measure_theory.card_measurable_space
⟷
Mathlib.MeasureTheory.MeasurableSpace.Card
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,7 +3,7 @@ Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Violeta Hernández Palacios
-/
-import MeasureTheory.MeasurableSpaceDef
+import MeasureTheory.MeasurableSpace.Defs
import SetTheory.Cardinal.Cofinality
import SetTheory.Cardinal.Continuum
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -138,7 +138,7 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
· apply mk_range_le.trans
simp only [mk_pi, Subtype.val_eq_coe, prod_const, lift_uzero, mk_denumerable, lift_aleph_0]
have := @power_le_power_right _ _ ℵ₀ J
- rwa [← power_mul, aleph_0_mul_aleph_0] at this
+ rwa [← power_mul, aleph_0_mul_aleph_0] at this
#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_le
-/
@@ -171,7 +171,7 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
revert t
apply (aleph 1).ord.out.wo.wf.induction i
intro j H t ht
- unfold generate_measurable_rec at ht
+ unfold generate_measurable_rec at ht
rcases ht with (((h | h) | ⟨u, ⟨-, ⟨⟨k, hk⟩, rfl⟩, hu⟩, rfl⟩) | ⟨f, rfl⟩)
· exact generate_measurable.basic t h
· convert generate_measurable.empty
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Violeta Hernández Palacios
-/
-import Mathbin.MeasureTheory.MeasurableSpaceDef
-import Mathbin.SetTheory.Cardinal.Cofinality
-import Mathbin.SetTheory.Cardinal.Continuum
+import MeasureTheory.MeasurableSpaceDef
+import SetTheory.Cardinal.Cofinality
+import SetTheory.Cardinal.Continuum
#align_import measure_theory.card_measurable_space from "leanprover-community/mathlib"@"932872382355f00112641d305ba0619305dc8642"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Violeta Hernández Palacios
-
-! This file was ported from Lean 3 source module measure_theory.card_measurable_space
-! leanprover-community/mathlib commit 932872382355f00112641d305ba0619305dc8642
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.MeasureTheory.MeasurableSpaceDef
import Mathbin.SetTheory.Cardinal.Cofinality
import Mathbin.SetTheory.Cardinal.Continuum
+#align_import measure_theory.card_measurable_space from "leanprover-community/mathlib"@"932872382355f00112641d305ba0619305dc8642"
+
/-!
# Cardinal of sigma-algebras
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -41,11 +41,11 @@ open scoped Cardinal
open Cardinal Set
--- mathport name: exprω₁
local notation "ω₁" => (aleph 1 : Cardinal.{u}).ord.out.α
namespace MeasurableSpace
+#print MeasurableSpace.generateMeasurableRec /-
/-- Transfinite induction construction of the sigma-algebra generated by a set of sets `s`. At each
step, we add all elements of `s`, the empty set, the complements of already constructed sets, and
countable unions of already constructed sets. We index this construction by an ordinal `< ω₁`, as
@@ -58,7 +58,9 @@ def generateMeasurableRec (s : Set (Set α)) : ω₁ → Set (Set α)
s ∪ {∅} ∪ compl '' S ∪ Set.range fun f : ℕ → S => ⋃ n, (f n).1
decreasing_by exact j.2
#align measurable_space.generate_measurable_rec MeasurableSpace.generateMeasurableRec
+-/
+#print MeasurableSpace.self_subset_generateMeasurableRec /-
theorem self_subset_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
s ⊆ generateMeasurableRec s i :=
by
@@ -66,21 +68,27 @@ theorem self_subset_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
apply_rules [subset_union_of_subset_left]
exact subset_rfl
#align measurable_space.self_subset_generate_measurable_rec MeasurableSpace.self_subset_generateMeasurableRec
+-/
+#print MeasurableSpace.empty_mem_generateMeasurableRec /-
theorem empty_mem_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
∅ ∈ generateMeasurableRec s i :=
by
unfold generate_measurable_rec
exact mem_union_left _ (mem_union_left _ (mem_union_right _ (mem_singleton ∅)))
#align measurable_space.empty_mem_generate_measurable_rec MeasurableSpace.empty_mem_generateMeasurableRec
+-/
+#print MeasurableSpace.compl_mem_generateMeasurableRec /-
theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j < i) {t : Set α}
(ht : t ∈ generateMeasurableRec s j) : tᶜ ∈ generateMeasurableRec s i :=
by
unfold generate_measurable_rec
exact mem_union_left _ (mem_union_right _ ⟨t, mem_Union.2 ⟨⟨j, h⟩, ht⟩, rfl⟩)
#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRec
+-/
+#print MeasurableSpace.iUnion_mem_generateMeasurableRec /-
theorem iUnion_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ → Set α}
(hf : ∀ n, ∃ j < i, f n ∈ generateMeasurableRec s j) : (⋃ n, f n) ∈ generateMeasurableRec s i :=
by
@@ -93,7 +101,9 @@ theorem iUnion_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ
mem_Union.2 ⟨⟨j, hj⟩, hf⟩⟩,
rfl⟩
#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.iUnion_mem_generateMeasurableRec
+-/
+#print MeasurableSpace.generateMeasurableRec_subset /-
theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤ j) :
generateMeasurableRec s i ⊆ generateMeasurableRec s j := fun x hx =>
by
@@ -102,7 +112,9 @@ theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤
· convert Union_mem_generate_measurable_rec fun n => ⟨i, h, hx⟩
exact (Union_const x).symm
#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subset
+-/
+#print MeasurableSpace.cardinal_generateMeasurableRec_le /-
/-- At each step of the inductive construction, the cardinality bound `≤ (max (#s) 2) ^ ℵ₀` holds.
