow
 
@@ -414,10 +468,12 @@ section DistribMulAction
 
 variable [Monoid α] [AddMonoid β] [DistribMulAction α β]
 
+#print IsUnit.smul_eq_zero /-
 @[simp]
 theorem smul_eq_zero {u : α} (hu : IsUnit u) {x : β} : u • x = 0 ↔ x = 0 :=
   Exists.elim hu fun u hu => hu ▸ show u • x = 0 ↔ x = 0 from smul_eq_zero_iff_eq u
 #align is_unit.smul_eq_zero IsUnit.smul_eq_zero
+-/
 
 end DistribMulAction
 
@@ -427,16 +483,20 @@ section Smul
 
 variable [Group α] [Monoid β]
 
+#print isUnit_smul_iff /-
 @[simp]
 theorem isUnit_smul_iff [MulAction α β] [SMulCommClass α β β] [IsScalarTower α β β] (g : α)
     (m : β) : IsUnit (g • m) ↔ IsUnit m :=
   ⟨fun h => inv_smul_smul g m ▸ h.smul g⁻¹, IsUnit.smul g⟩
 #align is_unit_smul_iff isUnit_smul_iff
+-/
 
+#print IsUnit.smul_sub_iff_sub_inv_smul /-
 theorem IsUnit.smul_sub_iff_sub_inv_smul [AddGroup β] [DistribMulAction α β] [IsScalarTower α β β]
     [SMulCommClass α β β] (r : α) (a : β) : IsUnit (r • 1 - a) ↔ IsUnit (1 - r⁻¹ • a) := by
   rw [← isUnit_smul_iff r (1 - r⁻¹ • a), smul_sub, smul_inv_smul]
 #align is_unit.smul_sub_iff_sub_inv_smul IsUnit.smul_sub_iff_sub_inv_smul
+-/
 
 end Smul
 
Diff
@@ -365,8 +365,8 @@ section Arrow
 def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction G (A → B)
     where
   smul g F a := F (g⁻¹ • a)
-  one_smul := by intro ; simp only [inv_one, one_smul]
-  mul_smul := by intros ; simp only [mul_smul, mul_inv_rev]
+  one_smul := by intro; simp only [inv_one, one_smul]
+  mul_smul := by intros; simp only [mul_smul, mul_inv_rev]
 #align arrow_action arrowAction
 #align arrow_add_action arrowAddAction
 -/
Diff
@@ -29,12 +29,6 @@ variable {α : Type u} {β : Type v} {γ : Type w}
 
 section MulAction
 
-/- warning: right_cancel_monoid.to_has_faithful_smul -> RightCancelMonoid.faithfulSMul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : RightCancelMonoid.{u1} α], FaithfulSMul.{u1, u1} α α (Mul.toSMul.{u1} α (MulOneClass.toHasMul.{u1} α (Monoid.toMulOneClass.{u1} α (RightCancelMonoid.toMonoid.{u1} α _inst_1))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : RightCancelMonoid.{u1} α], FaithfulSMul.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (RightCancelMonoid.toMonoid.{u1} α _inst_1) (Monoid.toMulAction.{u1} α (RightCancelMonoid.toMonoid.{u1} α _inst_1)))
-Case conversion may be inaccurate. Consider using '#align right_cancel_monoid.to_has_faithful_smul RightCancelMonoid.faithfulSMulₓ'. -/
 /-- `monoid.to_mul_action` is faithful on cancellative monoids. -/
 @[to_additive " `add_monoid.to_add_action` is faithful on additive cancellative monoids. "]
 instance RightCancelMonoid.faithfulSMul [RightCancelMonoid α] : FaithfulSMul α α :=
@@ -46,23 +40,11 @@ section Group
 
 variable [Group α] [MulAction α β]
 
-/- warning: inv_smul_smul -> inv_smul_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] (c : α) (x : β), Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) c) (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) c x)) x
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] (c : α) (x : β), Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) c) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) c x)) x
-Case conversion may be inaccurate. Consider using '#align inv_smul_smul inv_smul_smulₓ'. -/
 @[simp, to_additive]
 theorem inv_smul_smul (c : α) (x : β) : c⁻¹ • c • x = x := by rw [smul_smul, mul_left_inv, one_smul]
 #align inv_smul_smul inv_smul_smul
 #align neg_vadd_vadd neg_vadd_vadd
 
-/- warning: smul_inv_smul -> smul_inv_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] (c : α) (x : β), Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) c (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) c) x)) x
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] (c : α) (x : β), Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) c (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) c) x)) x
-Case conversion may be inaccurate. Consider using '#align smul_inv_smul smul_inv_smulₓ'. -/
 @[simp, to_additive]
 theorem smul_inv_smul (c : α) (x : β) : c • c⁻¹ • x = x := by
   rw [smul_smul, mul_right_inv, one_smul]
@@ -144,47 +126,23 @@ instance Equiv.Perm.applyFaithfulSMul (α : Type _) : FaithfulSMul (Equiv.Perm 
 
 variable {α} {β}
 
-/- warning: inv_smul_eq_iff -> inv_smul_eq_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] {a : α} {x : β} {y : β}, Iff (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) x) y) (Eq.{succ u2} β x (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) a y))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] {a : α} {x : β} {y : β}, Iff (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) a) x) y) (Eq.{succ u2} β x (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) a y))
-Case conversion may be inaccurate. Consider using '#align inv_smul_eq_iff inv_smul_eq_iffₓ'. -/
 @[to_additive]
 theorem inv_smul_eq_iff {a : α} {x y : β} : a⁻¹ • x = y ↔ x = a • y :=
   (MulAction.toPerm a).symm_apply_eq
 #align inv_smul_eq_iff inv_smul_eq_iff
 #align neg_vadd_eq_iff neg_vadd_eq_iff
 
-/- warning: eq_inv_smul_iff -> eq_inv_smul_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] {a : α} {x : β} {y : β}, Iff (Eq.{succ u2} β x (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) a) y)) (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) a x) y)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] {a : α} {x : β} {y : β}, Iff (Eq.{succ u2} β x (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) a) y)) (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) a x) y)
-Case conversion may be inaccurate. Consider using '#align eq_inv_smul_iff eq_inv_smul_iffₓ'. -/
 @[to_additive]
 theorem eq_inv_smul_iff {a : α} {x y : β} : x = a⁻¹ • y ↔ a • x = y :=
   (MulAction.toPerm a).eq_symm_apply
 #align eq_inv_smul_iff eq_inv_smul_iff
 #align eq_neg_vadd_iff eq_neg_vadd_iff
 
-/- warning: smul_inv -> smul_inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] [_inst_3 : Group.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)))))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))))) (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)] (c : α) (x : β), Eq.{succ u2} β (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)) (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) c x)) (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) c) (Inv.inv.{u2} β (DivInvMonoid.toHasInv.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)) x))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] [_inst_3 : Group.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (MulAction.toSMul.{u2, u2} β β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)) (Monoid.toMulAction.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (MulAction.toSMul.{u2, u2} β β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)) (Monoid.toMulAction.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)))) (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)] (c : α) (x : β), Eq.{succ u2} β (Inv.inv.{u2} β (InvOneClass.toInv.{u2} β (DivInvOneMonoid.toInvOneClass.{u2} β (DivisionMonoid.toDivInvOneMonoid.{u2} β (Group.toDivisionMonoid.{u2} β _inst_3)))) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) c x)) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) c) (Inv.inv.{u2} β (InvOneClass.toInv.{u2} β (DivInvOneMonoid.toInvOneClass.{u2} β (DivisionMonoid.toDivInvOneMonoid.{u2} β (Group.toDivisionMonoid.{u2} β _inst_3)))) x))
-Case conversion may be inaccurate. Consider using '#align smul_inv smul_invₓ'. -/
 theorem smul_inv [Group β] [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) :
     (c • x)⁻¹ = c⁻¹ • x⁻¹ := by
   rw [inv_eq_iff_mul_eq_one, smul_mul_smul, mul_right_inv, mul_right_inv, one_smul]
 #align smul_inv smul_inv
 
-/- warning: smul_zpow -> smul_zpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] [_inst_3 : Group.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)))))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))))) (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)] (c : α) (x : β) (p : Int), Eq.{succ u2} β (HPow.hPow.{u2, 0, u2} β Int β (instHPow.{u2, 0} β Int (DivInvMonoid.Pow.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))) (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) c x) p) (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) c p) (HPow.hPow.{u2, 0, u2} β Int β (instHPow.{u2, 0} β Int (DivInvMonoid.Pow.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))) x p))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] [_inst_3 : Group.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (MulAction.toSMul.{u2, u2} β β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)) (Monoid.toMulAction.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (MulAction.toSMul.{u2, u2} β β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)) (Monoid.toMulAction.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3)))) (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)] (c : α) (x : β) (p : Int), Eq.{succ u2} β (HPow.hPow.{u2, 0, u2} β Int β (instHPow.{u2, 0} β Int (DivInvMonoid.Pow.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) c x) p) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) (HPow.hPow.{u1, 0, u1} α Int α (instHPow.{u1, 0} α Int (DivInvMonoid.Pow.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) c p) (HPow.hPow.{u2, 0, u2} β Int β (instHPow.{u2, 0} β Int (DivInvMonoid.Pow.{u2} β (Group.toDivInvMonoid.{u2} β _inst_3))) x p))
-Case conversion may be inaccurate. Consider using '#align smul_zpow smul_zpowₓ'. -/
 theorem smul_zpow [Group β] [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) (p : ℤ) :
     (c • x) ^ p = c ^ p • x ^ p := by cases p <;> simp [smul_pow, smul_inv]
 #align smul_zpow smul_zpow
@@ -245,12 +203,6 @@ theorem smul_left_cancel_iff (g : α) {x y : β} : g • x = g • y ↔ x = y :
 #align vadd_left_cancel_iff vadd_left_cancel_iff
 -/
 
