measure_theory.function.ae_eq_funMathlib.MeasureTheory.Function.AEEqFun

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -1007,7 +1007,7 @@ section Abs
 theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β] [AddGroup β]
     [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑|f| =ᵐ[μ] fun x => |f x| :=
   by
-  simp_rw [abs_eq_sup_neg]
+  simp_rw [abs]
   filter_upwards [ae_eq_fun.coe_fn_sup f (-f), ae_eq_fun.coe_fn_neg f] with x hx_sup hx_neg
   rw [hx_sup, hx_neg, Pi.neg_apply]
 #align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AEEqFun.coeFn_abs
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2019 Johannes Hölzl, Zhouhang Zhou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Zhouhang Zhou
 -/
-import Mathbin.MeasureTheory.Integral.Lebesgue
-import Mathbin.Order.Filter.Germ
-import Mathbin.Topology.ContinuousFunction.Algebra
-import Mathbin.MeasureTheory.Function.StronglyMeasurable.Basic
+import MeasureTheory.Integral.Lebesgue
+import Order.Filter.Germ
+import Topology.ContinuousFunction.Algebra
+import MeasureTheory.Function.StronglyMeasurable.Basic
 
 #align_import measure_theory.function.ae_eq_fun from "leanprover-community/mathlib"@"a87d22575d946e1e156fc1edd1e1269600a8a282"
 
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2019 Johannes Hölzl, Zhouhang Zhou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Zhouhang Zhou
-
-! This file was ported from Lean 3 source module measure_theory.function.ae_eq_fun
-! leanprover-community/mathlib commit a87d22575d946e1e156fc1edd1e1269600a8a282
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Integral.Lebesgue
 import Mathbin.Order.Filter.Germ
 import Mathbin.Topology.ContinuousFunction.Algebra
 import Mathbin.MeasureTheory.Function.StronglyMeasurable.Basic
 
+#align_import measure_theory.function.ae_eq_fun from "leanprover-community/mathlib"@"a87d22575d946e1e156fc1edd1e1269600a8a282"
+
 /-!
 
 # Almost everywhere equal functions
Diff
@@ -1008,7 +1008,7 @@ section Abs
 
 #print MeasureTheory.AEEqFun.coeFn_abs /-
 theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β] [AddGroup β]
-    [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑(|f|) =ᵐ[μ] fun x => |f x| :=
+    [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑|f| =ᵐ[μ] fun x => |f x| :=
   by
   simp_rw [abs_eq_sup_neg]
   filter_upwards [ae_eq_fun.coe_fn_sup f (-f), ae_eq_fun.coe_fn_neg f] with x hx_sup hx_neg
Diff
@@ -114,7 +114,6 @@ def AEEqFun (μ : Measure α) : Type _ :=
 
 variable {α β}
 
--- mathport name: «expr →ₘ[ ] »
 notation:25 α " →ₘ[" μ "] " β => AEEqFun α β μ
 
 end MeasurableSpace
@@ -136,13 +135,17 @@ instance : CoeFun (α →ₘ[μ] β) fun _ => α → β :=
   ⟨fun f =>
     AEStronglyMeasurable.mk _ (Quotient.out' f : { f : α → β // AEStronglyMeasurable f μ }).2⟩
 
+#print MeasureTheory.AEEqFun.stronglyMeasurable /-
 protected theorem stronglyMeasurable (f : α →ₘ[μ] β) : StronglyMeasurable f :=
   AEStronglyMeasurable.stronglyMeasurable_mk _
 #align measure_theory.ae_eq_fun.strongly_measurable MeasureTheory.AEEqFun.stronglyMeasurable
+-/
 
+#print MeasureTheory.AEEqFun.aestronglyMeasurable /-
 protected theorem aestronglyMeasurable (f : α →ₘ[μ] β) : AEStronglyMeasurable f μ :=
   f.StronglyMeasurable.AEStronglyMeasurable
 #align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AEEqFun.aestronglyMeasurable
+-/
 
 #print MeasureTheory.AEEqFun.measurable /-
 protected theorem measurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
@@ -158,17 +161,22 @@ protected theorem aemeasurable [PseudoMetrizableSpace β] [MeasurableSpace β] [
 #align measure_theory.ae_eq_fun.ae_measurable MeasureTheory.AEEqFun.aemeasurable
 -/
 
+#print MeasureTheory.AEEqFun.quot_mk_eq_mk /-
 @[simp]
 theorem quot_mk_eq_mk (f : α → β) (hf) :
     (Quot.mk (@Setoid.r _ <| μ.aeEqSetoid β) ⟨f, hf⟩ : α →ₘ[μ] β) = mk f hf :=
   rfl
 #align measure_theory.ae_eq_fun.quot_mk_eq_mk MeasureTheory.AEEqFun.quot_mk_eq_mk
+-/
 
+#print MeasureTheory.AEEqFun.mk_eq_mk /-
 @[simp]
 theorem mk_eq_mk {f g : α → β} {hf hg} : (mk f hf : α →ₘ[μ] β) = mk g hg ↔ f =ᵐ[μ] g :=
   Quotient.eq''
 #align measure_theory.ae_eq_fun.mk_eq_mk MeasureTheory.AEEqFun.mk_eq_mk
+-/
 
+#print MeasureTheory.AEEqFun.mk_coeFn /-
 @[simp]
 theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AEStronglyMeasurable = f :=
   by
@@ -178,34 +186,46 @@ theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AEStronglyMeasurable = f :=
   rw [this, ← mk, mk_eq_mk]
   exact (ae_strongly_measurable.ae_eq_mk _).symm
 #align measure_theory.ae_eq_fun.mk_coe_fn MeasureTheory.AEEqFun.mk_coeFn
+-/
 
+#print MeasureTheory.AEEqFun.ext /-
 @[ext]
 theorem ext {f g : α →ₘ[μ] β} (h : f =ᵐ[μ] g) : f = g := by
   rwa [← f.mk_coe_fn, ← g.mk_coe_fn, mk_eq_mk]
 #align measure_theory.ae_eq_fun.ext MeasureTheory.AEEqFun.ext
+-/
 
+#print MeasureTheory.AEEqFun.ext_iff /-
 theorem ext_iff {f g : α →ₘ[μ] β} : f = g ↔ f =ᵐ[μ] g :=
   ⟨fun h => by rw [h], fun h => ext h⟩
 #align measure_theory.ae_eq_fun.ext_iff MeasureTheory.AEEqFun.ext_iff
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_mk /-
 theorem coeFn_mk (f : α → β) (hf) : (mk f hf : α →ₘ[μ] β) =ᵐ[μ] f :=
   by
   apply (ae_strongly_measurable.ae_eq_mk _).symm.trans
   exact @Quotient.mk_out' _ (μ.ae_eq_setoid β) (⟨f, hf⟩ : { f // ae_strongly_measurable f μ })
 #align measure_theory.ae_eq_fun.coe_fn_mk MeasureTheory.AEEqFun.coeFn_mk
+-/
 
+#print MeasureTheory.AEEqFun.induction_on /-
 @[elab_as_elim]
 theorem induction_on (f : α →ₘ[μ] β) {p : (α →ₘ[μ] β) → Prop} (H : ∀ f hf, p (mk f hf)) : p f :=
   Quotient.inductionOn' f <| Subtype.forall.2 H
 #align measure_theory.ae_eq_fun.induction_on MeasureTheory.AEEqFun.induction_on
+-/
 
+#print MeasureTheory.AEEqFun.induction_on₂ /-
 @[elab_as_elim]
 theorem induction_on₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     (f : α →ₘ[μ] β) (f' : α' →ₘ[μ'] β') {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → Prop}
     (H : ∀ f hf f' hf', p (mk f hf) (mk f' hf')) : p f f' :=
   induction_on f fun f hf => induction_on f' <| H f hf
 #align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AEEqFun.induction_on₂
+-/
 
+#print MeasureTheory.AEEqFun.induction_on₃ /-
 @[elab_as_elim]
 theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     {α'' β'' : Type _} [MeasurableSpace α''] [TopologicalSpace β''] {μ'' : Measure α''}
@@ -214,6 +234,7 @@ theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpa
     (H : ∀ f hf f' hf' f'' hf'', p (mk f hf) (mk f' hf') (mk f'' hf'')) : p f f' f'' :=
   induction_on f fun f hf => induction_on₂ f' f'' <| H f hf
 #align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AEEqFun.induction_on₃
+-/
 
 #print MeasureTheory.AEEqFun.comp /-
 /-- Given a continuous function `g : β → γ`, and an almost everywhere equal function `[f] : α →ₘ β`,
@@ -225,20 +246,26 @@ def comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : α →ₘ[
 #align measure_theory.ae_eq_fun.comp MeasureTheory.AEEqFun.comp
 -/
 
+#print MeasureTheory.AEEqFun.comp_mk /-
 @[simp]
 theorem comp_mk (g : β → γ) (hg : Continuous g) (f : α → β) (hf) :
     comp g hg (mk f hf : α →ₘ[μ] β) = mk (g ∘ f) (hg.comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AEEqFun.comp_mk
+-/
 
+#print MeasureTheory.AEEqFun.comp_eq_mk /-
 theorem comp_eq_mk (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
     comp g hg f = mk (g ∘ f) (hg.comp_aestronglyMeasurable f.AEStronglyMeasurable) := by
   rw [← comp_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AEEqFun.comp_eq_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_comp /-
 theorem coeFn_comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : comp g hg f =ᵐ[μ] g ∘ f := by
   rw [comp_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AEEqFun.coeFn_comp
+-/
 
 section CompMeasurable
 
@@ -256,6 +283,7 @@ def compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
 #align measure_theory.ae_eq_fun.comp_measurable MeasureTheory.AEEqFun.compMeasurable
 -/
 
+#print MeasureTheory.AEEqFun.compMeasurable_mk /-
 @[simp]
 theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
     (hf : AEStronglyMeasurable f μ) :
@@ -263,39 +291,53 @@ theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
       mk (g ∘ f) (hg.comp_aemeasurable hf.AEMeasurable).AEStronglyMeasurable :=
   rfl
 #align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AEEqFun.compMeasurable_mk
+-/
 
+#print MeasureTheory.AEEqFun.compMeasurable_eq_mk /-
 theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f = mk (g ∘ f) (hg.comp_aemeasurable f.AEMeasurable).AEStronglyMeasurable :=
   by rw [← comp_measurable_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AEEqFun.compMeasurable_eq_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_compMeasurable /-
 theorem coeFn_compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f =ᵐ[μ] g ∘ f := by rw [comp_measurable_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurable
+-/
 
 end CompMeasurable
 
+#print MeasureTheory.AEEqFun.pair /-
 /-- The class of `x ↦ (f x, g x)`. -/
 def pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : α →ₘ[μ] β × γ :=
   Quotient.liftOn₂' f g (fun f g => mk (fun x => (f.1 x, g.1 x)) (f.2.prod_mk g.2))
     fun f g f' g' Hf Hg => mk_eq_mk.2 <| Hf.prod_mk Hg
 #align measure_theory.ae_eq_fun.pair MeasureTheory.AEEqFun.pair
+-/
 
+#print MeasureTheory.AEEqFun.pair_mk_mk /-
 @[simp]
 theorem pair_mk_mk (f : α → β) (hf) (g : α → γ) (hg) :
     (mk f hf : α →ₘ[μ] β).pair (mk g hg) = mk (fun x => (f x, g x)) (hf.prod_mk hg) :=
   rfl
 #align measure_theory.ae_eq_fun.pair_mk_mk MeasureTheory.AEEqFun.pair_mk_mk
+-/
 
+#print MeasureTheory.AEEqFun.pair_eq_mk /-
 theorem pair_eq_mk (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) :
     f.pair g = mk (fun x => (f x, g x)) (f.AEStronglyMeasurable.prod_mk g.AEStronglyMeasurable) :=
   by simp only [← pair_mk_mk, mk_coe_fn]
 #align measure_theory.ae_eq_fun.pair_eq_mk MeasureTheory.AEEqFun.pair_eq_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_pair /-
 theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ[μ] fun x => (f x, g x) := by
   rw [pair_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AEEqFun.coeFn_pair
+-/
 
+#print MeasureTheory.AEEqFun.comp₂ /-
 /-- Given a continuous function `g : β → γ → δ`, and almost everywhere equal functions
     `[f₁] : α →ₘ β` and `[f₂] : α →ₘ γ`, return the equivalence class of the function
     `λ a, g (f₁ a) (f₂ a)`, i.e., the almost everywhere equal function
@@ -304,7 +346,9 @@ def comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →
     α →ₘ[μ] δ :=
   comp _ hg (f₁.pair f₂)
 #align measure_theory.ae_eq_fun.comp₂ MeasureTheory.AEEqFun.comp₂
+-/
 
+#print MeasureTheory.AEEqFun.comp₂_mk_mk /-
 @[simp]
 theorem comp₂_mk_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α → β) (f₂ : α → γ)
     (hf₁ hf₂) :
@@ -312,12 +356,16 @@ theorem comp₂_mk_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
       mk (fun a => g (f₁ a) (f₂ a)) (hg.comp_aestronglyMeasurable (hf₁.prod_mk hf₂)) :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AEEqFun.comp₂_mk_mk
+-/
 
+#print MeasureTheory.AEEqFun.comp₂_eq_pair /-
 theorem comp₂_eq_pair (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ = comp _ hg (f₁.pair f₂) :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_eq_pair MeasureTheory.AEEqFun.comp₂_eq_pair
+-/
 
+#print MeasureTheory.AEEqFun.comp₂_eq_mk /-
 theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
     comp₂ g hg f₁ f₂ =
@@ -325,11 +373,14 @@ theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
         (hg.comp_aestronglyMeasurable (f₁.AEStronglyMeasurable.prod_mk f₂.AEStronglyMeasurable)) :=
   by rw [comp₂_eq_pair, pair_eq_mk, comp_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AEEqFun.comp₂_eq_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_comp₂ /-
 theorem coeFn_comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) := by rw [comp₂_eq_mk];
   apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AEEqFun.coeFn_comp₂
+-/
 
 section
 
@@ -348,6 +399,7 @@ def comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁
 #align measure_theory.ae_eq_fun.comp₂_measurable MeasureTheory.AEEqFun.comp₂Measurable
 -/
 
+#print MeasureTheory.AEEqFun.comp₂Measurable_mk_mk /-
 @[simp]
 theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α → β)
     (f₂ : α → γ) (hf₁ hf₂) :
@@ -356,12 +408,16 @@ theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry
         (hg.comp_aemeasurable (hf₁.AEMeasurable.prod_mk hf₂.AEMeasurable)).AEStronglyMeasurable :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AEEqFun.comp₂Measurable_mk_mk
+-/
 
+#print MeasureTheory.AEEqFun.comp₂Measurable_eq_pair /-
 theorem comp₂Measurable_eq_pair (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ = compMeasurable _ hg (f₁.pair f₂) :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AEEqFun.comp₂Measurable_eq_pair
+-/
 
+#print MeasureTheory.AEEqFun.comp₂Measurable_eq_mk /-
 theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
     comp₂Measurable g hg f₁ f₂ =
@@ -369,11 +425,14 @@ theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry
         (hg.comp_aemeasurable (f₁.AEMeasurable.prod_mk f₂.AEMeasurable)).AEStronglyMeasurable :=
   by rw [comp₂_measurable_eq_pair, pair_eq_mk, comp_measurable_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AEEqFun.comp₂Measurable_eq_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_comp₂Measurable /-
 theorem coeFn_comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) := by
   rw [comp₂_measurable_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AEEqFun.coeFn_comp₂Measurable
+-/
 
 end
 
@@ -385,35 +444,48 @@ def toGerm (f : α →ₘ[μ] β) : Germ μ.ae β :=
 #align measure_theory.ae_eq_fun.to_germ MeasureTheory.AEEqFun.toGerm
 -/
 
+#print MeasureTheory.AEEqFun.mk_toGerm /-
 @[simp]
 theorem mk_toGerm (f : α → β) (hf) : (mk f hf : α →ₘ[μ] β).toGerm = f :=
   rfl
 #align measure_theory.ae_eq_fun.mk_to_germ MeasureTheory.AEEqFun.mk_toGerm
+-/
 
+#print MeasureTheory.AEEqFun.toGerm_eq /-
 theorem toGerm_eq (f : α →ₘ[μ] β) : f.toGerm = (f : α → β) := by rw [← mk_to_germ, mk_coe_fn]
 #align measure_theory.ae_eq_fun.to_germ_eq MeasureTheory.AEEqFun.toGerm_eq
+-/
 
+#print MeasureTheory.AEEqFun.toGerm_injective /-
 theorem toGerm_injective : Injective (toGerm : (α →ₘ[μ] β) → Germ μ.ae β) := fun f g H =>
   ext <| Germ.coe_eq.1 <| by rwa [← to_germ_eq, ← to_germ_eq]
 #align measure_theory.ae_eq_fun.to_germ_injective MeasureTheory.AEEqFun.toGerm_injective
+-/
 
+#print MeasureTheory.AEEqFun.comp_toGerm /-
 theorem comp_toGerm (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
     (comp g hg f).toGerm = f.toGerm.map g :=
   induction_on f fun f hf => by simp
 #align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AEEqFun.comp_toGerm
+-/
 
+#print MeasureTheory.AEEqFun.compMeasurable_toGerm /-
 theorem compMeasurable_toGerm [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace β]
     [PseudoMetrizableSpace γ] [SecondCountableTopology γ] [MeasurableSpace γ]
     [OpensMeasurableSpace γ] (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     (compMeasurable g hg f).toGerm = f.toGerm.map g :=
   induction_on f fun f hf => by simp
 #align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AEEqFun.compMeasurable_toGerm
+-/
 
+#print MeasureTheory.AEEqFun.comp₂_toGerm /-
 theorem comp₂_toGerm (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : (comp₂ g hg f₁ f₂).toGerm = f₁.toGerm.zipWith g f₂.toGerm :=
   induction_on₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
 #align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AEEqFun.comp₂_toGerm
+-/
 
+#print MeasureTheory.AEEqFun.comp₂Measurable_toGerm /-
 theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopology β]
     [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace γ] [SecondCountableTopology γ]
     [MeasurableSpace γ] [BorelSpace γ] [PseudoMetrizableSpace δ] [SecondCountableTopology δ]
@@ -422,6 +494,7 @@ theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopo
     (comp₂Measurable g hg f₁ f₂).toGerm = f₁.toGerm.zipWith g f₂.toGerm :=
   induction_on₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
 #align measure_theory.ae_eq_fun.comp₂_measurable_to_germ MeasureTheory.AEEqFun.comp₂Measurable_toGerm
+-/
 
 #print MeasureTheory.AEEqFun.LiftPred /-
 /-- Given a predicate `p` and an equivalence class `[f]`, return true if `p` holds of `f a`
@@ -439,14 +512,18 @@ def LiftRel (r : β → γ → Prop) (f : α →ₘ[μ] β) (g : α →ₘ[μ] 
 #align measure_theory.ae_eq_fun.lift_rel MeasureTheory.AEEqFun.LiftRel
 -/
 
+#print MeasureTheory.AEEqFun.liftRel_mk_mk /-
 theorem liftRel_mk_mk {r : β → γ → Prop} {f : α → β} {g : α → γ} {hf hg} :
     LiftRel r (mk f hf : α →ₘ[μ] β) (mk g hg) ↔ ∀ᵐ a ∂μ, r (f a) (g a) :=
   Iff.rfl
 #align measure_theory.ae_eq_fun.lift_rel_mk_mk MeasureTheory.AEEqFun.liftRel_mk_mk
+-/
 
+#print MeasureTheory.AEEqFun.liftRel_iff_coeFn /-
 theorem liftRel_iff_coeFn {r : β → γ → Prop} {f : α →ₘ[μ] β} {g : α →ₘ[μ] γ} :
     LiftRel r f g ↔ ∀ᵐ a ∂μ, r (f a) (g a) := by rw [← lift_rel_mk_mk, mk_coe_fn, mk_coe_fn]
 #align measure_theory.ae_eq_fun.lift_rel_iff_coe_fn MeasureTheory.AEEqFun.liftRel_iff_coeFn
+-/
 
 section Order
 
@@ -478,18 +555,25 @@ variable [SemilatticeSup β] [ContinuousSup β]
 
 instance : Sup (α →ₘ[μ] β) where sup f g := AEEqFun.comp₂ (· ⊔ ·) continuous_sup f g
 
+#print MeasureTheory.AEEqFun.coeFn_sup /-
 theorem coeFn_sup (f g : α →ₘ[μ] β) : ⇑(f ⊔ g) =ᵐ[μ] fun x => f x ⊔ g x :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_sup MeasureTheory.AEEqFun.coeFn_sup
+-/
 
+#print MeasureTheory.AEEqFun.le_sup_left /-
 protected theorem le_sup_left (f g : α →ₘ[μ] β) : f ≤ f ⊔ g := by rw [← coe_fn_le];
   filter_upwards [coe_fn_sup f g] with _ ha; rw [ha]; exact le_sup_left
 #align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_left
+-/
 
+#print MeasureTheory.AEEqFun.le_sup_right /-
 protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g := by rw [← coe_fn_le];
   filter_upwards [coe_fn_sup f g] with _ ha; rw [ha]; exact le_sup_right
 #align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_right
+-/
 
+#print MeasureTheory.AEEqFun.sup_le /-
 protected theorem sup_le (f g f' : α →ₘ[μ] β) (hf : f ≤ f') (hg : g ≤ f') : f ⊔ g ≤ f' :=
   by
   rw [← coe_fn_le] at hf hg ⊢
@@ -497,6 +581,7 @@ protected theorem sup_le (f g f' : α →ₘ[μ] β) (hf : f ≤ f') (hg : g ≤
   rw [ha_sup]
   exact sup_le haf hag
 #align measure_theory.ae_eq_fun.sup_le MeasureTheory.AEEqFun.sup_le
+-/
 
 end Sup
 
@@ -506,18 +591,25 @@ variable [SemilatticeInf β] [ContinuousInf β]
 
 instance : Inf (α →ₘ[μ] β) where inf f g := AEEqFun.comp₂ (· ⊓ ·) continuous_inf f g
 
+#print MeasureTheory.AEEqFun.coeFn_inf /-
 theorem coeFn_inf (f g : α →ₘ[μ] β) : ⇑(f ⊓ g) =ᵐ[μ] fun x => f x ⊓ g x :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_inf MeasureTheory.AEEqFun.coeFn_inf
+-/
 
+#print MeasureTheory.AEEqFun.inf_le_left /-
 protected theorem inf_le_left (f g : α →ₘ[μ] β) : f ⊓ g ≤ f := by rw [← coe_fn_le];
   filter_upwards [coe_fn_inf f g] with _ ha; rw [ha]; exact inf_le_left
 #align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_left
+-/
 
+#print MeasureTheory.AEEqFun.inf_le_right /-
 protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g := by rw [← coe_fn_le];
   filter_upwards [coe_fn_inf f g] with _ ha; rw [ha]; exact inf_le_right
 #align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_right
+-/
 
+#print MeasureTheory.AEEqFun.le_inf /-
 protected theorem le_inf (f' f g : α →ₘ[μ] β) (hf : f' ≤ f) (hg : f' ≤ g) : f' ≤ f ⊓ g :=
   by
   rw [← coe_fn_le] at hf hg ⊢
@@ -525,6 +617,7 @@ protected theorem le_inf (f' f g : α →ₘ[μ] β) (hf : f' ≤ f) (hg : f' 
   rw [ha_inf]
   exact le_inf haf hag
 #align measure_theory.ae_eq_fun.le_inf MeasureTheory.AEEqFun.le_inf
+-/
 
 end Inf
 
@@ -553,9 +646,11 @@ def const (b : β) : α →ₘ[μ] β :=
 #align measure_theory.ae_eq_fun.const MeasureTheory.AEEqFun.const
 -/
 
+#print MeasureTheory.AEEqFun.coeFn_const /-
 theorem coeFn_const (b : β) : (const α b : α →ₘ[μ] β) =ᵐ[μ] Function.const α b :=
   coeFn_mk _ _
 #align measure_theory.ae_eq_fun.coe_fn_const MeasureTheory.AEEqFun.coeFn_const
+-/
 
 variable {α}
 
@@ -566,11 +661,13 @@ instance [Inhabited β] : Inhabited (α →ₘ[μ] β) :=
 instance [One β] : One (α →ₘ[μ] β) :=
   ⟨const α 1⟩
 
+#print MeasureTheory.AEEqFun.one_def /-
 @[to_additive]
 theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aestronglyMeasurable_const :=
   rfl
 #align measure_theory.ae_eq_fun.one_def MeasureTheory.AEEqFun.one_def
 #align measure_theory.ae_eq_fun.zero_def MeasureTheory.AEEqFun.zero_def
+-/
 
 #print MeasureTheory.AEEqFun.coeFn_one /-
 @[to_additive]
@@ -601,19 +698,25 @@ variable [SMul 𝕜' γ] [ContinuousConstSMul 𝕜' γ]
 instance : SMul 𝕜 (α →ₘ[μ] γ) :=
   ⟨fun c f => comp ((· • ·) c) (continuous_id.const_smul c) f⟩
 
+#print MeasureTheory.AEEqFun.smul_mk /-
 @[simp]
 theorem smul_mk (c : 𝕜) (f : α → γ) (hf : AEStronglyMeasurable f μ) :
     c • (mk f hf : α →ₘ[μ] γ) = mk (c • f) (hf.const_smul _) :=
   rfl
 #align measure_theory.ae_eq_fun.smul_mk MeasureTheory.AEEqFun.smul_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_smul /-
 theorem coeFn_smul (c : 𝕜) (f : α →ₘ[μ] γ) : ⇑(c • f) =ᵐ[μ] c • f :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_smul MeasureTheory.AEEqFun.coeFn_smul
+-/
 
+#print MeasureTheory.AEEqFun.smul_toGerm /-
 theorem smul_toGerm (c : 𝕜) (f : α →ₘ[μ] γ) : (c • f).toGerm = c • f.toGerm :=
   comp_toGerm _ _ _
 #align measure_theory.ae_eq_fun.smul_to_germ MeasureTheory.AEEqFun.smul_toGerm
+-/
 
 instance [SMulCommClass 𝕜 𝕜' γ] : SMulCommClass 𝕜 𝕜' (α →ₘ[μ] γ) :=
   ⟨fun a b f => induction_on f fun f hf => by simp_rw [smul_mk, smul_comm]⟩
@@ -634,24 +737,30 @@ variable [Mul γ] [ContinuousMul γ]
 instance : Mul (α →ₘ[μ] γ) :=
   ⟨comp₂ (· * ·) continuous_mul⟩
 
+#print MeasureTheory.AEEqFun.mk_mul_mk /-
 @[simp, to_additive]
 theorem mk_mul_mk (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     (mk f hf : α →ₘ[μ] γ) * mk g hg = mk (f * g) (hf.mul hg) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_mul_mk MeasureTheory.AEEqFun.mk_mul_mk
 #align measure_theory.ae_eq_fun.mk_add_mk MeasureTheory.AEEqFun.mk_add_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_mul /-
 @[to_additive]
 theorem coeFn_mul (f g : α →ₘ[μ] γ) : ⇑(f * g) =ᵐ[μ] f * g :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_mul MeasureTheory.AEEqFun.coeFn_mul
 #align measure_theory.ae_eq_fun.coe_fn_add MeasureTheory.AEEqFun.coeFn_add
+-/
 
+#print MeasureTheory.AEEqFun.mul_toGerm /-
 @[simp, to_additive]
 theorem mul_toGerm (f g : α →ₘ[μ] γ) : (f * g).toGerm = f.toGerm * g.toGerm :=
   comp₂_toGerm _ _ _ _
 #align measure_theory.ae_eq_fun.mul_to_germ MeasureTheory.AEEqFun.mul_toGerm
 #align measure_theory.ae_eq_fun.add_to_germ MeasureTheory.AEEqFun.add_toGerm
+-/
 
 end Mul
 
@@ -668,25 +777,32 @@ variable [Monoid γ] [ContinuousMul γ]
 instance : Pow (α →ₘ[μ] γ) ℕ :=
   ⟨fun f n => comp _ (continuous_pow n) f⟩
 
+#print MeasureTheory.AEEqFun.mk_pow /-
 @[simp]
 theorem mk_pow (f : α → γ) (hf) (n : ℕ) :
     (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_pow n).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AEEqFun.mk_pow
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_pow /-
 theorem coeFn_pow (f : α →ₘ[μ] γ) (n : ℕ) : ⇑(f ^ n) =ᵐ[μ] f ^ n :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_pow MeasureTheory.AEEqFun.coeFn_pow
+-/
 
+#print MeasureTheory.AEEqFun.pow_toGerm /-
 @[simp]
 theorem pow_toGerm (f : α →ₘ[μ] γ) (n : ℕ) : (f ^ n).toGerm = f.toGerm ^ n :=
   comp_toGerm _ _ _
 #align measure_theory.ae_eq_fun.pow_to_germ MeasureTheory.AEEqFun.pow_toGerm
+-/
 
 @[to_additive]
 instance : Monoid (α →ₘ[μ] γ) :=
   toGerm_injective.Monoid toGerm one_toGerm mul_toGerm pow_toGerm
 
+#print MeasureTheory.AEEqFun.toGermMonoidHom /-
 /-- `ae_eq_fun.to_germ` as a `monoid_hom`. -/
 @[to_additive "`ae_eq_fun.to_germ` as an `add_monoid_hom`.", simps]
 def toGermMonoidHom : (α →ₘ[μ] γ) →* μ.ae.Germ γ
@@ -696,6 +812,7 @@ def toGermMonoidHom : (α →ₘ[μ] γ) →* μ.ae.Germ γ
   map_mul' := mul_toGerm
 #align measure_theory.ae_eq_fun.to_germ_monoid_hom MeasureTheory.AEEqFun.toGermMonoidHom
 #align measure_theory.ae_eq_fun.to_germ_add_monoid_hom MeasureTheory.AEEqFun.toGermAddMonoidHom
+-/
 
 end Monoid
 
@@ -713,23 +830,29 @@ section Inv
 instance : Inv (α →ₘ[μ] γ) :=
   ⟨comp Inv.inv continuous_inv⟩
 
+#print MeasureTheory.AEEqFun.inv_mk /-
 @[simp, to_additive]
 theorem inv_mk (f : α → γ) (hf) : (mk f hf : α →ₘ[μ] γ)⁻¹ = mk f⁻¹ hf.inv :=
   rfl
 #align measure_theory.ae_eq_fun.inv_mk MeasureTheory.AEEqFun.inv_mk
 #align measure_theory.ae_eq_fun.neg_mk MeasureTheory.AEEqFun.neg_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_inv /-
 @[to_additive]
 theorem coeFn_inv (f : α →ₘ[μ] γ) : ⇑f⁻¹ =ᵐ[μ] f⁻¹ :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_inv MeasureTheory.AEEqFun.coeFn_inv
 #align measure_theory.ae_eq_fun.coe_fn_neg MeasureTheory.AEEqFun.coeFn_neg
+-/
 
+#print MeasureTheory.AEEqFun.inv_toGerm /-
 @[to_additive]
 theorem inv_toGerm (f : α →ₘ[μ] γ) : f⁻¹.toGerm = f.toGerm⁻¹ :=
   comp_toGerm _ _ _
 #align measure_theory.ae_eq_fun.inv_to_germ MeasureTheory.AEEqFun.inv_toGerm
 #align measure_theory.ae_eq_fun.neg_to_germ MeasureTheory.AEEqFun.neg_toGerm
+-/
 
 end Inv
 
@@ -739,24 +862,30 @@ section Div
 instance : Div (α →ₘ[μ] γ) :=
   ⟨comp₂ Div.div continuous_div'⟩
 
+#print MeasureTheory.AEEqFun.mk_div /-
 @[simp, to_additive]
 theorem mk_div (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     mk (f / g) (hf.div hg) = (mk f hf : α →ₘ[μ] γ) / mk g hg :=
   rfl
 #align measure_theory.ae_eq_fun.mk_div MeasureTheory.AEEqFun.mk_div
 #align measure_theory.ae_eq_fun.mk_sub MeasureTheory.AEEqFun.mk_sub
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_div /-
 @[to_additive]
 theorem coeFn_div (f g : α →ₘ[μ] γ) : ⇑(f / g) =ᵐ[μ] f / g :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_div MeasureTheory.AEEqFun.coeFn_div
 #align measure_theory.ae_eq_fun.coe_fn_sub MeasureTheory.AEEqFun.coeFn_sub
+-/
 
+#print MeasureTheory.AEEqFun.div_toGerm /-
 @[to_additive]
 theorem div_toGerm (f g : α →ₘ[μ] γ) : (f / g).toGerm = f.toGerm / g.toGerm :=
   comp₂_toGerm _ _ _ _
 #align measure_theory.ae_eq_fun.div_to_germ MeasureTheory.AEEqFun.div_toGerm
 #align measure_theory.ae_eq_fun.sub_to_germ MeasureTheory.AEEqFun.sub_toGerm
+-/
 
 end Div
 
@@ -768,20 +897,26 @@ instance instPowInt : Pow (α →ₘ[μ] γ) ℤ :=
 #align measure_theory.ae_eq_fun.has_int_pow MeasureTheory.AEEqFun.instPowInt
 -/
 
+#print MeasureTheory.AEEqFun.mk_zpow /-
 @[simp]
 theorem mk_zpow (f : α → γ) (hf) (n : ℤ) :
     (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_zpow n).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AEEqFun.mk_zpow
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_zpow /-
 theorem coeFn_zpow (f : α →ₘ[μ] γ) (n : ℤ) : ⇑(f ^ n) =ᵐ[μ] f ^ n :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_zpow MeasureTheory.AEEqFun.coeFn_zpow
+-/
 
+#print MeasureTheory.AEEqFun.zpow_toGerm /-
 @[simp]
 theorem zpow_toGerm (f : α →ₘ[μ] γ) (n : ℤ) : (f ^ n).toGerm = f.toGerm ^ n :=
   comp_toGerm _ _ _
 #align measure_theory.ae_eq_fun.zpow_to_germ MeasureTheory.AEEqFun.zpow_toGerm
+-/
 
 end Zpow
 
@@ -823,40 +958,55 @@ end Module
 
 open ENNReal
 
+#print MeasureTheory.AEEqFun.lintegral /-
 /-- For `f : α → ℝ≥0∞`, define `∫ [f]` to be `∫ f` -/
 def lintegral (f : α →ₘ[μ] ℝ≥0∞) : ℝ≥0∞ :=
   Quotient.liftOn' f (fun f => ∫⁻ a, (f : α → ℝ≥0∞) a ∂μ) fun f g => lintegral_congr_ae
 #align measure_theory.ae_eq_fun.lintegral MeasureTheory.AEEqFun.lintegral
+-/
 