-/
theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
@@ -131,7 +143,9 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
have := @power_le_power_right _ _ ℵ₀ J
rwa [← power_mul, aleph_0_mul_aleph_0] at this
#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_le
+-/
+#print MeasurableSpace.generateMeasurable_eq_rec /-
/-- `generate_measurable_rec s` generates precisely the smallest sigma-algebra containing `s`. -/
theorem generateMeasurable_eq_rec (s : Set (Set α)) :
{t | GenerateMeasurable s t} = ⋃ i, generateMeasurableRec s i :=
@@ -169,7 +183,9 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
obtain ⟨-, ⟨⟨k, hk⟩, rfl⟩, hf⟩ := (f n).Prop
exact H k hk _ hf
#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_rec
+-/
+#print MeasurableSpace.cardinal_generateMeasurable_le /-
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma-algebra has cardinality at
most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
@@ -187,13 +203,16 @@ theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
rw [mul_eq_max aleph_0_le_continuum (aleph_0_le_continuum.trans this)]
exact max_le this le_rfl
#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_le
+-/
+#print MeasurableSpace.cardinalMeasurableSet_le /-
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma
algebra has cardinality at most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinalMeasurableSet_le (s : Set (Set α)) :
(#{t | @MeasurableSet α (generateFrom s) t}) ≤ max (#s) 2 ^ aleph0.{u} :=
cardinal_generateMeasurable_le s
#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinalMeasurableSet_le
+-/
#print MeasurableSpace.cardinal_generateMeasurable_le_continuum /-
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -134,7 +134,7 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
/-- `generate_measurable_rec s` generates precisely the smallest sigma-algebra containing `s`. -/
theorem generateMeasurable_eq_rec (s : Set (Set α)) :
- { t | GenerateMeasurable s t } = ⋃ i, generateMeasurableRec s i :=
+ {t | GenerateMeasurable s t} = ⋃ i, generateMeasurableRec s i :=
by
ext t; refine' ⟨fun ht => _, fun ht => _⟩
· inhabit ω₁
@@ -173,7 +173,7 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma-algebra has cardinality at
most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
- (#{ t | GenerateMeasurable s t }) ≤ max (#s) 2 ^ aleph0.{u} :=
+ (#{t | GenerateMeasurable s t}) ≤ max (#s) 2 ^ aleph0.{u} :=
by
rw [generate_measurable_eq_rec]
apply (mk_Union_le _).trans
@@ -191,7 +191,7 @@ theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma
algebra has cardinality at most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinalMeasurableSet_le (s : Set (Set α)) :
- (#{ t | @MeasurableSet α (generateFrom s) t }) ≤ max (#s) 2 ^ aleph0.{u} :=
+ (#{t | @MeasurableSet α (generateFrom s) t}) ≤ max (#s) 2 ^ aleph0.{u} :=
cardinal_generateMeasurable_le s
#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinalMeasurableSet_le
@@ -199,7 +199,7 @@ theorem cardinalMeasurableSet_le (s : Set (Set α)) :
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
then the sigma algebra has the same cardinality bound. -/
theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : (#s) ≤ 𝔠) :
- (#{ t | GenerateMeasurable s t }) ≤ 𝔠 :=
+ (#{t | GenerateMeasurable s t}) ≤ 𝔠 :=
(cardinal_generateMeasurable_le s).trans
(by
rw [← continuum_power_aleph_0]
@@ -211,7 +211,7 @@ theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : (#s)
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
then the sigma algebra has the same cardinality bound. -/
theorem cardinal_measurableSet_le_continuum {s : Set (Set α)} :
- (#s) ≤ 𝔠 → (#{ t | @MeasurableSet α (generateFrom s) t }) ≤ 𝔠 :=
+ (#s) ≤ 𝔠 → (#{t | @MeasurableSet α (generateFrom s) t}) ≤ 𝔠 :=
cardinal_generateMeasurable_le_continuum
#align measurable_space.cardinal_measurable_set_le_continuum MeasurableSpace.cardinal_measurableSet_le_continuum
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -55,8 +55,8 @@ This construction is very similar to that of the Borel hierarchy. -/
def generateMeasurableRec (s : Set (Set α)) : ω₁ → Set (Set α)
| i =>
let S := ⋃ j : Iio i, generate_measurable_rec j.1
- s ∪ {∅} ∪ compl '' S ∪ Set.range fun f : ℕ → S => ⋃ n, (f n).1decreasing_by
- exact j.2
+ s ∪ {∅} ∪ compl '' S ∪ Set.range fun f : ℕ → S => ⋃ n, (f n).1
+decreasing_by exact j.2
#align measurable_space.generate_measurable_rec MeasurableSpace.generateMeasurableRec
theorem self_subset_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
@@ -129,7 +129,7 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
· apply mk_range_le.trans
simp only [mk_pi, Subtype.val_eq_coe, prod_const, lift_uzero, mk_denumerable, lift_aleph_0]
have := @power_le_power_right _ _ ℵ₀ J
- rwa [← power_mul, aleph_0_mul_aleph_0] at this
+ rwa [← power_mul, aleph_0_mul_aleph_0] at this
#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_le
/-- `generate_measurable_rec s` generates precisely the smallest sigma-algebra containing `s`. -/
@@ -160,7 +160,7 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
revert t
apply (aleph 1).ord.out.wo.wf.induction i
intro j H t ht
- unfold generate_measurable_rec at ht
+ unfold generate_measurable_rec at ht
rcases ht with (((h | h) | ⟨u, ⟨-, ⟨⟨k, hk⟩, rfl⟩, hu⟩, rfl⟩) | ⟨f, rfl⟩)
· exact generate_measurable.basic t h
· convert generate_measurable.empty
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -37,7 +37,7 @@ universe u
variable {α : Type u}
-open Cardinal
+open scoped Cardinal
open Cardinal Set
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -46,12 +46,6 @@ local notation "ω₁" => (aleph 1 : Cardinal.{u}).ord.out.α
namespace MeasurableSpace
-/- warning: measurable_space.generate_measurable_rec -> MeasurableSpace.generateMeasurableRec is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}}, (Set.{u1} (Set.{u1} α)) -> (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) -> (Set.{u1} (Set.{u1} α))
-but is expected to have type
- forall {α : Type.{u1}}, (Set.{u1} (Set.{u1} α)) -> (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) -> (Set.{u1} (Set.{u1} α))
-Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_rec MeasurableSpace.generateMeasurableRecₓ'. -/
/-- Transfinite induction construction of the sigma-algebra generated by a set of sets `s`. At each
step, we add all elements of `s`, the empty set, the complements of already constructed sets, and
countable unions of already constructed sets. We index this construction by an ordinal `< ω₁`, as
@@ -65,12 +59,6 @@ def generateMeasurableRec (s : Set (Set α)) : ω₁ → Set (Set α)
exact j.2
#align measurable_space.generate_measurable_rec MeasurableSpace.generateMeasurableRec
-/- warning: measurable_space.self_subset_generate_measurable_rec -> MeasurableSpace.self_subset_generateMeasurableRec is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) s (MeasurableSpace.generateMeasurableRec.{u1} α s i)
-but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))), HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) s (MeasurableSpace.generateMeasurableRec.{u1} α s i)
-Case conversion may be inaccurate. Consider using '#align measurable_space.self_subset_generate_measurable_rec MeasurableSpace.self_subset_generateMeasurableRecₓ'. -/
theorem self_subset_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
s ⊆ generateMeasurableRec s i :=
by
@@ -79,12 +67,6 @@ theorem self_subset_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
exact subset_rfl
#align measurable_space.self_subset_generate_measurable_rec MeasurableSpace.self_subset_generateMeasurableRec
-/- warning: measurable_space.empty_mem_generate_measurable_rec -> MeasurableSpace.empty_mem_generateMeasurableRec is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i)
-but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))), Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i)
-Case conversion may be inaccurate. Consider using '#align measurable_space.empty_mem_generate_measurable_rec MeasurableSpace.empty_mem_generateMeasurableRecₓ'. -/
theorem empty_mem_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
∅ ∈ generateMeasurableRec s i :=
by
@@ -92,12 +74,6 @@ theorem empty_mem_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