-/- warning: smul_eq_iff_eq_inv_smul -> smul_eq_iff_eq_inv_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] (g : α) {x : β} {y : β}, Iff (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) g x) y) (Eq.{succ u2} β x (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) g) y))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] (g : α) {x : β} {y : β}, Iff (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) g x) y) (Eq.{succ u2} β x (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) g) y))
-Case conversion may be inaccurate. Consider using '#align smul_eq_iff_eq_inv_smul smul_eq_iff_eq_inv_smulₓ'. -/
 @[to_additive]
 theorem smul_eq_iff_eq_inv_smul (g : α) {x y : β} : g • x = y ↔ x = g⁻¹ • y :=
   (MulAction.toPerm g).apply_eq_iff_eq_symm_apply
@@ -259,12 +211,6 @@ theorem smul_eq_iff_eq_inv_smul (g : α) {x y : β} : g • x = y ↔ x = g⁻¹
 
 end Group
 
-/- warning: cancel_monoid_with_zero.to_has_faithful_smul -> CancelMonoidWithZero.faithfulSMul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : CancelMonoidWithZero.{u1} α] [_inst_2 : Nontrivial.{u1} α], FaithfulSMul.{u1, u1} α α (Mul.toSMul.{u1} α (MulZeroClass.toHasMul.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (CancelMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : CancelMonoidWithZero.{u1} α] [_inst_2 : Nontrivial.{u1} α], FaithfulSMul.{u1, u1} α α (MulAction.toSMul.{u1, u1} α α (MonoidWithZero.toMonoid.{u1} α (CancelMonoidWithZero.toMonoidWithZero.{u1} α _inst_1)) (Monoid.toMulAction.{u1} α (MonoidWithZero.toMonoid.{u1} α (CancelMonoidWithZero.toMonoidWithZero.{u1} α _inst_1))))
-Case conversion may be inaccurate. Consider using '#align cancel_monoid_with_zero.to_has_faithful_smul CancelMonoidWithZero.faithfulSMulₓ'. -/
 /-- `monoid.to_mul_action` is faithful on nontrivial cancellative monoids with zero. -/
 instance CancelMonoidWithZero.faithfulSMul [CancelMonoidWithZero α] [Nontrivial α] :
     FaithfulSMul α α :=
@@ -275,98 +221,44 @@ section Gwz
 
 variable [GroupWithZero α] [MulAction α β] {a : α}
 
-/- warning: inv_smul_smul₀ -> inv_smul_smul₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (x : β), Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α _inst_1)) c) (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) c x)) x)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (forall (x : β), Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (GroupWithZero.toInv.{u1} α _inst_1) c) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) c x)) x)
-Case conversion may be inaccurate. Consider using '#align inv_smul_smul₀ inv_smul_smul₀ₓ'. -/
 @[simp]
 theorem inv_smul_smul₀ {c : α} (hc : c ≠ 0) (x : β) : c⁻¹ • c • x = x :=
   inv_smul_smul (Units.mk0 c hc) x
 #align inv_smul_smul₀ inv_smul_smul₀
 
-/- warning: smul_inv_smul₀ -> smul_inv_smul₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall (x : β), Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) c (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α _inst_1)) c) x)) x)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (forall (x : β), Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) c (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (GroupWithZero.toInv.{u1} α _inst_1) c) x)) x)
-Case conversion may be inaccurate. Consider using '#align smul_inv_smul₀ smul_inv_smul₀ₓ'. -/
 @[simp]
 theorem smul_inv_smul₀ {c : α} (hc : c ≠ 0) (x : β) : c • c⁻¹ • x = x :=
   smul_inv_smul (Units.mk0 c hc) x
 #align smul_inv_smul₀ smul_inv_smul₀
 
-/- warning: inv_smul_eq_iff₀ -> inv_smul_eq_iff₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {x : β} {y : β}, Iff (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α _inst_1)) a) x) y) (Eq.{succ u2} β x (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a y)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (forall {x : β} {y : β}, Iff (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (GroupWithZero.toInv.{u1} α _inst_1) a) x) y) (Eq.{succ u2} β x (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) a y)))
-Case conversion may be inaccurate. Consider using '#align inv_smul_eq_iff₀ inv_smul_eq_iff₀ₓ'. -/
 theorem inv_smul_eq_iff₀ {a : α} (ha : a ≠ 0) {x y : β} : a⁻¹ • x = y ↔ x = a • y :=
   (MulAction.toPerm (Units.mk0 a ha)).symm_apply_eq
 #align inv_smul_eq_iff₀ inv_smul_eq_iff₀
 
-/- warning: eq_inv_smul_iff₀ -> eq_inv_smul_iff₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {x : β} {y : β}, Iff (Eq.{succ u2} β x (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (GroupWithZero.toDivInvMonoid.{u1} α _inst_1)) a) y)) (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a x) y))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (forall {x : β} {y : β}, Iff (Eq.{succ u2} β x (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) (Inv.inv.{u1} α (GroupWithZero.toInv.{u1} α _inst_1) a) y)) (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) a x) y))
-Case conversion may be inaccurate. Consider using '#align eq_inv_smul_iff₀ eq_inv_smul_iff₀ₓ'. -/
 theorem eq_inv_smul_iff₀ {a : α} (ha : a ≠ 0) {x y : β} : x = a⁻¹ • y ↔ a • x = y :=
   (MulAction.toPerm (Units.mk0 a ha)).eq_symm_apply
 #align eq_inv_smul_iff₀ eq_inv_smul_iff₀
 
-/- warning: commute.smul_right_iff₀ -> Commute.smul_right_iff₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] [_inst_3 : Mul.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3)] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3) (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)] {a : β} {b : β} {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Iff (Commute.{u2} β _inst_3 a (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) c b)) (Commute.{u2} β _inst_3 a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] [_inst_3 : Mul.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3)] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3) (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)] {a : β} {b : β} {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Commute.{u2} β _inst_3 a (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) c b)) (Commute.{u2} β _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align commute.smul_right_iff₀ Commute.smul_right_iff₀ₓ'. -/
 @[simp]
 theorem Commute.smul_right_iff₀ [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {a b : β}
     {c : α} (hc : c ≠ 0) : Commute a (c • b) ↔ Commute a b :=
   Commute.smul_right_iff (Units.mk0 c hc)
 #align commute.smul_right_iff₀ Commute.smul_right_iff₀
 
-/- warning: commute.smul_left_iff₀ -> Commute.smul_left_iff₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] [_inst_3 : Mul.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3)] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3) (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)] {a : β} {b : β} {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Iff (Commute.{u2} β _inst_3 (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) c a) b) (Commute.{u2} β _inst_3 a b))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] [_inst_3 : Mul.{u2} β] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3)] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) (Mul.toSMul.{u2} β _inst_3) (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)] {a : β} {b : β} {c : α}, (Ne.{succ u1} α c (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Iff (Commute.{u2} β _inst_3 (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) c a) b) (Commute.{u2} β _inst_3 a b))
-Case conversion may be inaccurate. Consider using '#align commute.smul_left_iff₀ Commute.smul_left_iff₀ₓ'. -/
 @[simp]
 theorem Commute.smul_left_iff₀ [Mul β] [SMulCommClass α β β] [IsScalarTower α β β] {a b : β} {c : α}
     (hc : c ≠ 0) : Commute (c • a) b ↔ Commute a b :=
   Commute.smul_left_iff (Units.mk0 c hc)
 #align commute.smul_left_iff₀ Commute.smul_left_iff₀
 
-/- warning: mul_action.bijective₀ -> MulAction.bijective₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Function.Bijective.{succ u2, succ u2} β β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Bijective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1609 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1611 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1609 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1611) a))
-Case conversion may be inaccurate. Consider using '#align mul_action.bijective₀ MulAction.bijective₀ₓ'. -/
 protected theorem MulAction.bijective₀ (ha : a ≠ 0) : Bijective ((· • ·) a : β → β) :=
   MulAction.bijective <| Units.mk0 a ha
 #align mul_action.bijective₀ MulAction.bijective₀
 
-/- warning: mul_action.injective₀ -> MulAction.injective₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Function.Injective.{succ u2, succ u2} β β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Injective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1660 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1662 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1660 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1662) a))
-Case conversion may be inaccurate. Consider using '#align mul_action.injective₀ MulAction.injective₀ₓ'. -/
 protected theorem MulAction.injective₀ (ha : a ≠ 0) : Injective ((· • ·) a : β → β) :=
   (MulAction.bijective₀ ha).Injective
 #align mul_action.injective₀ MulAction.injective₀
 
-/- warning: mul_action.surjective₀ -> MulAction.surjective₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Function.Surjective.{succ u2, succ u2} β β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Surjective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1710 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1712 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1710 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1712) a))
-Case conversion may be inaccurate. Consider using '#align mul_action.surjective₀ MulAction.surjective₀ₓ'. -/
 protected theorem MulAction.surjective₀ (ha : a ≠ 0) : Surjective ((· • ·) a : β → β) :=
   (MulAction.bijective₀ ha).Surjective
 #align mul_action.surjective₀ MulAction.surjective₀
@@ -383,12 +275,6 @@ variable [Group α] [AddMonoid β] [DistribMulAction α β]
 
 variable (β)
 
-/- warning: distrib_mul_action.to_add_equiv -> DistribMulAction.toAddEquiv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], α -> (AddEquiv.{u2, u2} β β (AddZeroClass.toHasAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)) (AddZeroClass.toHasAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], α -> (AddEquiv.{u2, u2} β β (AddZeroClass.toAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)) (AddZeroClass.toAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align distrib_mul_action.to_add_equiv DistribMulAction.toAddEquivₓ'. -/
 /-- Each element of the group defines an additive monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm`. -/
@@ -399,12 +285,6 @@ def DistribMulAction.toAddEquiv (x : α) : β ≃+ β :=
 
 variable (α β)
 
-/- warning: distrib_mul_action.to_add_aut -> DistribMulAction.toAddAut is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], MonoidHom.{u1, u2} α (AddAut.{u2} β (AddZeroClass.toHasAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Monoid.toMulOneClass.{u2} (AddAut.{u2} β (AddZeroClass.toHasAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (DivInvMonoid.toMonoid.{u2} (AddAut.{u2} β (AddZeroClass.toHasAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (Group.toDivInvMonoid.{u2} (AddAut.{u2} β (AddZeroClass.toHasAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (AddAut.group.{u2} β (AddZeroClass.toHasAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))))))
-but is expected to have type
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], MonoidHom.{u1, u2} α (AddAut.{u2} β (AddZeroClass.toAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Monoid.toMulOneClass.{u2} (AddAut.{u2} β (AddZeroClass.toAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (DivInvMonoid.toMonoid.{u2} (AddAut.{u2} β (AddZeroClass.toAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (Group.toDivInvMonoid.{u2} (AddAut.{u2} β (AddZeroClass.toAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))) (AddAut.group.{u2} β (AddZeroClass.toAdd.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))))))
-Case conversion may be inaccurate. Consider using '#align distrib_mul_action.to_add_aut DistribMulAction.toAddAutₓ'. -/
 /-- Each element of the group defines an additive monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm_hom`. -/
@@ -418,22 +298,10 @@ def DistribMulAction.toAddAut : α →* AddAut β
 
 variable {α β}
 
-/- warning: smul_eq_zero_iff_eq -> smul_eq_zero_iff_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2] (a : α) {x : β}, Iff (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2 _inst_3))) a x) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2] (a : α) {x : β}, Iff (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (SMulZeroClass.toSMul.{u1, u2} α β (AddMonoid.toZero.{u2} β _inst_2) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2 _inst_3)))) a x) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2))))
-Case conversion may be inaccurate. Consider using '#align smul_eq_zero_iff_eq smul_eq_zero_iff_eqₓ'. -/
 theorem smul_eq_zero_iff_eq (a : α) {x : β} : a • x = 0 ↔ x = 0 :=
   ⟨fun h => by rw [← inv_smul_smul a x, h, smul_zero], fun h => h.symm ▸ smul_zero _⟩
 #align smul_eq_zero_iff_eq smul_eq_zero_iff_eq
 