+#print MeasureTheory.AEEqFun.lintegral_mk /-
 @[simp]
 theorem lintegral_mk (f : α → ℝ≥0∞) (hf) : (mk f hf : α →ₘ[μ] ℝ≥0∞).lintegral = ∫⁻ a, f a ∂μ :=
   rfl
 #align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AEEqFun.lintegral_mk
+-/
 
+#print MeasureTheory.AEEqFun.lintegral_coeFn /-
 theorem lintegral_coeFn (f : α →ₘ[μ] ℝ≥0∞) : ∫⁻ a, f a ∂μ = f.lintegral := by
   rw [← lintegral_mk, mk_coe_fn]
 #align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AEEqFun.lintegral_coeFn
+-/
 
+#print MeasureTheory.AEEqFun.lintegral_zero /-
 @[simp]
 theorem lintegral_zero : lintegral (0 : α →ₘ[μ] ℝ≥0∞) = 0 :=
   lintegral_zero
 #align measure_theory.ae_eq_fun.lintegral_zero MeasureTheory.AEEqFun.lintegral_zero
+-/
 
+#print MeasureTheory.AEEqFun.lintegral_eq_zero_iff /-
 @[simp]
 theorem lintegral_eq_zero_iff {f : α →ₘ[μ] ℝ≥0∞} : lintegral f = 0 ↔ f = 0 :=
   induction_on f fun f hf => (lintegral_eq_zero_iff' hf.AEMeasurable).trans mk_eq_mk.symm
 #align measure_theory.ae_eq_fun.lintegral_eq_zero_iff MeasureTheory.AEEqFun.lintegral_eq_zero_iff
+-/
 
+#print MeasureTheory.AEEqFun.lintegral_add /-
 theorem lintegral_add (f g : α →ₘ[μ] ℝ≥0∞) : lintegral (f + g) = lintegral f + lintegral g :=
   induction_on₂ f g fun f hf g hg => by simp [lintegral_add_left' hf.ae_measurable]
 #align measure_theory.ae_eq_fun.lintegral_add MeasureTheory.AEEqFun.lintegral_add
+-/
 
+#print MeasureTheory.AEEqFun.lintegral_mono /-
 theorem lintegral_mono {f g : α →ₘ[μ] ℝ≥0∞} : f ≤ g → lintegral f ≤ lintegral g :=
   induction_on₂ f g fun f hf g hg hfg => lintegral_mono_ae hfg
 #align measure_theory.ae_eq_fun.lintegral_mono MeasureTheory.AEEqFun.lintegral_mono
+-/
 
 section Abs
 
+#print MeasureTheory.AEEqFun.coeFn_abs /-
 theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β] [AddGroup β]
     [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑(|f|) =ᵐ[μ] fun x => |f x| :=
   by
@@ -864,6 +1014,7 @@ theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β
   filter_upwards [ae_eq_fun.coe_fn_sup f (-f), ae_eq_fun.coe_fn_neg f] with x hx_sup hx_neg
   rw [hx_sup, hx_neg, Pi.neg_apply]
 #align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AEEqFun.coeFn_abs
+-/
 
 end Abs
 
@@ -878,6 +1029,7 @@ def posPart (f : α →ₘ[μ] γ) : α →ₘ[μ] γ :=
 #align measure_theory.ae_eq_fun.pos_part MeasureTheory.AEEqFun.posPart
 -/
 
+#print MeasureTheory.AEEqFun.posPart_mk /-
 @[simp]
 theorem posPart_mk (f : α → γ) (hf) :
     posPart (mk f hf : α →ₘ[μ] γ) =
@@ -885,10 +1037,13 @@ theorem posPart_mk (f : α → γ) (hf) :
         ((continuous_id.max continuous_const).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AEEqFun.posPart_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_posPart /-
 theorem coeFn_posPart (f : α →ₘ[μ] γ) : ⇑(posPart f) =ᵐ[μ] fun a => max (f a) 0 :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_pos_part MeasureTheory.AEEqFun.coeFn_posPart
+-/
 
 end PosPart
 
@@ -912,12 +1067,15 @@ def toAEEqFun (f : C(α, β)) : α →ₘ[μ] β :=
 #align continuous_map.to_ae_eq_fun ContinuousMap.toAEEqFun
 -/
 
+#print ContinuousMap.coeFn_toAEEqFun /-
 theorem coeFn_toAEEqFun (f : C(α, β)) : f.toAEEqFun μ =ᵐ[μ] f :=
   AEEqFun.coeFn_mk f _
 #align continuous_map.coe_fn_to_ae_eq_fun ContinuousMap.coeFn_toAEEqFun
+-/
 
 variable [Group β] [TopologicalGroup β]
 
+#print ContinuousMap.toAEEqFunMulHom /-
 /-- The `mul_hom` from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
 @[to_additive
@@ -930,18 +1088,21 @@ def toAEEqFunMulHom : C(α, β) →* α →ₘ[μ] β
     AEEqFun.mk_mul_mk _ _ f.Continuous.AEStronglyMeasurable g.Continuous.AEStronglyMeasurable
 #align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAEEqFunMulHom
 #align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.toAEEqFunAddHom
+-/
 
 variable {𝕜 : Type _} [Semiring 𝕜]
 
 variable [TopologicalSpace γ] [PseudoMetrizableSpace γ] [AddCommGroup γ] [Module 𝕜 γ]
   [TopologicalAddGroup γ] [ContinuousConstSMul 𝕜 γ] [SecondCountableTopologyEither α γ]
 
+#print ContinuousMap.toAEEqFunLinearMap /-
 /-- The linear map from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
 def toAEEqFunLinearMap : C(α, γ) →ₗ[𝕜] α →ₘ[μ] γ :=
   { toAEEqFunAddHom μ with
     map_smul' := fun c f => AEEqFun.smul_mk c f f.Continuous.AEStronglyMeasurable }
 #align continuous_map.to_ae_eq_fun_linear_map ContinuousMap.toAEEqFunLinearMap
+-/
 
 end ContinuousMap
 
Diff
@@ -833,7 +833,7 @@ theorem lintegral_mk (f : α → ℝ≥0∞) (hf) : (mk f hf : α →ₘ[μ] ℝ
   rfl
 #align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AEEqFun.lintegral_mk
 
-theorem lintegral_coeFn (f : α →ₘ[μ] ℝ≥0∞) : (∫⁻ a, f a ∂μ) = f.lintegral := by
+theorem lintegral_coeFn (f : α →ₘ[μ] ℝ≥0∞) : ∫⁻ a, f a ∂μ = f.lintegral := by
   rw [← lintegral_mk, mk_coe_fn]
 #align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AEEqFun.lintegral_coeFn
 
Diff
@@ -483,17 +483,17 @@ theorem coeFn_sup (f g : α →ₘ[μ] β) : ⇑(f ⊔ g) =ᵐ[μ] fun x => f x
 #align measure_theory.ae_eq_fun.coe_fn_sup MeasureTheory.AEEqFun.coeFn_sup
 
 protected theorem le_sup_left (f g : α →ₘ[μ] β) : f ≤ f ⊔ g := by rw [← coe_fn_le];
-  filter_upwards [coe_fn_sup f g]with _ ha; rw [ha]; exact le_sup_left
+  filter_upwards [coe_fn_sup f g] with _ ha; rw [ha]; exact le_sup_left
 #align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_left
 
 protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g := by rw [← coe_fn_le];
-  filter_upwards [coe_fn_sup f g]with _ ha; rw [ha]; exact le_sup_right
+  filter_upwards [coe_fn_sup f g] with _ ha; rw [ha]; exact le_sup_right
 #align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_right
 
 protected theorem sup_le (f g f' : α →ₘ[μ] β) (hf : f ≤ f') (hg : g ≤ f') : f ⊔ g ≤ f' :=
   by
   rw [← coe_fn_le] at hf hg ⊢
-  filter_upwards [hf, hg, coe_fn_sup f g]with _ haf hag ha_sup
+  filter_upwards [hf, hg, coe_fn_sup f g] with _ haf hag ha_sup
   rw [ha_sup]
   exact sup_le haf hag
 #align measure_theory.ae_eq_fun.sup_le MeasureTheory.AEEqFun.sup_le
@@ -511,17 +511,17 @@ theorem coeFn_inf (f g : α →ₘ[μ] β) : ⇑(f ⊓ g) =ᵐ[μ] fun x => f x
 #align measure_theory.ae_eq_fun.coe_fn_inf MeasureTheory.AEEqFun.coeFn_inf
 
 protected theorem inf_le_left (f g : α →ₘ[μ] β) : f ⊓ g ≤ f := by rw [← coe_fn_le];
-  filter_upwards [coe_fn_inf f g]with _ ha; rw [ha]; exact inf_le_left
+  filter_upwards [coe_fn_inf f g] with _ ha; rw [ha]; exact inf_le_left
 #align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_left
 
 protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g := by rw [← coe_fn_le];
-  filter_upwards [coe_fn_inf f g]with _ ha; rw [ha]; exact inf_le_right
+  filter_upwards [coe_fn_inf f g] with _ ha; rw [ha]; exact inf_le_right
 #align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_right
 
 protected theorem le_inf (f' f g : α →ₘ[μ] β) (hf : f' ≤ f) (hg : f' ≤ g) : f' ≤ f ⊓ g :=
   by
   rw [← coe_fn_le] at hf hg ⊢
-  filter_upwards [hf, hg, coe_fn_inf f g]with _ haf hag ha_inf
+  filter_upwards [hf, hg, coe_fn_inf f g] with _ haf hag ha_inf
   rw [ha_inf]
   exact le_inf haf hag
 #align measure_theory.ae_eq_fun.le_inf MeasureTheory.AEEqFun.le_inf
@@ -861,7 +861,7 @@ theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β
     [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑(|f|) =ᵐ[μ] fun x => |f x| :=
   by
   simp_rw [abs_eq_sup_neg]
-  filter_upwards [ae_eq_fun.coe_fn_sup f (-f), ae_eq_fun.coe_fn_neg f]with x hx_sup hx_neg
+  filter_upwards [ae_eq_fun.coe_fn_sup f (-f), ae_eq_fun.coe_fn_neg f] with x hx_sup hx_neg
   rw [hx_sup, hx_neg, Pi.neg_apply]
 #align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AEEqFun.coeFn_abs
 
Diff
@@ -492,7 +492,7 @@ protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g := by rw
 
 protected theorem sup_le (f g f' : α →ₘ[μ] β) (hf : f ≤ f') (hg : g ≤ f') : f ⊔ g ≤ f' :=
   by
-  rw [← coe_fn_le] at hf hg⊢
+  rw [← coe_fn_le] at hf hg ⊢
   filter_upwards [hf, hg, coe_fn_sup f g]with _ haf hag ha_sup
   rw [ha_sup]
   exact sup_le haf hag
@@ -520,7 +520,7 @@ protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g := by rw
 
 protected theorem le_inf (f' f g : α →ₘ[μ] β) (hf : f' ≤ f) (hg : f' ≤ g) : f' ≤ f ⊓ g :=
   by
-  rw [← coe_fn_le] at hf hg⊢
+  rw [← coe_fn_le] at hf hg ⊢
   filter_upwards [hf, hg, coe_fn_inf f g]with _ haf hag ha_inf
   rw [ha_inf]
   exact le_inf haf hag
Diff
@@ -78,7 +78,7 @@ function space, almost everywhere equal, `L⁰`, ae_eq_fun
 
 noncomputable section
 
-open Classical ENNReal Topology
+open scoped Classical ENNReal Topology
 
 open Set Filter TopologicalSpace ENNReal Emetric MeasureTheory Function
 
@@ -453,15 +453,19 @@ section Order
 instance [Preorder β] : Preorder (α →ₘ[μ] β) :=
   Preorder.lift toGerm
 
+#print MeasureTheory.AEEqFun.mk_le_mk /-
 @[simp]
 theorem mk_le_mk [Preorder β] {f g : α → β} (hf hg) : (mk f hf : α →ₘ[μ] β) ≤ mk g hg ↔ f ≤ᵐ[μ] g :=
   Iff.rfl
 #align measure_theory.ae_eq_fun.mk_le_mk MeasureTheory.AEEqFun.mk_le_mk
+-/
 
+#print MeasureTheory.AEEqFun.coeFn_le /-
 @[simp, norm_cast]
 theorem coeFn_le [Preorder β] {f g : α →ₘ[μ] β} : (f : α → β) ≤ᵐ[μ] g ↔ f ≤ g :=
   liftRel_iff_coeFn.symm
 #align measure_theory.ae_eq_fun.coe_fn_le MeasureTheory.AEEqFun.coeFn_le
+-/
 
 instance [PartialOrder β] : PartialOrder (α →ₘ[μ] β) :=
   PartialOrder.lift toGerm toGerm_injective
Diff
@@ -136,22 +136,10 @@ instance : CoeFun (α →ₘ[μ] β) fun _ => α → β :=
   ⟨fun f =>
     AEStronglyMeasurable.mk _ (Quotient.out' f : { f : α → β // AEStronglyMeasurable f μ }).2⟩
 
-/- warning: measure_theory.ae_eq_fun.strongly_measurable -> MeasureTheory.AEEqFun.stronglyMeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), MeasureTheory.StronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), MeasureTheory.StronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.strongly_measurable MeasureTheory.AEEqFun.stronglyMeasurableₓ'. -/
 protected theorem stronglyMeasurable (f : α →ₘ[μ] β) : StronglyMeasurable f :=
   AEStronglyMeasurable.stronglyMeasurable_mk _
 #align measure_theory.ae_eq_fun.strongly_measurable MeasureTheory.AEEqFun.stronglyMeasurable
 
-/- warning: measure_theory.ae_eq_fun.ae_strongly_measurable -> MeasureTheory.AEEqFun.aestronglyMeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) μ
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) μ
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AEEqFun.aestronglyMeasurableₓ'. -/
 protected theorem aestronglyMeasurable (f : α →ₘ[μ] β) : AEStronglyMeasurable f μ :=
   f.StronglyMeasurable.AEStronglyMeasurable
 #align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AEEqFun.aestronglyMeasurable
@@ -170,35 +158,17 @@ protected theorem aemeasurable [PseudoMetrizableSpace β] [MeasurableSpace β] [
 #align measure_theory.ae_eq_fun.ae_measurable MeasureTheory.AEEqFun.aemeasurable
 -/
 
-/- warning: measure_theory.ae_eq_fun.quot_mk_eq_mk -> MeasureTheory.AEEqFun.quot_mk_eq_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u2)} (Quot.{succ (max u1 u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max 1 (succ u1) (succ u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u1, u2} α β _inst_1 _inst_2 μ))) (Quot.mk.{succ (max u1 u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max 1 (succ u1) (succ u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u1, u2} α β _inst_1 _inst_2 μ)) (Subtype.mk.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (Quot.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u2, u1} α β _inst_1 _inst_2 μ))) (Quot.mk.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u2, u1} α β _inst_1 _inst_2 μ)) (Subtype.mk.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ) f hf)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.quot_mk_eq_mk MeasureTheory.AEEqFun.quot_mk_eq_mkₓ'. -/
 @[simp]
 theorem quot_mk_eq_mk (f : α → β) (hf) :
     (Quot.mk (@Setoid.r _ <| μ.aeEqSetoid β) ⟨f, hf⟩ : α →ₘ[μ] β) = mk f hf :=
   rfl
 #align measure_theory.ae_eq_fun.quot_mk_eq_mk MeasureTheory.AEEqFun.quot_mk_eq_mk
 
-/- warning: measure_theory.ae_eq_fun.mk_eq_mk -> MeasureTheory.AEEqFun.mk_eq_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {f : α -> β} {g : α -> β} {hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 g μ}, Iff (Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} {g : α -> β} {hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 g μ}, Iff (Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_eq_mk MeasureTheory.AEEqFun.mk_eq_mkₓ'. -/
 @[simp]
 theorem mk_eq_mk {f g : α → β} {hf hg} : (mk f hf : α →ₘ[μ] β) = mk g hg ↔ f =ᵐ[μ] g :=
   Quotient.eq''
 #align measure_theory.ae_eq_fun.mk_eq_mk MeasureTheory.AEEqFun.mk_eq_mk
 
-/- warning: measure_theory.ae_eq_fun.mk_coe_fn -> MeasureTheory.AEEqFun.mk_coeFn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f)) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f)) f
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_coe_fn MeasureTheory.AEEqFun.mk_coeFnₓ'. -/
 @[simp]
 theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AEStronglyMeasurable = f :=
   by
@@ -209,56 +179,26 @@ theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AEStronglyMeasurable = f :=
   exact (ae_strongly_measurable.ae_eq_mk _).symm
 #align measure_theory.ae_eq_fun.mk_coe_fn MeasureTheory.AEEqFun.mk_coeFn
 
-/- warning: measure_theory.ae_eq_fun.ext -> MeasureTheory.AEEqFun.ext is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g)) -> (Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g)) -> (Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.ext MeasureTheory.AEEqFun.extₓ'. -/
 @[ext]
 theorem ext {f g : α →ₘ[μ] β} (h : f =ᵐ[μ] g) : f = g := by
   rwa [← f.mk_coe_fn, ← g.mk_coe_fn, mk_eq_mk]
 #align measure_theory.ae_eq_fun.ext MeasureTheory.AEEqFun.ext
 
-/- warning: measure_theory.ae_eq_fun.ext_iff -> MeasureTheory.AEEqFun.ext_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, Iff (Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) f g) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ}, Iff (Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) f g) (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.ext_iff MeasureTheory.AEEqFun.ext_iffₓ'. -/
 theorem ext_iff {f g : α →ₘ[μ] β} : f = g ↔ f =ᵐ[μ] g :=
   ⟨fun h => by rw [h], fun h => ext h⟩
 #align measure_theory.ae_eq_fun.ext_iff MeasureTheory.AEEqFun.ext_iff
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_mk -> MeasureTheory.AEEqFun.coeFn_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)) f
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_mk MeasureTheory.AEEqFun.coeFn_mkₓ'. -/
 theorem coeFn_mk (f : α → β) (hf) : (mk f hf : α →ₘ[μ] β) =ᵐ[μ] f :=
   by
   apply (ae_strongly_measurable.ae_eq_mk _).symm.trans
   exact @Quotient.mk_out' _ (μ.ae_eq_setoid β) (⟨f, hf⟩ : { f // ae_strongly_measurable f μ })
 #align measure_theory.ae_eq_fun.coe_fn_mk MeasureTheory.AEEqFun.coeFn_mk
 
-/- warning: measure_theory.ae_eq_fun.induction_on -> MeasureTheory.AEEqFun.induction_on is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) {p : (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), p (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) -> (p f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) {p : (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), p (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)) -> (p f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.induction_on MeasureTheory.AEEqFun.induction_onₓ'. -/
 @[elab_as_elim]
 theorem induction_on (f : α →ₘ[μ] β) {p : (α →ₘ[μ] β) → Prop} (H : ∀ f hf, p (mk f hf)) : p f :=
   Quotient.inductionOn' f <| Subtype.forall.2 H
 #align measure_theory.ae_eq_fun.induction_on MeasureTheory.AEEqFun.induction_on
 
-/- warning: measure_theory.ae_eq_fun.induction_on₂ -> MeasureTheory.AEEqFun.induction_on₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {α' : Type.{u3}} {β' : Type.{u4}} [_inst_5 : MeasurableSpace.{u3} α'] [_inst_6 : TopologicalSpace.{u4} β'] {μ' : MeasureTheory.Measure.{u3} α' _inst_5} (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') {p : (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u3, u4} α' β' _inst_6 _inst_5 f' μ'), p (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u4} α' _inst_5 μ' β' _inst_6 f' hf')) -> (p f f')
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {α' : Type.{u4}} {β' : Type.{u3}} [_inst_5 : MeasurableSpace.{u4} α'] [_inst_6 : TopologicalSpace.{u3} β'] {μ' : MeasureTheory.Measure.{u4} α' _inst_5} (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u4, u3} α' β' _inst_5 _inst_6 μ') {p : (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u4, u3} α' β' _inst_5 _inst_6 μ') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u4, u3} α' β' _inst_6 _inst_5 f' μ'), p (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u4, u3} α' _inst_5 μ' β' _inst_6 f' hf')) -> (p f f')
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AEEqFun.induction_on₂ₓ'. -/
 @[elab_as_elim]
 theorem induction_on₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     (f : α →ₘ[μ] β) (f' : α' →ₘ[μ'] β') {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → Prop}
@@ -266,9 +206,6 @@ theorem induction_on₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpa
   induction_on f fun f hf => induction_on f' <| H f hf
 #align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AEEqFun.induction_on₂
 
-/- warning: measure_theory.ae_eq_fun.induction_on₃ -> MeasureTheory.AEEqFun.induction_on₃ is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AEEqFun.induction_on₃ₓ'. -/
 @[elab_as_elim]
 theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     {α'' β'' : Type _} [MeasurableSpace α''] [TopologicalSpace β''] {μ'' : Measure α''}
@@ -288,35 +225,17 @@ def comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : α →ₘ[
 #align measure_theory.ae_eq_fun.comp MeasureTheory.AEEqFun.comp
 -/
 
-/- warning: measure_theory.ae_eq_fun.comp_mk -> MeasureTheory.AEEqFun.comp_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => f x) hg hf))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => f x) hg hf))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AEEqFun.comp_mkₓ'. -/
 @[simp]
 theorem comp_mk (g : β → γ) (hg : Continuous g) (f : α → β) (hf) :
     comp g hg (mk f hf : α →ₘ[μ] β) = mk (g ∘ f) (hg.comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AEEqFun.comp_mk
 
-/- warning: measure_theory.ae_eq_fun.comp_eq_mk -> MeasureTheory.AEEqFun.comp_eq_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) hg (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f)) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f x) hg (MeasureTheory.AEEqFun.aestronglyMeasurable.{u3, u1} α β _inst_1 μ _inst_2 f)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AEEqFun.comp_eq_mkₓ'. -/
 theorem comp_eq_mk (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
     comp g hg f = mk (g ∘ f) (hg.comp_aestronglyMeasurable f.AEStronglyMeasurable) := by
   rw [← comp_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AEEqFun.comp_eq_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_comp -> MeasureTheory.AEEqFun.coeFn_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u3} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AEEqFun.coeFn_compₓ'. -/
 theorem coeFn_comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : comp g hg f =ᵐ[μ] g ∘ f := by
   rw [comp_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AEEqFun.coeFn_comp
@@ -337,9 +256,6 @@ def compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
 #align measure_theory.ae_eq_fun.comp_measurable MeasureTheory.AEEqFun.compMeasurable
 -/
 
-/- warning: measure_theory.ae_eq_fun.comp_measurable_mk -> MeasureTheory.AEEqFun.compMeasurable_mk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AEEqFun.compMeasurable_mkₓ'. -/
 @[simp]
 theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
     (hf : AEStronglyMeasurable f μ) :
@@ -348,74 +264,38 @@ theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
   rfl
 #align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AEEqFun.compMeasurable_mk
 
-/- warning: measure_theory.ae_eq_fun.comp_measurable_eq_mk -> MeasureTheory.AEEqFun.compMeasurable_eq_mk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AEEqFun.compMeasurable_eq_mkₓ'. -/
 theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f = mk (g ∘ f) (hg.comp_aemeasurable f.AEMeasurable).AEStronglyMeasurable :=
   by rw [← comp_measurable_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AEEqFun.compMeasurable_eq_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_comp_measurable -> MeasureTheory.AEEqFun.coeFn_compMeasurable is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurableₓ'. -/
 theorem coeFn_compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f =ᵐ[μ] g ∘ f := by rw [comp_measurable_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurable
 
 end CompMeasurable
 
-/- warning: measure_theory.ae_eq_fun.pair -> MeasureTheory.AEEqFun.pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ], (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ], (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (instTopologicalSpaceProd.{u2, u3} β γ _inst_2 _inst_3) μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pair MeasureTheory.AEEqFun.pairₓ'. -/
 /-- The class of `x ↦ (f x, g x)`. -/
 def pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : α →ₘ[μ] β × γ :=
   Quotient.liftOn₂' f g (fun f g => mk (fun x => (f.1 x, g.1 x)) (f.2.prod_mk g.2))
     fun f g f' g' Hf Hg => mk_eq_mk.2 <| Hf.prod_mk Hg
 #align measure_theory.ae_eq_fun.pair MeasureTheory.AEEqFun.pair
 
-/- warning: measure_theory.ae_eq_fun.pair_mk_mk -> MeasureTheory.AEEqFun.pair_mk_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (g : α -> γ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 g μ), Eq.{succ (max u1 u2 u3)} (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u1, max u2 u3} α _inst_1 μ (Prod.{u2, u3} β γ) (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u3} β γ (f x) (g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f (fun (x : α) => g x) hf hg))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u3, u2} α β _inst_2 _inst_1 f μ) (g : α -> γ) (hg : MeasureTheory.AEStronglyMeasurable.{u3, u1} α γ _inst_3 _inst_1 g μ), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (MeasureTheory.AEEqFun.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u1} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u3, max u1 u2} α _inst_1 μ (Prod.{u2, u1} β γ) (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u1} β γ (f x) (g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f (fun (x : α) => g x) hf hg))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pair_mk_mk MeasureTheory.AEEqFun.pair_mk_mkₓ'. -/
 @[simp]
 theorem pair_mk_mk (f : α → β) (hf) (g : α → γ) (hg) :
     (mk f hf : α →ₘ[μ] β).pair (mk g hg) = mk (fun x => (f x, g x)) (hf.prod_mk hg) :=
   rfl
 #align measure_theory.ae_eq_fun.pair_mk_mk MeasureTheory.AEEqFun.pair_mk_mk
 
-/- warning: measure_theory.ae_eq_fun.pair_eq_mk -> MeasureTheory.AEEqFun.pair_eq_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2 u3)} (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f g) (MeasureTheory.AEEqFun.mk.{u1, max u2 u3} α _inst_1 μ (Prod.{u2, u3} β γ) (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (fun (x : α) => coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g x) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 g)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : MeasureTheory.AEEqFun.{u3, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u3, u1} α γ _inst_1 _inst_3 μ), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (MeasureTheory.AEEqFun.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 f g) (MeasureTheory.AEEqFun.mk.{u3, max u1 u2} α _inst_1 μ (Prod.{u2, u1} β γ) (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u1} β γ (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f) (fun (x : α) => MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g x) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u2, u3} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 g)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pair_eq_mk MeasureTheory.AEEqFun.pair_eq_mkₓ'. -/
 theorem pair_eq_mk (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) :
     f.pair g = mk (fun x => (f x, g x)) (f.AEStronglyMeasurable.prod_mk g.AEStronglyMeasurable) :=
   by simp only [← pair_mk_mk, mk_coe_fn]
 #align measure_theory.ae_eq_fun.pair_eq_mk MeasureTheory.AEEqFun.pair_eq_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_pair -> MeasureTheory.AEEqFun.coeFn_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, max u2 u3} α (Prod.{u2, u3} β γ) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2 u3), max (succ u1) (succ (max u2 u3))} (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) (fun (_x : MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) => α -> (Prod.{u2, u3} β γ)) (MeasureTheory.AEEqFun.instCoeFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3)) (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f g)) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g x))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : MeasureTheory.AEEqFun.{u3, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u3, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u3, max u2 u1} α (Prod.{u2, u1} β γ) (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u3, max u2 u1} α (Prod.{u2, u1} β γ) _inst_1 μ (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) (MeasureTheory.AEEqFun.pair.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 f g)) (fun (x : α) => Prod.mk.{u2, u1} β γ (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g x))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AEEqFun.coeFn_pairₓ'. -/
 theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ[μ] fun x => (f x, g x) := by
   rw [pair_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AEEqFun.coeFn_pair
 
-/- warning: measure_theory.ae_eq_fun.comp₂ -> MeasureTheory.AEEqFun.comp₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ), (Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) -> (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ), (Continuous.{max u3 u2, u4} (Prod.{u2, u3} β γ) δ (instTopologicalSpaceProd.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) -> (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂ MeasureTheory.AEEqFun.comp₂ₓ'. -/
 /-- Given a continuous function `g : β → γ → δ`, and almost everywhere equal functions
     `[f₁] : α →ₘ β` and `[f₂] : α →ₘ γ`, return the equivalence class of the function
     `λ a, g (f₁ a) (f₂ a)`, i.e., the almost everywhere equal function
@@ -425,12 +305,6 @@ def comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →
   comp _ hg (f₁.pair f₂)
 #align measure_theory.ae_eq_fun.comp₂ MeasureTheory.AEEqFun.comp₂
 
-/- warning: measure_theory.ae_eq_fun.comp₂_mk_mk -> MeasureTheory.AEEqFun.comp₂_mk_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 f₂ μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (f₁ x) (f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂ hf₁ hf₂)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u4} α γ _inst_3 _inst_1 f₂ μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, u2, max u3 u4} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (f₁ x) (f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂ hf₁ hf₂)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AEEqFun.comp₂_mk_mkₓ'. -/
 @[simp]
 theorem comp₂_mk_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α → β) (f₂ : α → γ)
     (hf₁ hf₂) :
@@ -439,20 +313,11 @@ theorem comp₂_mk_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
   rfl
 #align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AEEqFun.comp₂_mk_mk
 
-/- warning: measure_theory.ae_eq_fun.comp₂_eq_pair -> MeasureTheory.AEEqFun.comp₂_eq_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.comp.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.comp.{u1, max u3 u4, u2} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u3, u4} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_eq_pair MeasureTheory.AEEqFun.comp₂_eq_pairₓ'. -/
 theorem comp₂_eq_pair (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ = comp _ hg (f₁.pair f₂) :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_eq_pair MeasureTheory.AEEqFun.comp₂_eq_pair
 
-/- warning: measure_theory.ae_eq_fun.comp₂_eq_mk -> MeasureTheory.AEEqFun.comp₂_eq_mk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AEEqFun.comp₂_eq_mkₓ'. -/
 theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
     comp₂ g hg f₁ f₂ =
@@ -461,12 +326,6 @@ theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
   by rw [comp₂_eq_pair, pair_eq_mk, comp_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AEEqFun.comp₂_eq_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_comp₂ -> MeasureTheory.AEEqFun.coeFn_comp₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u4} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u4), max (succ u1) (succ u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) => α -> δ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u4} α δ _inst_1 μ _inst_4) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AEEqFun.coeFn_comp₂ₓ'. -/
 theorem coeFn_comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) := by rw [comp₂_eq_mk];
   apply coe_fn_mk
@@ -489,9 +348,6 @@ def comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁
 #align measure_theory.ae_eq_fun.comp₂_measurable MeasureTheory.AEEqFun.comp₂Measurable
 -/
 
-/- warning: measure_theory.ae_eq_fun.comp₂_measurable_mk_mk -> MeasureTheory.AEEqFun.comp₂Measurable_mk_mk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AEEqFun.comp₂Measurable_mk_mkₓ'. -/
 @[simp]
 theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α → β)
     (f₂ : α → γ) (hf₁ hf₂) :
@@ -501,17 +357,11 @@ theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry
   rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AEEqFun.comp₂Measurable_mk_mk
 
-/- warning: measure_theory.ae_eq_fun.comp₂_measurable_eq_pair -> MeasureTheory.AEEqFun.comp₂Measurable_eq_pair is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AEEqFun.comp₂Measurable_eq_pairₓ'. -/
 theorem comp₂Measurable_eq_pair (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ = compMeasurable _ hg (f₁.pair f₂) :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AEEqFun.comp₂Measurable_eq_pair
 
-/- warning: measure_theory.ae_eq_fun.comp₂_measurable_eq_mk -> MeasureTheory.AEEqFun.comp₂Measurable_eq_mk is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AEEqFun.comp₂Measurable_eq_mkₓ'. -/
 theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
     comp₂Measurable g hg f₁ f₂ =
@@ -520,9 +370,6 @@ theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry
   by rw [comp₂_measurable_eq_pair, pair_eq_mk, comp_measurable_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AEEqFun.comp₂Measurable_eq_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_comp₂_measurable -> MeasureTheory.AEEqFun.coeFn_comp₂Measurable is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AEEqFun.coeFn_comp₂Measurableₓ'. -/
 theorem coeFn_comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) := by
   rw [comp₂_measurable_eq_mk]; apply coe_fn_mk
@@ -538,50 +385,23 @@ def toGerm (f : α →ₘ[μ] β) : Germ μ.ae β :=
 #align measure_theory.ae_eq_fun.to_germ MeasureTheory.AEEqFun.toGerm
 -/
 
-/- warning: measure_theory.ae_eq_fun.mk_to_germ -> MeasureTheory.AEEqFun.mk_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Type.{max u1 u2}) [self : HasLiftT.{max (succ u1) (succ u2), succ (max u1 u2)} a b] => self.0) (α -> β) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (HasLiftT.mk.{max (succ u1) (succ u2), succ (max u1 u2)} (α -> β) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (CoeTCₓ.coe.{max (succ u1) (succ u2), succ (max u1 u2)} (α -> β) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (Filter.Germ.hasCoeT.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)) (Filter.Germ.ofFun.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_to_germ MeasureTheory.AEEqFun.mk_toGermₓ'. -/
 @[simp]
 theorem mk_toGerm (f : α → β) (hf) : (mk f hf : α →ₘ[μ] β).toGerm = f :=
   rfl
 #align measure_theory.ae_eq_fun.mk_to_germ MeasureTheory.AEEqFun.mk_toGerm
 
-/- warning: measure_theory.ae_eq_fun.to_germ_eq -> MeasureTheory.AEEqFun.toGerm_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Type.{max u1 u2}) [self : HasLiftT.{max (succ u1) (succ u2), succ (max u1 u2)} a b] => self.0) ((fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) f) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (HasLiftT.mk.{max (succ u1) (succ u2), succ (max u1 u2)} ((fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) f) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (CoeTCₓ.coe.{max (succ u1) (succ u2), succ (max u1 u2)} ((fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) f) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (Filter.Germ.hasCoeT.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α β _inst_1 μ _inst_2 f) (Filter.Germ.ofFun.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.to_germ_eq MeasureTheory.AEEqFun.toGerm_eqₓ'. -/
 theorem toGerm_eq (f : α →ₘ[μ] β) : f.toGerm = (f : α → β) := by rw [← mk_to_germ, mk_coe_fn]
 #align measure_theory.ae_eq_fun.to_germ_eq MeasureTheory.AEEqFun.toGerm_eq
 