exact mem_union_left _ (mem_union_left _ (mem_union_right _ (mem_singleton ∅)))
#align measurable_space.empty_mem_generate_measurable_rec MeasurableSpace.empty_mem_generateMeasurableRec
-/- warning: measurable_space.compl_mem_generate_measurable_rec -> MeasurableSpace.compl_mem_generateMeasurableRec is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) -> (forall {t : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t (MeasurableSpace.generateMeasurableRec.{u1} α s j)) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t) (MeasurableSpace.generateMeasurableRec.{u1} α s i)))
-but is expected to have type
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))}, (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) -> (forall {t : Set.{u1} α}, (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t (MeasurableSpace.generateMeasurableRec.{u1} α s j)) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t) (MeasurableSpace.generateMeasurableRec.{u1} α s i)))
-Case conversion may be inaccurate. Consider using '#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRecₓ'. -/
theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j < i) {t : Set α}
(ht : t ∈ generateMeasurableRec s j) : tᶜ ∈ generateMeasurableRec s i :=
by
@@ -105,12 +81,6 @@ theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j
exact mem_union_left _ (mem_union_right _ ⟨t, mem_Union.2 ⟨⟨j, h⟩, ht⟩, rfl⟩)
#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRec
-/- warning: measurable_space.Union_mem_generate_measurable_rec -> MeasurableSpace.iUnion_mem_generateMeasurableRec is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => Exists.{0} (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) (fun (H : LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
-but is expected to have type
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => And (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
-Case conversion may be inaccurate. Consider using '#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.iUnion_mem_generateMeasurableRecₓ'. -/
theorem iUnion_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ → Set α}
(hf : ∀ n, ∃ j < i, f n ∈ generateMeasurableRec s j) : (⋃ n, f n) ∈ generateMeasurableRec s i :=
by
@@ -124,12 +94,6 @@ theorem iUnion_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ
rfl⟩
#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.iUnion_mem_generateMeasurableRec
-/- warning: measurable_space.generate_measurable_rec_subset -> MeasurableSpace.generateMeasurableRec_subset is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LE.le.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLe.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i) (MeasurableSpace.generateMeasurableRec.{u1} α s j))
-but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))}, (LE.le.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLE.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i) (MeasurableSpace.generateMeasurableRec.{u1} α s j))
-Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subsetₓ'. -/
theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤ j) :
generateMeasurableRec s i ⊆ generateMeasurableRec s j := fun x hx =>
by
@@ -139,12 +103,6 @@ theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤
exact (Union_const x).symm
#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subset
-/- warning: measurable_space.cardinal_generate_measurable_rec_le -> MeasurableSpace.cardinal_generateMeasurableRec_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} Cardinal.linearOrder.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
-but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (MeasurableSpace.generateMeasurableRec.{u1} α s i))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
-Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_leₓ'. -/
/-- At each step of the inductive construction, the cardinality bound `≤ (max (#s) 2) ^ ℵ₀` holds.
-/
theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
@@ -174,12 +132,6 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
rwa [← power_mul, aleph_0_mul_aleph_0] at this
#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_le
-/- warning: measurable_space.generate_measurable_eq_rec -> MeasurableSpace.generateMeasurable_eq_rec is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.iUnion.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
-but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.iUnion.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
-Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_recₓ'. -/
/-- `generate_measurable_rec s` generates precisely the smallest sigma-algebra containing `s`. -/
theorem generateMeasurable_eq_rec (s : Set (Set α)) :
{ t | GenerateMeasurable s t } = ⋃ i, generateMeasurableRec s i :=
@@ -218,12 +170,6 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
exact H k hk _ hf
#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_rec
-/- warning: measurable_space.cardinal_generate_measurable_le -> MeasurableSpace.cardinal_generateMeasurable_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} Cardinal.linearOrder.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
-but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
-Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_leₓ'. -/
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma-algebra has cardinality at
most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
@@ -242,12 +188,6 @@ theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
exact max_le this le_rfl
#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_le
-/- warning: measurable_space.cardinal_measurable_set_le -> MeasurableSpace.cardinalMeasurableSet_le is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSet.{u1} α (MeasurableSpace.generateFrom.{u1} α s) t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} Cardinal.linearOrder.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
-but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSet.{u1} α (MeasurableSpace.generateFrom.{u1} α s) t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
-Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinalMeasurableSet_leₓ'. -/
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma
algebra has cardinality at most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinalMeasurableSet_le (s : Set (Set α)) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -94,7 +94,7 @@ theorem empty_mem_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
/- warning: measurable_space.compl_mem_generate_measurable_rec -> MeasurableSpace.compl_mem_generateMeasurableRec is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) -> (forall {t : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t (MeasurableSpace.generateMeasurableRec.{u1} α s j)) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t) (MeasurableSpace.generateMeasurableRec.{u1} α s i)))
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) -> (forall {t : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t (MeasurableSpace.generateMeasurableRec.{u1} α s j)) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t) (MeasurableSpace.generateMeasurableRec.{u1} α s i)))
but is expected to have type
forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))}, (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) -> (forall {t : Set.{u1} α}, (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t (MeasurableSpace.generateMeasurableRec.{u1} α s j)) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t) (MeasurableSpace.generateMeasurableRec.{u1} α s i)))
Case conversion may be inaccurate. Consider using '#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRecₓ'. -/
@@ -107,7 +107,7 @@ theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j
/- warning: measurable_space.Union_mem_generate_measurable_rec -> MeasurableSpace.iUnion_mem_generateMeasurableRec is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => Exists.{0} (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) (fun (H : LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => Exists.{0} (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) (fun (H : LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
but is expected to have type
forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => And (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
Case conversion may be inaccurate. Consider using '#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.iUnion_mem_generateMeasurableRecₓ'. -/
@@ -126,7 +126,7 @@ theorem iUnion_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ
/- warning: measurable_space.generate_measurable_rec_subset -> MeasurableSpace.generateMeasurableRec_subset is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LE.le.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLE.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i) (MeasurableSpace.generateMeasurableRec.{u1} α s j))
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LE.le.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toHasLe.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i) (MeasurableSpace.generateMeasurableRec.{u1} α s j))
but is expected to have type
forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))}, (LE.le.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLE.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i) (MeasurableSpace.generateMeasurableRec.{u1} α s j))
Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subsetₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -105,13 +105,13 @@ theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j
exact mem_union_left _ (mem_union_right _ ⟨t, mem_Union.2 ⟨⟨j, h⟩, ht⟩, rfl⟩)
#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRec
-/- warning: measurable_space.Union_mem_generate_measurable_rec -> MeasurableSpace.unionᵢ_mem_generateMeasurableRec is a dubious translation:
+/- warning: measurable_space.Union_mem_generate_measurable_rec -> MeasurableSpace.iUnion_mem_generateMeasurableRec is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => Exists.{0} (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) (fun (H : LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => Exists.{0} (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) (fun (H : LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
but is expected to have type
- forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => And (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
-Case conversion may be inaccurate. Consider using '#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.unionᵢ_mem_generateMeasurableRecₓ'. -/
-theorem unionᵢ_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ → Set α}
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => And (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
+Case conversion may be inaccurate. Consider using '#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.iUnion_mem_generateMeasurableRecₓ'. -/
+theorem iUnion_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ → Set α}
(hf : ∀ n, ∃ j < i, f n ∈ generateMeasurableRec s j) : (⋃ n, f n) ∈ generateMeasurableRec s i :=
by
unfold generate_measurable_rec
@@ -122,7 +122,7 @@ theorem unionᵢ_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f :
let ⟨j, hj, hf⟩ := hf n
mem_Union.2 ⟨⟨j, hj⟩, hf⟩⟩,
rfl⟩
-#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.unionᵢ_mem_generateMeasurableRec
+#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.iUnion_mem_generateMeasurableRec
/- warning: measurable_space.generate_measurable_rec_subset -> MeasurableSpace.generateMeasurableRec_subset is a dubious translation:
lean 3 declaration is
@@ -159,7 +159,7 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
have J : (#⋃ j : Iio i, generate_measurable_rec s j.1) ≤ max (#s) 2 ^ aleph0.{u} :=
by
apply (mk_Union_le _).trans
- have D : (⨆ j : Iio i, #generate_measurable_rec s j) ≤ _ := csupᵢ_le' fun ⟨j, hj⟩ => IH j hj
+ have D : (⨆ j : Iio i, #generate_measurable_rec s j) ≤ _ := ciSup_le' fun ⟨j, hj⟩ => IH j hj
apply (mul_le_mul' ((mk_subtype_le _).trans (aleph 1).mk_ord_out.le) D).trans
rw [mul_eq_max A C]
exact max_le B le_rfl
@@ -176,9 +176,9 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
/- warning: measurable_space.generate_measurable_eq_rec -> MeasurableSpace.generateMeasurable_eq_rec is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.unionᵢ.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.iUnion.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
but is expected to have type
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.unionᵢ.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.iUnion.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_recₓ'. -/
/-- `generate_measurable_rec s` generates precisely the smallest sigma-algebra containing `s`. -/
theorem generateMeasurable_eq_rec (s : Set (Set α)) :
@@ -235,7 +235,7 @@ theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
refine'
le_trans
(mul_le_mul' aleph_one_le_continuum
- (csupᵢ_le' fun i => cardinal_generate_measurable_rec_le s i))
+ (ciSup_le' fun i => cardinal_generate_measurable_rec_le s i))
_
have := power_le_power_right (le_max_right (#s) 2)
rw [mul_eq_max aleph_0_le_continuum (aleph_0_le_continuum.trans this)]
mathlib commit https://github.com/leanprover-community/mathlib/commit/d95bef0d215ea58c0fd7bbc4b151bf3fe952c095
@@ -141,7 +141,7 @@ theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤
/- warning: measurable_space.cardinal_generate_measurable_rec_le -> MeasurableSpace.cardinal_generateMeasurableRec_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrder.toLinearOrder.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Cardinal.{u1} Cardinal.conditionallyCompleteLinearOrderBot.{u1})) (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} Cardinal.linearOrder.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
but is expected to have type
forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (MeasurableSpace.generateMeasurableRec.{u1} α s i))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_leₓ'. -/
@@ -220,7 +220,7 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
/- warning: measurable_space.cardinal_generate_measurable_le -> MeasurableSpace.cardinal_generateMeasurable_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrder.toLinearOrder.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Cardinal.{u1} Cardinal.conditionallyCompleteLinearOrderBot.{u1})) (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} Cardinal.linearOrder.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
but is expected to have type
forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_leₓ'. -/
@@ -244,7 +244,7 @@ theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
/- warning: measurable_space.cardinal_measurable_set_le -> MeasurableSpace.cardinalMeasurableSet_le is a dubious translation:
lean 3 declaration is
- forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSet.{u1} α (MeasurableSpace.generateFrom.{u1} α s) t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrder.toLinearOrder.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Cardinal.{u1} Cardinal.conditionallyCompleteLinearOrderBot.{u1})) (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSet.{u1} α (MeasurableSpace.generateFrom.{u1} α s) t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} Cardinal.linearOrder.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
but is expected to have type
forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSet.{u1} α (MeasurableSpace.generateFrom.{u1} α s) t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinalMeasurableSet_leₓ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/1f4705ccdfe1e557fc54a0ce081a05e33d2e6240
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Violeta Hernández Palacios
! This file was ported from Lean 3 source module measure_theory.card_measurable_space
-! leanprover-community/mathlib commit f2b108e8e97ba393f22bf794989984ddcc1da89b
+! leanprover-community/mathlib commit 932872382355f00112641d305ba0619305dc8642
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.SetTheory.Cardinal.Continuum
/-!
# Cardinal of sigma-algebras
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
If a sigma-algebra is generated by a set of sets `s`, then the cardinality of the sigma-algebra is
bounded by `(max (#s) 2) ^ ℵ₀`. This is stated in `measurable_space.cardinal_generate_measurable_le`
and `measurable_space.cardinal_measurable_set_le`.