-/- warning: smul_ne_zero_iff_ne -> smul_ne_zero_iff_ne is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2] (a : α) {x : β}, Iff (Ne.{succ u2} β (SMul.smul.{u1, u2} α β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2 _inst_3))) a x) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))) (Ne.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2] (a : α) {x : β}, Iff (Ne.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (SMulZeroClass.toSMul.{u1, u2} α β (AddMonoid.toZero.{u2} β _inst_2) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2 _inst_3)))) a x) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))) (Ne.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2))))
-Case conversion may be inaccurate. Consider using '#align smul_ne_zero_iff_ne smul_ne_zero_iff_neₓ'. -/
 theorem smul_ne_zero_iff_ne (a : α) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
   not_congr <| smul_eq_zero_iff_eq a
 #align smul_ne_zero_iff_ne smul_ne_zero_iff_ne
@@ -444,22 +312,10 @@ section Gwz
 
 variable [GroupWithZero α] [AddMonoid β] [DistribMulAction α β]
 
-/- warning: smul_eq_zero_iff_eq' -> smul_eq_zero_iff_eq' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {x : β}, Iff (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2 _inst_3))) a x) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (forall {x : β}, Iff (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (SMulZeroClass.toSMul.{u1, u2} α β (AddMonoid.toZero.{u2} β _inst_2) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2 _inst_3)))) a x) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align smul_eq_zero_iff_eq' smul_eq_zero_iff_eq'ₓ'. -/
 theorem smul_eq_zero_iff_eq' {a : α} (ha : a ≠ 0) {x : β} : a • x = 0 ↔ x = 0 :=
   show Units.mk0 a ha • x = 0 ↔ x = 0 from smul_eq_zero_iff_eq _
 #align smul_eq_zero_iff_eq' smul_eq_zero_iff_eq'
 
-/- warning: smul_ne_zero_iff_ne' -> smul_ne_zero_iff_ne' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (forall {x : β}, Iff (Ne.{succ u2} β (SMul.smul.{u1, u2} α β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2 _inst_3))) a x) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))) (Ne.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (forall {x : β}, Iff (Ne.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (SMulZeroClass.toSMul.{u1, u2} α β (AddMonoid.toZero.{u2} β _inst_2) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2 _inst_3)))) a x) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))) (Ne.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align smul_ne_zero_iff_ne' smul_ne_zero_iff_ne'ₓ'. -/
 theorem smul_ne_zero_iff_ne' {a : α} (ha : a ≠ 0) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
   show Units.mk0 a ha • x ≠ 0 ↔ x ≠ 0 from smul_ne_zero_iff_ne _
 #align smul_ne_zero_iff_ne' smul_ne_zero_iff_ne'
@@ -474,12 +330,6 @@ variable [Group α] [Monoid β] [MulDistribMulAction α β]
 
 variable (β)
 
-/- warning: mul_distrib_mul_action.to_mul_equiv -> MulDistribMulAction.toMulEquiv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : MulDistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], α -> (MulEquiv.{u2, u2} β β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2)) (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2)))
-but is expected to have type
-  forall {α : Type.{u1}} (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : MulDistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], α -> (MulEquiv.{u2, u2} β β (MulOneClass.toMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2)) (MulOneClass.toMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2)))
-Case conversion may be inaccurate. Consider using '#align mul_distrib_mul_action.to_mul_equiv MulDistribMulAction.toMulEquivₓ'. -/
 /-- Each element of the group defines a multiplicative monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm`. -/
@@ -490,12 +340,6 @@ def MulDistribMulAction.toMulEquiv (x : α) : β ≃* β :=
 
 variable (α β)
 
-/- warning: mul_distrib_mul_action.to_mul_aut -> MulDistribMulAction.toMulAut is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : MulDistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], MonoidHom.{u1, u2} α (MulAut.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Monoid.toMulOneClass.{u2} (MulAut.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (DivInvMonoid.toMonoid.{u2} (MulAut.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (Group.toDivInvMonoid.{u2} (MulAut.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (MulAut.group.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))))))
-but is expected to have type
-  forall (α : Type.{u1}) (β : Type.{u2}) [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : MulDistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_2], MonoidHom.{u1, u2} α (MulAut.{u2} β (MulOneClass.toMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (Monoid.toMulOneClass.{u1} α (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))) (Monoid.toMulOneClass.{u2} (MulAut.{u2} β (MulOneClass.toMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (DivInvMonoid.toMonoid.{u2} (MulAut.{u2} β (MulOneClass.toMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (Group.toDivInvMonoid.{u2} (MulAut.{u2} β (MulOneClass.toMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (MulAut.instGroupMulAut.{u2} β (MulOneClass.toMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))))))
-Case conversion may be inaccurate. Consider using '#align mul_distrib_mul_action.to_mul_aut MulDistribMulAction.toMulAutₓ'. -/
 /-- Each element of the group defines an multiplicative monoid isomorphism.
 
 This is a stronger version of `mul_action.to_perm_hom`. -/
@@ -540,12 +384,6 @@ def arrowMulDistribMulAction {G A B : Type _} [Group G] [MulAction G A] [Monoid
 
 attribute [local instance] arrowMulDistribMulAction
 
-/- warning: mul_aut_arrow -> mulAutArrow is a dubious translation:
-lean 3 declaration is
-  forall {G : Type.{u1}} {A : Type.{u2}} {H : Type.{u3}} [_inst_1 : Group.{u1} G] [_inst_2 : MulAction.{u1, u2} G A (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_1))] [_inst_3 : Monoid.{u3} H], MonoidHom.{u1, max u2 u3} G (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toHasMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (Monoid.toMulOneClass.{u1} G (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_1))) (Monoid.toMulOneClass.{max u2 u3} (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toHasMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (DivInvMonoid.toMonoid.{max u2 u3} (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toHasMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (Group.toDivInvMonoid.{max u2 u3} (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toHasMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (MulAut.group.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toHasMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))))))
-but is expected to have type
-  forall {G : Type.{u1}} {A : Type.{u2}} {H : Type.{u3}} [_inst_1 : Group.{u1} G] [_inst_2 : MulAction.{u1, u2} G A (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_1))] [_inst_3 : Monoid.{u3} H], MonoidHom.{u1, max u2 u3} G (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (Monoid.toMulOneClass.{u1} G (DivInvMonoid.toMonoid.{u1} G (Group.toDivInvMonoid.{u1} G _inst_1))) (Monoid.toMulOneClass.{max u2 u3} (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (DivInvMonoid.toMonoid.{max u2 u3} (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (Group.toDivInvMonoid.{max u2 u3} (MulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))) (MulAut.instGroupMulAut.{max u2 u3} (A -> H) (Pi.instMul.{u2, u3} A (fun (ᾰ : A) => H) (fun (i : A) => MulOneClass.toMul.{u3} H (Monoid.toMulOneClass.{u3} H _inst_3)))))))
-Case conversion may be inaccurate. Consider using '#align mul_aut_arrow mulAutArrowₓ'. -/
 /-- Given groups `G H` with `G` acting on `A`, `G` acts by
   multiplicative automorphisms on `A → H`. -/
 @[simps]
@@ -576,12 +414,6 @@ section DistribMulAction
 
 variable [Monoid α] [AddMonoid β] [DistribMulAction α β]
 
-/- warning: is_unit.smul_eq_zero -> IsUnit.smul_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Monoid.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β _inst_1 _inst_2] {u : α}, (IsUnit.{u1} α _inst_1 u) -> (forall {x : β}, Iff (Eq.{succ u2} β (SMul.smul.{u1, u2} α β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β _inst_1 _inst_2 _inst_3))) u x) (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (OfNat.mk.{u2} β 0 (Zero.zero.{u2} β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β _inst_2)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Monoid.{u1} α] [_inst_2 : AddMonoid.{u2} β] [_inst_3 : DistribMulAction.{u1, u2} α β _inst_1 _inst_2] {u : α}, (IsUnit.{u1} α _inst_1 u) -> (forall {x : β}, Iff (Eq.{succ u2} β (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (SMulZeroClass.toSMul.{u1, u2} α β (AddMonoid.toZero.{u2} β _inst_2) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β _inst_2) (DistribMulAction.toDistribSMul.{u1, u2} α β _inst_1 _inst_2 _inst_3)))) u x) (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))) (Eq.{succ u2} β x (OfNat.ofNat.{u2} β 0 (Zero.toOfNat0.{u2} β (AddMonoid.toZero.{u2} β _inst_2)))))
-Case conversion may be inaccurate. Consider using '#align is_unit.smul_eq_zero IsUnit.smul_eq_zeroₓ'. -/
 @[simp]
 theorem smul_eq_zero {u : α} (hu : IsUnit u) {x : β} : u • x = 0 ↔ x = 0 :=
   Exists.elim hu fun u hu => hu ▸ show u • x = 0 ↔ x = 0 from smul_eq_zero_iff_eq u
@@ -595,24 +427,12 @@ section Smul
 
 variable [Group α] [Monoid β]
 
-/- warning: is_unit_smul_iff -> isUnit_smul_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2)))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3)] (g : α) (m : β), Iff (IsUnit.{u2} β _inst_2 (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3) g m)) (IsUnit.{u2} β _inst_2 m)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : MulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1))] [_inst_4 : SMulCommClass.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3) (MulAction.toSMul.{u2, u2} β β _inst_2 (Monoid.toMulAction.{u2} β _inst_2))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3) (MulAction.toSMul.{u2, u2} β β _inst_2 (Monoid.toMulAction.{u2} β _inst_2)) (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3)] (g : α) (m : β), Iff (IsUnit.{u2} β _inst_2 (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) _inst_3)) g m)) (IsUnit.{u2} β _inst_2 m)
-Case conversion may be inaccurate. Consider using '#align is_unit_smul_iff isUnit_smul_iffₓ'. -/
 @[simp]
 theorem isUnit_smul_iff [MulAction α β] [SMulCommClass α β β] [IsScalarTower α β β] (g : α)
     (m : β) : IsUnit (g • m) ↔ IsUnit m :=
   ⟨fun h => inv_smul_smul g m ▸ h.smul g⁻¹, IsUnit.smul g⟩
 #align is_unit_smul_iff isUnit_smul_iff
 