-/- warning: measure_theory.ae_eq_fun.to_germ_injective -> MeasureTheory.AEEqFun.toGerm_injective is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β], Function.Injective.{succ (max u1 u2), succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β], Function.Injective.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α β _inst_1 μ _inst_2)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.to_germ_injective MeasureTheory.AEEqFun.toGerm_injectiveₓ'. -/
 theorem toGerm_injective : Injective (toGerm : (α →ₘ[μ] β) → Germ μ.ae β) := fun f g H =>
   ext <| Germ.coe_eq.1 <| by rwa [← to_germ_eq, ← to_germ_eq]
 #align measure_theory.ae_eq_fun.to_germ_injective MeasureTheory.AEEqFun.toGerm_injective
 
-/- warning: measure_theory.ae_eq_fun.comp_to_germ -> MeasureTheory.AEEqFun.comp_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (Filter.Germ.{u1, u3} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Filter.Germ.map.{u1, u2, u3} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Filter.Germ.map.{u1, u3, u2} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u3} α β _inst_1 μ _inst_2 f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AEEqFun.comp_toGermₓ'. -/
 theorem comp_toGerm (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
     (comp g hg f).toGerm = f.toGerm.map g :=
   induction_on f fun f hf => by simp
 #align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AEEqFun.comp_toGerm
 
-/- warning: measure_theory.ae_eq_fun.comp_measurable_to_germ -> MeasureTheory.AEEqFun.compMeasurable_toGerm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AEEqFun.compMeasurable_toGermₓ'. -/
 theorem compMeasurable_toGerm [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace β]
     [PseudoMetrizableSpace γ] [SecondCountableTopology γ] [MeasurableSpace γ]
     [OpensMeasurableSpace γ] (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
@@ -589,20 +409,11 @@ theorem compMeasurable_toGerm [MeasurableSpace β] [BorelSpace β] [PseudoMetriz
   induction_on f fun f hf => by simp
 #align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AEEqFun.compMeasurable_toGerm
 
-/- warning: measure_theory.ae_eq_fun.comp₂_to_germ -> MeasureTheory.AEEqFun.comp₂_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (Filter.Germ.{u1, u4} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u4} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u2, u3, u4} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 f₂))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u3, u4, u2} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u3} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u4} α γ _inst_1 μ _inst_3 f₂))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AEEqFun.comp₂_toGermₓ'. -/
 theorem comp₂_toGerm (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : (comp₂ g hg f₁ f₂).toGerm = f₁.toGerm.zipWith g f₂.toGerm :=
   induction_on₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
 #align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AEEqFun.comp₂_toGerm
 
-/- warning: measure_theory.ae_eq_fun.comp₂_measurable_to_germ -> MeasureTheory.AEEqFun.comp₂Measurable_toGerm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_to_germ MeasureTheory.AEEqFun.comp₂Measurable_toGermₓ'. -/
 theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopology β]
     [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace γ] [SecondCountableTopology γ]
     [MeasurableSpace γ] [BorelSpace γ] [PseudoMetrizableSpace δ] [SecondCountableTopology δ]
@@ -628,23 +439,11 @@ def LiftRel (r : β → γ → Prop) (f : α →ₘ[μ] β) (g : α →ₘ[μ] 
 #align measure_theory.ae_eq_fun.lift_rel MeasureTheory.AEEqFun.LiftRel
 -/
 
-/- warning: measure_theory.ae_eq_fun.lift_rel_mk_mk -> MeasureTheory.AEEqFun.liftRel_mk_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] {r : β -> γ -> Prop} {f : α -> β} {g : α -> γ} {hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 g μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 r (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 g hg)) (Filter.Eventually.{u1} α (fun (a : α) => r (f a) (g a)) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] {r : β -> γ -> Prop} {f : α -> β} {g : α -> γ} {hf : MeasureTheory.AEStronglyMeasurable.{u3, u2} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u3, u1} α γ _inst_3 _inst_1 g μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 r (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u1} α _inst_1 μ γ _inst_3 g hg)) (Filter.Eventually.{u3} α (fun (a : α) => r (f a) (g a)) (MeasureTheory.Measure.ae.{u3} α _inst_1 μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lift_rel_mk_mk MeasureTheory.AEEqFun.liftRel_mk_mkₓ'. -/
 theorem liftRel_mk_mk {r : β → γ → Prop} {f : α → β} {g : α → γ} {hf hg} :
     LiftRel r (mk f hf : α →ₘ[μ] β) (mk g hg) ↔ ∀ᵐ a ∂μ, r (f a) (g a) :=
   Iff.rfl
 #align measure_theory.ae_eq_fun.lift_rel_mk_mk MeasureTheory.AEEqFun.liftRel_mk_mk
 
-/- warning: measure_theory.ae_eq_fun.lift_rel_iff_coe_fn -> MeasureTheory.AEEqFun.liftRel_iff_coeFn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] {r : β -> γ -> Prop} {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 r f g) (Filter.Eventually.{u1} α (fun (a : α) => r (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g a)) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] {r : β -> γ -> Prop} {f : MeasureTheory.AEEqFun.{u3, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u3, u1} α γ _inst_1 _inst_3 μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 r f g) (Filter.Eventually.{u3} α (fun (a : α) => r (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f a) (MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g a)) (MeasureTheory.Measure.ae.{u3} α _inst_1 μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lift_rel_iff_coe_fn MeasureTheory.AEEqFun.liftRel_iff_coeFnₓ'. -/
 theorem liftRel_iff_coeFn {r : β → γ → Prop} {f : α →ₘ[μ] β} {g : α →ₘ[μ] γ} :
     LiftRel r f g ↔ ∀ᵐ a ∂μ, r (f a) (g a) := by rw [← lift_rel_mk_mk, mk_coe_fn, mk_coe_fn]
 #align measure_theory.ae_eq_fun.lift_rel_iff_coe_fn MeasureTheory.AEEqFun.liftRel_iff_coeFn
@@ -654,23 +453,11 @@ section Order
 instance [Preorder β] : Preorder (α →ₘ[μ] β) :=
   Preorder.lift toGerm
 
-/- warning: measure_theory.ae_eq_fun.mk_le_mk -> MeasureTheory.AEEqFun.mk_le_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : α -> β} {g : α -> β} (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 g μ), Iff (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : α -> β} {g : α -> β} (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 g μ), Iff (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyLE.{u1, u2} α β (Preorder.toLE.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_le_mk MeasureTheory.AEEqFun.mk_le_mkₓ'. -/
 @[simp]
 theorem mk_le_mk [Preorder β] {f g : α → β} (hf hg) : (mk f hf : α →ₘ[μ] β) ≤ mk g hg ↔ f ≤ᵐ[μ] g :=
   Iff.rfl
 #align measure_theory.ae_eq_fun.mk_le_mk MeasureTheory.AEEqFun.mk_le_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_le -> MeasureTheory.AEEqFun.coeFn_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, Iff (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g)) (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) f g)
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, Iff (Filter.EventuallyLE.{u1, u2} α β (Preorder.toLE.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_2 g)) (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_le MeasureTheory.AEEqFun.coeFn_leₓ'. -/
 @[simp, norm_cast]
 theorem coeFn_le [Preorder β] {f g : α →ₘ[μ] β} : (f : α → β) ≤ᵐ[μ] g ↔ f ≤ g :=
   liftRel_iff_coeFn.symm
@@ -687,42 +474,18 @@ variable [SemilatticeSup β] [ContinuousSup β]
 
 instance : Sup (α →ₘ[μ] β) where sup f g := AEEqFun.comp₂ (· ⊔ ·) continuous_sup f g
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_sup -> MeasureTheory.AEEqFun.coeFn_sup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_5) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Sup.sup.{u1} β (SemilatticeSup.toSup.{u1} β _inst_5) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g x))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_sup MeasureTheory.AEEqFun.coeFn_supₓ'. -/
 theorem coeFn_sup (f g : α →ₘ[μ] β) : ⇑(f ⊔ g) =ᵐ[μ] fun x => f x ⊔ g x :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_sup MeasureTheory.AEEqFun.coeFn_sup
 
-/- warning: measure_theory.ae_eq_fun.le_sup_left -> MeasureTheory.AEEqFun.le_sup_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) f (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) f (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_leftₓ'. -/
 protected theorem le_sup_left (f g : α →ₘ[μ] β) : f ≤ f ⊔ g := by rw [← coe_fn_le];
   filter_upwards [coe_fn_sup f g]with _ ha; rw [ha]; exact le_sup_left
 #align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_left
 
-/- warning: measure_theory.ae_eq_fun.le_sup_right -> MeasureTheory.AEEqFun.le_sup_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) g (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) g (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_rightₓ'. -/
 protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g := by rw [← coe_fn_le];
   filter_upwards [coe_fn_sup f g]with _ ha; rw [ha]; exact le_sup_right
 #align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_right
 
-/- warning: measure_theory.ae_eq_fun.sup_le -> MeasureTheory.AEEqFun.sup_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) f f') -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) g f') -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f')
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) f f') -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) g f') -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f')
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.sup_le MeasureTheory.AEEqFun.sup_leₓ'. -/
 protected theorem sup_le (f g f' : α →ₘ[μ] β) (hf : f ≤ f') (hg : g ≤ f') : f ⊔ g ≤ f' :=
   by
   rw [← coe_fn_le] at hf hg⊢
@@ -739,42 +502,18 @@ variable [SemilatticeInf β] [ContinuousInf β]
 
 instance : Inf (α →ₘ[μ] β) where inf f g := AEEqFun.comp₂ (· ⊓ ·) continuous_inf f g
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_inf -> MeasureTheory.AEEqFun.coeFn_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_5) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g x))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Inf.inf.{u1} β (SemilatticeInf.toInf.{u1} β _inst_5) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g x))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_inf MeasureTheory.AEEqFun.coeFn_infₓ'. -/
 theorem coeFn_inf (f g : α →ₘ[μ] β) : ⇑(f ⊓ g) =ᵐ[μ] fun x => f x ⊓ g x :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_inf MeasureTheory.AEEqFun.coeFn_inf
 
-/- warning: measure_theory.ae_eq_fun.inf_le_left -> MeasureTheory.AEEqFun.inf_le_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_leftₓ'. -/
 protected theorem inf_le_left (f g : α →ₘ[μ] β) : f ⊓ g ≤ f := by rw [← coe_fn_le];
   filter_upwards [coe_fn_inf f g]with _ ha; rw [ha]; exact inf_le_left
 #align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_left
 
-/- warning: measure_theory.ae_eq_fun.inf_le_right -> MeasureTheory.AEEqFun.inf_le_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) g
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) g
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_rightₓ'. -/
 protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g := by rw [← coe_fn_le];
   filter_upwards [coe_fn_inf f g]with _ ha; rw [ha]; exact inf_le_right
 #align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_right
 
-/- warning: measure_theory.ae_eq_fun.le_inf -> MeasureTheory.AEEqFun.le_inf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f' : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) f' f) -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) f' g) -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) f' (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f' : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) f' f) -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) f' g) -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) f' (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_inf MeasureTheory.AEEqFun.le_infₓ'. -/
 protected theorem le_inf (f' f g : α →ₘ[μ] β) (hf : f' ≤ f) (hg : f' ≤ g) : f' ≤ f ⊓ g :=
   by
   rw [← coe_fn_le] at hf hg⊢
@@ -810,12 +549,6 @@ def const (b : β) : α →ₘ[μ] β :=
 #align measure_theory.ae_eq_fun.const MeasureTheory.AEEqFun.const
 -/
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_const -> MeasureTheory.AEEqFun.coeFn_const is a dubious translation:
-lean 3 declaration is
-  forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (b : β), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (MeasureTheory.AEEqFun.const.{u1, u2} α β _inst_1 μ _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
-but is expected to have type
-  forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (b : β), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.const.{u2, u1} α β _inst_1 μ _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_const MeasureTheory.AEEqFun.coeFn_constₓ'. -/
 theorem coeFn_const (b : β) : (const α b : α →ₘ[μ] β) =ᵐ[μ] Function.const α b :=
   coeFn_mk _ _
 #align measure_theory.ae_eq_fun.coe_fn_const MeasureTheory.AEEqFun.coeFn_const
@@ -829,12 +562,6 @@ instance [Inhabited β] : Inhabited (α →ₘ[μ] β) :=
 instance [One β] : One (α →ₘ[μ] β) :=
   ⟨const α 1⟩
 
-/- warning: measure_theory.ae_eq_fun.one_def -> MeasureTheory.AEEqFun.one_def is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : One.{u2} β], Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (OfNat.ofNat.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) 1 (OfNat.mk.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) 1 (One.one.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instOne.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)))) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 (fun (a : α) => OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β _inst_5))) (MeasureTheory.aestronglyMeasurable_const.{u1, u2} α β _inst_1 μ _inst_2 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β _inst_5)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : One.{u2} β], Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (OfNat.ofNat.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) 1 (One.toOfNat1.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instOne.{u1, u2} α β _inst_1 μ _inst_2 _inst_5))) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 (fun (a : α) => OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β _inst_5)) (MeasureTheory.aestronglyMeasurable_const.{u2, u1} α β _inst_1 μ _inst_2 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β _inst_5))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.one_def MeasureTheory.AEEqFun.one_defₓ'. -/
 @[to_additive]
 theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aestronglyMeasurable_const :=
   rfl
@@ -870,34 +597,16 @@ variable [SMul 𝕜' γ] [ContinuousConstSMul 𝕜' γ]
 instance : SMul 𝕜 (α →ₘ[μ] γ) :=
   ⟨fun c f => comp ((· • ·) c) (continuous_id.const_smul c) f⟩
 
-/- warning: measure_theory.ae_eq_fun.smul_mk -> MeasureTheory.AEEqFun.smul_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u3}} [_inst_5 : SMul.{u3, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (SMul.smul.{u3, max u1 u2} 𝕜 (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u1, u2, u3} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6) c (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (SMul.smul.{u3, max u1 u2} 𝕜 (α -> γ) (Function.hasSMul.{u1, u3, u2} α 𝕜 γ _inst_5) c f) (MeasureTheory.AEStronglyMeasurable.const_smul.{u1, u2, u3} α γ _inst_1 μ _inst_3 f 𝕜 _inst_5 _inst_6 hf c))
-but is expected to have type
-  forall {α : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u1}} [_inst_5 : SMul.{u1, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u1, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u3, u2} α γ _inst_3 _inst_1 f μ), Eq.{max (succ u3) (succ u2)} (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (instHSMul.{u1, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u3, u2, u1} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6)) c (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ γ _inst_3 (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (α -> γ) (α -> γ) (instHSMul.{u1, max u3 u2} 𝕜 (α -> γ) (Pi.instSMul.{u3, u2, u1} α 𝕜 (fun (a._@.Mathlib.MeasureTheory.Function.AEEqFun._hyg.7207 : α) => γ) (fun (i : α) => _inst_5))) c f) (MeasureTheory.AEStronglyMeasurable.const_smul.{u3, u2, u1} α γ _inst_1 μ _inst_3 f 𝕜 _inst_5 _inst_6 hf c))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.smul_mk MeasureTheory.AEEqFun.smul_mkₓ'. -/
 @[simp]
 theorem smul_mk (c : 𝕜) (f : α → γ) (hf : AEStronglyMeasurable f μ) :
     c • (mk f hf : α →ₘ[μ] γ) = mk (c • f) (hf.const_smul _) :=
   rfl
 #align measure_theory.ae_eq_fun.smul_mk MeasureTheory.AEEqFun.smul_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_smul -> MeasureTheory.AEEqFun.coeFn_smul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u3}} [_inst_5 : SMul.{u3, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (SMul.smul.{u3, max u1 u2} 𝕜 (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u1, u2, u3} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6) c f)) (SMul.smul.{u3, max u1 u2} 𝕜 (α -> γ) (Function.hasSMul.{u1, u3, u2} α 𝕜 γ _inst_5) c (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f))
-but is expected to have type
-  forall {α : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u1}} [_inst_5 : SMul.{u1, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u1, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u3, u2} α γ (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u3, u2} α γ _inst_1 μ _inst_3 (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (instHSMul.{u1, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u3, u2, u1} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6)) c f)) (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (α -> γ) (α -> γ) (instHSMul.{u1, max u3 u2} 𝕜 (α -> γ) (Pi.instSMul.{u3, u2, u1} α 𝕜 (fun (a._@.Mathlib.MeasureTheory.Function.AEEqFun._hyg.1013 : α) => γ) (fun (i : α) => _inst_5))) c (MeasureTheory.AEEqFun.cast.{u3, u2} α γ _inst_1 μ _inst_3 f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_smul MeasureTheory.AEEqFun.coeFn_smulₓ'. -/
 theorem coeFn_smul (c : 𝕜) (f : α →ₘ[μ] γ) : ⇑(c • f) =ᵐ[μ] c • f :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_smul MeasureTheory.AEEqFun.coeFn_smul
 
-/- warning: measure_theory.ae_eq_fun.smul_to_germ -> MeasureTheory.AEEqFun.smul_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u3}} [_inst_5 : SMul.{u3, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (SMul.smul.{u3, max u1 u2} 𝕜 (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u1, u2, u3} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6) c f)) (SMul.smul.{u3, max u1 u2} 𝕜 (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasSmul.{u1, u3, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) 𝕜 γ _inst_5) c (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f))
-but is expected to have type
-  forall {α : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u1}} [_inst_5 : SMul.{u1, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u1, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ), Eq.{max (succ u3) (succ u2)} (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u3, u2} α γ _inst_1 μ _inst_3 (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (instHSMul.{u1, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u3, u2, u1} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6)) c f)) (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (instHSMul.{u1, max u3 u2} 𝕜 (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (Filter.Germ.smul.{u3, u1, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) 𝕜 γ _inst_5)) c (MeasureTheory.AEEqFun.toGerm.{u3, u2} α γ _inst_1 μ _inst_3 f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.smul_to_germ MeasureTheory.AEEqFun.smul_toGermₓ'. -/
 theorem smul_toGerm (c : 𝕜) (f : α →ₘ[μ] γ) : (c • f).toGerm = c • f.toGerm :=
   comp_toGerm _ _ _
 #align measure_theory.ae_eq_fun.smul_to_germ MeasureTheory.AEEqFun.smul_toGerm
@@ -921,12 +630,6 @@ variable [Mul γ] [ContinuousMul γ]
 instance : Mul (α →ₘ[μ] γ) :=
   ⟨comp₂ (· * ·) continuous_mul⟩
 
-/- warning: measure_theory.ae_eq_fun.mk_mul_mk -> MeasureTheory.AEEqFun.mk_mul_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Mul.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 g μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHMul.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u1 u2} (α -> γ) (Pi.instMul.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) f g) (MeasureTheory.AEStronglyMeasurable.mul.{u1, u2} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Mul.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 g μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHMul.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u2 u1} (α -> γ) (Pi.instMul.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) f g) (MeasureTheory.AEStronglyMeasurable.mul.{u2, u1} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_mul_mk MeasureTheory.AEEqFun.mk_mul_mkₓ'. -/
 @[simp, to_additive]
 theorem mk_mul_mk (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     (mk f hf : α →ₘ[μ] γ) * mk g hg = mk (f * g) (hf.mul hg) :=
@@ -934,24 +637,12 @@ theorem mk_mul_mk (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStr
 #align measure_theory.ae_eq_fun.mk_mul_mk MeasureTheory.AEEqFun.mk_mul_mk
 #align measure_theory.ae_eq_fun.mk_add_mk MeasureTheory.AEEqFun.mk_add_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_mul -> MeasureTheory.AEEqFun.coeFn_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Mul.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHMul.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u1 u2} (α -> γ) (Pi.instMul.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) g))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Mul.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHMul.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u2 u1} (α -> γ) (Pi.instMul.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_mul MeasureTheory.AEEqFun.coeFn_mulₓ'. -/
 @[to_additive]
 theorem coeFn_mul (f g : α →ₘ[μ] γ) : ⇑(f * g) =ᵐ[μ] f * g :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_mul MeasureTheory.AEEqFun.coeFn_mul
 #align measure_theory.ae_eq_fun.coe_fn_add MeasureTheory.AEEqFun.coeFn_add
 
-/- warning: measure_theory.ae_eq_fun.mul_to_germ -> MeasureTheory.AEEqFun.mul_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Mul.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHMul.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHMul.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasMul.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ _inst_5)) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 g))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Mul.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHMul.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHMul.{max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.mul.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ _inst_5)) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mul_to_germ MeasureTheory.AEEqFun.mul_toGermₓ'. -/
 @[simp, to_additive]
 theorem mul_toGerm (f g : α →ₘ[μ] γ) : (f * g).toGerm = f.toGerm * g.toGerm :=
   comp₂_toGerm _ _ _ _
@@ -973,34 +664,16 @@ variable [Monoid γ] [ContinuousMul γ]
 instance : Pow (α →ₘ[μ] γ) ℕ :=
   ⟨fun f n => comp _ (continuous_pow n) f⟩
 
-/- warning: measure_theory.ae_eq_fun.mk_pow -> MeasureTheory.AEEqFun.mk_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (n : Nat), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Nat (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Nat (Pi.hasPow.{u1, u2, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u2} γ _inst_5))) f n) (Continuous.comp_aestronglyMeasurable.{u1, u2, u2} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u2, 0, u2} γ Nat γ (instHPow.{u2, 0} γ Nat (Monoid.Pow.{u2} γ _inst_5)) a n) (fun (x : α) => f x) (continuous_pow.{u2} γ _inst_3 _inst_5 _inst_6 n) hf))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Monoid.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 (MulOneClass.toMul.{u1} γ (Monoid.toMulOneClass.{u1} γ _inst_5))] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (n : Nat), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Nat (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Nat (Pi.instPow.{u2, u1, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u1} γ _inst_5))) f n) (Continuous.comp_aestronglyMeasurable.{u2, u1, u1} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u1, 0, u1} γ Nat γ (instHPow.{u1, 0} γ Nat (Monoid.Pow.{u1} γ _inst_5)) a n) (fun (x : α) => f x) (continuous_pow.{u1} γ _inst_3 _inst_5 _inst_6 n) hf))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AEEqFun.mk_powₓ'. -/
 @[simp]
 theorem mk_pow (f : α → γ) (hf) (n : ℕ) :
     (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_pow n).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AEEqFun.mk_pow
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_pow -> MeasureTheory.AEEqFun.coeFn_pow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Nat), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Nat (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Nat (Pi.hasPow.{u1, u2, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u2} γ _inst_5))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) n)
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Monoid.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 (MulOneClass.toMul.{u1} γ (Monoid.toMulOneClass.{u1} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Nat), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Nat (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Nat (Pi.instPow.{u2, u1, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u1} γ _inst_5))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_pow MeasureTheory.AEEqFun.coeFn_powₓ'. -/
 theorem coeFn_pow (f : α →ₘ[μ] γ) (n : ℕ) : ⇑(f ^ n) =ᵐ[μ] f ^ n :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_pow MeasureTheory.AEEqFun.coeFn_pow
 
-/- warning: measure_theory.ae_eq_fun.pow_to_germ -> MeasureTheory.AEEqFun.pow_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Nat), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Nat (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHPow.{max u1 u2, 0} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Nat (Filter.Germ.hasPow.{u1, 0, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) Nat γ (Monoid.Pow.{u2} γ _inst_5))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) n)
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Monoid.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 (MulOneClass.toMul.{u1} γ (Monoid.toMulOneClass.{u1} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Nat), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Nat (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHPow.{max u2 u1, 0} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Nat (Filter.Germ.pow.{u2, 0, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) Nat γ (Monoid.Pow.{u1} γ _inst_5))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pow_to_germ MeasureTheory.AEEqFun.pow_toGermₓ'. -/
 @[simp]
 theorem pow_toGerm (f : α →ₘ[μ] γ) (n : ℕ) : (f ^ n).toGerm = f.toGerm ^ n :=
   comp_toGerm _ _ _
@@ -1010,12 +683,6 @@ theorem pow_toGerm (f : α →ₘ[μ] γ) (n : ℕ) : (f ^ n).toGerm = f.toGerm
 instance : Monoid (α →ₘ[μ] γ) :=
   toGerm_injective.Monoid toGerm one_toGerm mul_toGerm pow_toGerm
 
-/- warning: measure_theory.ae_eq_fun.to_germ_monoid_hom -> MeasureTheory.AEEqFun.toGermMonoidHom is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))], MonoidHom.{max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (Monoid.toMulOneClass.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.monoid.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ _inst_5))
-but is expected to have type
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))], MonoidHom.{max u2 u1, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (Monoid.toMulOneClass.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.monoid.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ _inst_5))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.to_germ_monoid_hom MeasureTheory.AEEqFun.toGermMonoidHomₓ'. -/
 /-- `ae_eq_fun.to_germ` as a `monoid_hom`. -/
 @[to_additive "`ae_eq_fun.to_germ` as an `add_monoid_hom`.", simps]
 def toGermMonoidHom : (α →ₘ[μ] γ) →* μ.ae.Germ γ
@@ -1042,36 +709,18 @@ section Inv
 instance : Inv (α →ₘ[μ] γ) :=
   ⟨comp Inv.inv continuous_inv⟩
 
-/- warning: measure_theory.ae_eq_fun.inv_mk -> MeasureTheory.AEEqFun.inv_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (Inv.inv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Inv.inv.{max u1 u2} (α -> γ) (Pi.instInv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasInv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) f) (MeasureTheory.AEStronglyMeasurable.inv.{u1, u2} α γ _inst_1 μ _inst_3 f _inst_5 _inst_6 hf))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (Inv.inv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (Inv.inv.{max u1 u2} (α -> γ) (Pi.instInv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => InvOneClass.toInv.{u1} γ (DivInvOneMonoid.toInvOneClass.{u1} γ (DivisionMonoid.toDivInvOneMonoid.{u1} γ (Group.toDivisionMonoid.{u1} γ _inst_5))))) f) (MeasureTheory.AEStronglyMeasurable.inv.{u2, u1} α γ _inst_1 μ _inst_3 f _inst_5 _inst_6 hf))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inv_mk MeasureTheory.AEEqFun.inv_mkₓ'. -/
 @[simp, to_additive]
 theorem inv_mk (f : α → γ) (hf) : (mk f hf : α →ₘ[μ] γ)⁻¹ = mk f⁻¹ hf.inv :=
   rfl
 #align measure_theory.ae_eq_fun.inv_mk MeasureTheory.AEEqFun.inv_mk
 #align measure_theory.ae_eq_fun.neg_mk MeasureTheory.AEEqFun.neg_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_inv -> MeasureTheory.AEEqFun.coeFn_inv is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (Inv.inv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u1 u2} (α -> γ) (Pi.instInv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasInv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (Inv.inv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u2 u1} (α -> γ) (Pi.instInv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => InvOneClass.toInv.{u1} γ (DivInvOneMonoid.toInvOneClass.{u1} γ (DivisionMonoid.toDivInvOneMonoid.{u1} γ (Group.toDivisionMonoid.{u1} γ _inst_5))))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_inv MeasureTheory.AEEqFun.coeFn_invₓ'. -/
 @[to_additive]
 theorem coeFn_inv (f : α →ₘ[μ] γ) : ⇑f⁻¹ =ᵐ[μ] f⁻¹ :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_inv MeasureTheory.AEEqFun.coeFn_inv
 #align measure_theory.ae_eq_fun.coe_fn_neg MeasureTheory.AEEqFun.coeFn_neg
 
-/- warning: measure_theory.ae_eq_fun.inv_to_germ -> MeasureTheory.AEEqFun.inv_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (Inv.inv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasInv.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ (DivInvMonoid.toHasInv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (Inv.inv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.inv.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ (InvOneClass.toInv.{u1} γ (DivInvOneMonoid.toInvOneClass.{u1} γ (DivisionMonoid.toDivInvOneMonoid.{u1} γ (Group.toDivisionMonoid.{u1} γ _inst_5))))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inv_to_germ MeasureTheory.AEEqFun.inv_toGermₓ'. -/
 @[to_additive]
 theorem inv_toGerm (f : α →ₘ[μ] γ) : f⁻¹.toGerm = f.toGerm⁻¹ :=
   comp_toGerm _ _ _
@@ -1086,12 +735,6 @@ section Div
 instance : Div (α →ₘ[μ] γ) :=
   ⟨comp₂ Div.div continuous_div'⟩
 
-/- warning: measure_theory.ae_eq_fun.mk_div -> MeasureTheory.AEEqFun.mk_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 g μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u1 u2} (α -> γ) (Pi.instDiv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasDiv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) f g) (MeasureTheory.AEStronglyMeasurable.div.{u1, u2} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg)) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHDiv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 g hg))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 g μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u2 u1} (α -> γ) (Pi.instDiv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toDiv.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) f g) (MeasureTheory.AEStronglyMeasurable.div.{u2, u1} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHDiv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 g hg))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_div MeasureTheory.AEEqFun.mk_divₓ'. -/
 @[simp, to_additive]
 theorem mk_div (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     mk (f / g) (hf.div hg) = (mk f hf : α →ₘ[μ] γ) / mk g hg :=
@@ -1099,24 +742,12 @@ theorem mk_div (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStrong
 #align measure_theory.ae_eq_fun.mk_div MeasureTheory.AEEqFun.mk_div
 #align measure_theory.ae_eq_fun.mk_sub MeasureTheory.AEEqFun.mk_sub
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_div -> MeasureTheory.AEEqFun.coeFn_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHDiv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u1 u2} (α -> γ) (Pi.instDiv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasDiv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) g))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHDiv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u2 u1} (α -> γ) (Pi.instDiv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toDiv.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_div MeasureTheory.AEEqFun.coeFn_divₓ'. -/
 @[to_additive]
 theorem coeFn_div (f g : α →ₘ[μ] γ) : ⇑(f / g) =ᵐ[μ] f / g :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_div MeasureTheory.AEEqFun.coeFn_div
 #align measure_theory.ae_eq_fun.coe_fn_sub MeasureTheory.AEEqFun.coeFn_sub
 
-/- warning: measure_theory.ae_eq_fun.div_to_germ -> MeasureTheory.AEEqFun.div_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHDiv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHDiv.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasDiv.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ (DivInvMonoid.toHasDiv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 g))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHDiv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHDiv.{max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.div.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ (DivInvMonoid.toDiv.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.div_to_germ MeasureTheory.AEEqFun.div_toGermₓ'. -/
 @[to_additive]
 theorem div_toGerm (f g : α →ₘ[μ] γ) : (f / g).toGerm = f.toGerm / g.toGerm :=
   comp₂_toGerm _ _ _ _
@@ -1133,34 +764,16 @@ instance instPowInt : Pow (α →ₘ[μ] γ) ℤ :=
 #align measure_theory.ae_eq_fun.has_int_pow MeasureTheory.AEEqFun.instPowInt
 -/
 
-/- warning: measure_theory.ae_eq_fun.mk_zpow -> MeasureTheory.AEEqFun.mk_zpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (n : Int), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Int (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Int (Pi.hasPow.{u1, u2, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) f n) (Continuous.comp_aestronglyMeasurable.{u1, u2, u2} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u2, 0, u2} γ Int γ (instHPow.{u2, 0} γ Int (DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) a n) (fun (x : α) => f x) (continuous_zpow.{u2} γ _inst_3 _inst_5 _inst_6 n) hf))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (n : Int), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Int (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Int (Pi.instPow.{u2, u1, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) f n) (Continuous.comp_aestronglyMeasurable.{u2, u1, u1} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u1, 0, u1} γ Int γ (instHPow.{u1, 0} γ Int (DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5))) a n) (fun (x : α) => f x) (continuous_zpow.{u1} γ _inst_3 _inst_5 _inst_6 n) hf))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AEEqFun.mk_zpowₓ'. -/
 @[simp]
 theorem mk_zpow (f : α → γ) (hf) (n : ℤ) :
     (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_zpow n).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AEEqFun.mk_zpow
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_zpow -> MeasureTheory.AEEqFun.coeFn_zpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Int), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Int (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Int (Pi.hasPow.{u1, u2, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) n)
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Int), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Int (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Int (Pi.instPow.{u2, u1, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_zpow MeasureTheory.AEEqFun.coeFn_zpowₓ'. -/
 theorem coeFn_zpow (f : α →ₘ[μ] γ) (n : ℤ) : ⇑(f ^ n) =ᵐ[μ] f ^ n :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_zpow MeasureTheory.AEEqFun.coeFn_zpow
 
-/- warning: measure_theory.ae_eq_fun.zpow_to_germ -> MeasureTheory.AEEqFun.zpow_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Int), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Int (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHPow.{max u1 u2, 0} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Int (Filter.Germ.hasPow.{u1, 0, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) Int γ (DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) n)
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Int), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Int (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHPow.{max u2 u1, 0} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Int (Filter.Germ.pow.{u2, 0, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) Int γ (DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.zpow_to_germ MeasureTheory.AEEqFun.zpow_toGermₓ'. -/
 @[simp]
 theorem zpow_toGerm (f : α →ₘ[μ] γ) (n : ℤ) : (f ^ n).toGerm = f.toGerm ^ n :=
   comp_toGerm _ _ _
@@ -1206,88 +819,40 @@ end Module
 
 open ENNReal
 
-/- warning: measure_theory.ae_eq_fun.lintegral -> MeasureTheory.AEEqFun.lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) -> ENNReal
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) -> ENNReal
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral MeasureTheory.AEEqFun.lintegralₓ'. -/
 /-- For `f : α → ℝ≥0∞`, define `∫ [f]` to be `∫ f` -/
 def lintegral (f : α →ₘ[μ] ℝ≥0∞) : ℝ≥0∞ :=
   Quotient.liftOn' f (fun f => ∫⁻ a, (f : α → ℝ≥0∞) a ∂μ) fun f g => lintegral_congr_ae
 #align measure_theory.ae_eq_fun.lintegral MeasureTheory.AEEqFun.lintegral
 