mathlib commit https://github.com/leanprover-community/mathlib/commit/da3fc4a33ff6bc75f077f691dc94c217b8d41559
@@ -43,6 +43,12 @@ local notation "ω₁" => (aleph 1 : Cardinal.{u}).ord.out.α
namespace MeasurableSpace
+/- warning: measurable_space.generate_measurable_rec -> MeasurableSpace.generateMeasurableRec is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}}, (Set.{u1} (Set.{u1} α)) -> (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) -> (Set.{u1} (Set.{u1} α))
+but is expected to have type
+ forall {α : Type.{u1}}, (Set.{u1} (Set.{u1} α)) -> (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) -> (Set.{u1} (Set.{u1} α))
+Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_rec MeasurableSpace.generateMeasurableRecₓ'. -/
/-- Transfinite induction construction of the sigma-algebra generated by a set of sets `s`. At each
step, we add all elements of `s`, the empty set, the complements of already constructed sets, and
countable unions of already constructed sets. We index this construction by an ordinal `< ω₁`, as
@@ -56,6 +62,12 @@ def generateMeasurableRec (s : Set (Set α)) : ω₁ → Set (Set α)
exact j.2
#align measurable_space.generate_measurable_rec MeasurableSpace.generateMeasurableRec
+/- warning: measurable_space.self_subset_generate_measurable_rec -> MeasurableSpace.self_subset_generateMeasurableRec is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) s (MeasurableSpace.generateMeasurableRec.{u1} α s i)
+but is expected to have type
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))), HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) s (MeasurableSpace.generateMeasurableRec.{u1} α s i)
+Case conversion may be inaccurate. Consider using '#align measurable_space.self_subset_generate_measurable_rec MeasurableSpace.self_subset_generateMeasurableRecₓ'. -/
theorem self_subset_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
s ⊆ generateMeasurableRec s i :=
by
@@ -64,6 +76,12 @@ theorem self_subset_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
exact subset_rfl
#align measurable_space.self_subset_generate_measurable_rec MeasurableSpace.self_subset_generateMeasurableRec
+/- warning: measurable_space.empty_mem_generate_measurable_rec -> MeasurableSpace.empty_mem_generateMeasurableRec is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i)
+but is expected to have type
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))), Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i)
+Case conversion may be inaccurate. Consider using '#align measurable_space.empty_mem_generate_measurable_rec MeasurableSpace.empty_mem_generateMeasurableRecₓ'. -/
theorem empty_mem_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
∅ ∈ generateMeasurableRec s i :=
by
@@ -71,6 +89,12 @@ theorem empty_mem_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
exact mem_union_left _ (mem_union_left _ (mem_union_right _ (mem_singleton ∅)))
#align measurable_space.empty_mem_generate_measurable_rec MeasurableSpace.empty_mem_generateMeasurableRec
+/- warning: measurable_space.compl_mem_generate_measurable_rec -> MeasurableSpace.compl_mem_generateMeasurableRec is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) -> (forall {t : Set.{u1} α}, (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) t (MeasurableSpace.generateMeasurableRec.{u1} α s j)) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) t) (MeasurableSpace.generateMeasurableRec.{u1} α s i)))
+but is expected to have type
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))}, (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) -> (forall {t : Set.{u1} α}, (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) t (MeasurableSpace.generateMeasurableRec.{u1} α s j)) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) t) (MeasurableSpace.generateMeasurableRec.{u1} α s i)))
+Case conversion may be inaccurate. Consider using '#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRecₓ'. -/
theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j < i) {t : Set α}
(ht : t ∈ generateMeasurableRec s j) : tᶜ ∈ generateMeasurableRec s i :=
by
@@ -78,6 +102,12 @@ theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j
exact mem_union_left _ (mem_union_right _ ⟨t, mem_Union.2 ⟨⟨j, h⟩, ht⟩, rfl⟩)
#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRec
+/- warning: measurable_space.Union_mem_generate_measurable_rec -> MeasurableSpace.unionᵢ_mem_generateMeasurableRec is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => Exists.{0} (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) (fun (H : LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) j i) => Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.Mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.hasMem.{u1} (Set.{u1} α)) (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
+but is expected to have type
+ forall {α : Type.{u1}} {s : Set.{u1} (Set.{u1} α)} {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {f : Nat -> (Set.{u1} α)}, (forall (n : Nat), Exists.{succ u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => And (LT.lt.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLT.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) j i) (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (f n) (MeasurableSpace.generateMeasurableRec.{u1} α s j)))) -> (Membership.mem.{u1, u1} (Set.{u1} α) (Set.{u1} (Set.{u1} α)) (Set.instMembershipSet.{u1} (Set.{u1} α)) (Set.unionᵢ.{u1, 1} α Nat (fun (n : Nat) => f n)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))
+Case conversion may be inaccurate. Consider using '#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.unionᵢ_mem_generateMeasurableRecₓ'. -/
theorem unionᵢ_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ → Set α}
(hf : ∀ n, ∃ j < i, f n ∈ generateMeasurableRec s j) : (⋃ n, f n) ∈ generateMeasurableRec s i :=
by
@@ -91,6 +121,12 @@ theorem unionᵢ_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f :
rfl⟩
#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.unionᵢ_mem_generateMeasurableRec
+/- warning: measurable_space.generate_measurable_rec_subset -> MeasurableSpace.generateMeasurableRec_subset is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))}, (LE.le.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Preorder.toLE.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (LinearOrder.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.hasSubset.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i) (MeasurableSpace.generateMeasurableRec.{u1} α s j))
+but is expected to have type
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) {i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))} {j : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))}, (LE.le.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Preorder.toLE.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (PartialOrder.toPreorder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (SemilatticeInf.toPartialOrder.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (Lattice.toSemilatticeInf.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (DistribLattice.toLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (instDistribLattice.{u1} (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (linearOrderOut.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1}))))))))))) i j) -> (HasSubset.Subset.{u1} (Set.{u1} (Set.{u1} α)) (Set.instHasSubsetSet.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i) (MeasurableSpace.generateMeasurableRec.{u1} α s j))
+Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subsetₓ'. -/
theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤ j) :
generateMeasurableRec s i ⊆ generateMeasurableRec s j := fun x hx =>
by
@@ -100,6 +136,12 @@ theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤
exact (Union_const x).symm
#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subset
+/- warning: measurable_space.cardinal_generate_measurable_rec_le -> MeasurableSpace.cardinal_generateMeasurableRec_le is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (MeasurableSpace.generateMeasurableRec.{u1} α s i))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrder.toLinearOrder.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Cardinal.{u1} Cardinal.conditionallyCompleteLinearOrderBot.{u1})) (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
+but is expected to have type
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)) (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (MeasurableSpace.generateMeasurableRec.{u1} α s i))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
+Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_leₓ'. -/
/-- At each step of the inductive construction, the cardinality bound `≤ (max (#s) 2) ^ ℵ₀` holds.