-/- warning: is_unit.smul_sub_iff_sub_inv_smul -> IsUnit.smul_sub_iff_sub_inv_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : AddGroup.{u2} β] [_inst_4 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4))) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))) (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4)))] [_inst_6 : SMulCommClass.{u1, u2, u2} α β β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4))) (Mul.toSMul.{u2} β (MulOneClass.toHasMul.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2)))] (r : α) (a : β), Iff (IsUnit.{u2} β _inst_2 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (SMul.smul.{u1, u2} α β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4))) r (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (MulOneClass.toHasOne.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2)))))) a)) (IsUnit.{u2} β _inst_2 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toHasSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β (MulOneClass.toHasOne.{u2} β (Monoid.toMulOneClass.{u2} β _inst_2))))) (SMul.smul.{u1, u2} α β (SMulZeroClass.toHasSmul.{u1, u2} α β (AddZeroClass.toHasZero.{u2} β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)))) (DistribSMul.toSmulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4))) (Inv.inv.{u1} α (DivInvMonoid.toHasInv.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) r) a)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : Group.{u1} α] [_inst_2 : Monoid.{u2} β] [_inst_3 : AddGroup.{u2} β] [_inst_4 : DistribMulAction.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))] [_inst_5 : IsScalarTower.{u1, u2, u2} α β β (SMulZeroClass.toSMul.{u1, u2} α β (NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4))) (MulAction.toSMul.{u2, u2} β β _inst_2 (Monoid.toMulAction.{u2} β _inst_2)) (SMulZeroClass.toSMul.{u1, u2} α β (NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4)))] [_inst_6 : SMulCommClass.{u1, u2, u2} α β β (SMulZeroClass.toSMul.{u1, u2} α β (NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4))) (MulAction.toSMul.{u2, u2} β β _inst_2 (Monoid.toMulAction.{u2} β _inst_2))] (r : α) (a : β), Iff (IsUnit.{u2} β _inst_2 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (SMulZeroClass.toSMul.{u1, u2} α β (NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4)))) r (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Monoid.toOne.{u2} β _inst_2)))) a)) (IsUnit.{u2} β _inst_2 (HSub.hSub.{u2, u2, u2} β β β (instHSub.{u2} β (SubNegMonoid.toSub.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β (Monoid.toOne.{u2} β _inst_2))) (HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (SMulZeroClass.toSMul.{u1, u2} α β (NegZeroClass.toZero.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_3)))) (DistribSMul.toSMulZeroClass.{u1, u2} α β (AddMonoid.toAddZeroClass.{u2} β (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3))) (DistribMulAction.toDistribSMul.{u1, u2} α β (DivInvMonoid.toMonoid.{u1} α (Group.toDivInvMonoid.{u1} α _inst_1)) (SubNegMonoid.toAddMonoid.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_3)) _inst_4)))) (Inv.inv.{u1} α (InvOneClass.toInv.{u1} α (DivInvOneMonoid.toInvOneClass.{u1} α (DivisionMonoid.toDivInvOneMonoid.{u1} α (Group.toDivisionMonoid.{u1} α _inst_1)))) r) a)))
-Case conversion may be inaccurate. Consider using '#align is_unit.smul_sub_iff_sub_inv_smul IsUnit.smul_sub_iff_sub_inv_smulₓ'. -/
 theorem IsUnit.smul_sub_iff_sub_inv_smul [AddGroup β] [DistribMulAction α β] [IsScalarTower α β β]
     [SMulCommClass α β β] (r : α) (a : β) : IsUnit (r • 1 - a) ↔ IsUnit (1 - r⁻¹ • a) := by
   rw [← isUnit_smul_iff r (1 - r⁻¹ • a), smul_sub, smul_inv_smul]
Diff
@@ -521,12 +521,8 @@ section Arrow
 def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction G (A → B)
     where
   smul g F a := F (g⁻¹ • a)
-  one_smul := by
-    intro
-    simp only [inv_one, one_smul]
-  mul_smul := by
-    intros
-    simp only [mul_smul, mul_inv_rev]
+  one_smul := by intro ; simp only [inv_one, one_smul]
+  mul_smul := by intros ; simp only [mul_smul, mul_inv_rev]
 #align arrow_action arrowAction
 #align arrow_add_action arrowAddAction
 -/
Diff
@@ -345,7 +345,7 @@ theorem Commute.smul_left_iff₀ [Mul β] [SMulCommClass α β β] [IsScalarTowe
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Function.Bijective.{succ u2, succ u2} β β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Bijective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1606 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1608 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1606 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1608) a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Bijective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1609 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1611 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1609 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1611) a))
 Case conversion may be inaccurate. Consider using '#align mul_action.bijective₀ MulAction.bijective₀ₓ'. -/
 protected theorem MulAction.bijective₀ (ha : a ≠ 0) : Bijective ((· • ·) a : β → β) :=
   MulAction.bijective <| Units.mk0 a ha
@@ -355,7 +355,7 @@ protected theorem MulAction.bijective₀ (ha : a ≠ 0) : Bijective ((· • ·)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Function.Injective.{succ u2, succ u2} β β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Injective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1657 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1659 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1657 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1659) a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Injective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1660 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1662 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1660 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1662) a))
 Case conversion may be inaccurate. Consider using '#align mul_action.injective₀ MulAction.injective₀ₓ'. -/
 protected theorem MulAction.injective₀ (ha : a ≠ 0) : Injective ((· • ·) a : β → β) :=
   (MulAction.bijective₀ ha).Injective
@@ -365,7 +365,7 @@ protected theorem MulAction.injective₀ (ha : a ≠ 0) : Injective ((· • ·)
 lean 3 declaration is
   forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (OfNat.mk.{u1} α 0 (Zero.zero.{u1} α (MulZeroClass.toHasZero.{u1} α (MulZeroOneClass.toMulZeroClass.{u1} α (MonoidWithZero.toMulZeroOneClass.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)))))))) -> (Function.Surjective.{succ u2, succ u2} β β (SMul.smul.{u1, u2} α β (MulAction.toHasSmul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2) a))
 but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Surjective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1707 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1709 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1707 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1709) a))
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : GroupWithZero.{u1} α] [_inst_2 : MulAction.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))] {a : α}, (Ne.{succ u1} α a (OfNat.ofNat.{u1} α 0 (Zero.toOfNat0.{u1} α (MonoidWithZero.toZero.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1))))) -> (Function.Surjective.{succ u2, succ u2} β β ((fun (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1710 : α) (x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1712 : β) => HSMul.hSMul.{u1, u2, u2} α β β (instHSMul.{u1, u2} α β (MulAction.toSMul.{u1, u2} α β (MonoidWithZero.toMonoid.{u1} α (GroupWithZero.toMonoidWithZero.{u1} α _inst_1)) _inst_2)) x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1710 x._@.Mathlib.GroupTheory.GroupAction.Group._hyg.1712) a))
 Case conversion may be inaccurate. Consider using '#align mul_action.surjective₀ MulAction.surjective₀ₓ'. -/
 protected theorem MulAction.surjective₀ (ha : a ≠ 0) : Surjective ((· • ·) a : β → β) :=
   (MulAction.bijective₀ ha).Surjective

Changes in mathlib4

mathlib3
mathlib4
style: replace '.-/' by '. -/' (#11938)

Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.

Diff
@@ -87,7 +87,7 @@ def AddAction.toPermHom (α : Type*) [AddGroup α] [AddAction α β] :
 
 /-- The tautological action by `Equiv.Perm α` on `α`.
 
-This generalizes `Function.End.applyMulAction`.-/
+This generalizes `Function.End.applyMulAction`. -/
 instance Equiv.Perm.applyMulAction (α : Type*) : MulAction (Equiv.Perm α) α where
   smul f a := f a
   one_smul _ := rfl
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -182,7 +182,6 @@ end Group
 section Monoid
 
 variable [Monoid α] [MulAction α β]
-
 variable (c : α) (x y : β) [Invertible c]
 
 @[simp]
@@ -269,7 +268,6 @@ section DistribMulAction
 section Group
 
 variable [Group α] [AddMonoid β] [DistribMulAction α β]
-
 variable (β)
 
 /-- Each element of the group defines an additive monoid isomorphism.
@@ -322,7 +320,6 @@ end DistribMulAction
 section MulDistribMulAction
 
 variable [Group α] [Monoid β] [MulDistribMulAction α β]
-
 variable (β)
 
 /-- Each element of the group defines a multiplicative monoid isomorphism.
feat(GroupTheory/GroupAction/Group): invOf smul lemmas (#9972)

Give smul versions of some existing mul lemmas:

  • invOf_smul_smul
  • smul_invOf_smul (c.f. mul_invOf_self_assoc)
  • invOf_smul_eq_iff (c.f. invOf_mul_eq_iff_eq_mul_left) (required for #7569)
  • smul_eq_iff_eq_invOf_smul (c.f mul_left_eq_iff_eq_invOf_mul)

Co-authored-by: Christopher Hoskin <christopher.hoskin@overleaf.com> Co-authored-by: Christopher Hoskin <mans0954@users.noreply.github.com>

Diff
@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes
 -/
 import Mathlib.Algebra.Group.Aut
+import Mathlib.Algebra.Invertible.Basic
 import Mathlib.GroupTheory.GroupAction.Units
 
 #align_import group_theory.group_action.group from "leanprover-community/mathlib"@"3b52265189f3fb43aa631edffce5d060fafaf82f"
@@ -178,6 +179,28 @@ theorem smul_eq_iff_eq_inv_smul (g : α) {x y : β} : g • x = y ↔ x = g⁻¹
 
 end Group
 
+section Monoid
+
+variable [Monoid α] [MulAction α β]
+
+variable (c : α) (x y : β) [Invertible c]
+
+@[simp]
+theorem invOf_smul_smul : ⅟c • c • x = x := inv_smul_smul (unitOfInvertible c) _
+
+@[simp]
+theorem smul_invOf_smul : c • (⅟ c • x) = x := smul_inv_smul (unitOfInvertible c) _
+
+variable {c x y}
+
+theorem invOf_smul_eq_iff : ⅟c • x = y ↔ x = c • y :=
+  inv_smul_eq_iff (a := unitOfInvertible c)
+
+theorem smul_eq_iff_eq_invOf_smul : c • x = y ↔ x = ⅟c • y :=
+  smul_eq_iff_eq_inv_smul (g := unitOfInvertible c)
+
+end Monoid
+
 /-- `Monoid.toMulAction` is faithful on nontrivial cancellative monoids with zero. -/
 instance CancelMonoidWithZero.faithfulSMul [CancelMonoidWithZero α] [Nontrivial α] :
     FaithfulSMul α α :=
feat: c • x = 0 ↔ c = 0 and similar lemmas (#9390)

and rename and generalise smul_eq_zero_iff_eq'/smul_ne_zero_iff_ne'