-/- warning: measure_theory.ae_eq_fun.lintegral_mk -> MeasureTheory.AEEqFun.lintegral_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : α -> ENNReal) (hf : MeasureTheory.AEStronglyMeasurable.{u1, 0} α ENNReal ENNReal.topologicalSpace _inst_1 f μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (MeasureTheory.AEEqFun.mk.{u1, 0} α _inst_1 μ ENNReal ENNReal.topologicalSpace f hf)) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => f a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : α -> ENNReal) (hf : MeasureTheory.AEStronglyMeasurable.{u1, 0} α ENNReal ENNReal.instTopologicalSpaceENNReal _inst_1 f μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (MeasureTheory.AEEqFun.mk.{u1, 0} α _inst_1 μ ENNReal ENNReal.instTopologicalSpaceENNReal f hf)) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => f a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AEEqFun.lintegral_mkₓ'. -/
 @[simp]
 theorem lintegral_mk (f : α → ℝ≥0∞) (hf) : (mk f hf : α →ₘ[μ] ℝ≥0∞).lintegral = ∫⁻ a, f a ∂μ :=
   rfl
 #align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AEEqFun.lintegral_mk
 
-/- warning: measure_theory.ae_eq_fun.lintegral_coe_fn -> MeasureTheory.AEEqFun.lintegral_coeFn is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => coeFn.{succ u1, succ u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (fun (_x : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) => α -> ENNReal) (MeasureTheory.AEEqFun.instCoeFun.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace) f a)) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => MeasureTheory.AEEqFun.cast.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal f a)) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AEEqFun.lintegral_coeFnₓ'. -/
 theorem lintegral_coeFn (f : α →ₘ[μ] ℝ≥0∞) : (∫⁻ a, f a ∂μ) = f.lintegral := by
   rw [← lintegral_mk, mk_coe_fn]
 #align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AEEqFun.lintegral_coeFn
 
-/- warning: measure_theory.ae_eq_fun.lintegral_zero -> MeasureTheory.AEEqFun.lintegral_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (OfNat.mk.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (Zero.zero.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace ENNReal.hasZero))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) 0 (Zero.toOfNat0.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal instENNRealZero)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_zero MeasureTheory.AEEqFun.lintegral_zeroₓ'. -/
 @[simp]
 theorem lintegral_zero : lintegral (0 : α →ₘ[μ] ℝ≥0∞) = 0 :=
   lintegral_zero
 #align measure_theory.ae_eq_fun.lintegral_zero MeasureTheory.AEEqFun.lintegral_zero
 
-/- warning: measure_theory.ae_eq_fun.lintegral_eq_zero_iff -> MeasureTheory.AEEqFun.lintegral_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ}, Iff (Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) f (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (OfNat.mk.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (Zero.zero.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ}, Iff (Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) f (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) 0 (Zero.toOfNat0.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_eq_zero_iff MeasureTheory.AEEqFun.lintegral_eq_zero_iffₓ'. -/
 @[simp]
 theorem lintegral_eq_zero_iff {f : α →ₘ[μ] ℝ≥0∞} : lintegral f = 0 ↔ f = 0 :=
   induction_on f fun f hf => (lintegral_eq_zero_iff' hf.AEMeasurable).trans mk_eq_mk.symm
 #align measure_theory.ae_eq_fun.lintegral_eq_zero_iff MeasureTheory.AEEqFun.lintegral_eq_zero_iff
 
-/- warning: measure_theory.ae_eq_fun.lintegral_add -> MeasureTheory.AEEqFun.lintegral_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (instHAdd.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instAdd.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ENNReal.continuousAdd)) f g)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (instHAdd.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instAdd.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) ENNReal.instContinuousAddENNRealInstTopologicalSpaceENNRealToAddToDistribToNonUnitalNonAssocSemiringToNonAssocSemiringToSemiringToOrderedSemiringToOrderedCommSemiringInstCanonicallyOrderedCommSemiringENNReal)) f g)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_add MeasureTheory.AEEqFun.lintegral_addₓ'. -/
 theorem lintegral_add (f g : α →ₘ[μ] ℝ≥0∞) : lintegral (f + g) = lintegral f + lintegral g :=
   induction_on₂ f g fun f hf g hg => by simp [lintegral_add_left' hf.ae_measurable]
 #align measure_theory.ae_eq_fun.lintegral_add MeasureTheory.AEEqFun.lintegral_add
 
-/- warning: measure_theory.ae_eq_fun.lintegral_mono -> MeasureTheory.AEEqFun.lintegral_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ} {g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ}, (LE.le.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (Preorder.toHasLe.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instPreorder.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ} {g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ}, (LE.le.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (Preorder.toLE.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instPreorder.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_mono MeasureTheory.AEEqFun.lintegral_monoₓ'. -/
 theorem lintegral_mono {f g : α →ₘ[μ] ℝ≥0∞} : f ≤ g → lintegral f ≤ lintegral g :=
   induction_on₂ f g fun f hf g hg hfg => lintegral_mono_ae hfg
 #align measure_theory.ae_eq_fun.lintegral_mono MeasureTheory.AEEqFun.lintegral_mono
 
 section Abs
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_abs -> MeasureTheory.AEEqFun.coeFn_abs is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {β : Type.{u2}} [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : Lattice.{u2} β] [_inst_7 : TopologicalLattice.{u2} β _inst_5 _inst_6] [_inst_8 : AddGroup.{u2} β] [_inst_9 : TopologicalAddGroup.{u2} β _inst_5 _inst_8] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_5) (Abs.abs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (Neg.toHasAbs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (MeasureTheory.AEEqFun.instNeg.{u1, u2} α β _inst_1 μ _inst_5 _inst_8 _inst_9) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_5 (Lattice.toSemilatticeSup.{u2} β _inst_6) (TopologicalLattice.to_continuousSup.{u2} β _inst_5 _inst_6 _inst_7))) f)) (fun (x : α) => Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_8)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_6))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_5) f x))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {β : Type.{u2}} [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : Lattice.{u2} β] [_inst_7 : TopologicalLattice.{u2} β _inst_5 _inst_6] [_inst_8 : AddGroup.{u2} β] [_inst_9 : TopologicalAddGroup.{u2} β _inst_5 _inst_8] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_5 (Abs.abs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (Neg.toHasAbs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (MeasureTheory.AEEqFun.instNeg.{u1, u2} α β _inst_1 μ _inst_5 _inst_8 _inst_9) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_5 (Lattice.toSemilatticeSup.{u2} β _inst_6) (TopologicalLattice.toContinuousSup.{u2} β _inst_5 _inst_6 _inst_7))) f)) (fun (x : α) => Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (NegZeroClass.toNeg.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_8)))) (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_6))) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_5 f x))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AEEqFun.coeFn_absₓ'. -/
 theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β] [AddGroup β]
     [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑(|f|) =ᵐ[μ] fun x => |f x| :=
   by
@@ -1309,12 +874,6 @@ def posPart (f : α →ₘ[μ] γ) : α →ₘ[μ] γ :=
 #align measure_theory.ae_eq_fun.pos_part MeasureTheory.AEEqFun.posPart
 -/
 
-/- warning: measure_theory.ae_eq_fun.pos_part_mk -> MeasureTheory.AEEqFun.posPart_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : LinearOrder.{u2} γ] [_inst_6 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_5))))] [_inst_7 : Zero.{u2} γ] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.posPart.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (fun (x : α) => LinearOrder.max.{u2} γ _inst_5 (f x) (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7)))) (Continuous.comp_aestronglyMeasurable.{u1, u2, u2} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (b : γ) => LinearOrder.max.{u2} γ _inst_5 (id.{succ u2} γ b) (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7)))) (fun (x : α) => f x) (Continuous.max.{u2, u2} γ γ _inst_3 _inst_5 _inst_6 (id.{succ u2} γ) (fun (a : γ) => OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7))) _inst_3 (continuous_id.{u2} γ _inst_3) (continuous_const.{u2, u2} γ γ _inst_3 _inst_3 (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7))))) hf))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : LinearOrder.{u1} γ] [_inst_6 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_5)))))] [_inst_7 : Zero.{u1} γ] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.posPart.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (fun (x : α) => Max.max.{u1} γ (LinearOrder.toMax.{u1} γ _inst_5) (f x) (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7))) (Continuous.comp_aestronglyMeasurable.{u2, u1, u1} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (b : γ) => Max.max.{u1} γ (LinearOrder.toMax.{u1} γ _inst_5) (id.{succ u1} γ b) (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7))) (fun (x : α) => f x) (Continuous.max.{u1, u1} γ γ _inst_3 _inst_5 _inst_6 (id.{succ u1} γ) (fun (a : γ) => OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7)) _inst_3 (continuous_id.{u1} γ _inst_3) (continuous_const.{u1, u1} γ γ _inst_3 _inst_3 (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7)))) hf))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AEEqFun.posPart_mkₓ'. -/
 @[simp]
 theorem posPart_mk (f : α → γ) (hf) :
     posPart (mk f hf : α →ₘ[μ] γ) =
@@ -1323,12 +882,6 @@ theorem posPart_mk (f : α → γ) (hf) :
   rfl
 #align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AEEqFun.posPart_mk
 
-/- warning: measure_theory.ae_eq_fun.coe_fn_pos_part -> MeasureTheory.AEEqFun.coeFn_posPart is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : LinearOrder.{u2} γ] [_inst_6 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_5))))] [_inst_7 : Zero.{u2} γ] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (MeasureTheory.AEEqFun.posPart.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 f)) (fun (a : α) => LinearOrder.max.{u2} γ _inst_5 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f a) (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7))))
-but is expected to have type
-  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : LinearOrder.{u1} γ] [_inst_6 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_5)))))] [_inst_7 : Zero.{u1} γ] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.posPart.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 f)) (fun (a : α) => Max.max.{u1} γ (LinearOrder.toMax.{u1} γ _inst_5) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f a) (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_pos_part MeasureTheory.AEEqFun.coeFn_posPartₓ'. -/
 theorem coeFn_posPart (f : α →ₘ[μ] γ) : ⇑(posPart f) =ᵐ[μ] fun a => max (f a) 0 :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_pos_part MeasureTheory.AEEqFun.coeFn_posPart
@@ -1355,24 +908,12 @@ def toAEEqFun (f : C(α, β)) : α →ₘ[μ] β :=
 #align continuous_map.to_ae_eq_fun ContinuousMap.toAEEqFun
 -/
 
-/- warning: continuous_map.coe_fn_to_ae_eq_fun -> ContinuousMap.coeFn_toAEEqFun is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : SecondCountableTopologyEither.{u1, u2} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_4] (f : ContinuousMap.{u1, u2} α β _inst_2 _inst_4), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_4) (ContinuousMap.toAEEqFun.{u1, u2} α β _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_2 _inst_4) (fun (_x : ContinuousMap.{u1, u2} α β _inst_2 _inst_4) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_2 _inst_4) f)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] (μ : MeasureTheory.Measure.{u2} α _inst_1) [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : BorelSpace.{u2} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : SecondCountableTopologyEither.{u2, u1} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u1} β _inst_4] (f : ContinuousMap.{u2, u1} α β _inst_2 _inst_4), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_4 (ContinuousMap.toAEEqFun.{u2, u1} α β _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_2 _inst_4) α β _inst_2 _inst_4 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_2 _inst_4)) f)
-Case conversion may be inaccurate. Consider using '#align continuous_map.coe_fn_to_ae_eq_fun ContinuousMap.coeFn_toAEEqFunₓ'. -/
 theorem coeFn_toAEEqFun (f : C(α, β)) : f.toAEEqFun μ =ᵐ[μ] f :=
   AEEqFun.coeFn_mk f _
 #align continuous_map.coe_fn_to_ae_eq_fun ContinuousMap.coeFn_toAEEqFun
 
 variable [Group β] [TopologicalGroup β]
 
-/- warning: continuous_map.to_ae_eq_fun_mul_hom -> ContinuousMap.toAEEqFunMulHom is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : SecondCountableTopologyEither.{u1, u2} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_4] [_inst_7 : Group.{u2} β] [_inst_8 : TopologicalGroup.{u2} β _inst_4 _inst_7], MonoidHom.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_2 _inst_4) (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (ContinuousMap.mulOneClass.{u1, u2} α β _inst_2 _inst_4 (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7))) (TopologicalGroup.to_continuousMul.{u2} β _inst_4 _inst_7 _inst_8)) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α β _inst_1 μ _inst_4 (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7)) (TopologicalGroup.to_continuousMul.{u2} β _inst_4 _inst_7 _inst_8)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : SecondCountableTopologyEither.{u1, u2} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_4] [_inst_7 : Group.{u2} β] [_inst_8 : TopologicalGroup.{u2} β _inst_4 _inst_7], MonoidHom.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_2 _inst_4) (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (ContinuousMap.instMulOneClassContinuousMap.{u1, u2} α β _inst_2 _inst_4 (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7))) (TopologicalGroup.toContinuousMul.{u2} β _inst_4 _inst_7 _inst_8)) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α β _inst_1 μ _inst_4 (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7)) (TopologicalGroup.toContinuousMul.{u2} β _inst_4 _inst_7 _inst_8)))
-Case conversion may be inaccurate. Consider using '#align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAEEqFunMulHomₓ'. -/
 /-- The `mul_hom` from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
 @[to_additive
@@ -1391,12 +932,6 @@ variable {𝕜 : Type _} [Semiring 𝕜]
 variable [TopologicalSpace γ] [PseudoMetrizableSpace γ] [AddCommGroup γ] [Module 𝕜 γ]
   [TopologicalAddGroup γ] [ContinuousConstSMul 𝕜 γ] [SecondCountableTopologyEither α γ]
 
-/- warning: continuous_map.to_ae_eq_fun_linear_map -> ContinuousMap.toAEEqFunLinearMap is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] {𝕜 : Type.{u3}} [_inst_9 : Semiring.{u3} 𝕜] [_inst_10 : TopologicalSpace.{u2} γ] [_inst_11 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_10] [_inst_12 : AddCommGroup.{u2} γ] [_inst_13 : Module.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)] [_inst_14 : TopologicalAddGroup.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12)] [_inst_15 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_10 (SMulZeroClass.toHasSmul.{u3, u2} 𝕜 γ (AddZeroClass.toHasZero.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)))) (SMulWithZero.toSmulZeroClass.{u3, u2} 𝕜 γ (MulZeroClass.toHasZero.{u3} 𝕜 (MulZeroOneClass.toMulZeroClass.{u3} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u3} 𝕜 (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9)))) (AddZeroClass.toHasZero.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)))) (MulActionWithZero.toSMulWithZero.{u3, u2} 𝕜 γ (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9) (AddZeroClass.toHasZero.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)))) (Module.toMulActionWithZero.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) _inst_13))))] [_inst_16 : SecondCountableTopologyEither.{u1, u2} α γ _inst_2 _inst_10], LinearMap.{u3, u3, max u1 u2, max u1 u2} 𝕜 𝕜 _inst_9 _inst_9 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 _inst_9)) (ContinuousMap.{u1, u2} α γ _inst_2 _inst_10) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_10 μ) (ContinuousMap.addCommMonoid.{u1, u2} α γ _inst_2 _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_1.{u2} γ _inst_10 _inst_12 _inst_14)) (MeasureTheory.AEEqFun.instAddCommMonoid.{u1, u2} α γ _inst_1 μ _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_2.{u2} γ _inst_10 _inst_12 _inst_14)) (ContinuousMap.module.{u1, u3, u2} α _inst_2 𝕜 γ _inst_10 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_3.{u2} γ _inst_10 _inst_12 _inst_14) _inst_13 _inst_15) (MeasureTheory.AEEqFun.instModule.{u1, u2, u3} α γ _inst_1 μ _inst_10 𝕜 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_4.{u2} γ _inst_10 _inst_12 _inst_14) _inst_13 _inst_15)
-but is expected to have type
-  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] {𝕜 : Type.{u3}} [_inst_9 : Semiring.{u3} 𝕜] [_inst_10 : TopologicalSpace.{u2} γ] [_inst_11 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_10] [_inst_12 : AddCommGroup.{u2} γ] [_inst_13 : Module.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)] [_inst_14 : TopologicalAddGroup.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12)] [_inst_15 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_10 (SMulZeroClass.toSMul.{u3, u2} 𝕜 γ (NegZeroClass.toZero.{u2} γ (SubNegZeroMonoid.toNegZeroClass.{u2} γ (SubtractionMonoid.toSubNegZeroMonoid.{u2} γ (SubtractionCommMonoid.toSubtractionMonoid.{u2} γ (AddCommGroup.toDivisionAddCommMonoid.{u2} γ _inst_12))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕜 γ (MonoidWithZero.toZero.{u3} 𝕜 (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9)) (NegZeroClass.toZero.{u2} γ (SubNegZeroMonoid.toNegZeroClass.{u2} γ (SubtractionMonoid.toSubNegZeroMonoid.{u2} γ (SubtractionCommMonoid.toSubtractionMonoid.{u2} γ (AddCommGroup.toDivisionAddCommMonoid.{u2} γ _inst_12))))) (MulActionWithZero.toSMulWithZero.{u3, u2} 𝕜 γ (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9) (NegZeroClass.toZero.{u2} γ (SubNegZeroMonoid.toNegZeroClass.{u2} γ (SubtractionMonoid.toSubNegZeroMonoid.{u2} γ (SubtractionCommMonoid.toSubtractionMonoid.{u2} γ (AddCommGroup.toDivisionAddCommMonoid.{u2} γ _inst_12))))) (Module.toMulActionWithZero.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) _inst_13))))] [_inst_16 : SecondCountableTopologyEither.{u1, u2} α γ _inst_2 _inst_10], LinearMap.{u3, u3, max u2 u1, max u2 u1} 𝕜 𝕜 _inst_9 _inst_9 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 _inst_9)) (ContinuousMap.{u1, u2} α γ _inst_2 _inst_10) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_10 μ) (ContinuousMap.instAddCommMonoidContinuousMap.{u1, u2} α γ _inst_2 _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14)) (MeasureTheory.AEEqFun.instAddCommMonoid.{u1, u2} α γ _inst_1 μ _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14)) (ContinuousMap.module.{u1, u3, u2} α _inst_2 𝕜 γ _inst_10 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14) _inst_13 _inst_15) (MeasureTheory.AEEqFun.instModule.{u1, u2, u3} α γ _inst_1 μ _inst_10 𝕜 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14) _inst_13 _inst_15)
-Case conversion may be inaccurate. Consider using '#align continuous_map.to_ae_eq_fun_linear_map ContinuousMap.toAEEqFunLinearMapₓ'. -/
 /-- The linear map from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
 def toAEEqFunLinearMap : C(α, γ) →ₗ[𝕜] α →ₘ[μ] γ :=
Diff
@@ -317,10 +317,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f))
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AEEqFun.coeFn_compₓ'. -/
-theorem coeFn_comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : comp g hg f =ᵐ[μ] g ∘ f :=
-  by
-  rw [comp_eq_mk]
-  apply coe_fn_mk
+theorem coeFn_comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : comp g hg f =ᵐ[μ] g ∘ f := by
+  rw [comp_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AEEqFun.coeFn_comp
 
 section CompMeasurable
@@ -362,10 +360,7 @@ theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[
 <too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurableₓ'. -/
 theorem coeFn_compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
-    compMeasurable g hg f =ᵐ[μ] g ∘ f :=
-  by
-  rw [comp_measurable_eq_mk]
-  apply coe_fn_mk
+    compMeasurable g hg f =ᵐ[μ] g ∘ f := by rw [comp_measurable_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurable
 
 end CompMeasurable
@@ -411,10 +406,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : MeasureTheory.AEEqFun.{u3, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u3, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u3, max u2 u1} α (Prod.{u2, u1} β γ) (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u3, max u2 u1} α (Prod.{u2, u1} β γ) _inst_1 μ (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) (MeasureTheory.AEEqFun.pair.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 f g)) (fun (x : α) => Prod.mk.{u2, u1} β γ (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g x))
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AEEqFun.coeFn_pairₓ'. -/
-theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ[μ] fun x => (f x, g x) :=
-  by
-  rw [pair_eq_mk]
-  apply coe_fn_mk
+theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ[μ] fun x => (f x, g x) := by
+  rw [pair_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AEEqFun.coeFn_pair
 
 /- warning: measure_theory.ae_eq_fun.comp₂ -> MeasureTheory.AEEqFun.comp₂ is a dubious translation:
@@ -475,9 +468,7 @@ but is expected to have type
   forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a))
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AEEqFun.coeFn_comp₂ₓ'. -/
 theorem coeFn_comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
-    (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) :=
-  by
-  rw [comp₂_eq_mk]
+    (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) := by rw [comp₂_eq_mk];
   apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AEEqFun.coeFn_comp₂
 
@@ -533,10 +524,8 @@ theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry
 <too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AEEqFun.coeFn_comp₂Measurableₓ'. -/
 theorem coeFn_comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
-    (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) :=
-  by
-  rw [comp₂_measurable_eq_mk]
-  apply coe_fn_mk
+    (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) := by
+  rw [comp₂_measurable_eq_mk]; apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AEEqFun.coeFn_comp₂Measurable
 
 end
@@ -714,12 +703,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) f (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_leftₓ'. -/
-protected theorem le_sup_left (f g : α →ₘ[μ] β) : f ≤ f ⊔ g :=
-  by
-  rw [← coe_fn_le]
-  filter_upwards [coe_fn_sup f g]with _ ha
-  rw [ha]
-  exact le_sup_left
+protected theorem le_sup_left (f g : α →ₘ[μ] β) : f ≤ f ⊔ g := by rw [← coe_fn_le];
+  filter_upwards [coe_fn_sup f g]with _ ha; rw [ha]; exact le_sup_left
 #align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_left
 
 /- warning: measure_theory.ae_eq_fun.le_sup_right -> MeasureTheory.AEEqFun.le_sup_right is a dubious translation:
@@ -728,12 +713,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) g (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_rightₓ'. -/
-protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g :=
-  by
-  rw [← coe_fn_le]
-  filter_upwards [coe_fn_sup f g]with _ ha
-  rw [ha]
-  exact le_sup_right
+protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g := by rw [← coe_fn_le];
+  filter_upwards [coe_fn_sup f g]with _ ha; rw [ha]; exact le_sup_right
 #align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_right
 
 /- warning: measure_theory.ae_eq_fun.sup_le -> MeasureTheory.AEEqFun.sup_le is a dubious translation:
@@ -774,12 +755,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_leftₓ'. -/
-protected theorem inf_le_left (f g : α →ₘ[μ] β) : f ⊓ g ≤ f :=
-  by
-  rw [← coe_fn_le]
-  filter_upwards [coe_fn_inf f g]with _ ha
-  rw [ha]
-  exact inf_le_left
+protected theorem inf_le_left (f g : α →ₘ[μ] β) : f ⊓ g ≤ f := by rw [← coe_fn_le];
+  filter_upwards [coe_fn_inf f g]with _ ha; rw [ha]; exact inf_le_left
 #align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_left
 
 /- warning: measure_theory.ae_eq_fun.inf_le_right -> MeasureTheory.AEEqFun.inf_le_right is a dubious translation:
@@ -788,12 +765,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) g
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_rightₓ'. -/
-protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g :=
-  by
-  rw [← coe_fn_le]
-  filter_upwards [coe_fn_inf f g]with _ ha
-  rw [ha]
-  exact inf_le_right
+protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g := by rw [← coe_fn_le];
+  filter_upwards [coe_fn_inf f g]with _ ha; rw [ha]; exact inf_le_right
 #align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_right
 
 /- warning: measure_theory.ae_eq_fun.le_inf -> MeasureTheory.AEEqFun.le_inf is a dubious translation:
Diff
@@ -267,10 +267,7 @@ theorem induction_on₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpa
 #align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AEEqFun.induction_on₂
 
 /- warning: measure_theory.ae_eq_fun.induction_on₃ -> MeasureTheory.AEEqFun.induction_on₃ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {α' : Type.{u3}} {β' : Type.{u4}} [_inst_5 : MeasurableSpace.{u3} α'] [_inst_6 : TopologicalSpace.{u4} β'] {μ' : MeasureTheory.Measure.{u3} α' _inst_5} {α'' : Type.{u5}} {β'' : Type.{u6}} [_inst_7 : MeasurableSpace.{u5} α''] [_inst_8 : TopologicalSpace.{u6} β''] {μ'' : MeasureTheory.Measure.{u5} α'' _inst_7} (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') (f'' : MeasureTheory.AEEqFun.{u5, u6} α'' β'' _inst_7 _inst_8 μ'') {p : (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') -> (MeasureTheory.AEEqFun.{u5, u6} α'' β'' _inst_7 _inst_8 μ'') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u3, u4} α' β' _inst_6 _inst_5 f' μ') (f'' : α'' -> β'') (hf'' : MeasureTheory.AEStronglyMeasurable.{u5, u6} α'' β'' _inst_8 _inst_7 f'' μ''), p (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u4} α' _inst_5 μ' β' _inst_6 f' hf') (MeasureTheory.AEEqFun.mk.{u5, u6} α'' _inst_7 μ'' β'' _inst_8 f'' hf'')) -> (p f f' f'')
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {α' : Type.{u6}} {β' : Type.{u5}} [_inst_5 : MeasurableSpace.{u6} α'] [_inst_6 : TopologicalSpace.{u5} β'] {μ' : MeasureTheory.Measure.{u6} α' _inst_5} {α'' : Type.{u4}} {β'' : Type.{u3}} [_inst_7 : MeasurableSpace.{u4} α''] [_inst_8 : TopologicalSpace.{u3} β''] {μ'' : MeasureTheory.Measure.{u4} α'' _inst_7} (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u6, u5} α' β' _inst_5 _inst_6 μ') (f'' : MeasureTheory.AEEqFun.{u4, u3} α'' β'' _inst_7 _inst_8 μ'') {p : (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u6, u5} α' β' _inst_5 _inst_6 μ') -> (MeasureTheory.AEEqFun.{u4, u3} α'' β'' _inst_7 _inst_8 μ'') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u6, u5} α' β' _inst_6 _inst_5 f' μ') (f'' : α'' -> β'') (hf'' : MeasureTheory.AEStronglyMeasurable.{u4, u3} α'' β'' _inst_8 _inst_7 f'' μ''), p (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u6, u5} α' _inst_5 μ' β' _inst_6 f' hf') (MeasureTheory.AEEqFun.mk.{u4, u3} α'' _inst_7 μ'' β'' _inst_8 f'' hf'')) -> (p f f' f'')
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AEEqFun.induction_on₃ₓ'. -/
 @[elab_as_elim]
 theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
@@ -343,10 +340,7 @@ def compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
 -/
 
 /- warning: measure_theory.ae_eq_fun.comp_measurable_mk -> MeasureTheory.AEEqFun.compMeasurable_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u3} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_8 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) (AEMeasurable.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u3, u2} α γ β _inst_1 _inst_8 μ _inst_5 f g hg (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u2} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f hf))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u2} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_8 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) (AEMeasurable.aestronglyMeasurable.{u1, u2} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u2, u3} α γ β _inst_1 _inst_8 μ _inst_5 f g hg (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u3} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f hf))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AEEqFun.compMeasurable_mkₓ'. -/
 @[simp]
 theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
@@ -357,10 +351,7 @@ theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
 #align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AEEqFun.compMeasurable_mk
 
 /- warning: measure_theory.ae_eq_fun.comp_measurable_eq_mk -> MeasureTheory.AEEqFun.compMeasurable_eq_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u3} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)) (AEMeasurable.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u3, u2} α γ β _inst_1 _inst_8 μ _inst_5 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) g hg (MeasureTheory.AEEqFun.aemeasurable.{u1, u2} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u2} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f)) (AEMeasurable.aestronglyMeasurable.{u1, u2} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f)) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u2, u3} α γ β _inst_1 _inst_8 μ _inst_5 (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f) g hg (MeasureTheory.AEEqFun.aemeasurable.{u1, u3} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AEEqFun.compMeasurable_eq_mkₓ'. -/
 theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f = mk (g ∘ f) (hg.comp_aemeasurable f.AEMeasurable).AEStronglyMeasurable :=
@@ -368,10 +359,7 @@ theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[
 #align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AEEqFun.compMeasurable_eq_mk
 
 /- warning: measure_theory.ae_eq_fun.coe_fn_comp_measurable -> MeasureTheory.AEEqFun.coeFn_compMeasurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u3} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u3} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f)) (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u2} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f)) (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurableₓ'. -/
 theorem coeFn_compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f =ᵐ[μ] g ∘ f :=
@@ -470,10 +458,7 @@ theorem comp₂_eq_pair (g : β → γ → δ) (hg : Continuous (uncurry g)) (f
 #align measure_theory.ae_eq_fun.comp₂_eq_pair MeasureTheory.AEEqFun.comp₂_eq_pair
 
 /- warning: measure_theory.ae_eq_fun.comp₂_eq_mk -> MeasureTheory.AEEqFun.comp₂_eq_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 f₂))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, u2, max u3 u4} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ x) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u3, u1} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u4, u1} α γ _inst_1 μ _inst_3 f₂))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AEEqFun.comp₂_eq_mkₓ'. -/
 theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
@@ -514,10 +499,7 @@ def comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁
 -/
 
 /- warning: measure_theory.ae_eq_fun.comp₂_measurable_mk_mk -> MeasureTheory.AEEqFun.comp₂Measurable_mk_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 f₂ μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u4} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u2 u3), succ u4} α (Prod.{u2, u3} β γ) δ (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (f₁ x) (f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u4, max u2 u3} α δ (Prod.{u2, u3} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u2, u3} β γ (f₁ x) (f₂ x)) (Function.uncurry.{u2, u3, u4} β γ δ g) hg (AEMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 _inst_5 _inst_9 μ f₁ f₂ (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u2} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f₁ hf₁) (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u3} α _inst_1 μ γ _inst_9 _inst_3 _inst_10 _inst_11 f₂ hf₂)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u4} α γ _inst_3 _inst_1 f₂ μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u2} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u3 u4), succ u2} α (Prod.{u3, u4} β γ) δ (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (f₁ x) (f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u2, max u3 u4} α δ (Prod.{u3, u4} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u3, u4} β γ (f₁ x) (f₂ x)) (Function.uncurry.{u3, u4, u2} β γ δ g) hg (AEMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 _inst_5 _inst_9 μ f₁ f₂ (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u3} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f₁ hf₁) (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u4} α _inst_1 μ γ _inst_9 _inst_3 _inst_10 _inst_11 f₂ hf₂)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AEEqFun.comp₂Measurable_mk_mkₓ'. -/
 @[simp]
 theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α → β)
@@ -529,10 +511,7 @@ theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry
 #align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AEEqFun.comp₂Measurable_mk_mk
 
 /- warning: measure_theory.ae_eq_fun.comp₂_measurable_eq_pair -> MeasureTheory.AEEqFun.comp₂Measurable_eq_pair is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.compMeasurable.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) (TopologicalSpace.pseudoMetrizableSpace_prod.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_10) (Prod.borelSpace.{u2, u3} β γ _inst_2 _inst_5 _inst_7 _inst_3 _inst_9 _inst_11 _inst_8 _inst_12) _inst_13 _inst_14 _inst_15 _inst_16 (Function.uncurry.{u2, u3, u4} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.compMeasurable.{u1, max u3 u4, u2} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) (TopologicalSpace.pseudoMetrizableSpace_prod.{u3, u4} β γ _inst_2 _inst_3 _inst_6 _inst_10) (Prod.borelSpace.{u3, u4} β γ _inst_2 _inst_5 _inst_7 _inst_3 _inst_9 _inst_11 _inst_8 _inst_12) _inst_13 _inst_14 _inst_15 _inst_16 (Function.uncurry.{u3, u4, u2} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u3, u4} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AEEqFun.comp₂Measurable_eq_pairₓ'. -/
 theorem comp₂Measurable_eq_pair (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ = compMeasurable _ hg (f₁.pair f₂) :=
@@ -540,10 +519,7 @@ theorem comp₂Measurable_eq_pair (g : β → γ → δ) (hg : Measurable (uncur
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AEEqFun.comp₂Measurable_eq_pair
 
 /- warning: measure_theory.ae_eq_fun.comp₂_measurable_eq_mk -> MeasureTheory.AEEqFun.comp₂Measurable_eq_mk is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u4} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u2 u3), succ u4} α (Prod.{u2, u3} β γ) δ (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u4, max u2 u3} α δ (Prod.{u2, u3} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ x)) (Function.uncurry.{u2, u3, u4} β γ δ g) hg (AEMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 _inst_5 _inst_9 μ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂) (MeasureTheory.AEEqFun.aemeasurable.{u1, u2} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f₁) (MeasureTheory.AEEqFun.aemeasurable.{u1, u3} α γ _inst_1 μ _inst_3 _inst_10 _inst_9 _inst_11 f₂)))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u2} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u3 u4), succ u2} α (Prod.{u3, u4} β γ) δ (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ x) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u2, max u3 u4} α δ (Prod.{u3, u4} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u3, u4} β γ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ x) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ x)) (Function.uncurry.{u3, u4, u2} β γ δ g) hg (AEMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 _inst_5 _inst_9 μ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂) (MeasureTheory.AEEqFun.aemeasurable.{u1, u3} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f₁) (MeasureTheory.AEEqFun.aemeasurable.{u1, u4} α γ _inst_1 μ _inst_3 _inst_10 _inst_9 _inst_11 f₂)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AEEqFun.comp₂Measurable_eq_mkₓ'. -/
 theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
@@ -554,10 +530,7 @@ theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AEEqFun.comp₂Measurable_eq_mk
 
 /- warning: measure_theory.ae_eq_fun.coe_fn_comp₂_measurable -> MeasureTheory.AEEqFun.coeFn_comp₂Measurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u4} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u4), max (succ u1) (succ u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) => α -> δ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u4} α δ _inst_1 μ _inst_4) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂)) (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂)) (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AEEqFun.coeFn_comp₂Measurableₓ'. -/
 theorem coeFn_comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) :=
@@ -618,10 +591,7 @@ theorem comp_toGerm (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
 #align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AEEqFun.comp_toGerm
 
 /- warning: measure_theory.ae_eq_fun.comp_measurable_to_germ -> MeasureTheory.AEEqFun.compMeasurable_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_7 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_8 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_9 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_10 : MeasurableSpace.{u3} γ] [_inst_11 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_10] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_10 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (Filter.Germ.{u1, u3} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_7 _inst_6 _inst_10 _inst_8 _inst_11 _inst_9 g hg f)) (Filter.Germ.map.{u1, u2, u3} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_7 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_8 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_9 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] [_inst_10 : MeasurableSpace.{u2} γ] [_inst_11 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_10] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_10 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_7 _inst_6 _inst_10 _inst_8 _inst_11 _inst_9 g hg f)) (Filter.Germ.map.{u1, u3, u2} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u3} α β _inst_1 μ _inst_2 f))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AEEqFun.compMeasurable_toGermₓ'. -/
 theorem compMeasurable_toGerm [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace β]
     [PseudoMetrizableSpace γ] [SecondCountableTopology γ] [MeasurableSpace γ]
@@ -642,10 +612,7 @@ theorem comp₂_toGerm (g : β → γ → δ) (hg : Continuous (uncurry g)) (f
 #align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AEEqFun.comp₂_toGerm
 