-/
theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
@@ -129,6 +171,12 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
rwa [← power_mul, aleph_0_mul_aleph_0] at this
#align measurable_space.cardinal_generate_measurable_rec_le MeasurableSpace.cardinal_generateMeasurableRec_le
+/- warning: measurable_space.generate_measurable_eq_rec -> MeasurableSpace.generateMeasurable_eq_rec is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.unionᵢ.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (OfNat.mk.{succ u1} Ordinal.{u1} 1 (One.one.{succ u1} Ordinal.{u1} Ordinal.hasOne.{u1}))))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
+but is expected to have type
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), Eq.{succ u1} (Set.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)) (Set.unionᵢ.{u1, succ u1} (Set.{u1} α) (WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) (fun (i : WellOrder.α.{u1} (Quotient.out.{succ (succ u1)} WellOrder.{u1} Ordinal.isEquivalent.{u1} (Cardinal.ord.{u1} (Cardinal.aleph.{u1} (OfNat.ofNat.{succ u1} Ordinal.{u1} 1 (One.toOfNat1.{succ u1} Ordinal.{u1} Ordinal.one.{u1})))))) => MeasurableSpace.generateMeasurableRec.{u1} α s i))
+Case conversion may be inaccurate. Consider using '#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_recₓ'. -/
/-- `generate_measurable_rec s` generates precisely the smallest sigma-algebra containing `s`. -/
theorem generateMeasurable_eq_rec (s : Set (Set α)) :
{ t | GenerateMeasurable s t } = ⋃ i, generateMeasurableRec s i :=
@@ -167,6 +215,12 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
exact H k hk _ hf
#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_rec
+/- warning: measurable_space.cardinal_generate_measurable_le -> MeasurableSpace.cardinal_generateMeasurable_le is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrder.toLinearOrder.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Cardinal.{u1} Cardinal.conditionallyCompleteLinearOrderBot.{u1})) (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
+but is expected to have type
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSpace.GenerateMeasurable.{u1} α s t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
+Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_leₓ'. -/
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma-algebra has cardinality at
most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
@@ -185,13 +239,20 @@ theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
exact max_le this le_rfl
#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_le
+/- warning: measurable_space.cardinal_measurable_set_le -> MeasurableSpace.cardinalMeasurableSet_le is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.hasLe.{u1} (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSet.{u1} α (MeasurableSpace.generateFrom.{u1} α s) t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.hasPow.{u1}) (LinearOrder.max.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrder.toLinearOrder.{succ u1} Cardinal.{u1} (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{succ u1} Cardinal.{u1} Cardinal.conditionallyCompleteLinearOrderBot.{u1})) (Cardinal.mk.{u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} (Set.{u1} α)) Type.{u1} (Set.hasCoeToSort.{u1} (Set.{u1} α)) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (OfNat.mk.{succ u1} Cardinal.{u1} 2 (bit0.{succ u1} Cardinal.{u1} Cardinal.hasAdd.{u1} (One.one.{succ u1} Cardinal.{u1} Cardinal.hasOne.{u1}))))) Cardinal.aleph0.{u1})
+but is expected to have type
+ forall {α : Type.{u1}} (s : Set.{u1} (Set.{u1} α)), LE.le.{succ u1} Cardinal.{u1} Cardinal.instLECardinal.{u1} (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) (setOf.{u1} (Set.{u1} α) (fun (t : Set.{u1} α) => MeasurableSet.{u1} α (MeasurableSpace.generateFrom.{u1} α s) t)))) (HPow.hPow.{succ u1, succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.{u1} (instHPow.{succ u1, succ u1} Cardinal.{u1} Cardinal.{u1} Cardinal.instPowCardinal.{u1}) (Max.max.{succ u1} Cardinal.{u1} (CanonicallyLinearOrderedAddMonoid.toMax.{succ u1} Cardinal.{u1} Cardinal.instCanonicallyLinearOrderedAddMonoidCardinal.{u1}) (Cardinal.mk.{u1} (Set.Elem.{u1} (Set.{u1} α) s)) (OfNat.ofNat.{succ u1} Cardinal.{u1} 2 (instOfNat.{succ u1} Cardinal.{u1} 2 Cardinal.instNatCastCardinal.{u1} (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)))))) Cardinal.aleph0.{u1})
+Case conversion may be inaccurate. Consider using '#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinalMeasurableSet_leₓ'. -/
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma
algebra has cardinality at most `(max (#s) 2) ^ ℵ₀`. -/
-theorem cardinal_measurableSet_le (s : Set (Set α)) :
+theorem cardinalMeasurableSet_le (s : Set (Set α)) :
(#{ t | @MeasurableSet α (generateFrom s) t }) ≤ max (#s) 2 ^ aleph0.{u} :=
cardinal_generateMeasurable_le s
-#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinal_measurableSet_le
+#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinalMeasurableSet_le
+#print MeasurableSpace.cardinal_generateMeasurable_le_continuum /-
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
then the sigma algebra has the same cardinality bound. -/
theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : (#s) ≤ 𝔠) :
@@ -201,13 +262,16 @@ theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : (#s)
rw [← continuum_power_aleph_0]
exact_mod_cast power_le_power_right (max_le hs (nat_lt_continuum 2).le))
#align measurable_space.cardinal_generate_measurable_le_continuum MeasurableSpace.cardinal_generateMeasurable_le_continuum
+-/
+#print MeasurableSpace.cardinal_measurableSet_le_continuum /-
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
then the sigma algebra has the same cardinality bound. -/
theorem cardinal_measurableSet_le_continuum {s : Set (Set α)} :
(#s) ≤ 𝔠 → (#{ t | @MeasurableSet α (generateFrom s) t }) ≤ 𝔠 :=
cardinal_generateMeasurable_le_continuum
#align measurable_space.cardinal_measurable_set_le_continuum MeasurableSpace.cardinal_measurableSet_le_continuum
+-/
end MeasurableSpace
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -33,7 +33,7 @@ variable {α : Type u}
open Cardinal Set
--- porting note: fix universe below, not here
+-- Porting note: fix universe below, not here
local notation "ω₁" => (WellOrder.α <| Quotient.out <| Cardinal.ord (aleph 1 : Cardinal))
namespace MeasurableSpace
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Joachim Breitner <mail@joachim-breitner.de>
@@ -48,7 +48,7 @@ def generateMeasurableRec (s : Set (Set α)) : (ω₁ : Type u) → Set (Set α)
| i =>
let S := ⋃ j : Iio i, generateMeasurableRec s (j.1)
s ∪ {∅} ∪ compl '' S ∪ Set.range fun f : ℕ → S => ⋃ n, (f n).1
- termination_by generateMeasurableRec s i => i
+ termination_by i => i
decreasing_by exact j.2
#align measurable_space.generate_measurable_rec MeasurableSpace.generateMeasurableRec
exact_mod_cast
tactic with mod_cast
elaborator where possible (#8404)
We still have the exact_mod_cast
tactic, used in a few places, which somehow (?) works a little bit harder to prevent the expected type influencing the elaboration of the term. I would like to get to the bottom of this, and it will be easier once the only usages of exact_mod_cast
are the ones that don't work using the term elaborator by itself.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -178,7 +178,7 @@ theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : #s ≤
(cardinal_generateMeasurable_le s).trans
(by
rw [← continuum_power_aleph0]
- exact_mod_cast power_le_power_right (max_le hs (nat_lt_continuum 2).le))
+ exact mod_cast power_le_power_right (max_le hs (nat_lt_continuum 2).le))
#align measurable_space.cardinal_generate_measurable_le_continuum MeasurableSpace.cardinal_generateMeasurable_le_continuum
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
@@ -3,7 +3,7 @@ Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Violeta Hernández Palacios
-/
-import Mathlib.MeasureTheory.MeasurableSpaceDef
+import Mathlib.MeasureTheory.MeasurableSpace.Defs
import Mathlib.SetTheory.Cardinal.Cofinality
import Mathlib.SetTheory.Cardinal.Continuum
@@ -2,16 +2,13 @@
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel, Violeta Hernández Palacios
-
-! This file was ported from Lean 3 source module measure_theory.card_measurable_space
-! leanprover-community/mathlib commit f2b108e8e97ba393f22bf794989984ddcc1da89b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.MeasureTheory.MeasurableSpaceDef
import Mathlib.SetTheory.Cardinal.Cofinality
import Mathlib.SetTheory.Cardinal.Continuum
+#align_import measure_theory.card_measurable_space from "leanprover-community/mathlib"@"f2b108e8e97ba393f22bf794989984ddcc1da89b"
+
/-!