From LeanAPAP

Diff
@@ -294,20 +294,6 @@ theorem smul_ne_zero_iff_ne (a : α) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
 
 end Group
 
-section Gwz
-
-variable [GroupWithZero α] [AddMonoid β] [DistribMulAction α β]
-
-theorem smul_eq_zero_iff_eq' {a : α} (ha : a ≠ 0) {x : β} : a • x = 0 ↔ x = 0 :=
-  show Units.mk0 a ha • x = 0 ↔ x = 0 from smul_eq_zero_iff_eq _
-#align smul_eq_zero_iff_eq' smul_eq_zero_iff_eq'
-
-theorem smul_ne_zero_iff_ne' {a : α} (ha : a ≠ 0) {x : β} : a • x ≠ 0 ↔ x ≠ 0 :=
-  show Units.mk0 a ha • x ≠ 0 ↔ x ≠ 0 from smul_ne_zero_iff_ne _
-#align smul_ne_zero_iff_ne' smul_ne_zero_iff_ne'
-
-end Gwz
-
 end DistribMulAction
 
 section MulDistribMulAction
refactor: Deduplicate monotonicity of lemmas (#9179)

Remove the duplicates introduced in #8869 by sorting the lemmas in Algebra.Order.SMul into three files:

  • Algebra.Order.Module.Defs for the order isomorphism induced by scalar multiplication by a positivity element
  • Algebra.Order.Module.Pointwise for the order properties of scalar multiplication of sets. This file is new. I credit myself for https://github.com/leanprover-community/mathlib/pull/9078
  • Algebra.Order.Module.OrderedSMul: The material about OrderedSMul per se. Inherits the copyright header from Algebra.Order.SMul. This file should eventually be deleted.

I move each #align to the correct file. On top of that, I delete unused redundant OrderedSMul instances (they were useful in Lean 3, but not anymore) and eq_of_smul_eq_smul_of_pos_of_le/eq_of_smul_eq_smul_of_neg_of_le since those lemmas are weird and unused.

Diff
@@ -218,6 +218,13 @@ theorem Commute.smul_left_iff₀ [Mul β] [SMulCommClass α β β] [IsScalarTowe
   Commute.smul_left_iff (Units.mk0 c hc)
 #align commute.smul_left_iff₀ Commute.smul_left_iff₀
 
+/-- Right scalar multiplication as an order isomorphism. -/
+@[simps] def Equiv.smulRight (ha : a ≠ 0) : β ≃ β where
+  toFun b := a • b
+  invFun b := a⁻¹ • b
+  left_inv := inv_smul_smul₀ ha
+  right_inv := smul_inv_smul₀ ha
+
 protected theorem MulAction.bijective₀ (ha : a ≠ 0) : Function.Bijective (a • · : β → β) :=
   MulAction.bijective <| Units.mk0 a ha
 #align mul_action.bijective₀ MulAction.bijective₀
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -141,19 +141,19 @@ theorem Commute.smul_left_iff [Mul β] [SMulCommClass α β β] [IsScalarTower 
 #align commute.smul_left_iff Commute.smul_left_iff
 
 @[to_additive]
-protected theorem MulAction.bijective (g : α) : Function.Bijective ((· • ·) g : β → β) :=
+protected theorem MulAction.bijective (g : α) : Function.Bijective (g • · : β → β) :=
   (MulAction.toPerm g).bijective
 #align mul_action.bijective MulAction.bijective
 #align add_action.bijective AddAction.bijective
 
 @[to_additive]
-protected theorem MulAction.injective (g : α) : Function.Injective ((· • ·) g : β → β) :=
+protected theorem MulAction.injective (g : α) : Function.Injective (g • · : β → β) :=
   (MulAction.bijective g).injective
 #align mul_action.injective MulAction.injective
 #align add_action.injective AddAction.injective
 
 @[to_additive]
-protected theorem MulAction.surjective (g : α) : Function.Surjective ((· • ·) g : β → β) :=
+protected theorem MulAction.surjective (g : α) : Function.Surjective (g • · : β → β) :=
   (MulAction.bijective g).surjective
 #align mul_action.surjective MulAction.surjective
 #align add_action.surjective AddAction.surjective
@@ -218,15 +218,15 @@ theorem Commute.smul_left_iff₀ [Mul β] [SMulCommClass α β β] [IsScalarTowe
   Commute.smul_left_iff (Units.mk0 c hc)
 #align commute.smul_left_iff₀ Commute.smul_left_iff₀
 
-protected theorem MulAction.bijective₀ (ha : a ≠ 0) : Function.Bijective ((· • ·) a : β → β) :=
+protected theorem MulAction.bijective₀ (ha : a ≠ 0) : Function.Bijective (a • · : β → β) :=
   MulAction.bijective <| Units.mk0 a ha
 #align mul_action.bijective₀ MulAction.bijective₀
 
-protected theorem MulAction.injective₀ (ha : a ≠ 0) : Function.Injective ((· • ·) a : β → β) :=
+protected theorem MulAction.injective₀ (ha : a ≠ 0) : Function.Injective (a • · : β → β) :=
   (MulAction.bijective₀ ha).injective
 #align mul_action.injective₀ MulAction.injective₀
 
-protected theorem MulAction.surjective₀ (ha : a ≠ 0) : Function.Surjective ((· • ·) a : β → β) :=
+protected theorem MulAction.surjective₀ (ha : a ≠ 0) : Function.Surjective (a • · : β → β) :=
   (MulAction.bijective₀ ha).surjective
 #align mul_action.surjective₀ MulAction.surjective₀
 
refactor(Algebra/Hom): transpose Hom and file name (#8095)

I believe the file defining a type of morphisms belongs alongside the file defining the structure this morphism works on. So I would like to reorganize the files in the Mathlib.Algebra.Hom folder so that e.g. Mathlib.Algebra.Hom.Ring becomes Mathlib.Algebra.Ring.Hom and Mathlib.Algebra.Hom.NonUnitalAlg becomes Mathlib.Algebra.Algebra.NonUnitalHom.

While fixing the imports I went ahead and sorted them for good luck.

The full list of changes is: renamed: Mathlib/Algebra/Hom/NonUnitalAlg.lean -> Mathlib/Algebra/Algebra/NonUnitalHom.lean renamed: Mathlib/Algebra/Hom/Aut.lean -> Mathlib/Algebra/Group/Aut.lean renamed: Mathlib/Algebra/Hom/Commute.lean -> Mathlib/Algebra/Group/Commute/Hom.lean renamed: Mathlib/Algebra/Hom/Embedding.lean -> Mathlib/Algebra/Group/Embedding.lean renamed: Mathlib/Algebra/Hom/Equiv/Basic.lean -> Mathlib/Algebra/Group/Equiv/Basic.lean renamed: Mathlib/Algebra/Hom/Equiv/TypeTags.lean -> Mathlib/Algebra/Group/Equiv/TypeTags.lean renamed: Mathlib/Algebra/Hom/Equiv/Units/Basic.lean -> Mathlib/Algebra/Group/Units/Equiv.lean renamed: Mathlib/Algebra/Hom/Equiv/Units/GroupWithZero.lean -> Mathlib/Algebra/GroupWithZero/Units/Equiv.lean renamed: Mathlib/Algebra/Hom/Freiman.lean -> Mathlib/Algebra/Group/Freiman.lean renamed: Mathlib/Algebra/Hom/Group/Basic.lean -> Mathlib/Algebra/Group/Hom/Basic.lean renamed: Mathlib/Algebra/Hom/Group/Defs.lean -> Mathlib/Algebra/Group/Hom/Defs.lean renamed: Mathlib/Algebra/Hom/GroupAction.lean -> Mathlib/GroupTheory/GroupAction/Hom.lean renamed: Mathlib/Algebra/Hom/GroupInstances.lean -> Mathlib/Algebra/Group/Hom/Instances.lean renamed: Mathlib/Algebra/Hom/Iterate.lean -> Mathlib/Algebra/GroupPower/IterateHom.lean renamed: Mathlib/Algebra/Hom/Centroid.lean -> Mathlib/Algebra/Ring/CentroidHom.lean renamed: Mathlib/Algebra/Hom/Ring/Basic.lean -> Mathlib/Algebra/Ring/Hom/Basic.lean renamed: Mathlib/Algebra/Hom/Ring/Defs.lean -> Mathlib/Algebra/Ring/Hom/Defs.lean renamed: Mathlib/Algebra/Hom/Units.lean -> Mathlib/Algebra/Group/Units/Hom.lean

Zulip thread: https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Reorganizing.20.60Mathlib.2EAlgebra.2EHom.60

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes
 -/
-import Mathlib.Algebra.Hom.Aut
+import Mathlib.Algebra.Group.Aut
 import Mathlib.GroupTheory.GroupAction.Units
 
 #align_import group_theory.group_action.group from "leanprover-community/mathlib"@"3b52265189f3fb43aa631edffce5d060fafaf82f"
feat: the Unfolding Trick (#6223)

This PR is a forward port of mathlib3 PR 3#18863

Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com>

Co-authored-by: Matthew Ballard <matt@mrb.email>

Diff
@@ -6,7 +6,7 @@ Authors: Chris Hughes
 import Mathlib.Algebra.Hom.Aut
 import Mathlib.GroupTheory.GroupAction.Units
 
-#align_import group_theory.group_action.group from "leanprover-community/mathlib"@"ba2245edf0c8bb155f1569fd9b9492a9b384cde6"
+#align_import group_theory.group_action.group from "leanprover-community/mathlib"@"3b52265189f3fb43aa631edffce5d060fafaf82f"
 
 /-!
 # Group actions applied to various types of group
@@ -265,6 +265,16 @@ def DistribMulAction.toAddAut : α →* AddAut β where
 #align distrib_mul_action.to_add_aut DistribMulAction.toAddAut
 #align distrib_mul_action.to_add_aut_apply DistribMulAction.toAddAut_apply
 