 /- warning: measure_theory.ae_eq_fun.comp₂_measurable_to_germ -> MeasureTheory.AEEqFun.comp₂Measurable_toGerm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_7 : MeasurableSpace.{u2} β] [_inst_8 : BorelSpace.{u2} β _inst_2 _inst_7] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_11 : MeasurableSpace.{u3} γ] [_inst_12 : BorelSpace.{u3} γ _inst_3 _inst_11] [_inst_13 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_14 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] [_inst_15 : MeasurableSpace.{u4} δ] [_inst_16 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_15] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_7 _inst_11) _inst_15 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (Filter.Germ.{u1, u4} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u4} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_7 _inst_5 _inst_8 _inst_6 _inst_11 _inst_9 _inst_12 _inst_10 _inst_15 _inst_13 _inst_16 _inst_14 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u2, u3, u4} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 f₂))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u4}} {γ : Type.{u3}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u4} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : TopologicalSpace.PseudoMetrizableSpace.{u4} β _inst_2] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u4} β _inst_2] [_inst_7 : MeasurableSpace.{u4} β] [_inst_8 : BorelSpace.{u4} β _inst_2 _inst_7] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_11 : MeasurableSpace.{u3} γ] [_inst_12 : BorelSpace.{u3} γ _inst_3 _inst_11] [_inst_13 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_14 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] [_inst_15 : MeasurableSpace.{u2} δ] [_inst_16 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_15] (g : β -> γ -> δ) (hg : Measurable.{max u3 u4, u2} (Prod.{u4, u3} β γ) δ (Prod.instMeasurableSpace.{u4, u3} β γ _inst_7 _inst_11) _inst_15 (Function.uncurry.{u4, u3, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u4} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u4, u3, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_7 _inst_5 _inst_8 _inst_6 _inst_11 _inst_9 _inst_12 _inst_10 _inst_15 _inst_13 _inst_16 _inst_14 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u4, u3, u2} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u4} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 f₂))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_to_germ MeasureTheory.AEEqFun.comp₂Measurable_toGermₓ'. -/
 theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopology β]
     [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace γ] [SecondCountableTopology γ]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Zhouhang Zhou
 
 ! This file was ported from Lean 3 source module measure_theory.function.ae_eq_fun
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit a87d22575d946e1e156fc1edd1e1269600a8a282
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -17,6 +17,9 @@ import Mathbin.MeasureTheory.Function.StronglyMeasurable.Basic
 
 # Almost everywhere equal functions
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We build a space of equivalence classes of functions, where two functions are treated as identical
 if they are almost everywhere equal. We form the set of equivalence classes under the relation of
 being almost everywhere equal, which is sometimes known as the `L⁰` space.
Diff
@@ -1464,5 +1464,5 @@ def toAEEqFunLinearMap : C(α, γ) →ₗ[𝕜] α →ₘ[μ] γ :=
 end ContinuousMap
 
 -- Guard against import creep
-assert_not_exists inner_product_space
+assert_not_exists InnerProductSpace
 
Diff
@@ -89,26 +89,30 @@ variable [TopologicalSpace β]
 
 variable (β)
 
+#print MeasureTheory.Measure.aeEqSetoid /-
 /-- The equivalence relation of being almost everywhere equal for almost everywhere strongly
 measurable functions. -/
 def Measure.aeEqSetoid (μ : Measure α) : Setoid { f : α → β // AEStronglyMeasurable f μ } :=
   ⟨fun f g => (f : α → β) =ᵐ[μ] g, fun f => ae_eq_refl f, fun f g => ae_eq_symm, fun f g h =>
     ae_eq_trans⟩
 #align measure_theory.measure.ae_eq_setoid MeasureTheory.Measure.aeEqSetoid
+-/
 
 variable (α)
 
+#print MeasureTheory.AEEqFun /-
 /-- The space of equivalence classes of almost everywhere strongly measurable functions, where two
     strongly measurable functions are equivalent if they agree almost everywhere, i.e.,
     they differ on a set of measure `0`.  -/
-def AeEqFun (μ : Measure α) : Type _ :=
+def AEEqFun (μ : Measure α) : Type _ :=
   Quotient (μ.aeEqSetoid β)
-#align measure_theory.ae_eq_fun MeasureTheory.AeEqFun
+#align measure_theory.ae_eq_fun MeasureTheory.AEEqFun
+-/
 
 variable {α β}
 
 -- mathport name: «expr →ₘ[ ] »
-notation:25 α " →ₘ[" μ "] " β => AeEqFun α β μ
+notation:25 α " →ₘ[" μ "] " β => AEEqFun α β μ
 
 end MeasurableSpace
 
@@ -116,46 +120,82 @@ namespace AeEqFun
 
 variable [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
 
+#print MeasureTheory.AEEqFun.mk /-
 /-- Construct the equivalence class `[f]` of an almost everywhere measurable function `f`, based
     on the equivalence relation of being almost everywhere equal. -/
 def mk {β : Type _} [TopologicalSpace β] (f : α → β) (hf : AEStronglyMeasurable f μ) : α →ₘ[μ] β :=
   Quotient.mk'' ⟨f, hf⟩
-#align measure_theory.ae_eq_fun.mk MeasureTheory.AeEqFun.mk
+#align measure_theory.ae_eq_fun.mk MeasureTheory.AEEqFun.mk
+-/
 
 /-- A measurable representative of an `ae_eq_fun` [f] -/
 instance : CoeFun (α →ₘ[μ] β) fun _ => α → β :=
   ⟨fun f =>
     AEStronglyMeasurable.mk _ (Quotient.out' f : { f : α → β // AEStronglyMeasurable f μ }).2⟩
 
+/- warning: measure_theory.ae_eq_fun.strongly_measurable -> MeasureTheory.AEEqFun.stronglyMeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), MeasureTheory.StronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), MeasureTheory.StronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.strongly_measurable MeasureTheory.AEEqFun.stronglyMeasurableₓ'. -/
 protected theorem stronglyMeasurable (f : α →ₘ[μ] β) : StronglyMeasurable f :=
   AEStronglyMeasurable.stronglyMeasurable_mk _
-#align measure_theory.ae_eq_fun.strongly_measurable MeasureTheory.AeEqFun.stronglyMeasurable
-
-protected theorem aEStronglyMeasurable (f : α →ₘ[μ] β) : AEStronglyMeasurable f μ :=
+#align measure_theory.ae_eq_fun.strongly_measurable MeasureTheory.AEEqFun.stronglyMeasurable
+
+/- warning: measure_theory.ae_eq_fun.ae_strongly_measurable -> MeasureTheory.AEEqFun.aestronglyMeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) μ
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) μ
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AEEqFun.aestronglyMeasurableₓ'. -/
+protected theorem aestronglyMeasurable (f : α →ₘ[μ] β) : AEStronglyMeasurable f μ :=
   f.StronglyMeasurable.AEStronglyMeasurable
-#align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AeEqFun.aEStronglyMeasurable
+#align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AEEqFun.aestronglyMeasurable
 
+#print MeasureTheory.AEEqFun.measurable /-
 protected theorem measurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
     (f : α →ₘ[μ] β) : Measurable f :=
   AEStronglyMeasurable.measurable_mk _
-#align measure_theory.ae_eq_fun.measurable MeasureTheory.AeEqFun.measurable
+#align measure_theory.ae_eq_fun.measurable MeasureTheory.AEEqFun.measurable
+-/
 
-protected theorem aEMeasurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
+#print MeasureTheory.AEEqFun.aemeasurable /-
+protected theorem aemeasurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
     (f : α →ₘ[μ] β) : AEMeasurable f μ :=
   f.Measurable.AEMeasurable
-#align measure_theory.ae_eq_fun.ae_measurable MeasureTheory.AeEqFun.aEMeasurable
+#align measure_theory.ae_eq_fun.ae_measurable MeasureTheory.AEEqFun.aemeasurable
+-/
 
+/- warning: measure_theory.ae_eq_fun.quot_mk_eq_mk -> MeasureTheory.AEEqFun.quot_mk_eq_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u2)} (Quot.{succ (max u1 u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max 1 (succ u1) (succ u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u1, u2} α β _inst_1 _inst_2 μ))) (Quot.mk.{succ (max u1 u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max 1 (succ u1) (succ u2)} (Subtype.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u1, u2} α β _inst_1 _inst_2 μ)) (Subtype.mk.{max (succ u1) (succ u2)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (Quot.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u2, u1} α β _inst_1 _inst_2 μ))) (Quot.mk.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (Setoid.r.{max (succ u2) (succ u1)} (Subtype.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ)) (MeasureTheory.Measure.aeEqSetoid.{u2, u1} α β _inst_1 _inst_2 μ)) (Subtype.mk.{max (succ u2) (succ u1)} (α -> β) (fun (f : α -> β) => MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ) f hf)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.quot_mk_eq_mk MeasureTheory.AEEqFun.quot_mk_eq_mkₓ'. -/
 @[simp]
 theorem quot_mk_eq_mk (f : α → β) (hf) :
     (Quot.mk (@Setoid.r _ <| μ.aeEqSetoid β) ⟨f, hf⟩ : α →ₘ[μ] β) = mk f hf :=
   rfl
-#align measure_theory.ae_eq_fun.quot_mk_eq_mk MeasureTheory.AeEqFun.quot_mk_eq_mk
-
+#align measure_theory.ae_eq_fun.quot_mk_eq_mk MeasureTheory.AEEqFun.quot_mk_eq_mk
+
+/- warning: measure_theory.ae_eq_fun.mk_eq_mk -> MeasureTheory.AEEqFun.mk_eq_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {f : α -> β} {g : α -> β} {hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 g μ}, Iff (Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {f : α -> β} {g : α -> β} {hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 g μ}, Iff (Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_eq_mk MeasureTheory.AEEqFun.mk_eq_mkₓ'. -/
 @[simp]
 theorem mk_eq_mk {f g : α → β} {hf hg} : (mk f hf : α →ₘ[μ] β) = mk g hg ↔ f =ᵐ[μ] g :=
   Quotient.eq''
-#align measure_theory.ae_eq_fun.mk_eq_mk MeasureTheory.AeEqFun.mk_eq_mk
-
+#align measure_theory.ae_eq_fun.mk_eq_mk MeasureTheory.AEEqFun.mk_eq_mk
+
+/- warning: measure_theory.ae_eq_fun.mk_coe_fn -> MeasureTheory.AEEqFun.mk_coeFn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f)) f
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f)) f
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_coe_fn MeasureTheory.AEEqFun.mk_coeFnₓ'. -/
 @[simp]
 theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AEStronglyMeasurable = f :=
   by
@@ -164,35 +204,71 @@ theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AEStronglyMeasurable = f :=
   have : g = ⟨g.1, g.2⟩ := Subtype.eq rfl
   rw [this, ← mk, mk_eq_mk]
   exact (ae_strongly_measurable.ae_eq_mk _).symm
-#align measure_theory.ae_eq_fun.mk_coe_fn MeasureTheory.AeEqFun.mk_coeFn
-
+#align measure_theory.ae_eq_fun.mk_coe_fn MeasureTheory.AEEqFun.mk_coeFn
+
+/- warning: measure_theory.ae_eq_fun.ext -> MeasureTheory.AEEqFun.ext is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g)) -> (Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) f g)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g)) -> (Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.ext MeasureTheory.AEEqFun.extₓ'. -/
 @[ext]
 theorem ext {f g : α →ₘ[μ] β} (h : f =ᵐ[μ] g) : f = g := by
   rwa [← f.mk_coe_fn, ← g.mk_coe_fn, mk_eq_mk]
-#align measure_theory.ae_eq_fun.ext MeasureTheory.AeEqFun.ext
-
+#align measure_theory.ae_eq_fun.ext MeasureTheory.AEEqFun.ext
+
+/- warning: measure_theory.ae_eq_fun.ext_iff -> MeasureTheory.AEEqFun.ext_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, Iff (Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) f g) (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ}, Iff (Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) f g) (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.ext_iff MeasureTheory.AEEqFun.ext_iffₓ'. -/
 theorem ext_iff {f g : α →ₘ[μ] β} : f = g ↔ f =ᵐ[μ] g :=
   ⟨fun h => by rw [h], fun h => ext h⟩
-#align measure_theory.ae_eq_fun.ext_iff MeasureTheory.AeEqFun.ext_iff
-
+#align measure_theory.ae_eq_fun.ext_iff MeasureTheory.AEEqFun.ext_iff
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_mk -> MeasureTheory.AEEqFun.coeFn_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) f
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)) f
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_mk MeasureTheory.AEEqFun.coeFn_mkₓ'. -/
 theorem coeFn_mk (f : α → β) (hf) : (mk f hf : α →ₘ[μ] β) =ᵐ[μ] f :=
   by
   apply (ae_strongly_measurable.ae_eq_mk _).symm.trans
   exact @Quotient.mk_out' _ (μ.ae_eq_setoid β) (⟨f, hf⟩ : { f // ae_strongly_measurable f μ })
-#align measure_theory.ae_eq_fun.coe_fn_mk MeasureTheory.AeEqFun.coeFn_mk
-
+#align measure_theory.ae_eq_fun.coe_fn_mk MeasureTheory.AEEqFun.coeFn_mk
+
+/- warning: measure_theory.ae_eq_fun.induction_on -> MeasureTheory.AEEqFun.induction_on is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) {p : (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), p (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) -> (p f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) {p : (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), p (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)) -> (p f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.induction_on MeasureTheory.AEEqFun.induction_onₓ'. -/
 @[elab_as_elim]
 theorem induction_on (f : α →ₘ[μ] β) {p : (α →ₘ[μ] β) → Prop} (H : ∀ f hf, p (mk f hf)) : p f :=
   Quotient.inductionOn' f <| Subtype.forall.2 H
-#align measure_theory.ae_eq_fun.induction_on MeasureTheory.AeEqFun.induction_on
-
+#align measure_theory.ae_eq_fun.induction_on MeasureTheory.AEEqFun.induction_on
+
+/- warning: measure_theory.ae_eq_fun.induction_on₂ -> MeasureTheory.AEEqFun.induction_on₂ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {α' : Type.{u3}} {β' : Type.{u4}} [_inst_5 : MeasurableSpace.{u3} α'] [_inst_6 : TopologicalSpace.{u4} β'] {μ' : MeasureTheory.Measure.{u3} α' _inst_5} (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') {p : (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u3, u4} α' β' _inst_6 _inst_5 f' μ'), p (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u4} α' _inst_5 μ' β' _inst_6 f' hf')) -> (p f f')
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {α' : Type.{u4}} {β' : Type.{u3}} [_inst_5 : MeasurableSpace.{u4} α'] [_inst_6 : TopologicalSpace.{u3} β'] {μ' : MeasureTheory.Measure.{u4} α' _inst_5} (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u4, u3} α' β' _inst_5 _inst_6 μ') {p : (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u4, u3} α' β' _inst_5 _inst_6 μ') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u4, u3} α' β' _inst_6 _inst_5 f' μ'), p (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u4, u3} α' _inst_5 μ' β' _inst_6 f' hf')) -> (p f f')
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AEEqFun.induction_on₂ₓ'. -/
 @[elab_as_elim]
 theorem induction_on₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     (f : α →ₘ[μ] β) (f' : α' →ₘ[μ'] β') {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → Prop}
     (H : ∀ f hf f' hf', p (mk f hf) (mk f' hf')) : p f f' :=
   induction_on f fun f hf => induction_on f' <| H f hf
-#align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AeEqFun.induction_on₂
-
+#align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AEEqFun.induction_on₂
+
+/- warning: measure_theory.ae_eq_fun.induction_on₃ -> MeasureTheory.AEEqFun.induction_on₃ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] {α' : Type.{u3}} {β' : Type.{u4}} [_inst_5 : MeasurableSpace.{u3} α'] [_inst_6 : TopologicalSpace.{u4} β'] {μ' : MeasureTheory.Measure.{u3} α' _inst_5} {α'' : Type.{u5}} {β'' : Type.{u6}} [_inst_7 : MeasurableSpace.{u5} α''] [_inst_8 : TopologicalSpace.{u6} β''] {μ'' : MeasureTheory.Measure.{u5} α'' _inst_7} (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') (f'' : MeasureTheory.AEEqFun.{u5, u6} α'' β'' _inst_7 _inst_8 μ'') {p : (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u3, u4} α' β' _inst_5 _inst_6 μ') -> (MeasureTheory.AEEqFun.{u5, u6} α'' β'' _inst_7 _inst_8 μ'') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u3, u4} α' β' _inst_6 _inst_5 f' μ') (f'' : α'' -> β'') (hf'' : MeasureTheory.AEStronglyMeasurable.{u5, u6} α'' β'' _inst_8 _inst_7 f'' μ''), p (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u4} α' _inst_5 μ' β' _inst_6 f' hf') (MeasureTheory.AEEqFun.mk.{u5, u6} α'' _inst_7 μ'' β'' _inst_8 f'' hf'')) -> (p f f' f'')
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] {α' : Type.{u6}} {β' : Type.{u5}} [_inst_5 : MeasurableSpace.{u6} α'] [_inst_6 : TopologicalSpace.{u5} β'] {μ' : MeasureTheory.Measure.{u6} α' _inst_5} {α'' : Type.{u4}} {β'' : Type.{u3}} [_inst_7 : MeasurableSpace.{u4} α''] [_inst_8 : TopologicalSpace.{u3} β''] {μ'' : MeasureTheory.Measure.{u4} α'' _inst_7} (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u6, u5} α' β' _inst_5 _inst_6 μ') (f'' : MeasureTheory.AEEqFun.{u4, u3} α'' β'' _inst_7 _inst_8 μ'') {p : (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u6, u5} α' β' _inst_5 _inst_6 μ') -> (MeasureTheory.AEEqFun.{u4, u3} α'' β'' _inst_7 _inst_8 μ'') -> Prop}, (forall (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ) (f' : α' -> β') (hf' : MeasureTheory.AEStronglyMeasurable.{u6, u5} α' β' _inst_6 _inst_5 f' μ') (f'' : α'' -> β'') (hf'' : MeasureTheory.AEStronglyMeasurable.{u4, u3} α'' β'' _inst_8 _inst_7 f'' μ''), p (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u6, u5} α' _inst_5 μ' β' _inst_6 f' hf') (MeasureTheory.AEEqFun.mk.{u4, u3} α'' _inst_7 μ'' β'' _inst_8 f'' hf'')) -> (p f f' f'')
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AEEqFun.induction_on₃ₓ'. -/
 @[elab_as_elim]
 theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     {α'' β'' : Type _} [MeasurableSpace α''] [TopologicalSpace β''] {μ'' : Measure α''}
@@ -200,38 +276,59 @@ theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpa
     {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → (α'' →ₘ[μ''] β'') → Prop}
     (H : ∀ f hf f' hf' f'' hf'', p (mk f hf) (mk f' hf') (mk f'' hf'')) : p f f' f'' :=
   induction_on f fun f hf => induction_on₂ f' f'' <| H f hf
-#align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AeEqFun.induction_on₃
+#align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AEEqFun.induction_on₃
 
+#print MeasureTheory.AEEqFun.comp /-
 /-- Given a continuous function `g : β → γ`, and an almost everywhere equal function `[f] : α →ₘ β`,
     return the equivalence class of `g ∘ f`, i.e., the almost everywhere equal function
     `[g ∘ f] : α →ₘ γ`. -/
 def comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : α →ₘ[μ] γ :=
   Quotient.liftOn' f (fun f => mk (g ∘ (f : α → β)) (hg.comp_aestronglyMeasurable f.2))
     fun f f' H => mk_eq_mk.2 <| H.fun_comp g
-#align measure_theory.ae_eq_fun.comp MeasureTheory.AeEqFun.comp
+#align measure_theory.ae_eq_fun.comp MeasureTheory.AEEqFun.comp
+-/
 
+/- warning: measure_theory.ae_eq_fun.comp_mk -> MeasureTheory.AEEqFun.comp_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => f x) hg hf))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => f x) hg hf))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AEEqFun.comp_mkₓ'. -/
 @[simp]
 theorem comp_mk (g : β → γ) (hg : Continuous g) (f : α → β) (hf) :
     comp g hg (mk f hf : α →ₘ[μ] β) = mk (g ∘ f) (hg.comp_aestronglyMeasurable hf) :=
   rfl
-#align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AeEqFun.comp_mk
-
+#align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AEEqFun.comp_mk
+
+/- warning: measure_theory.ae_eq_fun.comp_eq_mk -> MeasureTheory.AEEqFun.comp_eq_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) hg (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f)) (Continuous.comp_aestronglyMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g (fun (x : α) => MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f x) hg (MeasureTheory.AEEqFun.aestronglyMeasurable.{u3, u1} α β _inst_1 μ _inst_2 f)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AEEqFun.comp_eq_mkₓ'. -/
 theorem comp_eq_mk (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
     comp g hg f = mk (g ∘ f) (hg.comp_aestronglyMeasurable f.AEStronglyMeasurable) := by
   rw [← comp_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
-#align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AeEqFun.comp_eq_mk
-
+#align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AEEqFun.comp_eq_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_comp -> MeasureTheory.AEEqFun.coeFn_comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u3} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AEEqFun.coeFn_compₓ'. -/
 theorem coeFn_comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : comp g hg f =ᵐ[μ] g ∘ f :=
   by
   rw [comp_eq_mk]
   apply coe_fn_mk
-#align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AeEqFun.coeFn_comp
+#align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AEEqFun.coeFn_comp
 
 section CompMeasurable
 
 variable [MeasurableSpace β] [PseudoMetrizableSpace β] [BorelSpace β] [MeasurableSpace γ]
   [PseudoMetrizableSpace γ] [OpensMeasurableSpace γ] [SecondCountableTopology γ]
 
+#print MeasureTheory.AEEqFun.compMeasurable /-
 /-- Given a measurable function `g : β → γ`, and an almost everywhere equal function `[f] : α →ₘ β`,
     return the equivalence class of `g ∘ f`, i.e., the almost everywhere equal function
     `[g ∘ f] : α →ₘ γ`. This requires that `γ` has a second countable topology. -/
@@ -239,53 +336,102 @@ def compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
   Quotient.liftOn' f
     (fun f' => mk (g ∘ (f' : α → β)) (hg.comp_aemeasurable f'.2.AEMeasurable).AEStronglyMeasurable)
     fun f f' H => mk_eq_mk.2 <| H.fun_comp g
-#align measure_theory.ae_eq_fun.comp_measurable MeasureTheory.AeEqFun.compMeasurable
+#align measure_theory.ae_eq_fun.comp_measurable MeasureTheory.AEEqFun.compMeasurable
+-/
 
+/- warning: measure_theory.ae_eq_fun.comp_measurable_mk -> MeasureTheory.AEEqFun.compMeasurable_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u3} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_8 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) (AEMeasurable.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g f) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u3, u2} α γ β _inst_1 _inst_8 μ _inst_5 f g hg (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u2} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f hf))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u2} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_8 g) (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) (AEMeasurable.aestronglyMeasurable.{u1, u2} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g f) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u2, u3} α γ β _inst_1 _inst_8 μ _inst_5 f g hg (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u3} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f hf))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AEEqFun.compMeasurable_mkₓ'. -/
 @[simp]
 theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
     (hf : AEStronglyMeasurable f μ) :
     compMeasurable g hg (mk f hf : α →ₘ[μ] β) =
       mk (g ∘ f) (hg.comp_aemeasurable hf.AEMeasurable).AEStronglyMeasurable :=
   rfl
-#align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AeEqFun.compMeasurable_mk
-
+#align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AEEqFun.compMeasurable_mk
+
+/- warning: measure_theory.ae_eq_fun.comp_measurable_eq_mk -> MeasureTheory.AEEqFun.compMeasurable_eq_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u3} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)) (AEMeasurable.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f)) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u3, u2} α γ β _inst_1 _inst_8 μ _inst_5 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) g hg (MeasureTheory.AEEqFun.aemeasurable.{u1, u2} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u2} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f)) (AEMeasurable.aestronglyMeasurable.{u1, u2} α γ _inst_1 μ _inst_3 (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f)) _inst_8 _inst_9 _inst_10 _inst_11 (Measurable.comp_aemeasurable.{u1, u2, u3} α γ β _inst_1 _inst_8 μ _inst_5 (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f) g hg (MeasureTheory.AEEqFun.aemeasurable.{u1, u3} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AEEqFun.compMeasurable_eq_mkₓ'. -/
 theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f = mk (g ∘ f) (hg.comp_aemeasurable f.AEMeasurable).AEStronglyMeasurable :=
   by rw [← comp_measurable_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
-#align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AeEqFun.compMeasurable_eq_mk
-
+#align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AEEqFun.compMeasurable_eq_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_comp_measurable -> MeasureTheory.AEEqFun.coeFn_compMeasurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u3} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u3} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f)) (Function.comp.{succ u1, succ u2, succ u3} α β γ g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : MeasurableSpace.{u2} γ] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_10 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_8] [_inst_11 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_8 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 g hg f)) (Function.comp.{succ u1, succ u3, succ u2} α β γ g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurableₓ'. -/
 theorem coeFn_compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     compMeasurable g hg f =ᵐ[μ] g ∘ f :=
   by
   rw [comp_measurable_eq_mk]
   apply coe_fn_mk
-#align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AeEqFun.coeFn_compMeasurable
+#align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AEEqFun.coeFn_compMeasurable
 
 end CompMeasurable
 
+/- warning: measure_theory.ae_eq_fun.pair -> MeasureTheory.AEEqFun.pair is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ], (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ], (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, max u3 u2} α (Prod.{u2, u3} β γ) _inst_1 (instTopologicalSpaceProd.{u2, u3} β γ _inst_2 _inst_3) μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pair MeasureTheory.AEEqFun.pairₓ'. -/
 /-- The class of `x ↦ (f x, g x)`. -/
 def pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : α →ₘ[μ] β × γ :=
   Quotient.liftOn₂' f g (fun f g => mk (fun x => (f.1 x, g.1 x)) (f.2.prod_mk g.2))
     fun f g f' g' Hf Hg => mk_eq_mk.2 <| Hf.prod_mk Hg
-#align measure_theory.ae_eq_fun.pair MeasureTheory.AeEqFun.pair
-
+#align measure_theory.ae_eq_fun.pair MeasureTheory.AEEqFun.pair
+
+/- warning: measure_theory.ae_eq_fun.pair_mk_mk -> MeasureTheory.AEEqFun.pair_mk_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (g : α -> γ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 g μ), Eq.{succ (max u1 u2 u3)} (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u1, max u2 u3} α _inst_1 μ (Prod.{u2, u3} β γ) (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u3} β γ (f x) (g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f (fun (x : α) => g x) hf hg))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u3, u2} α β _inst_2 _inst_1 f μ) (g : α -> γ) (hg : MeasureTheory.AEStronglyMeasurable.{u3, u1} α γ _inst_3 _inst_1 g μ), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (MeasureTheory.AEEqFun.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u1} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u3, max u1 u2} α _inst_1 μ (Prod.{u2, u1} β γ) (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u1} β γ (f x) (g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f (fun (x : α) => g x) hf hg))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pair_mk_mk MeasureTheory.AEEqFun.pair_mk_mkₓ'. -/
 @[simp]
 theorem pair_mk_mk (f : α → β) (hf) (g : α → γ) (hg) :
     (mk f hf : α →ₘ[μ] β).pair (mk g hg) = mk (fun x => (f x, g x)) (hf.prod_mk hg) :=
   rfl
-#align measure_theory.ae_eq_fun.pair_mk_mk MeasureTheory.AeEqFun.pair_mk_mk
-
+#align measure_theory.ae_eq_fun.pair_mk_mk MeasureTheory.AEEqFun.pair_mk_mk
+
+/- warning: measure_theory.ae_eq_fun.pair_eq_mk -> MeasureTheory.AEEqFun.pair_eq_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2 u3)} (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f g) (MeasureTheory.AEEqFun.mk.{u1, max u2 u3} α _inst_1 μ (Prod.{u2, u3} β γ) (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (fun (x : α) => coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g x) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 g)))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : MeasureTheory.AEEqFun.{u3, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u3, u1} α γ _inst_1 _inst_3 μ), Eq.{max (max (succ u3) (succ u2)) (succ u1)} (MeasureTheory.AEEqFun.{u3, max u1 u2} α (Prod.{u2, u1} β γ) _inst_1 (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) μ) (MeasureTheory.AEEqFun.pair.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 f g) (MeasureTheory.AEEqFun.mk.{u3, max u1 u2} α _inst_1 μ (Prod.{u2, u1} β γ) (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) (fun (x : α) => Prod.mk.{u2, u1} β γ (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g x)) (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f) (fun (x : α) => MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g x) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u2, u3} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 g)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pair_eq_mk MeasureTheory.AEEqFun.pair_eq_mkₓ'. -/
 theorem pair_eq_mk (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) :
     f.pair g = mk (fun x => (f x, g x)) (f.AEStronglyMeasurable.prod_mk g.AEStronglyMeasurable) :=
   by simp only [← pair_mk_mk, mk_coe_fn]
-#align measure_theory.ae_eq_fun.pair_eq_mk MeasureTheory.AeEqFun.pair_eq_mk
-
+#align measure_theory.ae_eq_fun.pair_eq_mk MeasureTheory.AEEqFun.pair_eq_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_pair -> MeasureTheory.AEEqFun.coeFn_pair is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, max u2 u3} α (Prod.{u2, u3} β γ) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2 u3), max (succ u1) (succ (max u2 u3))} (MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) (fun (_x : MeasureTheory.AEEqFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) μ) => α -> (Prod.{u2, u3} β γ)) (MeasureTheory.AEEqFun.instCoeFun.{u1, max u2 u3} α (Prod.{u2, u3} β γ) _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3)) (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f g)) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g x))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] (f : MeasureTheory.AEEqFun.{u3, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u3, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u3, max u2 u1} α (Prod.{u2, u1} β γ) (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u3, max u2 u1} α (Prod.{u2, u1} β γ) _inst_1 μ (instTopologicalSpaceProd.{u2, u1} β γ _inst_2 _inst_3) (MeasureTheory.AEEqFun.pair.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 f g)) (fun (x : α) => Prod.mk.{u2, u1} β γ (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g x))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AEEqFun.coeFn_pairₓ'. -/
 theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ[μ] fun x => (f x, g x) :=
   by
   rw [pair_eq_mk]
   apply coe_fn_mk
-#align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AeEqFun.coeFn_pair
-
+#align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AEEqFun.coeFn_pair
+
+/- warning: measure_theory.ae_eq_fun.comp₂ -> MeasureTheory.AEEqFun.comp₂ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ), (Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) -> (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ), (Continuous.{max u3 u2, u4} (Prod.{u2, u3} β γ) δ (instTopologicalSpaceProd.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) -> (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) -> (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) -> (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂ MeasureTheory.AEEqFun.comp₂ₓ'. -/
 /-- Given a continuous function `g : β → γ → δ`, and almost everywhere equal functions
     `[f₁] : α →ₘ β` and `[f₂] : α →ₘ γ`, return the equivalence class of the function
     `λ a, g (f₁ a) (f₂ a)`, i.e., the almost everywhere equal function
@@ -293,35 +439,59 @@ theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ
 def comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β) (f₂ : α →ₘ[μ] γ) :
     α →ₘ[μ] δ :=
   comp _ hg (f₁.pair f₂)
-#align measure_theory.ae_eq_fun.comp₂ MeasureTheory.AeEqFun.comp₂
-
+#align measure_theory.ae_eq_fun.comp₂ MeasureTheory.AEEqFun.comp₂
+
+/- warning: measure_theory.ae_eq_fun.comp₂_mk_mk -> MeasureTheory.AEEqFun.comp₂_mk_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 f₂ μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (f₁ x) (f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂ hf₁ hf₂)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u4} α γ _inst_3 _inst_1 f₂ μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, u2, max u3 u4} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (f₁ x) (f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂ hf₁ hf₂)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AEEqFun.comp₂_mk_mkₓ'. -/
 @[simp]
 theorem comp₂_mk_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α → β) (f₂ : α → γ)
     (hf₁ hf₂) :
     comp₂ g hg (mk f₁ hf₁ : α →ₘ[μ] β) (mk f₂ hf₂) =
       mk (fun a => g (f₁ a) (f₂ a)) (hg.comp_aestronglyMeasurable (hf₁.prod_mk hf₂)) :=
   rfl
-#align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AeEqFun.comp₂_mk_mk
-
+#align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AEEqFun.comp₂_mk_mk
+
+/- warning: measure_theory.ae_eq_fun.comp₂_eq_pair -> MeasureTheory.AEEqFun.comp₂_eq_pair is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.comp.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.comp.{u1, max u3 u4, u2} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u3, u4} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_eq_pair MeasureTheory.AEEqFun.comp₂_eq_pairₓ'. -/
 theorem comp₂_eq_pair (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ = comp _ hg (f₁.pair f₂) :=
   rfl
-#align measure_theory.ae_eq_fun.comp₂_eq_pair MeasureTheory.AeEqFun.comp₂_eq_pair
-
+#align measure_theory.ae_eq_fun.comp₂_eq_pair MeasureTheory.AEEqFun.comp₂_eq_pair
+
+/- warning: measure_theory.ae_eq_fun.comp₂_eq_mk -> MeasureTheory.AEEqFun.comp₂_eq_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u2} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u1, u3} α γ _inst_1 μ _inst_3 f₂))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a)) (Continuous.comp_aestronglyMeasurable.{u1, u2, max u3 u4} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ x) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ x)) hg (MeasureTheory.AEStronglyMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 μ _inst_2 _inst_3 (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u3, u1} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.aestronglyMeasurable.{u4, u1} α γ _inst_1 μ _inst_3 f₂))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AEEqFun.comp₂_eq_mkₓ'. -/
 theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
     comp₂ g hg f₁ f₂ =
       mk (fun a => g (f₁ a) (f₂ a))
         (hg.comp_aestronglyMeasurable (f₁.AEStronglyMeasurable.prod_mk f₂.AEStronglyMeasurable)) :=
   by rw [comp₂_eq_pair, pair_eq_mk, comp_mk] <;> rfl
-#align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AeEqFun.comp₂_eq_mk
-
+#align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AEEqFun.comp₂_eq_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_comp₂ -> MeasureTheory.AEEqFun.coeFn_comp₂ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u4} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u4), max (succ u1) (succ u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) => α -> δ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u4} α δ _inst_1 μ _inst_4) (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AEEqFun.coeFn_comp₂ₓ'. -/
 theorem coeFn_comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) :=
   by
   rw [comp₂_eq_mk]
   apply coe_fn_mk
-#align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AeEqFun.coeFn_comp₂
+#align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AEEqFun.coeFn_comp₂
 
 section
 
@@ -329,6 +499,7 @@ variable [MeasurableSpace β] [PseudoMetrizableSpace β] [BorelSpace β] [Second
   [MeasurableSpace γ] [PseudoMetrizableSpace γ] [BorelSpace γ] [SecondCountableTopology γ]
   [MeasurableSpace δ] [PseudoMetrizableSpace δ] [OpensMeasurableSpace δ] [SecondCountableTopology δ]
 