# Cardinal of sigma-algebras
@@ -16,7 +16,7 @@ import Mathlib.SetTheory.Cardinal.Continuum
# Cardinal of sigma-algebras
If a sigma-algebra is generated by a set of sets `s`, then the cardinality of the sigma-algebra is
-bounded by `(max (#s) 2) ^ ℵ₀`. This is stated in `MeasurableSpace.cardinal_generate_measurable_le`
+bounded by `(max #s 2) ^ ℵ₀`. This is stated in `MeasurableSpace.cardinal_generate_measurable_le`
and `MeasurableSpace.cardinalMeasurableSet_le`.
In particular, if `#s ≤ 𝔠`, then the generated sigma-algebra has cardinality at most `𝔠`, see
@@ -89,19 +89,19 @@ theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤
exact (iUnion_const x).symm
#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subset
-/-- At each step of the inductive construction, the cardinality bound `≤ (max (#s) 2) ^ ℵ₀` holds.
+/-- At each step of the inductive construction, the cardinality bound `≤ (max #s 2) ^ ℵ₀` holds.
-/
theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
- (#generateMeasurableRec s i) ≤ max (#s) 2 ^ aleph0.{u} := by
+ #(generateMeasurableRec s i) ≤ max #s 2 ^ aleph0.{u} := by
apply (aleph 1).ord.out.wo.wf.induction i
intro i IH
have A := aleph0_le_aleph 1
- have B : aleph 1 ≤ max (#s) 2 ^ aleph0.{u} :=
+ have B : aleph 1 ≤ max #s 2 ^ aleph0.{u} :=
aleph_one_le_continuum.trans (power_le_power_right (le_max_right _ _))
- have C : ℵ₀ ≤ max (#s) 2 ^ aleph0.{u} := A.trans B
- have J : (#⋃ j : Iio i, generateMeasurableRec s j.1) ≤ max (#s) 2 ^ aleph0.{u} := by
+ have C : ℵ₀ ≤ max #s 2 ^ aleph0.{u} := A.trans B
+ have J : #(⋃ j : Iio i, generateMeasurableRec s j.1) ≤ max #s 2 ^ aleph0.{u} := by
refine (mk_iUnion_le _).trans ?_
- have D : ⨆ j : Iio i, (#generateMeasurableRec s j) ≤ _ := ciSup_le' fun ⟨j, hj⟩ => IH j hj
+ have D : ⨆ j : Iio i, #(generateMeasurableRec s j) ≤ _ := ciSup_le' fun ⟨j, hj⟩ => IH j hj
apply (mul_le_mul' ((mk_subtype_le _).trans (aleph 1).mk_ord_out.le) D).trans
rw [mul_eq_max A C]
exact max_le B le_rfl
@@ -155,9 +155,9 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_rec
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma-algebra has cardinality at
-most `(max (#s) 2) ^ ℵ₀`. -/
+most `(max #s 2) ^ ℵ₀`. -/
theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
- (#{ t | GenerateMeasurable s t }) ≤ max (#s) 2 ^ aleph0.{u} := by
+ #{ t | GenerateMeasurable s t } ≤ max #s 2 ^ aleph0.{u} := by
rw [generateMeasurable_eq_rec]
apply (mk_iUnion_le _).trans
rw [(aleph 1).mk_ord_out]
@@ -168,16 +168,16 @@ theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_le
/-- If a sigma-algebra is generated by a set of sets `s`, then the sigma
-algebra has cardinality at most `(max (#s) 2) ^ ℵ₀`. -/
+algebra has cardinality at most `(max #s 2) ^ ℵ₀`. -/
theorem cardinalMeasurableSet_le (s : Set (Set α)) :
- (#{ t | @MeasurableSet α (generateFrom s) t }) ≤ max (#s) 2 ^ aleph0.{u} :=
+ #{ t | @MeasurableSet α (generateFrom s) t } ≤ max #s 2 ^ aleph0.{u} :=
cardinal_generateMeasurable_le s
#align measurable_space.cardinal_measurable_set_le MeasurableSpace.cardinalMeasurableSet_le
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
then the sigma algebra has the same cardinality bound. -/
-theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : (#s) ≤ 𝔠) :
- (#{ t | GenerateMeasurable s t }) ≤ 𝔠 :=
+theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : #s ≤ 𝔠) :
+ #{ t | GenerateMeasurable s t } ≤ 𝔠 :=
(cardinal_generateMeasurable_le s).trans
(by
rw [← continuum_power_aleph0]
@@ -187,7 +187,7 @@ theorem cardinal_generateMeasurable_le_continuum {s : Set (Set α)} (hs : (#s)
/-- If a sigma-algebra is generated by a set of sets `s` with cardinality at most the continuum,
then the sigma algebra has the same cardinality bound. -/
theorem cardinal_measurableSet_le_continuum {s : Set (Set α)} :
- (#s) ≤ 𝔠 → (#{ t | @MeasurableSet α (generateFrom s) t }) ≤ 𝔠 :=
+ #s ≤ 𝔠 → #{ t | @MeasurableSet α (generateFrom s) t } ≤ 𝔠 :=
cardinal_generateMeasurable_le_continuum
#align measurable_space.cardinal_measurable_set_le_continuum MeasurableSpace.cardinal_measurableSet_le_continuum
@@ -101,7 +101,7 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
have C : ℵ₀ ≤ max (#s) 2 ^ aleph0.{u} := A.trans B
have J : (#⋃ j : Iio i, generateMeasurableRec s j.1) ≤ max (#s) 2 ^ aleph0.{u} := by
refine (mk_iUnion_le _).trans ?_
- have D : (⨆ j : Iio i, #generateMeasurableRec s j) ≤ _ := ciSup_le' fun ⟨j, hj⟩ => IH j hj
+ have D : ⨆ j : Iio i, (#generateMeasurableRec s j) ≤ _ := ciSup_le' fun ⟨j, hj⟩ => IH j hj
apply (mul_le_mul' ((mk_subtype_le _).trans (aleph 1).mk_ord_out.le) D).trans
rw [mul_eq_max A C]
exact max_le B le_rfl
sSup
/iSup
(#3938)
As discussed on Zulip
supₛ
→ sSup
infₛ
→ sInf
supᵢ
→ iSup
infᵢ
→ iInf
bsupₛ
→ bsSup
binfₛ
→ bsInf
bsupᵢ
→ biSup
binfᵢ
→ biInf
csupₛ
→ csSup
cinfₛ
→ csInf
csupᵢ
→ ciSup
cinfᵢ
→ ciInf
unionₛ
→ sUnion
interₛ
→ sInter
unionᵢ
→ iUnion
interᵢ
→ iInter
bunionₛ
→ bsUnion
binterₛ
→ bsInter
bunionᵢ
→ biUnion
binterᵢ