+/-- Each non-zero element of a `GroupWithZero` defines an additive monoid isomorphism of an
+`AddMonoid` on which it acts distributively.
+This is a stronger version of `DistribMulAction.toAddMonoidHom`. -/
+def DistribMulAction.toAddEquiv₀ {α : Type*} (β : Type*) [GroupWithZero α] [AddMonoid β]
+    [DistribMulAction α β] (x : α) (hx : x ≠ 0) : β ≃+ β :=
+  { DistribMulAction.toAddMonoidHom β x with
+    invFun := fun b ↦ x⁻¹ • b
+    left_inv := fun b ↦ inv_smul_smul₀ hx b
+    right_inv := fun b ↦ smul_inv_smul₀ hx b }
+
 variable {α β}
 
 theorem smul_eq_zero_iff_eq (a : α) {x : β} : a • x = 0 ↔ x = 0 :=
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -79,7 +79,7 @@ def MulAction.toPermHom : α →* Equiv.Perm β where
 /-- Given an action of an additive group `α` on a set `β`, each `g : α` defines a permutation of
 `β`. -/
 @[simps!]
-def AddAction.toPermHom (α : Type _) [AddGroup α] [AddAction α β] :
+def AddAction.toPermHom (α : Type*) [AddGroup α] [AddAction α β] :
     α →+ Additive (Equiv.Perm β) :=
   MonoidHom.toAdditive'' <| MulAction.toPermHom (Multiplicative α) β
 #align add_action.to_perm_hom AddAction.toPermHom
@@ -87,19 +87,19 @@ def AddAction.toPermHom (α : Type _) [AddGroup α] [AddAction α β] :
 /-- The tautological action by `Equiv.Perm α` on `α`.
 
 This generalizes `Function.End.applyMulAction`.-/
-instance Equiv.Perm.applyMulAction (α : Type _) : MulAction (Equiv.Perm α) α where
+instance Equiv.Perm.applyMulAction (α : Type*) : MulAction (Equiv.Perm α) α where
   smul f a := f a
   one_smul _ := rfl
   mul_smul _ _ _ := rfl
 #align equiv.perm.apply_mul_action Equiv.Perm.applyMulAction
 
 @[simp]
-protected theorem Equiv.Perm.smul_def {α : Type _} (f : Equiv.Perm α) (a : α) : f • a = f a :=
+protected theorem Equiv.Perm.smul_def {α : Type*} (f : Equiv.Perm α) (a : α) : f • a = f a :=
   rfl
 #align equiv.perm.smul_def Equiv.Perm.smul_def
 
 /-- `Equiv.Perm.applyMulAction` is faithful. -/
-instance Equiv.Perm.applyFaithfulSMul (α : Type _) : FaithfulSMul (Equiv.Perm α) α :=
+instance Equiv.Perm.applyFaithfulSMul (α : Type*) : FaithfulSMul (Equiv.Perm α) α :=
   ⟨Equiv.ext⟩
 #align equiv.perm.apply_has_faithful_smul Equiv.Perm.applyFaithfulSMul
 
@@ -331,7 +331,7 @@ section Arrow
 /-- If `G` acts on `A`, then it acts also on `A → B`, by `(g • F) a = F (g⁻¹ • a)`. -/
 @[to_additive (attr := simps) arrowAddAction
       "If `G` acts on `A`, then it acts also on `A → B`, by `(g +ᵥ F) a = F (g⁻¹ +ᵥ a)`"]
-def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction G (A → B) where
+def arrowAction {G A B : Type*} [DivisionMonoid G] [MulAction G A] : MulAction G (A → B) where
   smul g F a := F (g⁻¹ • a)
   one_smul := by
     intro f
@@ -347,7 +347,7 @@ def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction
 attribute [local instance] arrowAction
 
 /-- When `B` is a monoid, `ArrowAction` is additionally a `MulDistribMulAction`. -/
-def arrowMulDistribMulAction {G A B : Type _} [Group G] [MulAction G A] [Monoid B] :
+def arrowMulDistribMulAction {G A B : Type*} [Group G] [MulAction G A] [Monoid B] :
     MulDistribMulAction G (A → B) where
   smul_one _ := rfl
   smul_mul _ _ _ := rfl
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2018 Chris Hughes. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Chris Hughes
-
-! This file was ported from Lean 3 source module group_theory.group_action.group
-! leanprover-community/mathlib commit ba2245edf0c8bb155f1569fd9b9492a9b384cde6
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Algebra.Hom.Aut
 import Mathlib.GroupTheory.GroupAction.Units
 
+#align_import group_theory.group_action.group from "leanprover-community/mathlib"@"ba2245edf0c8bb155f1569fd9b9492a9b384cde6"
+
 /-!
 # Group actions applied to various types of group
 
chore: fix grammar 2/3 (#5002)

Part 2 of #5001

Diff
@@ -79,7 +79,7 @@ def MulAction.toPermHom : α →* Equiv.Perm β where
 #align mul_action.to_perm_hom MulAction.toPermHom
 #align mul_action.to_perm_hom_apply MulAction.toPermHom_apply
 
-/-- Given an action of a additive group `α` on a set `β`, each `g : α` defines a permutation of
+/-- Given an action of an additive group `α` on a set `β`, each `g : α` defines a permutation of
 `β`. -/
 @[simps!]
 def AddAction.toPermHom (α : Type _) [AddGroup α] [AddAction α β] :
@@ -314,7 +314,7 @@ def MulDistribMulAction.toMulEquiv (x : α) : β ≃* β :=
 
 variable (α)
 
-/-- Each element of the group defines an multiplicative monoid isomorphism.
+/-- Each element of the group defines a multiplicative monoid isomorphism.
 
 This is a stronger version of `MulAction.toPermHom`. -/
 @[simps]
fix: replace symmApply by symm_apply (#2560)
Diff
@@ -253,7 +253,7 @@ def DistribMulAction.toAddEquiv (x : α) : β ≃+ β :=
   { DistribMulAction.toAddMonoidHom β x, MulAction.toPermHom α β x with }
 #align distrib_mul_action.to_add_equiv DistribMulAction.toAddEquiv
 #align distrib_mul_action.to_add_equiv_apply DistribMulAction.toAddEquiv_apply
-#align distrib_mul_action.to_add_equiv_symm_apply DistribMulAction.toAddEquiv_symmApply
+#align distrib_mul_action.to_add_equiv_symm_apply DistribMulAction.toAddEquiv_symm_apply
 
 variable (α)
 
@@ -309,7 +309,7 @@ This is a stronger version of `MulAction.toPerm`. -/
 def MulDistribMulAction.toMulEquiv (x : α) : β ≃* β :=
   { MulDistribMulAction.toMonoidHom β x, MulAction.toPermHom α β x with }
 #align mul_distrib_mul_action.to_mul_equiv MulDistribMulAction.toMulEquiv
-#align mul_distrib_mul_action.to_mul_equiv_symm_apply MulDistribMulAction.toMulEquiv_symmApply
+#align mul_distrib_mul_action.to_mul_equiv_symm_apply MulDistribMulAction.toMulEquiv_symm_apply
 #align mul_distrib_mul_action.to_mul_equiv_apply MulDistribMulAction.toMulEquiv_apply
 
 variable (α)
@@ -365,7 +365,7 @@ def mulAutArrow {G A H} [Group G] [MulAction G A] [Monoid H] : G →* MulAut (A
   MulDistribMulAction.toMulAut _ _
 #align mul_aut_arrow mulAutArrow
 #align mul_aut_arrow_apply_apply mulAutArrow_apply_apply
-#align mul_aut_arrow_apply_symm_apply mulAutArrow_apply_symmApply
+#align mul_aut_arrow_apply_symm_apply mulAutArrow_apply_symm_apply
 
 end Arrow
 
feat: require @[simps!] if simps runs in expensive mode (#1885)
  • This does not change the behavior of simps, just raises a linter error if you run simps in a more expensive mode without writing !.
  • Fixed some incorrect occurrences of to_additive, simps. Will do that systematically in future PR.
  • Fix port of OmegaCompletePartialOrder.ContinuousHom.ofMono a bit

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -81,7 +81,7 @@ def MulAction.toPermHom : α →* Equiv.Perm β where
 
 /-- Given an action of a additive group `α` on a set `β`, each `g : α` defines a permutation of
 `β`. -/
-@[simps]
+@[simps!]
 def AddAction.toPermHom (α : Type _) [AddGroup α] [AddAction α β] :
     α →+ Additive (Equiv.Perm β) :=
   MonoidHom.toAdditive'' <| MulAction.toPermHom (Multiplicative α) β
@@ -360,7 +360,7 @@ attribute [local instance] arrowMulDistribMulAction
 
 /-- Given groups `G H` with `G` acting on `A`, `G` acts by
   multiplicative automorphisms on `A → H`. -/
-@[simps]
+@[simps!]
 def mulAutArrow {G A H} [Group G] [MulAction G A] [Monoid H] : G →* MulAut (A → H) :=
   MulDistribMulAction.toMulAut _ _
 #align mul_aut_arrow mulAutArrow
fix: use to_additive (attr := _) here and there (#2073)
Diff
@@ -332,9 +332,8 @@ end MulDistribMulAction
 section Arrow
 
 /-- If `G` acts on `A`, then it acts also on `A → B`, by `(g • F) a = F (g⁻¹ • a)`. -/
-@[to_additive arrowAddAction
-      "If `G` acts on `A`, then it acts also on `A → B`, by `(g +ᵥ F) a = F (g⁻¹ +ᵥ a)`",
-  simps]
+@[to_additive (attr := simps) arrowAddAction
+      "If `G` acts on `A`, then it acts also on `A → B`, by `(g +ᵥ F) a = F (g⁻¹ +ᵥ a)`"]
 def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction G (A → B) where
   smul g F a := F (g⁻¹ • a)
   one_smul := by
chore: add missing #align statements (#1902)

This PR is the result of a slight variant on the following "algorithm"

  • take all mathlib 3 names, remove _ and make all uppercase letters into lowercase
  • take all mathlib 4 names, remove _ and make all uppercase letters into lowercase
  • look for matches, and create pairs (original_lean3_name, OriginalLean4Name)
  • for pairs that do not have an align statement:
    • use Lean 4 to lookup the file + position of the Lean 4 name
    • add an #align statement just before the next empty line
  • manually fix some tiny mistakes (e.g., empty lines in proofs might cause the #align statement to have been inserted too early)
Diff
@@ -52,6 +52,10 @@ def MulAction.toPerm (a : α) : Equiv.Perm β :=
   ⟨fun x => a • x, fun x => a⁻¹ • x, inv_smul_smul a, smul_inv_smul a⟩
 #align mul_action.to_perm MulAction.toPerm
 #align add_action.to_perm AddAction.toPerm
+#align add_action.to_perm_apply AddAction.toPerm_apply
+#align mul_action.to_perm_apply MulAction.toPerm_apply
+#align add_action.to_perm_symm_apply AddAction.toPerm_symm_apply
+#align mul_action.to_perm_symm_apply MulAction.toPerm_symm_apply
 