+#print MeasureTheory.AEEqFun.comp₂Measurable /-
 /-- Given a measurable function `g : β → γ → δ`, and almost everywhere equal functions
     `[f₁] : α →ₘ β` and `[f₂] : α →ₘ γ`, return the equivalence class of the function
     `λ a, g (f₁ a) (f₂ a)`, i.e., the almost everywhere equal function
@@ -336,8 +507,15 @@ variable [MeasurableSpace β] [PseudoMetrizableSpace β] [BorelSpace β] [Second
 def comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : α →ₘ[μ] δ :=
   compMeasurable _ hg (f₁.pair f₂)
-#align measure_theory.ae_eq_fun.comp₂_measurable MeasureTheory.AeEqFun.comp₂Measurable
+#align measure_theory.ae_eq_fun.comp₂_measurable MeasureTheory.AEEqFun.comp₂Measurable
+-/
 
+/- warning: measure_theory.ae_eq_fun.comp₂_measurable_mk_mk -> MeasureTheory.AEEqFun.comp₂Measurable_mk_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 f₂ μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u4} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u2 u3), succ u4} α (Prod.{u2, u3} β γ) δ (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (f₁ x) (f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u4, max u2 u3} α δ (Prod.{u2, u3} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u2, u3} β γ (f₁ x) (f₂ x)) (Function.uncurry.{u2, u3, u4} β γ δ g) hg (AEMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 _inst_5 _inst_9 μ f₁ f₂ (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u2} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f₁ hf₁) (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u3} α _inst_1 μ γ _inst_9 _inst_3 _inst_10 _inst_11 f₂ hf₂)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : α -> β) (f₂ : α -> γ) (hf₁ : MeasureTheory.AEStronglyMeasurable.{u1, u3} α β _inst_2 _inst_1 f₁ μ) (hf₂ : MeasureTheory.AEStronglyMeasurable.{u1, u4} α γ _inst_3 _inst_1 f₂ μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ β _inst_2 f₁ hf₁) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ γ _inst_3 f₂ hf₂)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (f₁ a) (f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u2} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u3 u4), succ u2} α (Prod.{u3, u4} β γ) δ (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (f₁ x) (f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u2, max u3 u4} α δ (Prod.{u3, u4} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u3, u4} β γ (f₁ x) (f₂ x)) (Function.uncurry.{u3, u4, u2} β γ δ g) hg (AEMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 _inst_5 _inst_9 μ f₁ f₂ (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u3} α _inst_1 μ β _inst_5 _inst_2 _inst_6 _inst_7 f₁ hf₁) (MeasureTheory.AEStronglyMeasurable.aemeasurable.{u1, u4} α _inst_1 μ γ _inst_9 _inst_3 _inst_10 _inst_11 f₂ hf₂)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AEEqFun.comp₂Measurable_mk_mkₓ'. -/
 @[simp]
 theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α → β)
     (f₂ : α → γ) (hf₁ hf₂) :
@@ -345,65 +523,127 @@ theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry
       mk (fun a => g (f₁ a) (f₂ a))
         (hg.comp_aemeasurable (hf₁.AEMeasurable.prod_mk hf₂.AEMeasurable)).AEStronglyMeasurable :=
   rfl
-#align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AeEqFun.comp₂Measurable_mk_mk
-
+#align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AEEqFun.comp₂Measurable_mk_mk
+
+/- warning: measure_theory.ae_eq_fun.comp₂_measurable_eq_pair -> MeasureTheory.AEEqFun.comp₂Measurable_eq_pair is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.compMeasurable.{u1, max u2 u3, u4} α (Prod.{u2, u3} β γ) δ _inst_1 μ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) (TopologicalSpace.pseudoMetrizableSpace_prod.{u2, u3} β γ _inst_2 _inst_3 _inst_6 _inst_10) (Prod.borelSpace.{u2, u3} β γ _inst_2 _inst_5 _inst_7 _inst_3 _inst_9 _inst_11 _inst_8 _inst_12) _inst_13 _inst_14 _inst_15 _inst_16 (Function.uncurry.{u2, u3, u4} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.compMeasurable.{u1, max u3 u4, u2} α (Prod.{u3, u4} β γ) δ _inst_1 μ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) (TopologicalSpace.pseudoMetrizableSpace_prod.{u3, u4} β γ _inst_2 _inst_3 _inst_6 _inst_10) (Prod.borelSpace.{u3, u4} β γ _inst_2 _inst_5 _inst_7 _inst_3 _inst_9 _inst_11 _inst_8 _inst_12) _inst_13 _inst_14 _inst_15 _inst_16 (Function.uncurry.{u3, u4, u2} β γ δ g) hg (MeasureTheory.AEEqFun.pair.{u1, u3, u4} α β γ _inst_1 μ _inst_2 _inst_3 f₁ f₂))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AEEqFun.comp₂Measurable_eq_pairₓ'. -/
 theorem comp₂Measurable_eq_pair (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ = compMeasurable _ hg (f₁.pair f₂) :=
   rfl
-#align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AeEqFun.comp₂Measurable_eq_pair
-
+#align measure_theory.ae_eq_fun.comp₂_measurable_eq_pair MeasureTheory.AEEqFun.comp₂Measurable_eq_pair
+
+/- warning: measure_theory.ae_eq_fun.comp₂_measurable_eq_mk -> MeasureTheory.AEEqFun.comp₂Measurable_eq_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u4} α _inst_1 μ δ _inst_4 (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u4} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u2 u3), succ u4} α (Prod.{u2, u3} β γ) δ (Function.uncurry.{u2, u3, u4} β γ δ g) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u4, max u2 u3} α δ (Prod.{u2, u3} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u2, u3} β γ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ x) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ x)) (Function.uncurry.{u2, u3, u4} β γ δ g) hg (AEMeasurable.prod_mk.{u1, u2, u3} α β γ _inst_1 _inst_5 _inst_9 μ (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂) (MeasureTheory.AEEqFun.aemeasurable.{u1, u2} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f₁) (MeasureTheory.AEEqFun.aemeasurable.{u1, u3} α γ _inst_1 μ _inst_3 _inst_10 _inst_9 _inst_11 f₂)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α δ _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ δ _inst_4 (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a)) (AEMeasurable.aestronglyMeasurable.{u1, u2} α δ _inst_1 μ _inst_4 (Function.comp.{succ u1, succ (max u3 u4), succ u2} α (Prod.{u3, u4} β γ) δ (Function.uncurry.{u3, u4, u2} β γ δ g) (fun (x : α) => Prod.mk.{u3, u4} β γ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ x) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ x))) _inst_13 _inst_14 _inst_15 _inst_16 (Measurable.comp_aemeasurable.{u1, u2, max u3 u4} α δ (Prod.{u3, u4} β γ) _inst_1 _inst_13 μ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) (fun (x : α) => Prod.mk.{u3, u4} β γ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ x) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ x)) (Function.uncurry.{u3, u4, u2} β γ δ g) hg (AEMeasurable.prod_mk.{u4, u3, u1} α β γ _inst_1 _inst_5 _inst_9 μ (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂) (MeasureTheory.AEEqFun.aemeasurable.{u1, u3} α β _inst_1 μ _inst_2 _inst_6 _inst_5 _inst_7 f₁) (MeasureTheory.AEEqFun.aemeasurable.{u1, u4} α γ _inst_1 μ _inst_3 _inst_10 _inst_9 _inst_11 f₂)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AEEqFun.comp₂Measurable_eq_mkₓ'. -/
 theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) :
     comp₂Measurable g hg f₁ f₂ =
       mk (fun a => g (f₁ a) (f₂ a))
         (hg.comp_aemeasurable (f₁.AEMeasurable.prod_mk f₂.AEMeasurable)).AEStronglyMeasurable :=
   by rw [comp₂_measurable_eq_pair, pair_eq_mk, comp_measurable_mk] <;> rfl
-#align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AeEqFun.comp₂Measurable_eq_mk
-
+#align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AEEqFun.comp₂Measurable_eq_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_comp₂_measurable -> MeasureTheory.AEEqFun.coeFn_comp₂Measurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_7 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_9 : MeasurableSpace.{u3} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_11 : BorelSpace.{u3} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_13 : MeasurableSpace.{u4} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u4} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u4), max (succ u1) (succ u4)} (MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u4} α δ _inst_1 _inst_4 μ) => α -> δ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u4} α δ _inst_1 μ _inst_4) (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂)) (fun (a : α) => g (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f₁ a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) f₂ a))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_7 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_8 : TopologicalSpace.SecondCountableTopology.{u3} β _inst_2] [_inst_9 : MeasurableSpace.{u4} γ] [_inst_10 : TopologicalSpace.PseudoMetrizableSpace.{u4} γ _inst_3] [_inst_11 : BorelSpace.{u4} γ _inst_3 _inst_9] [_inst_12 : TopologicalSpace.SecondCountableTopology.{u4} γ _inst_3] [_inst_13 : MeasurableSpace.{u2} δ] [_inst_14 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_15 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_13] [_inst_16 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] (g : β -> γ -> δ) (hg : Measurable.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (Prod.instMeasurableSpace.{u3, u4} β γ _inst_5 _inst_9) _inst_13 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 g hg f₁ f₂)) (fun (a : α) => g (MeasureTheory.AEEqFun.cast.{u1, u3} α β _inst_1 μ _inst_2 f₁ a) (MeasureTheory.AEEqFun.cast.{u1, u4} α γ _inst_1 μ _inst_3 f₂ a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AEEqFun.coeFn_comp₂Measurableₓ'. -/
 theorem coeFn_comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) :=
   by
   rw [comp₂_measurable_eq_mk]
   apply coe_fn_mk
-#align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AeEqFun.coeFn_comp₂Measurable
+#align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AEEqFun.coeFn_comp₂Measurable
 
 end
 
+#print MeasureTheory.AEEqFun.toGerm /-
 /-- Interpret `f : α →ₘ[μ] β` as a germ at `μ.ae` forgetting that `f` is almost everywhere
     strongly measurable. -/
 def toGerm (f : α →ₘ[μ] β) : Germ μ.ae β :=
   Quotient.liftOn' f (fun f => ((f : α → β) : Germ μ.ae β)) fun f g H => Germ.coe_eq.2 H
-#align measure_theory.ae_eq_fun.to_germ MeasureTheory.AeEqFun.toGerm
+#align measure_theory.ae_eq_fun.to_germ MeasureTheory.AEEqFun.toGerm
+-/
 
+/- warning: measure_theory.ae_eq_fun.mk_to_germ -> MeasureTheory.AEEqFun.mk_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf)) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Type.{max u1 u2}) [self : HasLiftT.{max (succ u1) (succ u2), succ (max u1 u2)} a b] => self.0) (α -> β) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (HasLiftT.mk.{max (succ u1) (succ u2), succ (max u1 u2)} (α -> β) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (CoeTCₓ.coe.{max (succ u1) (succ u2), succ (max u1 u2)} (α -> β) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (Filter.Germ.hasCoeT.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))) f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : α -> β) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α β _inst_2 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ β _inst_2 f hf)) (Filter.Germ.ofFun.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_to_germ MeasureTheory.AEEqFun.mk_toGermₓ'. -/
 @[simp]
 theorem mk_toGerm (f : α → β) (hf) : (mk f hf : α →ₘ[μ] β).toGerm = f :=
   rfl
-#align measure_theory.ae_eq_fun.mk_to_germ MeasureTheory.AeEqFun.mk_toGerm
-
+#align measure_theory.ae_eq_fun.mk_to_germ MeasureTheory.AEEqFun.mk_toGerm
+
+/- warning: measure_theory.ae_eq_fun.to_germ_eq -> MeasureTheory.AEEqFun.toGerm_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f) ((fun (a : Sort.{max (succ u1) (succ u2)}) (b : Type.{max u1 u2}) [self : HasLiftT.{max (succ u1) (succ u2), succ (max u1 u2)} a b] => self.0) ((fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) f) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (HasLiftT.mk.{max (succ u1) (succ u2), succ (max u1 u2)} ((fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) f) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (CoeTCₓ.coe.{max (succ u1) (succ u2), succ (max u1 u2)} ((fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) f) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (Filter.Germ.hasCoeT.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ)))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α β _inst_1 μ _inst_2 f) (Filter.Germ.ofFun.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.to_germ_eq MeasureTheory.AEEqFun.toGerm_eqₓ'. -/
 theorem toGerm_eq (f : α →ₘ[μ] β) : f.toGerm = (f : α → β) := by rw [← mk_to_germ, mk_coe_fn]
-#align measure_theory.ae_eq_fun.to_germ_eq MeasureTheory.AeEqFun.toGerm_eq
-
+#align measure_theory.ae_eq_fun.to_germ_eq MeasureTheory.AEEqFun.toGerm_eq
+
+/- warning: measure_theory.ae_eq_fun.to_germ_injective -> MeasureTheory.AEEqFun.toGerm_injective is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β], Function.Injective.{succ (max u1 u2), succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β], Function.Injective.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) β) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α β _inst_1 μ _inst_2)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.to_germ_injective MeasureTheory.AEEqFun.toGerm_injectiveₓ'. -/
 theorem toGerm_injective : Injective (toGerm : (α →ₘ[μ] β) → Germ μ.ae β) := fun f g H =>
   ext <| Germ.coe_eq.1 <| by rwa [← to_germ_eq, ← to_germ_eq]
-#align measure_theory.ae_eq_fun.to_germ_injective MeasureTheory.AeEqFun.toGerm_injective
-
+#align measure_theory.ae_eq_fun.to_germ_injective MeasureTheory.AEEqFun.toGerm_injective
+
+/- warning: measure_theory.ae_eq_fun.comp_to_germ -> MeasureTheory.AEEqFun.comp_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] (g : β -> γ) (hg : Continuous.{u2, u3} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (Filter.Germ.{u1, u3} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.comp.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Filter.Germ.map.{u1, u2, u3} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] (g : β -> γ) (hg : Continuous.{u3, u2} β γ _inst_2 _inst_3 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.comp.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 g hg f)) (Filter.Germ.map.{u1, u3, u2} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u3} α β _inst_1 μ _inst_2 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AEEqFun.comp_toGermₓ'. -/
 theorem comp_toGerm (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
     (comp g hg f).toGerm = f.toGerm.map g :=
   induction_on f fun f hf => by simp
-#align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AeEqFun.comp_toGerm
-
+#align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AEEqFun.comp_toGerm
+
+/- warning: measure_theory.ae_eq_fun.comp_measurable_to_germ -> MeasureTheory.AEEqFun.compMeasurable_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_5 : MeasurableSpace.{u2} β] [_inst_6 : BorelSpace.{u2} β _inst_2 _inst_5] [_inst_7 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_8 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_9 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_10 : MeasurableSpace.{u3} γ] [_inst_11 : OpensMeasurableSpace.{u3} γ _inst_3 _inst_10] (g : β -> γ) (hg : Measurable.{u2, u3} β γ _inst_5 _inst_10 g) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Eq.{succ (max u1 u3)} (Filter.Germ.{u1, u3} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.compMeasurable.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_7 _inst_6 _inst_10 _inst_8 _inst_11 _inst_9 g hg f)) (Filter.Germ.map.{u1, u2, u3} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : MeasurableSpace.{u3} β] [_inst_6 : BorelSpace.{u3} β _inst_2 _inst_5] [_inst_7 : TopologicalSpace.PseudoMetrizableSpace.{u3} β _inst_2] [_inst_8 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_3] [_inst_9 : TopologicalSpace.SecondCountableTopology.{u2} γ _inst_3] [_inst_10 : MeasurableSpace.{u2} γ] [_inst_11 : OpensMeasurableSpace.{u2} γ _inst_3 _inst_10] (g : β -> γ) (hg : Measurable.{u3, u2} β γ _inst_5 _inst_10 g) (f : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.compMeasurable.{u1, u3, u2} α β γ _inst_1 μ _inst_2 _inst_3 _inst_5 _inst_7 _inst_6 _inst_10 _inst_8 _inst_11 _inst_9 g hg f)) (Filter.Germ.map.{u1, u3, u2} α β γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u3} α β _inst_1 μ _inst_2 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AEEqFun.compMeasurable_toGermₓ'. -/
 theorem compMeasurable_toGerm [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace β]
     [PseudoMetrizableSpace γ] [SecondCountableTopology γ] [MeasurableSpace γ]
     [OpensMeasurableSpace γ] (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     (compMeasurable g hg f).toGerm = f.toGerm.map g :=
   induction_on f fun f hf => by simp
-#align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AeEqFun.compMeasurable_toGerm
-
+#align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AEEqFun.compMeasurable_toGerm
+
+/- warning: measure_theory.ae_eq_fun.comp₂_to_germ -> MeasureTheory.AEEqFun.comp₂_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] (g : β -> γ -> δ) (hg : Continuous.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.topologicalSpace.{u2, u3} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (Filter.Germ.{u1, u4} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u4} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u2, u3, u4} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 f₂))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u3}} {γ : Type.{u4}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u3} β] [_inst_3 : TopologicalSpace.{u4} γ] [_inst_4 : TopologicalSpace.{u2} δ] (g : β -> γ -> δ) (hg : Continuous.{max u4 u3, u2} (Prod.{u3, u4} β γ) δ (instTopologicalSpaceProd.{u3, u4} β γ _inst_2 _inst_3) _inst_4 (Function.uncurry.{u3, u4, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u3} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u4} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂.{u1, u3, u4, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u3, u4, u2} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u3} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u4} α γ _inst_1 μ _inst_3 f₂))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AEEqFun.comp₂_toGermₓ'. -/
 theorem comp₂_toGerm (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : (comp₂ g hg f₁ f₂).toGerm = f₁.toGerm.zipWith g f₂.toGerm :=
   induction_on₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
-#align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AeEqFun.comp₂_toGerm
-
+#align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AEEqFun.comp₂_toGerm
+
+/- warning: measure_theory.ae_eq_fun.comp₂_measurable_to_germ -> MeasureTheory.AEEqFun.comp₂Measurable_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {δ : Type.{u4}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u4} δ] [_inst_5 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_2] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_2] [_inst_7 : MeasurableSpace.{u2} β] [_inst_8 : BorelSpace.{u2} β _inst_2 _inst_7] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_11 : MeasurableSpace.{u3} γ] [_inst_12 : BorelSpace.{u3} γ _inst_3 _inst_11] [_inst_13 : TopologicalSpace.PseudoMetrizableSpace.{u4} δ _inst_4] [_inst_14 : TopologicalSpace.SecondCountableTopology.{u4} δ _inst_4] [_inst_15 : MeasurableSpace.{u4} δ] [_inst_16 : OpensMeasurableSpace.{u4} δ _inst_4 _inst_15] (g : β -> γ -> δ) (hg : Measurable.{max u2 u3, u4} (Prod.{u2, u3} β γ) δ (Prod.instMeasurableSpace.{u2, u3} β γ _inst_7 _inst_11) _inst_15 (Function.uncurry.{u2, u3, u4} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u4)} (Filter.Germ.{u1, u4} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u4} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u2, u3, u4} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_7 _inst_5 _inst_8 _inst_6 _inst_11 _inst_9 _inst_12 _inst_10 _inst_15 _inst_13 _inst_16 _inst_14 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u2, u3, u4} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u2} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 f₂))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u4}} {γ : Type.{u3}} {δ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u4} β] [_inst_3 : TopologicalSpace.{u3} γ] [_inst_4 : TopologicalSpace.{u2} δ] [_inst_5 : TopologicalSpace.PseudoMetrizableSpace.{u4} β _inst_2] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u4} β _inst_2] [_inst_7 : MeasurableSpace.{u4} β] [_inst_8 : BorelSpace.{u4} β _inst_2 _inst_7] [_inst_9 : TopologicalSpace.PseudoMetrizableSpace.{u3} γ _inst_3] [_inst_10 : TopologicalSpace.SecondCountableTopology.{u3} γ _inst_3] [_inst_11 : MeasurableSpace.{u3} γ] [_inst_12 : BorelSpace.{u3} γ _inst_3 _inst_11] [_inst_13 : TopologicalSpace.PseudoMetrizableSpace.{u2} δ _inst_4] [_inst_14 : TopologicalSpace.SecondCountableTopology.{u2} δ _inst_4] [_inst_15 : MeasurableSpace.{u2} δ] [_inst_16 : OpensMeasurableSpace.{u2} δ _inst_4 _inst_15] (g : β -> γ -> δ) (hg : Measurable.{max u3 u4, u2} (Prod.{u4, u3} β γ) δ (Prod.instMeasurableSpace.{u4, u3} β γ _inst_7 _inst_11) _inst_15 (Function.uncurry.{u4, u3, u2} β γ δ g)) (f₁ : MeasureTheory.AEEqFun.{u1, u4} α β _inst_1 _inst_2 μ) (f₂ : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ), Eq.{max (succ u1) (succ u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) δ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α δ _inst_1 μ _inst_4 (MeasureTheory.AEEqFun.comp₂Measurable.{u1, u4, u3, u2} α β γ δ _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_7 _inst_5 _inst_8 _inst_6 _inst_11 _inst_9 _inst_12 _inst_10 _inst_15 _inst_13 _inst_16 _inst_14 g hg f₁ f₂)) (Filter.Germ.map₂.{u1, u4, u3, u2} α β γ δ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) g (MeasureTheory.AEEqFun.toGerm.{u1, u4} α β _inst_1 μ _inst_2 f₁) (MeasureTheory.AEEqFun.toGerm.{u1, u3} α γ _inst_1 μ _inst_3 f₂))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.comp₂_measurable_to_germ MeasureTheory.AEEqFun.comp₂Measurable_toGermₓ'. -/
 theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopology β]
     [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace γ] [SecondCountableTopology γ]
     [MeasurableSpace γ] [BorelSpace γ] [PseudoMetrizableSpace δ] [SecondCountableTopology δ]
@@ -411,43 +651,71 @@ theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopo
     (f₁ : α →ₘ[μ] β) (f₂ : α →ₘ[μ] γ) :
     (comp₂Measurable g hg f₁ f₂).toGerm = f₁.toGerm.zipWith g f₂.toGerm :=
   induction_on₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
-#align measure_theory.ae_eq_fun.comp₂_measurable_to_germ MeasureTheory.AeEqFun.comp₂Measurable_toGerm
+#align measure_theory.ae_eq_fun.comp₂_measurable_to_germ MeasureTheory.AEEqFun.comp₂Measurable_toGerm
 
+#print MeasureTheory.AEEqFun.LiftPred /-
 /-- Given a predicate `p` and an equivalence class `[f]`, return true if `p` holds of `f a`
     for almost all `a` -/
 def LiftPred (p : β → Prop) (f : α →ₘ[μ] β) : Prop :=
   f.toGerm.LiftPred p
-#align measure_theory.ae_eq_fun.lift_pred MeasureTheory.AeEqFun.LiftPred
+#align measure_theory.ae_eq_fun.lift_pred MeasureTheory.AEEqFun.LiftPred
+-/
 
+#print MeasureTheory.AEEqFun.LiftRel /-
 /-- Given a relation `r` and equivalence class `[f]` and `[g]`, return true if `r` holds of
     `(f a, g a)` for almost all `a` -/
 def LiftRel (r : β → γ → Prop) (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : Prop :=
   f.toGerm.LiftRel r g.toGerm
-#align measure_theory.ae_eq_fun.lift_rel MeasureTheory.AeEqFun.LiftRel
+#align measure_theory.ae_eq_fun.lift_rel MeasureTheory.AEEqFun.LiftRel
+-/
 
+/- warning: measure_theory.ae_eq_fun.lift_rel_mk_mk -> MeasureTheory.AEEqFun.liftRel_mk_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] {r : β -> γ -> Prop} {f : α -> β} {g : α -> γ} {hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u1, u3} α γ _inst_3 _inst_1 g μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 r (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u3} α _inst_1 μ γ _inst_3 g hg)) (Filter.Eventually.{u1} α (fun (a : α) => r (f a) (g a)) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] {r : β -> γ -> Prop} {f : α -> β} {g : α -> γ} {hf : MeasureTheory.AEStronglyMeasurable.{u3, u2} α β _inst_2 _inst_1 f μ} {hg : MeasureTheory.AEStronglyMeasurable.{u3, u1} α γ _inst_3 _inst_1 g μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 r (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u3, u1} α _inst_1 μ γ _inst_3 g hg)) (Filter.Eventually.{u3} α (fun (a : α) => r (f a) (g a)) (MeasureTheory.Measure.ae.{u3} α _inst_1 μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lift_rel_mk_mk MeasureTheory.AEEqFun.liftRel_mk_mkₓ'. -/
 theorem liftRel_mk_mk {r : β → γ → Prop} {f : α → β} {g : α → γ} {hf hg} :
     LiftRel r (mk f hf : α →ₘ[μ] β) (mk g hg) ↔ ∀ᵐ a ∂μ, r (f a) (g a) :=
   Iff.rfl
-#align measure_theory.ae_eq_fun.lift_rel_mk_mk MeasureTheory.AeEqFun.liftRel_mk_mk
-
+#align measure_theory.ae_eq_fun.lift_rel_mk_mk MeasureTheory.AEEqFun.liftRel_mk_mk
+
+/- warning: measure_theory.ae_eq_fun.lift_rel_iff_coe_fn -> MeasureTheory.AEEqFun.liftRel_iff_coeFn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u3} γ] {r : β -> γ -> Prop} {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u1, u2, u3} α β γ _inst_1 μ _inst_2 _inst_3 r f g) (Filter.Eventually.{u1} α (fun (a : α) => r (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f a) (coeFn.{succ (max u1 u3), max (succ u1) (succ u3)} (MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u3} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u3} α γ _inst_1 μ _inst_3) g a)) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.{u1} γ] {r : β -> γ -> Prop} {f : MeasureTheory.AEEqFun.{u3, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u3, u1} α γ _inst_1 _inst_3 μ}, Iff (MeasureTheory.AEEqFun.LiftRel.{u3, u2, u1} α β γ _inst_1 μ _inst_2 _inst_3 r f g) (Filter.Eventually.{u3} α (fun (a : α) => r (MeasureTheory.AEEqFun.cast.{u3, u2} α β _inst_1 μ _inst_2 f a) (MeasureTheory.AEEqFun.cast.{u3, u1} α γ _inst_1 μ _inst_3 g a)) (MeasureTheory.Measure.ae.{u3} α _inst_1 μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lift_rel_iff_coe_fn MeasureTheory.AEEqFun.liftRel_iff_coeFnₓ'. -/
 theorem liftRel_iff_coeFn {r : β → γ → Prop} {f : α →ₘ[μ] β} {g : α →ₘ[μ] γ} :
     LiftRel r f g ↔ ∀ᵐ a ∂μ, r (f a) (g a) := by rw [← lift_rel_mk_mk, mk_coe_fn, mk_coe_fn]
-#align measure_theory.ae_eq_fun.lift_rel_iff_coe_fn MeasureTheory.AeEqFun.liftRel_iff_coeFn
+#align measure_theory.ae_eq_fun.lift_rel_iff_coe_fn MeasureTheory.AEEqFun.liftRel_iff_coeFn
 
 section Order
 
 instance [Preorder β] : Preorder (α →ₘ[μ] β) :=
   Preorder.lift toGerm
 
+/- warning: measure_theory.ae_eq_fun.mk_le_mk -> MeasureTheory.AEEqFun.mk_le_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : α -> β} {g : α -> β} (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 g μ), Iff (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : α -> β} {g : α -> β} (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α β _inst_2 _inst_1 g μ), Iff (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 g hg)) (Filter.EventuallyLE.{u1, u2} α β (Preorder.toLE.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_le_mk MeasureTheory.AEEqFun.mk_le_mkₓ'. -/
 @[simp]
 theorem mk_le_mk [Preorder β] {f g : α → β} (hf hg) : (mk f hf : α →ₘ[μ] β) ≤ mk g hg ↔ f ≤ᵐ[μ] g :=
   Iff.rfl
-#align measure_theory.ae_eq_fun.mk_le_mk MeasureTheory.AeEqFun.mk_le_mk
-
+#align measure_theory.ae_eq_fun.mk_le_mk MeasureTheory.AEEqFun.mk_le_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_le -> MeasureTheory.AEEqFun.coeFn_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, Iff (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g)) (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) f g)
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : Preorder.{u2} β] {f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ} {g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ}, Iff (Filter.EventuallyLE.{u1, u2} α β (Preorder.toLE.{u2} β _inst_5) (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_2 f) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_2 g)) (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_le MeasureTheory.AEEqFun.coeFn_leₓ'. -/
 @[simp, norm_cast]
 theorem coeFn_le [Preorder β] {f g : α →ₘ[μ] β} : (f : α → β) ≤ᵐ[μ] g ↔ f ≤ g :=
   liftRel_iff_coeFn.symm
-#align measure_theory.ae_eq_fun.coe_fn_le MeasureTheory.AeEqFun.coeFn_le
+#align measure_theory.ae_eq_fun.coe_fn_le MeasureTheory.AEEqFun.coeFn_le
 
 instance [PartialOrder β] : PartialOrder (α →ₘ[μ] β) :=
   PartialOrder.lift toGerm toGerm_injective
@@ -458,35 +726,59 @@ section Sup
 
 variable [SemilatticeSup β] [ContinuousSup β]
 
-instance : Sup (α →ₘ[μ] β) where sup f g := AeEqFun.comp₂ (· ⊔ ·) continuous_sup f g
+instance : Sup (α →ₘ[μ] β) where sup f g := AEEqFun.comp₂ (· ⊔ ·) continuous_sup f g
 
+/- warning: measure_theory.ae_eq_fun.coe_fn_sup -> MeasureTheory.AEEqFun.coeFn_sup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Sup.sup.{u2} β (SemilatticeSup.toHasSup.{u2} β _inst_5) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g x))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Sup.sup.{u1} β (SemilatticeSup.toSup.{u1} β _inst_5) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g x))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_sup MeasureTheory.AEEqFun.coeFn_supₓ'. -/
 theorem coeFn_sup (f g : α →ₘ[μ] β) : ⇑(f ⊔ g) =ᵐ[μ] fun x => f x ⊔ g x :=
   coeFn_comp₂ _ _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_sup MeasureTheory.AeEqFun.coeFn_sup
-
+#align measure_theory.ae_eq_fun.coe_fn_sup MeasureTheory.AEEqFun.coeFn_sup
+
+/- warning: measure_theory.ae_eq_fun.le_sup_left -> MeasureTheory.AEEqFun.le_sup_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) f (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) f (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_leftₓ'. -/
 protected theorem le_sup_left (f g : α →ₘ[μ] β) : f ≤ f ⊔ g :=
   by
   rw [← coe_fn_le]
   filter_upwards [coe_fn_sup f g]with _ ha
   rw [ha]
   exact le_sup_left
-#align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AeEqFun.le_sup_left
-
+#align measure_theory.ae_eq_fun.le_sup_left MeasureTheory.AEEqFun.le_sup_left
+
+/- warning: measure_theory.ae_eq_fun.le_sup_right -> MeasureTheory.AEEqFun.le_sup_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) g (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) g (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_rightₓ'. -/
 protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g :=
   by
   rw [← coe_fn_le]
   filter_upwards [coe_fn_sup f g]with _ ha
   rw [ha]
   exact le_sup_right
-#align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AeEqFun.le_sup_right
-
+#align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_right
+
+/- warning: measure_theory.ae_eq_fun.sup_le -> MeasureTheory.AEEqFun.sup_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeSup.{u2} β] [_inst_6 : ContinuousSup.{u2} β _inst_2 (SemilatticeSup.toHasSup.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) f f') -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) g f') -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeSup.toPartialOrder.{u2} β _inst_5)))) (Sup.sup.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f')
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeSup.{u1} β] [_inst_6 : ContinuousSup.{u1} β _inst_2 (SemilatticeSup.toSup.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f' : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) f f') -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) g f') -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeSup.toPartialOrder.{u1} β _inst_5)))) (Sup.sup.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instSup.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f')
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.sup_le MeasureTheory.AEEqFun.sup_leₓ'. -/
 protected theorem sup_le (f g f' : α →ₘ[μ] β) (hf : f ≤ f') (hg : g ≤ f') : f ⊔ g ≤ f' :=
   by
   rw [← coe_fn_le] at hf hg⊢
   filter_upwards [hf, hg, coe_fn_sup f g]with _ haf hag ha_sup
   rw [ha_sup]
   exact sup_le haf hag
-#align measure_theory.ae_eq_fun.sup_le MeasureTheory.AeEqFun.sup_le
+#align measure_theory.ae_eq_fun.sup_le MeasureTheory.AEEqFun.sup_le
 
 end Sup
 
@@ -494,48 +786,72 @@ section Inf
 
 variable [SemilatticeInf β] [ContinuousInf β]
 
-instance : Inf (α →ₘ[μ] β) where inf f g := AeEqFun.comp₂ (· ⊓ ·) continuous_inf f g
+instance : Inf (α →ₘ[μ] β) where inf f g := AEEqFun.comp₂ (· ⊓ ·) continuous_inf f g
 