→ biInter
Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>
@@ -71,22 +71,22 @@ theorem empty_mem_generateMeasurableRec (s : Set (Set α)) (i : ω₁) :
theorem compl_mem_generateMeasurableRec {s : Set (Set α)} {i j : ω₁} (h : j < i) {t : Set α}
(ht : t ∈ generateMeasurableRec s j) : tᶜ ∈ generateMeasurableRec s i := by
unfold generateMeasurableRec
- exact mem_union_left _ (mem_union_right _ ⟨t, mem_unionᵢ.2 ⟨⟨j, h⟩, ht⟩, rfl⟩)
+ exact mem_union_left _ (mem_union_right _ ⟨t, mem_iUnion.2 ⟨⟨j, h⟩, ht⟩, rfl⟩)
#align measurable_space.compl_mem_generate_measurable_rec MeasurableSpace.compl_mem_generateMeasurableRec
-theorem unionᵢ_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ → Set α}
+theorem iUnion_mem_generateMeasurableRec {s : Set (Set α)} {i : ω₁} {f : ℕ → Set α}
(hf : ∀ n, ∃ j < i, f n ∈ generateMeasurableRec s j) :
(⋃ n, f n) ∈ generateMeasurableRec s i := by
unfold generateMeasurableRec
- exact mem_union_right _ ⟨fun n => ⟨f n, let ⟨j, hj, hf⟩ := hf n; mem_unionᵢ.2 ⟨⟨j, hj⟩, hf⟩⟩, rfl⟩
-#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.unionᵢ_mem_generateMeasurableRec
+ exact mem_union_right _ ⟨fun n => ⟨f n, let ⟨j, hj, hf⟩ := hf n; mem_iUnion.2 ⟨⟨j, hj⟩, hf⟩⟩, rfl⟩
+#align measurable_space.Union_mem_generate_measurable_rec MeasurableSpace.iUnion_mem_generateMeasurableRec
theorem generateMeasurableRec_subset (s : Set (Set α)) {i j : ω₁} (h : i ≤ j) :
generateMeasurableRec s i ⊆ generateMeasurableRec s j := fun x hx => by
rcases eq_or_lt_of_le h with (rfl | h)
· exact hx
- · convert unionᵢ_mem_generateMeasurableRec fun _ => ⟨i, h, hx⟩
- exact (unionᵢ_const x).symm
+ · convert iUnion_mem_generateMeasurableRec fun _ => ⟨i, h, hx⟩
+ exact (iUnion_const x).symm
#align measurable_space.generate_measurable_rec_subset MeasurableSpace.generateMeasurableRec_subset
/-- At each step of the inductive construction, the cardinality bound `≤ (max (#s) 2) ^ ℵ₀` holds.
@@ -100,8 +100,8 @@ theorem cardinal_generateMeasurableRec_le (s : Set (Set α)) (i : ω₁) :
aleph_one_le_continuum.trans (power_le_power_right (le_max_right _ _))
have C : ℵ₀ ≤ max (#s) 2 ^ aleph0.{u} := A.trans B
have J : (#⋃ j : Iio i, generateMeasurableRec s j.1) ≤ max (#s) 2 ^ aleph0.{u} := by
- refine (mk_unionᵢ_le _).trans ?_
- have D : (⨆ j : Iio i, #generateMeasurableRec s j) ≤ _ := csupᵢ_le' fun ⟨j, hj⟩ => IH j hj
+ refine (mk_iUnion_le _).trans ?_
+ have D : (⨆ j : Iio i, #generateMeasurableRec s j) ≤ _ := ciSup_le' fun ⟨j, hj⟩ => IH j hj
apply (mul_le_mul' ((mk_subtype_le _).trans (aleph 1).mk_ord_out.le) D).trans
rw [mul_eq_max A C]
exact max_le B le_rfl
@@ -123,17 +123,17 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
ext t; refine' ⟨fun ht => _, fun ht => _⟩
· inhabit ω₁
induction' ht with u hu u _ IH f _ IH
- · exact mem_unionᵢ.2 ⟨default, self_subset_generateMeasurableRec s _ hu⟩
- · exact mem_unionᵢ.2 ⟨default, empty_mem_generateMeasurableRec s _⟩
- · rcases mem_unionᵢ.1 IH with ⟨i, hi⟩
+ · exact mem_iUnion.2 ⟨default, self_subset_generateMeasurableRec s _ hu⟩
+ · exact mem_iUnion.2 ⟨default, empty_mem_generateMeasurableRec s _⟩
+ · rcases mem_iUnion.1 IH with ⟨i, hi⟩
obtain ⟨j, hj⟩ := exists_gt i
- exact mem_unionᵢ.2 ⟨j, compl_mem_generateMeasurableRec hj hi⟩
+ exact mem_iUnion.2 ⟨j, compl_mem_generateMeasurableRec hj hi⟩
· have : ∀ n, ∃ i, f n ∈ generateMeasurableRec s i := fun n => by simpa using IH n
choose I hI using this
have : IsWellOrder (ω₁ : Type u) (· < ·) := isWellOrder_out_lt _
- refine' mem_unionᵢ.2
+ refine' mem_iUnion.2
⟨Ordinal.enum (· < ·) (Ordinal.lsub fun n => Ordinal.typein.{u} (· < ·) (I n)) _,
- unionᵢ_mem_generateMeasurableRec fun n => ⟨I n, _, hI n⟩⟩
+ iUnion_mem_generateMeasurableRec fun n => ⟨I n, _, hI n⟩⟩
· rw [Ordinal.type_lt]
refine' Ordinal.lsub_lt_ord_lift _ fun i => Ordinal.typein_lt_self _
rw [mk_denumerable, lift_aleph0, isRegular_aleph_one.cof_eq]
@@ -149,7 +149,7 @@ theorem generateMeasurable_eq_rec (s : Set (Set α)) :
· exact .basic t h
· exact .empty
· exact .compl u (H k hk u hu)
- · refine .unionᵢ _ @fun n => ?_
+ · refine .iUnion _ @fun n => ?_
obtain ⟨-, ⟨⟨k, hk⟩, rfl⟩, hf⟩ := (f n).prop
exact H k hk _ hf
#align measurable_space.generate_measurable_eq_rec MeasurableSpace.generateMeasurable_eq_rec
@@ -159,10 +159,10 @@ most `(max (#s) 2) ^ ℵ₀`. -/
theorem cardinal_generateMeasurable_le (s : Set (Set α)) :
(#{ t | GenerateMeasurable s t }) ≤ max (#s) 2 ^ aleph0.{u} := by
rw [generateMeasurable_eq_rec]
- apply (mk_unionᵢ_le _).trans
+ apply (mk_iUnion_le _).trans
rw [(aleph 1).mk_ord_out]
refine le_trans (mul_le_mul' aleph_one_le_continuum
- (csupᵢ_le' fun i => cardinal_generateMeasurableRec_le s i)) ?_
+ (ciSup_le' fun i => cardinal_generateMeasurableRec_le s i)) ?_
refine (mul_le_max_of_aleph0_le_left aleph0_le_continuum).trans (max_le ?_ le_rfl)
exact power_le_power_right (le_max_right _ _)
#align measurable_space.cardinal_generate_measurable_le MeasurableSpace.cardinal_generateMeasurable_le
The unported dependencies are