 /-- Given an action of an additive group `α` on `β`, each `g : α` defines a permutation of `β`. -/
 add_decl_doc AddAction.toPerm
@@ -73,6 +77,7 @@ def MulAction.toPermHom : α →* Equiv.Perm β where
   map_one' := Equiv.ext <| one_smul α
   map_mul' u₁ u₂ := Equiv.ext <| mul_smul (u₁ : α) u₂
 #align mul_action.to_perm_hom MulAction.toPermHom
+#align mul_action.to_perm_hom_apply MulAction.toPermHom_apply
 
 /-- Given an action of a additive group `α` on a set `β`, each `g : α` defines a permutation of
 `β`. -/
@@ -247,6 +252,8 @@ This is a stronger version of `MulAction.toPerm`. -/
 def DistribMulAction.toAddEquiv (x : α) : β ≃+ β :=
   { DistribMulAction.toAddMonoidHom β x, MulAction.toPermHom α β x with }
 #align distrib_mul_action.to_add_equiv DistribMulAction.toAddEquiv
+#align distrib_mul_action.to_add_equiv_apply DistribMulAction.toAddEquiv_apply
+#align distrib_mul_action.to_add_equiv_symm_apply DistribMulAction.toAddEquiv_symmApply
 
 variable (α)
 
@@ -259,6 +266,7 @@ def DistribMulAction.toAddAut : α →* AddAut β where
   map_one' := AddEquiv.ext (one_smul _)
   map_mul' _ _ := AddEquiv.ext (mul_smul _ _)
 #align distrib_mul_action.to_add_aut DistribMulAction.toAddAut
+#align distrib_mul_action.to_add_aut_apply DistribMulAction.toAddAut_apply
 
 variable {α β}
 
@@ -301,6 +309,8 @@ This is a stronger version of `MulAction.toPerm`. -/
 def MulDistribMulAction.toMulEquiv (x : α) : β ≃* β :=
   { MulDistribMulAction.toMonoidHom β x, MulAction.toPermHom α β x with }
 #align mul_distrib_mul_action.to_mul_equiv MulDistribMulAction.toMulEquiv
+#align mul_distrib_mul_action.to_mul_equiv_symm_apply MulDistribMulAction.toMulEquiv_symmApply
+#align mul_distrib_mul_action.to_mul_equiv_apply MulDistribMulAction.toMulEquiv_apply
 
 variable (α)
 
@@ -313,6 +323,7 @@ def MulDistribMulAction.toMulAut : α →* MulAut β where
   map_one' := MulEquiv.ext (one_smul _)
   map_mul' _ _ := MulEquiv.ext (mul_smul _ _)
 #align mul_distrib_mul_action.to_mul_aut MulDistribMulAction.toMulAut
+#align mul_distrib_mul_action.to_mul_aut_apply MulDistribMulAction.toMulAut_apply
 
 variable {α β}
 
@@ -354,6 +365,8 @@ attribute [local instance] arrowMulDistribMulAction
 def mulAutArrow {G A H} [Group G] [MulAction G A] [Monoid H] : G →* MulAut (A → H) :=
   MulDistribMulAction.toMulAut _ _
 #align mul_aut_arrow mulAutArrow
+#align mul_aut_arrow_apply_apply mulAutArrow_apply_apply
+#align mul_aut_arrow_apply_symm_apply mulAutArrow_apply_symmApply
 
 end Arrow
 
chore: add #align statements for to_additive decls (#1816)

Co-authored-by: Floris van Doorn <fpvdoorn@gmail.com>

Diff
@@ -29,6 +29,7 @@ section MulAction
 instance RightCancelMonoid.faithfulSMul [RightCancelMonoid α] : FaithfulSMul α α :=
   ⟨fun h => mul_right_cancel (h 1)⟩
 #align right_cancel_monoid.to_has_faithful_smul RightCancelMonoid.faithfulSMul
+#align add_right_cancel_monoid.to_has_faithful_vadd AddRightCancelMonoid.faithfulVAdd
 
 section Group
 
@@ -37,17 +38,20 @@ variable [Group α] [MulAction α β]
 @[to_additive (attr := simp)]
 theorem inv_smul_smul (c : α) (x : β) : c⁻¹ • c • x = x := by rw [smul_smul, mul_left_inv, one_smul]
 #align inv_smul_smul inv_smul_smul
+#align neg_vadd_vadd neg_vadd_vadd
 
 @[to_additive (attr := simp)]
 theorem smul_inv_smul (c : α) (x : β) : c • c⁻¹ • x = x := by
   rw [smul_smul, mul_right_inv, one_smul]
 #align smul_inv_smul smul_inv_smul
+#align vadd_neg_vadd vadd_neg_vadd
 
 /-- Given an action of a group `α` on `β`, each `g : α` defines a permutation of `β`. -/
 @[to_additive (attr := simps)]
 def MulAction.toPerm (a : α) : Equiv.Perm β :=
   ⟨fun x => a • x, fun x => a⁻¹ • x, inv_smul_smul a, smul_inv_smul a⟩
 #align mul_action.to_perm MulAction.toPerm
+#align add_action.to_perm AddAction.toPerm
 
 /-- Given an action of an additive group `α` on `β`, each `g : α` defines a permutation of `β`. -/
 add_decl_doc AddAction.toPerm
@@ -58,6 +62,7 @@ theorem MulAction.toPerm_injective [FaithfulSMul α β] :
     Function.Injective (MulAction.toPerm : α → Equiv.Perm β) :=
   (show Function.Injective (Equiv.toFun ∘ MulAction.toPerm) from smul_left_injective').of_comp
 #align mul_action.to_perm_injective MulAction.toPerm_injective
+#align add_action.to_perm_injective AddAction.toPerm_injective
 
 variable (α) (β)
 
@@ -102,11 +107,13 @@ variable {α} {β}
 theorem inv_smul_eq_iff {a : α} {x y : β} : a⁻¹ • x = y ↔ x = a • y :=
   (MulAction.toPerm a).symm_apply_eq
 #align inv_smul_eq_iff inv_smul_eq_iff
+#align neg_vadd_eq_iff neg_vadd_eq_iff
 
 @[to_additive]
 theorem eq_inv_smul_iff {a : α} {x y : β} : x = a⁻¹ • y ↔ a • x = y :=
   (MulAction.toPerm a).eq_symm_apply
 #align eq_inv_smul_iff eq_inv_smul_iff
+#align eq_neg_vadd_iff eq_neg_vadd_iff
 
 theorem smul_inv [Group β] [SMulCommClass α β β] [IsScalarTower α β β] (c : α) (x : β) :
     (c • x)⁻¹ = c⁻¹ • x⁻¹ := by
@@ -135,31 +142,37 @@ theorem Commute.smul_left_iff [Mul β] [SMulCommClass α β β] [IsScalarTower 
 protected theorem MulAction.bijective (g : α) : Function.Bijective ((· • ·) g : β → β) :=
   (MulAction.toPerm g).bijective
 #align mul_action.bijective MulAction.bijective
+#align add_action.bijective AddAction.bijective
 
 @[to_additive]
 protected theorem MulAction.injective (g : α) : Function.Injective ((· • ·) g : β → β) :=
   (MulAction.bijective g).injective
 #align mul_action.injective MulAction.injective
+#align add_action.injective AddAction.injective
 
 @[to_additive]
 protected theorem MulAction.surjective (g : α) : Function.Surjective ((· • ·) g : β → β) :=
   (MulAction.bijective g).surjective
 #align mul_action.surjective MulAction.surjective
+#align add_action.surjective AddAction.surjective
 
 @[to_additive]
 theorem smul_left_cancel (g : α) {x y : β} (h : g • x = g • y) : x = y :=
   MulAction.injective g h
 #align smul_left_cancel smul_left_cancel
+#align vadd_left_cancel vadd_left_cancel
 
 @[to_additive (attr := simp)]
 theorem smul_left_cancel_iff (g : α) {x y : β} : g • x = g • y ↔ x = y :=
   (MulAction.injective g).eq_iff
 #align smul_left_cancel_iff smul_left_cancel_iff
+#align vadd_left_cancel_iff vadd_left_cancel_iff
 
 @[to_additive]
 theorem smul_eq_iff_eq_inv_smul (g : α) {x y : β} : g • x = y ↔ x = g⁻¹ • y :=
   (MulAction.toPerm g).apply_eq_iff_eq_symm_apply
 #align smul_eq_iff_eq_inv_smul smul_eq_iff_eq_inv_smul
+#align vadd_eq_iff_eq_neg_vadd vadd_eq_iff_eq_neg_vadd
 
 end Group
 
@@ -322,6 +335,7 @@ def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction
     show (fun a => f ((x*y)⁻¹ • a)) = (fun a => f (y⁻¹ • x⁻¹ • a))
     simp only [mul_smul, mul_inv_rev]
 #align arrow_action arrowAction
+#align arrow_add_action arrowAddAction
 
 attribute [local instance] arrowAction
 
@@ -354,6 +368,7 @@ theorem smul_left_cancel {a : α} (ha : IsUnit a) {x y : β} : a • x = a • y
   let ⟨u, hu⟩ := ha
   hu ▸ smul_left_cancel_iff u
 #align is_unit.smul_left_cancel IsUnit.smul_left_cancel
+#align is_add_unit.vadd_left_cancel IsAddUnit.vadd_left_cancel
 
 end MulAction
 
feat: improve the way to_additive deals with attributes (#1314)
  • The new syntax for any attributes that need to be copied by to_additive is @[to_additive (attrs := simp, ext, simps)]
  • Adds the auxiliary declarations generated by the simp and simps attributes to the to_additive-dictionary.
  • Future issue: Does not yet translate auxiliary declarations for other attributes (including custom simp-attributes). In particular it's possible that norm_cast might generate some auxiliary declarations.
  • Fixes #950
  • Fixes #953
  • Fixes #1149
  • This moves the interaction between to_additive and simps from the Simps file to the toAdditive file for uniformity.
  • Make the same changes to @[reassoc]

Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -34,17 +34,17 @@ section Group
 
 variable [Group α] [MulAction α β]
 
-@[simp, to_additive]
+@[to_additive (attr := simp)]
 theorem inv_smul_smul (c : α) (x : β) : c⁻¹ • c • x = x := by rw [smul_smul, mul_left_inv, one_smul]
 #align inv_smul_smul inv_smul_smul
 
-@[simp, to_additive]
+@[to_additive (attr := simp)]
 theorem smul_inv_smul (c : α) (x : β) : c • c⁻¹ • x = x := by
   rw [smul_smul, mul_right_inv, one_smul]
 #align smul_inv_smul smul_inv_smul
 
 /-- Given an action of a group `α` on `β`, each `g : α` defines a permutation of `β`. -/
-@[to_additive, simps]
+@[to_additive (attr := simps)]
 def MulAction.toPerm (a : α) : Equiv.Perm β :=
   ⟨fun x => a • x, fun x => a⁻¹ • x, inv_smul_smul a, smul_inv_smul a⟩
 #align mul_action.to_perm MulAction.toPerm
@@ -151,7 +151,7 @@ theorem smul_left_cancel (g : α) {x y : β} (h : g • x = g • y) : x = y :=
   MulAction.injective g h
 #align smul_left_cancel smul_left_cancel
 
-@[simp, to_additive]
+@[to_additive (attr := simp)]
 theorem smul_left_cancel_iff (g : α) {x y : β} : g • x = g • y ↔ x = y :=
   (MulAction.injective g).eq_iff
 #align smul_left_cancel_iff smul_left_cancel_iff
chore: tidy various files (#1311)
Diff
@@ -54,17 +54,16 @@ add_decl_doc AddAction.toPerm
 
 /-- `MulAction.toPerm` is injective on faithful actions. -/
 @[to_additive "`AddAction.toPerm` is injective on faithful actions."]
-theorem MulAction.to_perm_injective [FaithfulSMul α β] :
+theorem MulAction.toPerm_injective [FaithfulSMul α β] :
     Function.Injective (MulAction.toPerm : α → Equiv.Perm β) :=
   (show Function.Injective (Equiv.toFun ∘ MulAction.toPerm) from smul_left_injective').of_comp
-#align mul_action.to_perm_injective MulAction.to_perm_injective
+#align mul_action.to_perm_injective MulAction.toPerm_injective
 
 variable (α) (β)
 
 /-- Given an action of a group `α` on a set `β`, each `g : α` defines a permutation of `β`. -/
 @[simps]
-def MulAction.toPermHom :
-    α →* Equiv.Perm β where
+def MulAction.toPermHom : α →* Equiv.Perm β where
   toFun := MulAction.toPerm
   map_one' := Equiv.ext <| one_smul α
   map_mul' u₁ u₂ := Equiv.ext <| mul_smul (u₁ : α) u₂
@@ -81,8 +80,7 @@ def AddAction.toPermHom (α : Type _) [AddGroup α] [AddAction α β] :
 /-- The tautological action by `Equiv.Perm α` on `α`.
 
 This generalizes `Function.End.applyMulAction`.-/
-instance Equiv.Perm.applyMulAction (α : Type _) :
-    MulAction (Equiv.Perm α) α where
+instance Equiv.Perm.applyMulAction (α : Type _) : MulAction (Equiv.Perm α) α where
   smul f a := f a
   one_smul _ := rfl
   mul_smul _ _ _ := rfl
@@ -94,9 +92,9 @@ protected theorem Equiv.Perm.smul_def {α : Type _} (f : Equiv.Perm α) (a : α)
 #align equiv.perm.smul_def Equiv.Perm.smul_def
 
 /-- `Equiv.Perm.applyMulAction` is faithful. -/
-instance Equiv.Perm.apply_faithfulSMul (α : Type _) : FaithfulSMul (Equiv.Perm α) α :=
+instance Equiv.Perm.applyFaithfulSMul (α : Type _) : FaithfulSMul (Equiv.Perm α) α :=
   ⟨Equiv.ext⟩
-#align equiv.perm.apply_has_faithful_smul Equiv.Perm.apply_faithfulSMul
+#align equiv.perm.apply_has_faithful_smul Equiv.Perm.applyFaithfulSMul
 
 variable {α} {β}
 
@@ -243,8 +241,7 @@ variable (α)
 
 This is a stronger version of `MulAction.toPermHom`. -/
 @[simps]
-def DistribMulAction.toAddAut :
-    α →* AddAut β where
+def DistribMulAction.toAddAut : α →* AddAut β where
   toFun := DistribMulAction.toAddEquiv β
   map_one' := AddEquiv.ext (one_smul _)
   map_mul' _ _ := AddEquiv.ext (mul_smul _ _)
@@ -298,8 +295,7 @@ variable (α)
 
 This is a stronger version of `MulAction.toPermHom`. -/
 @[simps]
-def MulDistribMulAction.toMulAut :
-    α →* MulAut β where
+def MulDistribMulAction.toMulAut : α →* MulAut β where
   toFun := MulDistribMulAction.toMulEquiv β
   map_one' := MulEquiv.ext (one_smul _)
   map_mul' _ _ := MulEquiv.ext (mul_smul _ _)
@@ -315,8 +311,7 @@ section Arrow
 @[to_additive arrowAddAction
       "If `G` acts on `A`, then it acts also on `A → B`, by `(g +ᵥ F) a = F (g⁻¹ +ᵥ a)`",
   simps]
-def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] :
-    MulAction G (A → B) where
+def arrowAction {G A B : Type _} [DivisionMonoid G] [MulAction G A] : MulAction G (A → B) where
   smul g F a := F (g⁻¹ • a)
   one_smul := by
     intro f
chore: golf (#1214)
Diff
@@ -74,11 +74,8 @@ def MulAction.toPermHom :
 `β`. -/
 @[simps]
 def AddAction.toPermHom (α : Type _) [AddGroup α] [AddAction α β] :
-    α →+ Additive
-        (Equiv.Perm β) where
-  toFun a := Additive.ofMul <| AddAction.toPerm a
-  map_zero' := Equiv.ext <| zero_vadd α
-  map_add' a₁ a₂ := Equiv.ext <| add_vadd a₁ a₂
+    α →+ Additive (Equiv.Perm β) :=
+  MonoidHom.toAdditive'' <| MulAction.toPermHom (Multiplicative α) β
 #align add_action.to_perm_hom AddAction.toPermHom
 
 /-- The tautological action by `Equiv.Perm α` on `α`.
chore: fix casing per naming scheme (#1183)

Fix a lot of wrong casing mostly in the docstrings but also sometimes in def/theorem names. E.g. fin 2 --> Fin 2, add_monoid_hom --> AddMonoidHom

Remove \n from to_additive docstrings that were inserted by mathport.

Move files and directories with Gcd and Smul to GCD and SMul

Diff
@@ -26,9 +26,9 @@ section MulAction
 
 /-- `Monoid.toMulAction` is faithful on cancellative monoids. -/
 @[to_additive " `AddMonoid.toAddAction` is faithful on additive cancellative monoids. "]
-instance RightCancelMonoid.to_has_faithful_smul [RightCancelMonoid α] : FaithfulSMul α α :=
+instance RightCancelMonoid.faithfulSMul [RightCancelMonoid α] : FaithfulSMul α α :=
   ⟨fun h => mul_right_cancel (h 1)⟩
-#align right_cancel_monoid.to_has_faithful_smul RightCancelMonoid.to_has_faithful_smul
+#align right_cancel_monoid.to_has_faithful_smul RightCancelMonoid.faithfulSMul
 
 section Group
 
@@ -83,7 +83,7 @@ def AddAction.toPermHom (α : Type _) [AddGroup α] [AddAction α β] :
 
 /-- The tautological action by `Equiv.Perm α` on `α`.
 
-This generalizes `function.End.applyMulAction`.-/
+This generalizes `Function.End.applyMulAction`.-/
 instance Equiv.Perm.applyMulAction (α : Type _) :
     MulAction (Equiv.Perm α) α where
   smul f a := f a
@@ -169,10 +169,10 @@ theorem smul_eq_iff_eq_inv_smul (g : α) {x y : β} : g • x = y ↔ x = g⁻¹
 end Group
 
 /-- `Monoid.toMulAction` is faithful on nontrivial cancellative monoids with zero. -/
-instance CancelMonoidWithZero.to_has_faithful_smul [CancelMonoidWithZero α] [Nontrivial α] :
+instance CancelMonoidWithZero.faithfulSMul [CancelMonoidWithZero α] [Nontrivial α] :
     FaithfulSMul α α :=
   ⟨fun h => mul_left_injective₀ one_ne_zero (h 1)⟩
-#align cancel_monoid_with_zero.to_has_faithful_smul CancelMonoidWithZero.to_has_faithful_smul
+#align cancel_monoid_with_zero.to_has_faithful_smul CancelMonoidWithZero.faithfulSMul
 
 section Gwz
 
@@ -378,19 +378,19 @@ end DistribMulAction
 
 end IsUnit
 
-section Smul
+section SMul
 
 variable [Group α] [Monoid β]
 
 @[simp]
-theorem is_unit_smul_iff [MulAction α β] [SMulCommClass α β β] [IsScalarTower α β β] (g : α)
+theorem isUnit_smul_iff [MulAction α β] [SMulCommClass α β β] [IsScalarTower α β β] (g : α)
     (m : β) : IsUnit (g • m) ↔ IsUnit m :=
   ⟨fun h => inv_smul_smul g m ▸ h.smul g⁻¹, IsUnit.smul g⟩
-#align is_unit_smul_iff is_unit_smul_iff
+#align is_unit_smul_iff isUnit_smul_iff
 
 theorem IsUnit.smul_sub_iff_sub_inv_smul [AddGroup β] [DistribMulAction α β] [IsScalarTower α β β]
     [SMulCommClass α β β] (r : α) (a : β) : IsUnit (r • (1 : β) - a) ↔ IsUnit (1 - r⁻¹ • a) := by
-  rw [← is_unit_smul_iff r (1 - r⁻¹ • a), smul_sub, smul_inv_smul]
+  rw [← isUnit_smul_iff r (1 - r⁻¹ • a), smul_sub, smul_inv_smul]
 #align is_unit.smul_sub_iff_sub_inv_smul IsUnit.smul_sub_iff_sub_inv_smul
 
-end Smul
+end SMul
feat port: GroupTheory.GroupAction.Group (#1146)

Dependencies 3 + 136

137 files ported (97.9%)
55622 lines ported (98.2%)
Show graph

The unported dependencies are