+/- warning: measure_theory.ae_eq_fun.coe_fn_inf -> MeasureTheory.AEEqFun.coeFn_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Inf.inf.{u2} β (SemilatticeInf.toHasInf.{u2} β _inst_5) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) f x) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) g x))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g)) (fun (x : α) => Inf.inf.{u1} β (SemilatticeInf.toInf.{u1} β _inst_5) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 f x) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 g x))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_inf MeasureTheory.AEEqFun.coeFn_infₓ'. -/
 theorem coeFn_inf (f g : α →ₘ[μ] β) : ⇑(f ⊓ g) =ᵐ[μ] fun x => f x ⊓ g x :=
   coeFn_comp₂ _ _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_inf MeasureTheory.AeEqFun.coeFn_inf
-
+#align measure_theory.ae_eq_fun.coe_fn_inf MeasureTheory.AEEqFun.coeFn_inf
+
+/- warning: measure_theory.ae_eq_fun.inf_le_left -> MeasureTheory.AEEqFun.inf_le_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) f
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_leftₓ'. -/
 protected theorem inf_le_left (f g : α →ₘ[μ] β) : f ⊓ g ≤ f :=
   by
   rw [← coe_fn_le]
   filter_upwards [coe_fn_inf f g]with _ ha
   rw [ha]
   exact inf_le_left
-#align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AeEqFun.inf_le_left
-
+#align measure_theory.ae_eq_fun.inf_le_left MeasureTheory.AEEqFun.inf_le_left
+
+/- warning: measure_theory.ae_eq_fun.inf_le_right -> MeasureTheory.AEEqFun.inf_le_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) g
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g) g
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_rightₓ'. -/
 protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g :=
   by
   rw [← coe_fn_le]
   filter_upwards [coe_fn_inf f g]with _ ha
   rw [ha]
   exact inf_le_right
-#align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AeEqFun.inf_le_right
-
+#align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_right
+
+/- warning: measure_theory.ae_eq_fun.le_inf -> MeasureTheory.AEEqFun.le_inf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : SemilatticeInf.{u2} β] [_inst_6 : ContinuousInf.{u2} β _inst_2 (SemilatticeInf.toHasInf.{u2} β _inst_5)] (f' : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ), (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) f' f) -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) f' g) -> (LE.le.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (Preorder.toHasLe.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u1, u2} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β _inst_5)))) f' (Inf.inf.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u1, u2} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] [_inst_5 : SemilatticeInf.{u1} β] [_inst_6 : ContinuousInf.{u1} β _inst_2 (SemilatticeInf.toInf.{u1} β _inst_5)] (f' : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (f : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ), (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) f' f) -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) f' g) -> (LE.le.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (Preorder.toLE.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instPreorder.{u2, u1} α β _inst_1 μ _inst_2 (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β _inst_5)))) f' (Inf.inf.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instInf.{u2, u1} α β _inst_1 μ _inst_2 _inst_5 _inst_6) f g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.le_inf MeasureTheory.AEEqFun.le_infₓ'. -/
 protected theorem le_inf (f' f g : α →ₘ[μ] β) (hf : f' ≤ f) (hg : f' ≤ g) : f' ≤ f ⊓ g :=
   by
   rw [← coe_fn_le] at hf hg⊢
   filter_upwards [hf, hg, coe_fn_inf f g]with _ haf hag ha_inf
   rw [ha_inf]
   exact le_inf haf hag
-#align measure_theory.ae_eq_fun.le_inf MeasureTheory.AeEqFun.le_inf
+#align measure_theory.ae_eq_fun.le_inf MeasureTheory.AEEqFun.le_inf
 
 end Inf
 
 instance [Lattice β] [TopologicalLattice β] : Lattice (α →ₘ[μ] β) :=
-  { AeEqFun.partialOrder with
+  { AEEqFun.instPartialOrder with
     sup := Sup.sup
-    le_sup_left := AeEqFun.le_sup_left
-    le_sup_right := AeEqFun.le_sup_right
-    sup_le := AeEqFun.sup_le
+    le_sup_left := AEEqFun.le_sup_left
+    le_sup_right := AEEqFun.le_sup_right
+    sup_le := AEEqFun.sup_le
     inf := Inf.inf
-    inf_le_left := AeEqFun.inf_le_left
-    inf_le_right := AeEqFun.inf_le_right
-    le_inf := AeEqFun.le_inf }
+    inf_le_left := AEEqFun.inf_le_left
+    inf_le_right := AEEqFun.inf_le_right
+    le_inf := AEEqFun.le_inf }
 
 end Lattice
 
@@ -543,15 +859,23 @@ end Order
 
 variable (α)
 
+#print MeasureTheory.AEEqFun.const /-
 /-- The equivalence class of a constant function: `[λ a:α, b]`, based on the equivalence relation of
     being almost everywhere equal -/
 def const (b : β) : α →ₘ[μ] β :=
   mk (fun a : α => b) aestronglyMeasurable_const
-#align measure_theory.ae_eq_fun.const MeasureTheory.AeEqFun.const
+#align measure_theory.ae_eq_fun.const MeasureTheory.AEEqFun.const
+-/
 
+/- warning: measure_theory.ae_eq_fun.coe_fn_const -> MeasureTheory.AEEqFun.coeFn_const is a dubious translation:
+lean 3 declaration is
+  forall (α : Type.{u1}) {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] (b : β), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_2) (MeasureTheory.AEEqFun.const.{u1, u2} α β _inst_1 μ _inst_2 b)) (Function.const.{succ u2, succ u1} β α b)
+but is expected to have type
+  forall (α : Type.{u2}) {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_2 : TopologicalSpace.{u1} β] (b : β), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_2 (MeasureTheory.AEEqFun.const.{u2, u1} α β _inst_1 μ _inst_2 b)) (Function.const.{succ u1, succ u2} β α b)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_const MeasureTheory.AEEqFun.coeFn_constₓ'. -/
 theorem coeFn_const (b : β) : (const α b : α →ₘ[μ] β) =ᵐ[μ] Function.const α b :=
   coeFn_mk _ _
-#align measure_theory.ae_eq_fun.coe_fn_const MeasureTheory.AeEqFun.coeFn_const
+#align measure_theory.ae_eq_fun.coe_fn_const MeasureTheory.AEEqFun.coeFn_const
 
 variable {α}
 
@@ -562,23 +886,33 @@ instance [Inhabited β] : Inhabited (α →ₘ[μ] β) :=
 instance [One β] : One (α →ₘ[μ] β) :=
   ⟨const α 1⟩
 
+/- warning: measure_theory.ae_eq_fun.one_def -> MeasureTheory.AEEqFun.one_def is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : One.{u2} β], Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (OfNat.ofNat.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) 1 (OfNat.mk.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) 1 (One.one.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instOne.{u1, u2} α β _inst_1 μ _inst_2 _inst_5)))) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 (fun (a : α) => OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β _inst_5))) (MeasureTheory.aestronglyMeasurable_const.{u1, u2} α β _inst_1 μ _inst_2 (OfNat.ofNat.{u2} β 1 (OfNat.mk.{u2} β 1 (One.one.{u2} β _inst_5)))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_2 : TopologicalSpace.{u2} β] [_inst_5 : One.{u2} β], Eq.{max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (OfNat.ofNat.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) 1 (One.toOfNat1.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_2 μ) (MeasureTheory.AEEqFun.instOne.{u1, u2} α β _inst_1 μ _inst_2 _inst_5))) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ β _inst_2 (fun (a : α) => OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β _inst_5)) (MeasureTheory.aestronglyMeasurable_const.{u2, u1} α β _inst_1 μ _inst_2 (OfNat.ofNat.{u2} β 1 (One.toOfNat1.{u2} β _inst_5))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.one_def MeasureTheory.AEEqFun.one_defₓ'. -/
 @[to_additive]
 theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aestronglyMeasurable_const :=
   rfl
-#align measure_theory.ae_eq_fun.one_def MeasureTheory.AeEqFun.one_def
-#align measure_theory.ae_eq_fun.zero_def MeasureTheory.AeEqFun.zero_def
+#align measure_theory.ae_eq_fun.one_def MeasureTheory.AEEqFun.one_def
+#align measure_theory.ae_eq_fun.zero_def MeasureTheory.AEEqFun.zero_def
 
+#print MeasureTheory.AEEqFun.coeFn_one /-
 @[to_additive]
 theorem coeFn_one [One β] : ⇑(1 : α →ₘ[μ] β) =ᵐ[μ] 1 :=
   coeFn_const _ _
-#align measure_theory.ae_eq_fun.coe_fn_one MeasureTheory.AeEqFun.coeFn_one
-#align measure_theory.ae_eq_fun.coe_fn_zero MeasureTheory.AeEqFun.coeFn_zero
+#align measure_theory.ae_eq_fun.coe_fn_one MeasureTheory.AEEqFun.coeFn_one
+#align measure_theory.ae_eq_fun.coe_fn_zero MeasureTheory.AEEqFun.coeFn_zero
+-/
 
+#print MeasureTheory.AEEqFun.one_toGerm /-
 @[simp, to_additive]
 theorem one_toGerm [One β] : (1 : α →ₘ[μ] β).toGerm = 1 :=
   rfl
-#align measure_theory.ae_eq_fun.one_to_germ MeasureTheory.AeEqFun.one_toGerm
-#align measure_theory.ae_eq_fun.zero_to_germ MeasureTheory.AeEqFun.zero_toGerm
+#align measure_theory.ae_eq_fun.one_to_germ MeasureTheory.AEEqFun.one_toGerm
+#align measure_theory.ae_eq_fun.zero_to_germ MeasureTheory.AEEqFun.zero_toGerm
+-/
 
 -- Note we set up the scalar actions before the `monoid` structures in case we want to
 -- try to override the `nsmul` or `zsmul` fields in future.
@@ -593,19 +927,37 @@ variable [SMul 𝕜' γ] [ContinuousConstSMul 𝕜' γ]
 instance : SMul 𝕜 (α →ₘ[μ] γ) :=
   ⟨fun c f => comp ((· • ·) c) (continuous_id.const_smul c) f⟩
 
+/- warning: measure_theory.ae_eq_fun.smul_mk -> MeasureTheory.AEEqFun.smul_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u3}} [_inst_5 : SMul.{u3, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (SMul.smul.{u3, max u1 u2} 𝕜 (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u1, u2, u3} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6) c (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (SMul.smul.{u3, max u1 u2} 𝕜 (α -> γ) (Function.hasSMul.{u1, u3, u2} α 𝕜 γ _inst_5) c f) (MeasureTheory.AEStronglyMeasurable.const_smul.{u1, u2, u3} α γ _inst_1 μ _inst_3 f 𝕜 _inst_5 _inst_6 hf c))
+but is expected to have type
+  forall {α : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u1}} [_inst_5 : SMul.{u1, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u1, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u3, u2} α γ _inst_3 _inst_1 f μ), Eq.{max (succ u3) (succ u2)} (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (instHSMul.{u1, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u3, u2, u1} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6)) c (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u3, u2} α _inst_1 μ γ _inst_3 (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (α -> γ) (α -> γ) (instHSMul.{u1, max u3 u2} 𝕜 (α -> γ) (Pi.instSMul.{u3, u2, u1} α 𝕜 (fun (a._@.Mathlib.MeasureTheory.Function.AEEqFun._hyg.7207 : α) => γ) (fun (i : α) => _inst_5))) c f) (MeasureTheory.AEStronglyMeasurable.const_smul.{u3, u2, u1} α γ _inst_1 μ _inst_3 f 𝕜 _inst_5 _inst_6 hf c))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.smul_mk MeasureTheory.AEEqFun.smul_mkₓ'. -/
 @[simp]
 theorem smul_mk (c : 𝕜) (f : α → γ) (hf : AEStronglyMeasurable f μ) :
     c • (mk f hf : α →ₘ[μ] γ) = mk (c • f) (hf.const_smul _) :=
   rfl
-#align measure_theory.ae_eq_fun.smul_mk MeasureTheory.AeEqFun.smul_mk
-
+#align measure_theory.ae_eq_fun.smul_mk MeasureTheory.AEEqFun.smul_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_smul -> MeasureTheory.AEEqFun.coeFn_smul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u3}} [_inst_5 : SMul.{u3, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (SMul.smul.{u3, max u1 u2} 𝕜 (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u1, u2, u3} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6) c f)) (SMul.smul.{u3, max u1 u2} 𝕜 (α -> γ) (Function.hasSMul.{u1, u3, u2} α 𝕜 γ _inst_5) c (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f))
+but is expected to have type
+  forall {α : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u1}} [_inst_5 : SMul.{u1, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u1, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u3, u2} α γ (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u3, u2} α γ _inst_1 μ _inst_3 (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (instHSMul.{u1, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u3, u2, u1} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6)) c f)) (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (α -> γ) (α -> γ) (instHSMul.{u1, max u3 u2} 𝕜 (α -> γ) (Pi.instSMul.{u3, u2, u1} α 𝕜 (fun (a._@.Mathlib.MeasureTheory.Function.AEEqFun._hyg.1013 : α) => γ) (fun (i : α) => _inst_5))) c (MeasureTheory.AEEqFun.cast.{u3, u2} α γ _inst_1 μ _inst_3 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_smul MeasureTheory.AEEqFun.coeFn_smulₓ'. -/
 theorem coeFn_smul (c : 𝕜) (f : α →ₘ[μ] γ) : ⇑(c • f) =ᵐ[μ] c • f :=
   coeFn_comp _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_smul MeasureTheory.AeEqFun.coeFn_smul
-
+#align measure_theory.ae_eq_fun.coe_fn_smul MeasureTheory.AEEqFun.coeFn_smul
+
+/- warning: measure_theory.ae_eq_fun.smul_to_germ -> MeasureTheory.AEEqFun.smul_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u3}} [_inst_5 : SMul.{u3, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (SMul.smul.{u3, max u1 u2} 𝕜 (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u1, u2, u3} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6) c f)) (SMul.smul.{u3, max u1 u2} 𝕜 (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasSmul.{u1, u3, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) 𝕜 γ _inst_5) c (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f))
+but is expected to have type
+  forall {α : Type.{u3}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u3} α] {μ : MeasureTheory.Measure.{u3} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] {𝕜 : Type.{u1}} [_inst_5 : SMul.{u1, u2} 𝕜 γ] [_inst_6 : ContinuousConstSMul.{u1, u2} 𝕜 γ _inst_3 _inst_5] (c : 𝕜) (f : MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ), Eq.{max (succ u3) (succ u2)} (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u3, u2} α γ _inst_1 μ _inst_3 (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (instHSMul.{u1, max u3 u2} 𝕜 (MeasureTheory.AEEqFun.{u3, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instSMul.{u3, u2, u1} α γ _inst_1 μ _inst_3 𝕜 _inst_5 _inst_6)) c f)) (HSMul.hSMul.{u1, max u3 u2, max u3 u2} 𝕜 (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (instHSMul.{u1, max u3 u2} 𝕜 (Filter.Germ.{u3, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) γ) (Filter.Germ.smul.{u3, u1, u2} α (MeasureTheory.Measure.ae.{u3} α _inst_1 μ) 𝕜 γ _inst_5)) c (MeasureTheory.AEEqFun.toGerm.{u3, u2} α γ _inst_1 μ _inst_3 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.smul_to_germ MeasureTheory.AEEqFun.smul_toGermₓ'. -/
 theorem smul_toGerm (c : 𝕜) (f : α →ₘ[μ] γ) : (c • f).toGerm = c • f.toGerm :=
   comp_toGerm _ _ _
-#align measure_theory.ae_eq_fun.smul_to_germ MeasureTheory.AeEqFun.smul_toGerm
+#align measure_theory.ae_eq_fun.smul_to_germ MeasureTheory.AEEqFun.smul_toGerm
 
 instance [SMulCommClass 𝕜 𝕜' γ] : SMulCommClass 𝕜 𝕜' (α →ₘ[μ] γ) :=
   ⟨fun a b f => induction_on f fun f hf => by simp_rw [smul_mk, smul_comm]⟩
@@ -626,24 +978,42 @@ variable [Mul γ] [ContinuousMul γ]
 instance : Mul (α →ₘ[μ] γ) :=
   ⟨comp₂ (· * ·) continuous_mul⟩
 
+/- warning: measure_theory.ae_eq_fun.mk_mul_mk -> MeasureTheory.AEEqFun.mk_mul_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Mul.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 g μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHMul.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u1 u2} (α -> γ) (Pi.instMul.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) f g) (MeasureTheory.AEStronglyMeasurable.mul.{u1, u2} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Mul.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 g μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHMul.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 g hg)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u2 u1} (α -> γ) (Pi.instMul.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) f g) (MeasureTheory.AEStronglyMeasurable.mul.{u2, u1} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_mul_mk MeasureTheory.AEEqFun.mk_mul_mkₓ'. -/
 @[simp, to_additive]
 theorem mk_mul_mk (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     (mk f hf : α →ₘ[μ] γ) * mk g hg = mk (f * g) (hf.mul hg) :=
   rfl
-#align measure_theory.ae_eq_fun.mk_mul_mk MeasureTheory.AeEqFun.mk_mul_mk
-#align measure_theory.ae_eq_fun.mk_add_mk MeasureTheory.AeEqFun.mk_add_mk
-
+#align measure_theory.ae_eq_fun.mk_mul_mk MeasureTheory.AEEqFun.mk_mul_mk
+#align measure_theory.ae_eq_fun.mk_add_mk MeasureTheory.AEEqFun.mk_add_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_mul -> MeasureTheory.AEEqFun.coeFn_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Mul.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHMul.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u1 u2} (α -> γ) (Pi.instMul.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) g))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Mul.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHMul.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHMul.{max u2 u1} (α -> γ) (Pi.instMul.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => _inst_5))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_mul MeasureTheory.AEEqFun.coeFn_mulₓ'. -/
 @[to_additive]
 theorem coeFn_mul (f g : α →ₘ[μ] γ) : ⇑(f * g) =ᵐ[μ] f * g :=
   coeFn_comp₂ _ _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_mul MeasureTheory.AeEqFun.coeFn_mul
-#align measure_theory.ae_eq_fun.coe_fn_add MeasureTheory.AeEqFun.coeFn_add
-
+#align measure_theory.ae_eq_fun.coe_fn_mul MeasureTheory.AEEqFun.coeFn_mul
+#align measure_theory.ae_eq_fun.coe_fn_add MeasureTheory.AEEqFun.coeFn_add
+
+/- warning: measure_theory.ae_eq_fun.mul_to_germ -> MeasureTheory.AEEqFun.mul_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Mul.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHMul.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u1 u2, max u1 u2, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHMul.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasMul.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ _inst_5)) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 g))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Mul.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHMul.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMul.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HMul.hMul.{max u2 u1, max u2 u1, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHMul.{max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.mul.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ _inst_5)) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mul_to_germ MeasureTheory.AEEqFun.mul_toGermₓ'. -/
 @[simp, to_additive]
 theorem mul_toGerm (f g : α →ₘ[μ] γ) : (f * g).toGerm = f.toGerm * g.toGerm :=
   comp₂_toGerm _ _ _ _
-#align measure_theory.ae_eq_fun.mul_to_germ MeasureTheory.AeEqFun.mul_toGerm
-#align measure_theory.ae_eq_fun.add_to_germ MeasureTheory.AeEqFun.add_toGerm
+#align measure_theory.ae_eq_fun.mul_to_germ MeasureTheory.AEEqFun.mul_toGerm
+#align measure_theory.ae_eq_fun.add_to_germ MeasureTheory.AEEqFun.add_toGerm
 
 end Mul
 
@@ -660,25 +1030,49 @@ variable [Monoid γ] [ContinuousMul γ]
 instance : Pow (α →ₘ[μ] γ) ℕ :=
   ⟨fun f n => comp _ (continuous_pow n) f⟩
 
+/- warning: measure_theory.ae_eq_fun.mk_pow -> MeasureTheory.AEEqFun.mk_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (n : Nat), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Nat (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Nat (Pi.hasPow.{u1, u2, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u2} γ _inst_5))) f n) (Continuous.comp_aestronglyMeasurable.{u1, u2, u2} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u2, 0, u2} γ Nat γ (instHPow.{u2, 0} γ Nat (Monoid.Pow.{u2} γ _inst_5)) a n) (fun (x : α) => f x) (continuous_pow.{u2} γ _inst_3 _inst_5 _inst_6 n) hf))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Monoid.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 (MulOneClass.toMul.{u1} γ (Monoid.toMulOneClass.{u1} γ _inst_5))] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (n : Nat), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Nat (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Nat (Pi.instPow.{u2, u1, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u1} γ _inst_5))) f n) (Continuous.comp_aestronglyMeasurable.{u2, u1, u1} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u1, 0, u1} γ Nat γ (instHPow.{u1, 0} γ Nat (Monoid.Pow.{u1} γ _inst_5)) a n) (fun (x : α) => f x) (continuous_pow.{u1} γ _inst_3 _inst_5 _inst_6 n) hf))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AEEqFun.mk_powₓ'. -/
 @[simp]
 theorem mk_pow (f : α → γ) (hf) (n : ℕ) :
     (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_pow n).comp_aestronglyMeasurable hf) :=
   rfl
-#align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AeEqFun.mk_pow
-
+#align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AEEqFun.mk_pow
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_pow -> MeasureTheory.AEEqFun.coeFn_pow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Nat), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Nat (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Nat (Pi.hasPow.{u1, u2, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u2} γ _inst_5))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) n)
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Monoid.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 (MulOneClass.toMul.{u1} γ (Monoid.toMulOneClass.{u1} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Nat), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Nat (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Nat (Pi.instPow.{u2, u1, 0} α Nat (fun (ᾰ : α) => γ) (fun (i : α) => Monoid.Pow.{u1} γ _inst_5))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_pow MeasureTheory.AEEqFun.coeFn_powₓ'. -/
 theorem coeFn_pow (f : α →ₘ[μ] γ) (n : ℕ) : ⇑(f ^ n) =ᵐ[μ] f ^ n :=
   coeFn_comp _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_pow MeasureTheory.AeEqFun.coeFn_pow
-
+#align measure_theory.ae_eq_fun.coe_fn_pow MeasureTheory.AEEqFun.coeFn_pow
+
+/- warning: measure_theory.ae_eq_fun.pow_to_germ -> MeasureTheory.AEEqFun.pow_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Nat), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Nat (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHPow.{max u1 u2, 0} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Nat (Filter.Germ.hasPow.{u1, 0, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) Nat γ (Monoid.Pow.{u2} γ _inst_5))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) n)
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Monoid.{u1} γ] [_inst_6 : ContinuousMul.{u1} γ _inst_3 (MulOneClass.toMul.{u1} γ (Monoid.toMulOneClass.{u1} γ _inst_5))] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Nat), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Nat (MeasureTheory.AEEqFun.instPowNat.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Nat (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHPow.{max u2 u1, 0} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Nat (Filter.Germ.pow.{u2, 0, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) Nat γ (Monoid.Pow.{u1} γ _inst_5))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pow_to_germ MeasureTheory.AEEqFun.pow_toGermₓ'. -/
 @[simp]
 theorem pow_toGerm (f : α →ₘ[μ] γ) (n : ℕ) : (f ^ n).toGerm = f.toGerm ^ n :=
   comp_toGerm _ _ _
-#align measure_theory.ae_eq_fun.pow_to_germ MeasureTheory.AeEqFun.pow_toGerm
+#align measure_theory.ae_eq_fun.pow_to_germ MeasureTheory.AEEqFun.pow_toGerm
 
 @[to_additive]
 instance : Monoid (α →ₘ[μ] γ) :=
   toGerm_injective.Monoid toGerm one_toGerm mul_toGerm pow_toGerm
 
+/- warning: measure_theory.ae_eq_fun.to_germ_monoid_hom -> MeasureTheory.AEEqFun.toGermMonoidHom is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toHasMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))], MonoidHom.{max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (Monoid.toMulOneClass.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.monoid.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ _inst_5))
+but is expected to have type
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Monoid.{u2} γ] [_inst_6 : ContinuousMul.{u2} γ _inst_3 (MulOneClass.toMul.{u2} γ (Monoid.toMulOneClass.{u2} γ _inst_5))], MonoidHom.{max u2 u1, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (Monoid.toMulOneClass.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.monoid.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ _inst_5))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.to_germ_monoid_hom MeasureTheory.AEEqFun.toGermMonoidHomₓ'. -/
 /-- `ae_eq_fun.to_germ` as a `monoid_hom`. -/
 @[to_additive "`ae_eq_fun.to_germ` as an `add_monoid_hom`.", simps]
 def toGermMonoidHom : (α →ₘ[μ] γ) →* μ.ae.Germ γ
@@ -686,8 +1080,8 @@ def toGermMonoidHom : (α →ₘ[μ] γ) →* μ.ae.Germ γ
   toFun := toGerm
   map_one' := one_toGerm
   map_mul' := mul_toGerm
-#align measure_theory.ae_eq_fun.to_germ_monoid_hom MeasureTheory.AeEqFun.toGermMonoidHom
-#align measure_theory.ae_eq_fun.to_germ_add_monoid_hom MeasureTheory.AeEqFun.toGermAddMonoidHom
+#align measure_theory.ae_eq_fun.to_germ_monoid_hom MeasureTheory.AEEqFun.toGermMonoidHom
+#align measure_theory.ae_eq_fun.to_germ_add_monoid_hom MeasureTheory.AEEqFun.toGermAddMonoidHom
 
 end Monoid
 
@@ -705,23 +1099,41 @@ section Inv
 instance : Inv (α →ₘ[μ] γ) :=
   ⟨comp Inv.inv continuous_inv⟩
 
+/- warning: measure_theory.ae_eq_fun.inv_mk -> MeasureTheory.AEEqFun.inv_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (Inv.inv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (Inv.inv.{max u1 u2} (α -> γ) (Pi.instInv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasInv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) f) (MeasureTheory.AEStronglyMeasurable.inv.{u1, u2} α γ _inst_1 μ _inst_3 f _inst_5 _inst_6 hf))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (Inv.inv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (Inv.inv.{max u1 u2} (α -> γ) (Pi.instInv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => InvOneClass.toInv.{u1} γ (DivInvOneMonoid.toInvOneClass.{u1} γ (DivisionMonoid.toDivInvOneMonoid.{u1} γ (Group.toDivisionMonoid.{u1} γ _inst_5))))) f) (MeasureTheory.AEStronglyMeasurable.inv.{u2, u1} α γ _inst_1 μ _inst_3 f _inst_5 _inst_6 hf))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inv_mk MeasureTheory.AEEqFun.inv_mkₓ'. -/
 @[simp, to_additive]
 theorem inv_mk (f : α → γ) (hf) : (mk f hf : α →ₘ[μ] γ)⁻¹ = mk f⁻¹ hf.inv :=
   rfl
-#align measure_theory.ae_eq_fun.inv_mk MeasureTheory.AeEqFun.inv_mk
-#align measure_theory.ae_eq_fun.neg_mk MeasureTheory.AeEqFun.neg_mk
-
+#align measure_theory.ae_eq_fun.inv_mk MeasureTheory.AEEqFun.inv_mk
+#align measure_theory.ae_eq_fun.neg_mk MeasureTheory.AEEqFun.neg_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_inv -> MeasureTheory.AEEqFun.coeFn_inv is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (Inv.inv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u1 u2} (α -> γ) (Pi.instInv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasInv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (Inv.inv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u2 u1} (α -> γ) (Pi.instInv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => InvOneClass.toInv.{u1} γ (DivInvOneMonoid.toInvOneClass.{u1} γ (DivisionMonoid.toDivInvOneMonoid.{u1} γ (Group.toDivisionMonoid.{u1} γ _inst_5))))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_inv MeasureTheory.AEEqFun.coeFn_invₓ'. -/
 @[to_additive]
 theorem coeFn_inv (f : α →ₘ[μ] γ) : ⇑f⁻¹ =ᵐ[μ] f⁻¹ :=
   coeFn_comp _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_inv MeasureTheory.AeEqFun.coeFn_inv
-#align measure_theory.ae_eq_fun.coe_fn_neg MeasureTheory.AeEqFun.coeFn_neg
-
+#align measure_theory.ae_eq_fun.coe_fn_inv MeasureTheory.AEEqFun.coeFn_inv
+#align measure_theory.ae_eq_fun.coe_fn_neg MeasureTheory.AEEqFun.coeFn_neg
+
+/- warning: measure_theory.ae_eq_fun.inv_to_germ -> MeasureTheory.AEEqFun.inv_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (Inv.inv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasInv.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ (DivInvMonoid.toHasInv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (Inv.inv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instInv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6) f)) (Inv.inv.{max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.inv.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ (InvOneClass.toInv.{u1} γ (DivInvOneMonoid.toInvOneClass.{u1} γ (DivisionMonoid.toDivInvOneMonoid.{u1} γ (Group.toDivisionMonoid.{u1} γ _inst_5))))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.inv_to_germ MeasureTheory.AEEqFun.inv_toGermₓ'. -/
 @[to_additive]
 theorem inv_toGerm (f : α →ₘ[μ] γ) : f⁻¹.toGerm = f.toGerm⁻¹ :=
   comp_toGerm _ _ _
-#align measure_theory.ae_eq_fun.inv_to_germ MeasureTheory.AeEqFun.inv_toGerm
-#align measure_theory.ae_eq_fun.neg_to_germ MeasureTheory.AeEqFun.neg_toGerm
+#align measure_theory.ae_eq_fun.inv_to_germ MeasureTheory.AEEqFun.inv_toGerm
+#align measure_theory.ae_eq_fun.neg_to_germ MeasureTheory.AEEqFun.neg_toGerm
 
 end Inv
 
@@ -731,47 +1143,85 @@ section Div
 instance : Div (α →ₘ[μ] γ) :=
   ⟨comp₂ Div.div continuous_div'⟩
 
+/- warning: measure_theory.ae_eq_fun.mk_div -> MeasureTheory.AEEqFun.mk_div is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 g μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u1 u2} (α -> γ) (Pi.instDiv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasDiv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) f g) (MeasureTheory.AEStronglyMeasurable.div.{u1, u2} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg)) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHDiv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 g hg))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : α -> γ) (g : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (hg : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 g μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u2 u1} (α -> γ) (Pi.instDiv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toDiv.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) f g) (MeasureTheory.AEStronglyMeasurable.div.{u2, u1} α γ _inst_1 μ _inst_3 f g _inst_5 _inst_6 hf hg)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHDiv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 g hg))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_div MeasureTheory.AEEqFun.mk_divₓ'. -/
 @[simp, to_additive]
 theorem mk_div (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     mk (f / g) (hf.div hg) = (mk f hf : α →ₘ[μ] γ) / mk g hg :=
   rfl
-#align measure_theory.ae_eq_fun.mk_div MeasureTheory.AeEqFun.mk_div
-#align measure_theory.ae_eq_fun.mk_sub MeasureTheory.AeEqFun.mk_sub
-
+#align measure_theory.ae_eq_fun.mk_div MeasureTheory.AEEqFun.mk_div
+#align measure_theory.ae_eq_fun.mk_sub MeasureTheory.AEEqFun.mk_sub
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_div -> MeasureTheory.AEEqFun.coeFn_div is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHDiv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u1 u2} (α -> γ) (Pi.instDiv.{u1, u2} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toHasDiv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) g))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHDiv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (α -> γ) (α -> γ) (α -> γ) (instHDiv.{max u2 u1} (α -> γ) (Pi.instDiv.{u2, u1} α (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.toDiv.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_div MeasureTheory.AEEqFun.coeFn_divₓ'. -/
 @[to_additive]
 theorem coeFn_div (f g : α →ₘ[μ] γ) : ⇑(f / g) =ᵐ[μ] f / g :=
   coeFn_comp₂ _ _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_div MeasureTheory.AeEqFun.coeFn_div
-#align measure_theory.ae_eq_fun.coe_fn_sub MeasureTheory.AeEqFun.coeFn_sub
-
+#align measure_theory.ae_eq_fun.coe_fn_div MeasureTheory.AEEqFun.coeFn_div
+#align measure_theory.ae_eq_fun.coe_fn_sub MeasureTheory.AEEqFun.coeFn_sub
+
+/- warning: measure_theory.ae_eq_fun.div_to_germ -> MeasureTheory.AEEqFun.div_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHDiv.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u1 u2, max u1 u2, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHDiv.{max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (Filter.Germ.hasDiv.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ (DivInvMonoid.toHasDiv.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 g))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (g : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHDiv.{max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.instDiv.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f g)) (HDiv.hDiv.{max u2 u1, max u2 u1, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHDiv.{max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (Filter.Germ.div.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ (DivInvMonoid.toDiv.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.div_to_germ MeasureTheory.AEEqFun.div_toGermₓ'. -/
 @[to_additive]
 theorem div_toGerm (f g : α →ₘ[μ] γ) : (f / g).toGerm = f.toGerm / g.toGerm :=
   comp₂_toGerm _ _ _ _
-#align measure_theory.ae_eq_fun.div_to_germ MeasureTheory.AeEqFun.div_toGerm
-#align measure_theory.ae_eq_fun.sub_to_germ MeasureTheory.AeEqFun.sub_toGerm
+#align measure_theory.ae_eq_fun.div_to_germ MeasureTheory.AEEqFun.div_toGerm
+#align measure_theory.ae_eq_fun.sub_to_germ MeasureTheory.AEEqFun.sub_toGerm
 
 end Div
 
 section Zpow
 
-instance hasIntPow : Pow (α →ₘ[μ] γ) ℤ :=
+#print MeasureTheory.AEEqFun.instPowInt /-
+instance instPowInt : Pow (α →ₘ[μ] γ) ℤ :=
   ⟨fun f n => comp _ (continuous_zpow n) f⟩
-#align measure_theory.ae_eq_fun.has_int_pow MeasureTheory.AeEqFun.hasIntPow
+#align measure_theory.ae_eq_fun.has_int_pow MeasureTheory.AEEqFun.instPowInt
+-/
 
+/- warning: measure_theory.ae_eq_fun.mk_zpow -> MeasureTheory.AEEqFun.mk_zpow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ) (n : Int), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Int (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Int (Pi.hasPow.{u1, u2, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) f n) (Continuous.comp_aestronglyMeasurable.{u1, u2, u2} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u2, 0, u2} γ Int γ (instHPow.{u2, 0} γ Int (DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5))) a n) (fun (x : α) => f x) (continuous_zpow.{u2} γ _inst_3 _inst_5 _inst_6 n) hf))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ) (n : Int), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf) n) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Int (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Int (Pi.instPow.{u2, u1, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) f n) (Continuous.comp_aestronglyMeasurable.{u2, u1, u1} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (a : γ) => HPow.hPow.{u1, 0, u1} γ Int γ (instHPow.{u1, 0} γ Int (DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5))) a n) (fun (x : α) => f x) (continuous_zpow.{u1} γ _inst_3 _inst_5 _inst_6 n) hf))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AEEqFun.mk_zpowₓ'. -/
 @[simp]
 theorem mk_zpow (f : α → γ) (hf) (n : ℤ) :
     (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_zpow n).comp_aestronglyMeasurable hf) :=
   rfl
-#align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AeEqFun.mk_zpow
-
+#align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AEEqFun.mk_zpow
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_zpow -> MeasureTheory.AEEqFun.coeFn_zpow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Int), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (α -> γ) Int (α -> γ) (instHPow.{max u1 u2, 0} (α -> γ) Int (Pi.hasPow.{u1, u2, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f) n)
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Int), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (α -> γ) Int (α -> γ) (instHPow.{max u2 u1, 0} (α -> γ) Int (Pi.instPow.{u2, u1, 0} α Int (fun (ᾰ : α) => γ) (fun (i : α) => DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_zpow MeasureTheory.AEEqFun.coeFn_zpowₓ'. -/
 theorem coeFn_zpow (f : α →ₘ[μ] γ) (n : ℤ) : ⇑(f ^ n) =ᵐ[μ] f ^ n :=
   coeFn_comp _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_zpow MeasureTheory.AeEqFun.coeFn_zpow
-
+#align measure_theory.ae_eq_fun.coe_fn_zpow MeasureTheory.AEEqFun.coeFn_zpow
+
+/- warning: measure_theory.ae_eq_fun.zpow_to_germ -> MeasureTheory.AEEqFun.zpow_toGerm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : Group.{u2} γ] [_inst_6 : TopologicalGroup.{u2} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (n : Int), Eq.{succ (max u1 u2)} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u1 u2, 0, max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (instHPow.{max u1 u2, 0} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u1 u2, 0, max u1 u2} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Int (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) (instHPow.{max u1 u2, 0} (Filter.Germ.{u1, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) γ) Int (Filter.Germ.hasPow.{u1, 0, u2} α (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) Int γ (DivInvMonoid.Pow.{u2} γ (Group.toDivInvMonoid.{u2} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u1, u2} α γ _inst_1 μ _inst_3 f) n)
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : Group.{u1} γ] [_inst_6 : TopologicalGroup.{u1} γ _inst_3 _inst_5] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (n : Int), Eq.{max (succ u2) (succ u1)} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 (HPow.hPow.{max u2 u1, 0, max u2 u1} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (instHPow.{max u2 u1, 0} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) Int (MeasureTheory.AEEqFun.instPowInt.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6)) f n)) (HPow.hPow.{max u2 u1, 0, max u2 u1} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Int (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) (instHPow.{max u2 u1, 0} (Filter.Germ.{u2, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) γ) Int (Filter.Germ.pow.{u2, 0, u1} α (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) Int γ (DivInvMonoid.Pow.{u1} γ (Group.toDivInvMonoid.{u1} γ _inst_5)))) (MeasureTheory.AEEqFun.toGerm.{u2, u1} α γ _inst_1 μ _inst_3 f) n)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.zpow_to_germ MeasureTheory.AEEqFun.zpow_toGermₓ'. -/
 @[simp]
 theorem zpow_toGerm (f : α →ₘ[μ] γ) (n : ℤ) : (f ^ n).toGerm = f.toGerm ^ n :=
   comp_toGerm _ _ _
-#align measure_theory.ae_eq_fun.zpow_to_germ MeasureTheory.AeEqFun.zpow_toGerm
+#align measure_theory.ae_eq_fun.zpow_to_germ MeasureTheory.AEEqFun.zpow_toGerm
 
 end Zpow
 
@@ -813,47 +1263,95 @@ end Module
 
 open ENNReal
 
+/- warning: measure_theory.ae_eq_fun.lintegral -> MeasureTheory.AEEqFun.lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) -> ENNReal
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) -> ENNReal
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral MeasureTheory.AEEqFun.lintegralₓ'. -/
 /-- For `f : α → ℝ≥0∞`, define `∫ [f]` to be `∫ f` -/
 def lintegral (f : α →ₘ[μ] ℝ≥0∞) : ℝ≥0∞ :=
   Quotient.liftOn' f (fun f => ∫⁻ a, (f : α → ℝ≥0∞) a ∂μ) fun f g => lintegral_congr_ae
-#align measure_theory.ae_eq_fun.lintegral MeasureTheory.AeEqFun.lintegral
-
+#align measure_theory.ae_eq_fun.lintegral MeasureTheory.AEEqFun.lintegral
+
+/- warning: measure_theory.ae_eq_fun.lintegral_mk -> MeasureTheory.AEEqFun.lintegral_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : α -> ENNReal) (hf : MeasureTheory.AEStronglyMeasurable.{u1, 0} α ENNReal ENNReal.topologicalSpace _inst_1 f μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (MeasureTheory.AEEqFun.mk.{u1, 0} α _inst_1 μ ENNReal ENNReal.topologicalSpace f hf)) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => f a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : α -> ENNReal) (hf : MeasureTheory.AEStronglyMeasurable.{u1, 0} α ENNReal ENNReal.instTopologicalSpaceENNReal _inst_1 f μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (MeasureTheory.AEEqFun.mk.{u1, 0} α _inst_1 μ ENNReal ENNReal.instTopologicalSpaceENNReal f hf)) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => f a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AEEqFun.lintegral_mkₓ'. -/
 @[simp]
 theorem lintegral_mk (f : α → ℝ≥0∞) (hf) : (mk f hf : α →ₘ[μ] ℝ≥0∞).lintegral = ∫⁻ a, f a ∂μ :=
   rfl
-#align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AeEqFun.lintegral_mk
-
+#align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AEEqFun.lintegral_mk
+
+/- warning: measure_theory.ae_eq_fun.lintegral_coe_fn -> MeasureTheory.AEEqFun.lintegral_coeFn is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => coeFn.{succ u1, succ u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (fun (_x : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) => α -> ENNReal) (MeasureTheory.AEEqFun.instCoeFun.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace) f a)) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => MeasureTheory.AEEqFun.cast.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal f a)) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AEEqFun.lintegral_coeFnₓ'. -/
 theorem lintegral_coeFn (f : α →ₘ[μ] ℝ≥0∞) : (∫⁻ a, f a ∂μ) = f.lintegral := by
   rw [← lintegral_mk, mk_coe_fn]
-#align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AeEqFun.lintegral_coeFn
-
+#align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AEEqFun.lintegral_coeFn
+
+/- warning: measure_theory.ae_eq_fun.lintegral_zero -> MeasureTheory.AEEqFun.lintegral_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (OfNat.mk.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (Zero.zero.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace ENNReal.hasZero))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1}, Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) 0 (Zero.toOfNat0.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal instENNRealZero)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_zero MeasureTheory.AEEqFun.lintegral_zeroₓ'. -/
 @[simp]
 theorem lintegral_zero : lintegral (0 : α →ₘ[μ] ℝ≥0∞) = 0 :=
   lintegral_zero
-#align measure_theory.ae_eq_fun.lintegral_zero MeasureTheory.AeEqFun.lintegral_zero
-
+#align measure_theory.ae_eq_fun.lintegral_zero MeasureTheory.AEEqFun.lintegral_zero
+
+/- warning: measure_theory.ae_eq_fun.lintegral_eq_zero_iff -> MeasureTheory.AEEqFun.lintegral_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ}, Iff (Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{succ u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) f (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (OfNat.mk.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) 0 (Zero.zero.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ}, Iff (Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{succ u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) f (OfNat.ofNat.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) 0 (Zero.toOfNat0.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instZero.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_eq_zero_iff MeasureTheory.AEEqFun.lintegral_eq_zero_iffₓ'. -/
 @[simp]
 theorem lintegral_eq_zero_iff {f : α →ₘ[μ] ℝ≥0∞} : lintegral f = 0 ↔ f = 0 :=
   induction_on f fun f hf => (lintegral_eq_zero_iff' hf.AEMeasurable).trans mk_eq_mk.symm
-#align measure_theory.ae_eq_fun.lintegral_eq_zero_iff MeasureTheory.AeEqFun.lintegral_eq_zero_iff
-
+#align measure_theory.ae_eq_fun.lintegral_eq_zero_iff MeasureTheory.AEEqFun.lintegral_eq_zero_iff
+
+/- warning: measure_theory.ae_eq_fun.lintegral_add -> MeasureTheory.AEEqFun.lintegral_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (instHAdd.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instAdd.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) ENNReal.continuousAdd)) f g)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} (f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ), Eq.{1} ENNReal (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (instHAdd.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instAdd.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))) ENNReal.instContinuousAddENNRealInstTopologicalSpaceENNRealToAddToDistribToNonUnitalNonAssocSemiringToNonAssocSemiringToSemiringToOrderedSemiringToOrderedCommSemiringInstCanonicallyOrderedCommSemiringENNReal)) f g)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_add MeasureTheory.AEEqFun.lintegral_addₓ'. -/
 theorem lintegral_add (f g : α →ₘ[μ] ℝ≥0∞) : lintegral (f + g) = lintegral f + lintegral g :=
   induction_on₂ f g fun f hf g hg => by simp [lintegral_add_left' hf.ae_measurable]
-#align measure_theory.ae_eq_fun.lintegral_add MeasureTheory.AeEqFun.lintegral_add
-
+#align measure_theory.ae_eq_fun.lintegral_add MeasureTheory.AEEqFun.lintegral_add
+
+/- warning: measure_theory.ae_eq_fun.lintegral_mono -> MeasureTheory.AEEqFun.lintegral_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ} {g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ}, (LE.le.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (Preorder.toHasLe.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.topologicalSpace μ) (MeasureTheory.AEEqFun.instPreorder.{u1, 0} α ENNReal _inst_1 μ ENNReal.topologicalSpace (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {f : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ} {g : MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ}, (LE.le.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (Preorder.toLE.{u1} (MeasureTheory.AEEqFun.{u1, 0} α ENNReal _inst_1 ENNReal.instTopologicalSpaceENNReal μ) (MeasureTheory.AEEqFun.instPreorder.{u1, 0} α ENNReal _inst_1 μ ENNReal.instTopologicalSpaceENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ f) (MeasureTheory.AEEqFun.lintegral.{u1} α _inst_1 μ g))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.lintegral_mono MeasureTheory.AEEqFun.lintegral_monoₓ'. -/
 theorem lintegral_mono {f g : α →ₘ[μ] ℝ≥0∞} : f ≤ g → lintegral f ≤ lintegral g :=
   induction_on₂ f g fun f hf g hg hfg => lintegral_mono_ae hfg
-#align measure_theory.ae_eq_fun.lintegral_mono MeasureTheory.AeEqFun.lintegral_mono
+#align measure_theory.ae_eq_fun.lintegral_mono MeasureTheory.AEEqFun.lintegral_mono
 
 section Abs
 
+/- warning: measure_theory.ae_eq_fun.coe_fn_abs -> MeasureTheory.AEEqFun.coeFn_abs is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {β : Type.{u2}} [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : Lattice.{u2} β] [_inst_7 : TopologicalLattice.{u2} β _inst_5 _inst_6] [_inst_8 : AddGroup.{u2} β] [_inst_9 : TopologicalAddGroup.{u2} β _inst_5 _inst_8] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_5) (Abs.abs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (Neg.toHasAbs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (MeasureTheory.AEEqFun.instNeg.{u1, u2} α β _inst_1 μ _inst_5 _inst_8 _inst_9) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_5 (Lattice.toSemilatticeSup.{u2} β _inst_6) (TopologicalLattice.to_continuousSup.{u2} β _inst_5 _inst_6 _inst_7))) f)) (fun (x : α) => Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (SubNegMonoid.toHasNeg.{u2} β (AddGroup.toSubNegMonoid.{u2} β _inst_8)) (SemilatticeSup.toHasSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_6))) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_5) f x))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {β : Type.{u2}} [_inst_5 : TopologicalSpace.{u2} β] [_inst_6 : Lattice.{u2} β] [_inst_7 : TopologicalLattice.{u2} β _inst_5 _inst_6] [_inst_8 : AddGroup.{u2} β] [_inst_9 : TopologicalAddGroup.{u2} β _inst_5 _inst_8] (f : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_5 (Abs.abs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (Neg.toHasAbs.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_5 μ) (MeasureTheory.AEEqFun.instNeg.{u1, u2} α β _inst_1 μ _inst_5 _inst_8 _inst_9) (MeasureTheory.AEEqFun.instSup.{u1, u2} α β _inst_1 μ _inst_5 (Lattice.toSemilatticeSup.{u2} β _inst_6) (TopologicalLattice.toContinuousSup.{u2} β _inst_5 _inst_6 _inst_7))) f)) (fun (x : α) => Abs.abs.{u2} β (Neg.toHasAbs.{u2} β (NegZeroClass.toNeg.{u2} β (SubNegZeroMonoid.toNegZeroClass.{u2} β (SubtractionMonoid.toSubNegZeroMonoid.{u2} β (AddGroup.toSubtractionMonoid.{u2} β _inst_8)))) (SemilatticeSup.toSup.{u2} β (Lattice.toSemilatticeSup.{u2} β _inst_6))) (MeasureTheory.AEEqFun.cast.{u1, u2} α β _inst_1 μ _inst_5 f x))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AEEqFun.coeFn_absₓ'. -/
 theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β] [AddGroup β]
     [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑(|f|) =ᵐ[μ] fun x => |f x| :=
   by
   simp_rw [abs_eq_sup_neg]
   filter_upwards [ae_eq_fun.coe_fn_sup f (-f), ae_eq_fun.coe_fn_neg f]with x hx_sup hx_neg
   rw [hx_sup, hx_neg, Pi.neg_apply]
-#align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AeEqFun.coeFn_abs
+#align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AEEqFun.coeFn_abs
 
 end Abs
 
@@ -861,22 +1359,36 @@ section PosPart
 
 variable [LinearOrder γ] [OrderClosedTopology γ] [Zero γ]
 
+#print MeasureTheory.AEEqFun.posPart /-
 /-- Positive part of an `ae_eq_fun`. -/
 def posPart (f : α →ₘ[μ] γ) : α →ₘ[μ] γ :=
   comp (fun x => max x 0) (continuous_id.max continuous_const) f
-#align measure_theory.ae_eq_fun.pos_part MeasureTheory.AeEqFun.posPart
+#align measure_theory.ae_eq_fun.pos_part MeasureTheory.AEEqFun.posPart
+-/
 
+/- warning: measure_theory.ae_eq_fun.pos_part_mk -> MeasureTheory.AEEqFun.posPart_mk is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : LinearOrder.{u2} γ] [_inst_6 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_5))))] [_inst_7 : Zero.{u2} γ] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u1, u2} α γ _inst_3 _inst_1 f μ), Eq.{succ (max u1 u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.posPart.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u1, u2} α _inst_1 μ γ _inst_3 (fun (x : α) => LinearOrder.max.{u2} γ _inst_5 (f x) (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7)))) (Continuous.comp_aestronglyMeasurable.{u1, u2, u2} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (b : γ) => LinearOrder.max.{u2} γ _inst_5 (id.{succ u2} γ b) (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7)))) (fun (x : α) => f x) (Continuous.max.{u2, u2} γ γ _inst_3 _inst_5 _inst_6 (id.{succ u2} γ) (fun (a : γ) => OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7))) _inst_3 (continuous_id.{u2} γ _inst_3) (continuous_const.{u2, u2} γ γ _inst_3 _inst_3 (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7))))) hf))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : LinearOrder.{u1} γ] [_inst_6 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_5)))))] [_inst_7 : Zero.{u1} γ] (f : α -> γ) (hf : MeasureTheory.AEStronglyMeasurable.{u2, u1} α γ _inst_3 _inst_1 f μ), Eq.{max (succ u2) (succ u1)} (MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ) (MeasureTheory.AEEqFun.posPart.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 f hf)) (MeasureTheory.AEEqFun.mk.{u2, u1} α _inst_1 μ γ _inst_3 (fun (x : α) => Max.max.{u1} γ (LinearOrder.toMax.{u1} γ _inst_5) (f x) (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7))) (Continuous.comp_aestronglyMeasurable.{u2, u1, u1} α γ γ _inst_1 μ _inst_3 _inst_3 (fun (b : γ) => Max.max.{u1} γ (LinearOrder.toMax.{u1} γ _inst_5) (id.{succ u1} γ b) (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7))) (fun (x : α) => f x) (Continuous.max.{u1, u1} γ γ _inst_3 _inst_5 _inst_6 (id.{succ u1} γ) (fun (a : γ) => OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7)) _inst_3 (continuous_id.{u1} γ _inst_3) (continuous_const.{u1, u1} γ γ _inst_3 _inst_3 (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7)))) hf))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AEEqFun.posPart_mkₓ'. -/
 @[simp]
 theorem posPart_mk (f : α → γ) (hf) :
     posPart (mk f hf : α →ₘ[μ] γ) =
       mk (fun x => max (f x) 0)
         ((continuous_id.max continuous_const).comp_aestronglyMeasurable hf) :=
   rfl
-#align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AeEqFun.posPart_mk
-
+#align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AEEqFun.posPart_mk
+
+/- warning: measure_theory.ae_eq_fun.coe_fn_pos_part -> MeasureTheory.AEEqFun.coeFn_posPart is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} [_inst_3 : TopologicalSpace.{u2} γ] [_inst_5 : LinearOrder.{u2} γ] [_inst_6 : OrderClosedTopology.{u2} γ _inst_3 (PartialOrder.toPreorder.{u2} γ (SemilatticeInf.toPartialOrder.{u2} γ (Lattice.toSemilatticeInf.{u2} γ (LinearOrder.toLattice.{u2} γ _inst_5))))] [_inst_7 : Zero.{u2} γ] (f : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u1, u2} α γ (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) (MeasureTheory.AEEqFun.posPart.{u1, u2} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 f)) (fun (a : α) => LinearOrder.max.{u2} γ _inst_5 (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_3 μ) => α -> γ) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α γ _inst_1 μ _inst_3) f a) (OfNat.ofNat.{u2} γ 0 (OfNat.mk.{u2} γ 0 (Zero.zero.{u2} γ _inst_7))))
+but is expected to have type
+  forall {α : Type.{u2}} {γ : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] {μ : MeasureTheory.Measure.{u2} α _inst_1} [_inst_3 : TopologicalSpace.{u1} γ] [_inst_5 : LinearOrder.{u1} γ] [_inst_6 : OrderClosedTopology.{u1} γ _inst_3 (PartialOrder.toPreorder.{u1} γ (SemilatticeInf.toPartialOrder.{u1} γ (Lattice.toSemilatticeInf.{u1} γ (DistribLattice.toLattice.{u1} γ (instDistribLattice.{u1} γ _inst_5)))))] [_inst_7 : Zero.{u1} γ] (f : MeasureTheory.AEEqFun.{u2, u1} α γ _inst_1 _inst_3 μ), Filter.EventuallyEq.{u2, u1} α γ (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 (MeasureTheory.AEEqFun.posPart.{u2, u1} α γ _inst_1 μ _inst_3 _inst_5 _inst_6 _inst_7 f)) (fun (a : α) => Max.max.{u1} γ (LinearOrder.toMax.{u1} γ _inst_5) (MeasureTheory.AEEqFun.cast.{u2, u1} α γ _inst_1 μ _inst_3 f a) (OfNat.ofNat.{u1} γ 0 (Zero.toOfNat0.{u1} γ _inst_7)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_fun.coe_fn_pos_part MeasureTheory.AEEqFun.coeFn_posPartₓ'. -/
 theorem coeFn_posPart (f : α →ₘ[μ] γ) : ⇑(posPart f) =ᵐ[μ] fun a => max (f a) 0 :=
   coeFn_comp _ _ _
-#align measure_theory.ae_eq_fun.coe_fn_pos_part MeasureTheory.AeEqFun.coeFn_posPart
+#align measure_theory.ae_eq_fun.coe_fn_pos_part MeasureTheory.AEEqFun.coeFn_posPart
 
 end PosPart
 
@@ -892,42 +1404,62 @@ variable [TopologicalSpace α] [BorelSpace α] (μ)
 
 variable [TopologicalSpace β] [SecondCountableTopologyEither α β] [PseudoMetrizableSpace β]
 
+#print ContinuousMap.toAEEqFun /-
 /-- The equivalence class of `μ`-almost-everywhere measurable functions associated to a continuous
 map. -/
-def toAeEqFun (f : C(α, β)) : α →ₘ[μ] β :=
-  AeEqFun.mk f f.Continuous.AEStronglyMeasurable
-#align continuous_map.to_ae_eq_fun ContinuousMap.toAeEqFun
+def toAEEqFun (f : C(α, β)) : α →ₘ[μ] β :=
+  AEEqFun.mk f f.Continuous.AEStronglyMeasurable
+#align continuous_map.to_ae_eq_fun ContinuousMap.toAEEqFun
+-/
 
-theorem coeFn_toAeEqFun (f : C(α, β)) : f.toAeEqFun μ =ᵐ[μ] f :=
-  AeEqFun.coeFn_mk f _
-#align continuous_map.coe_fn_to_ae_eq_fun ContinuousMap.coeFn_toAeEqFun
+/- warning: continuous_map.coe_fn_to_ae_eq_fun -> ContinuousMap.coeFn_toAEEqFun is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : SecondCountableTopologyEither.{u1, u2} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_4] (f : ContinuousMap.{u1, u2} α β _inst_2 _inst_4), Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) (coeFn.{succ (max u1 u2), max (succ u1) (succ u2)} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (fun (_x : MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) => α -> β) (MeasureTheory.AEEqFun.instCoeFun.{u1, u2} α β _inst_1 μ _inst_4) (ContinuousMap.toAEEqFun.{u1, u2} α β _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMap.{u1, u2} α β _inst_2 _inst_4) (fun (_x : ContinuousMap.{u1, u2} α β _inst_2 _inst_4) => α -> β) (ContinuousMap.hasCoeToFun.{u1, u2} α β _inst_2 _inst_4) f)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : MeasurableSpace.{u2} α] (μ : MeasureTheory.Measure.{u2} α _inst_1) [_inst_2 : TopologicalSpace.{u2} α] [_inst_3 : BorelSpace.{u2} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u1} β] [_inst_5 : SecondCountableTopologyEither.{u2, u1} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u1} β _inst_4] (f : ContinuousMap.{u2, u1} α β _inst_2 _inst_4), Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α _inst_1 μ) (MeasureTheory.AEEqFun.cast.{u2, u1} α β _inst_1 μ _inst_4 (ContinuousMap.toAEEqFun.{u2, u1} α β _inst_1 μ _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 f)) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousMap.{u2, u1} α β _inst_2 _inst_4) α (fun (_x : α) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : α) => β) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousMap.{u2, u1} α β _inst_2 _inst_4) α β _inst_2 _inst_4 (ContinuousMap.instContinuousMapClassContinuousMap.{u2, u1} α β _inst_2 _inst_4)) f)
+Case conversion may be inaccurate. Consider using '#align continuous_map.coe_fn_to_ae_eq_fun ContinuousMap.coeFn_toAEEqFunₓ'. -/
+theorem coeFn_toAEEqFun (f : C(α, β)) : f.toAEEqFun μ =ᵐ[μ] f :=
+  AEEqFun.coeFn_mk f _
+#align continuous_map.coe_fn_to_ae_eq_fun ContinuousMap.coeFn_toAEEqFun
 
 variable [Group β] [TopologicalGroup β]
 
+/- warning: continuous_map.to_ae_eq_fun_mul_hom -> ContinuousMap.toAEEqFunMulHom is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : SecondCountableTopologyEither.{u1, u2} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_4] [_inst_7 : Group.{u2} β] [_inst_8 : TopologicalGroup.{u2} β _inst_4 _inst_7], MonoidHom.{max u1 u2, max u1 u2} (ContinuousMap.{u1, u2} α β _inst_2 _inst_4) (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (ContinuousMap.mulOneClass.{u1, u2} α β _inst_2 _inst_4 (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7))) (TopologicalGroup.to_continuousMul.{u2} β _inst_4 _inst_7 _inst_8)) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α β _inst_1 μ _inst_4 (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7)) (TopologicalGroup.to_continuousMul.{u2} β _inst_4 _inst_7 _inst_8)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] [_inst_4 : TopologicalSpace.{u2} β] [_inst_5 : SecondCountableTopologyEither.{u1, u2} α β _inst_2 _inst_4] [_inst_6 : TopologicalSpace.PseudoMetrizableSpace.{u2} β _inst_4] [_inst_7 : Group.{u2} β] [_inst_8 : TopologicalGroup.{u2} β _inst_4 _inst_7], MonoidHom.{max u2 u1, max u2 u1} (ContinuousMap.{u1, u2} α β _inst_2 _inst_4) (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (ContinuousMap.instMulOneClassContinuousMap.{u1, u2} α β _inst_2 _inst_4 (Monoid.toMulOneClass.{u2} β (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7))) (TopologicalGroup.toContinuousMul.{u2} β _inst_4 _inst_7 _inst_8)) (Monoid.toMulOneClass.{max u1 u2} (MeasureTheory.AEEqFun.{u1, u2} α β _inst_1 _inst_4 μ) (MeasureTheory.AEEqFun.instMonoid.{u1, u2} α β _inst_1 μ _inst_4 (DivInvMonoid.toMonoid.{u2} β (Group.toDivInvMonoid.{u2} β _inst_7)) (TopologicalGroup.toContinuousMul.{u2} β _inst_4 _inst_7 _inst_8)))
+Case conversion may be inaccurate. Consider using '#align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAEEqFunMulHomₓ'. -/
 /-- The `mul_hom` from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
 @[to_additive
       "The `add_hom` from the group of continuous maps from `α` to `β` to the group of\nequivalence classes of `μ`-almost-everywhere measurable functions."]
-def toAeEqFunMulHom : C(α, β) →* α →ₘ[μ] β
+def toAEEqFunMulHom : C(α, β) →* α →ₘ[μ] β
     where
-  toFun := ContinuousMap.toAeEqFun μ
+  toFun := ContinuousMap.toAEEqFun μ
   map_one' := rfl
   map_mul' f g :=
-    AeEqFun.mk_mul_mk _ _ f.Continuous.AEStronglyMeasurable g.Continuous.AEStronglyMeasurable
-#align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAeEqFunMulHom
-#align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.toAeEqFunAddHom
+    AEEqFun.mk_mul_mk _ _ f.Continuous.AEStronglyMeasurable g.Continuous.AEStronglyMeasurable
+#align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAEEqFunMulHom
+#align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.toAEEqFunAddHom
 
 variable {𝕜 : Type _} [Semiring 𝕜]
 
 variable [TopologicalSpace γ] [PseudoMetrizableSpace γ] [AddCommGroup γ] [Module 𝕜 γ]
   [TopologicalAddGroup γ] [ContinuousConstSMul 𝕜 γ] [SecondCountableTopologyEither α γ]
 
+/- warning: continuous_map.to_ae_eq_fun_linear_map -> ContinuousMap.toAEEqFunLinearMap is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] {𝕜 : Type.{u3}} [_inst_9 : Semiring.{u3} 𝕜] [_inst_10 : TopologicalSpace.{u2} γ] [_inst_11 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_10] [_inst_12 : AddCommGroup.{u2} γ] [_inst_13 : Module.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)] [_inst_14 : TopologicalAddGroup.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12)] [_inst_15 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_10 (SMulZeroClass.toHasSmul.{u3, u2} 𝕜 γ (AddZeroClass.toHasZero.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)))) (SMulWithZero.toSmulZeroClass.{u3, u2} 𝕜 γ (MulZeroClass.toHasZero.{u3} 𝕜 (MulZeroOneClass.toMulZeroClass.{u3} 𝕜 (MonoidWithZero.toMulZeroOneClass.{u3} 𝕜 (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9)))) (AddZeroClass.toHasZero.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)))) (MulActionWithZero.toSMulWithZero.{u3, u2} 𝕜 γ (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9) (AddZeroClass.toHasZero.{u2} γ (AddMonoid.toAddZeroClass.{u2} γ (AddCommMonoid.toAddMonoid.{u2} γ (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)))) (Module.toMulActionWithZero.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) _inst_13))))] [_inst_16 : SecondCountableTopologyEither.{u1, u2} α γ _inst_2 _inst_10], LinearMap.{u3, u3, max u1 u2, max u1 u2} 𝕜 𝕜 _inst_9 _inst_9 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 _inst_9)) (ContinuousMap.{u1, u2} α γ _inst_2 _inst_10) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_10 μ) (ContinuousMap.addCommMonoid.{u1, u2} α γ _inst_2 _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_1.{u2} γ _inst_10 _inst_12 _inst_14)) (MeasureTheory.AEEqFun.instAddCommMonoid.{u1, u2} α γ _inst_1 μ _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_2.{u2} γ _inst_10 _inst_12 _inst_14)) (ContinuousMap.module.{u1, u3, u2} α _inst_2 𝕜 γ _inst_10 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_3.{u2} γ _inst_10 _inst_12 _inst_14) _inst_13 _inst_15) (MeasureTheory.AEEqFun.instModule.{u1, u2, u3} α γ _inst_1 μ _inst_10 𝕜 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (ContinuousMap.toAEEqFunLinearMap._proof_4.{u2} γ _inst_10 _inst_12 _inst_14) _inst_13 _inst_15)
+but is expected to have type
+  forall {α : Type.{u1}} {γ : Type.{u2}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [_inst_2 : TopologicalSpace.{u1} α] [_inst_3 : BorelSpace.{u1} α _inst_2 _inst_1] {𝕜 : Type.{u3}} [_inst_9 : Semiring.{u3} 𝕜] [_inst_10 : TopologicalSpace.{u2} γ] [_inst_11 : TopologicalSpace.PseudoMetrizableSpace.{u2} γ _inst_10] [_inst_12 : AddCommGroup.{u2} γ] [_inst_13 : Module.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12)] [_inst_14 : TopologicalAddGroup.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12)] [_inst_15 : ContinuousConstSMul.{u3, u2} 𝕜 γ _inst_10 (SMulZeroClass.toSMul.{u3, u2} 𝕜 γ (NegZeroClass.toZero.{u2} γ (SubNegZeroMonoid.toNegZeroClass.{u2} γ (SubtractionMonoid.toSubNegZeroMonoid.{u2} γ (SubtractionCommMonoid.toSubtractionMonoid.{u2} γ (AddCommGroup.toDivisionAddCommMonoid.{u2} γ _inst_12))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕜 γ (MonoidWithZero.toZero.{u3} 𝕜 (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9)) (NegZeroClass.toZero.{u2} γ (SubNegZeroMonoid.toNegZeroClass.{u2} γ (SubtractionMonoid.toSubNegZeroMonoid.{u2} γ (SubtractionCommMonoid.toSubtractionMonoid.{u2} γ (AddCommGroup.toDivisionAddCommMonoid.{u2} γ _inst_12))))) (MulActionWithZero.toSMulWithZero.{u3, u2} 𝕜 γ (Semiring.toMonoidWithZero.{u3} 𝕜 _inst_9) (NegZeroClass.toZero.{u2} γ (SubNegZeroMonoid.toNegZeroClass.{u2} γ (SubtractionMonoid.toSubNegZeroMonoid.{u2} γ (SubtractionCommMonoid.toSubtractionMonoid.{u2} γ (AddCommGroup.toDivisionAddCommMonoid.{u2} γ _inst_12))))) (Module.toMulActionWithZero.{u3, u2} 𝕜 γ _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) _inst_13))))] [_inst_16 : SecondCountableTopologyEither.{u1, u2} α γ _inst_2 _inst_10], LinearMap.{u3, u3, max u2 u1, max u2 u1} 𝕜 𝕜 _inst_9 _inst_9 (RingHom.id.{u3} 𝕜 (Semiring.toNonAssocSemiring.{u3} 𝕜 _inst_9)) (ContinuousMap.{u1, u2} α γ _inst_2 _inst_10) (MeasureTheory.AEEqFun.{u1, u2} α γ _inst_1 _inst_10 μ) (ContinuousMap.instAddCommMonoidContinuousMap.{u1, u2} α γ _inst_2 _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14)) (MeasureTheory.AEEqFun.instAddCommMonoid.{u1, u2} α γ _inst_1 μ _inst_10 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14)) (ContinuousMap.module.{u1, u3, u2} α _inst_2 𝕜 γ _inst_10 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14) _inst_13 _inst_15) (MeasureTheory.AEEqFun.instModule.{u1, u2, u3} α γ _inst_1 μ _inst_10 𝕜 _inst_9 (AddCommGroup.toAddCommMonoid.{u2} γ _inst_12) (TopologicalAddGroup.toContinuousAdd.{u2} γ _inst_10 (AddCommGroup.toAddGroup.{u2} γ _inst_12) _inst_14) _inst_13 _inst_15)
+Case conversion may be inaccurate. Consider using '#align continuous_map.to_ae_eq_fun_linear_map ContinuousMap.toAEEqFunLinearMapₓ'. -/
 /-- The linear map from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
-def toAeEqFunLinearMap : C(α, γ) →ₗ[𝕜] α →ₘ[μ] γ :=
-  { toAeEqFunAddHom μ with
-    map_smul' := fun c f => AeEqFun.smul_mk c f f.Continuous.AEStronglyMeasurable }
-#align continuous_map.to_ae_eq_fun_linear_map ContinuousMap.toAeEqFunLinearMap
+def toAEEqFunLinearMap : C(α, γ) →ₗ[𝕜] α →ₘ[μ] γ :=
+  { toAEEqFunAddHom μ with
+    map_smul' := fun c f => AEEqFun.smul_mk c f f.Continuous.AEStronglyMeasurable }
+#align continuous_map.to_ae_eq_fun_linear_map ContinuousMap.toAEEqFunLinearMap
 
 end ContinuousMap
 
Diff
@@ -91,7 +91,7 @@ variable (β)
 
 /-- The equivalence relation of being almost everywhere equal for almost everywhere strongly
 measurable functions. -/
-def Measure.aeEqSetoid (μ : Measure α) : Setoid { f : α → β // AeStronglyMeasurable f μ } :=
+def Measure.aeEqSetoid (μ : Measure α) : Setoid { f : α → β // AEStronglyMeasurable f μ } :=
   ⟨fun f g => (f : α → β) =ᵐ[μ] g, fun f => ae_eq_refl f, fun f g => ae_eq_symm, fun f g h =>
     ae_eq_trans⟩
 #align measure_theory.measure.ae_eq_setoid MeasureTheory.Measure.aeEqSetoid
@@ -118,26 +118,26 @@ variable [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
 
 /-- Construct the equivalence class `[f]` of an almost everywhere measurable function `f`, based
     on the equivalence relation of being almost everywhere equal. -/
-def mk {β : Type _} [TopologicalSpace β] (f : α → β) (hf : AeStronglyMeasurable f μ) : α →ₘ[μ] β :=
+def mk {β : Type _} [TopologicalSpace β] (f : α → β) (hf : AEStronglyMeasurable f μ) : α →ₘ[μ] β :=
   Quotient.mk'' ⟨f, hf⟩
 #align measure_theory.ae_eq_fun.mk MeasureTheory.AeEqFun.mk
 
 /-- A measurable representative of an `ae_eq_fun` [f] -/
 instance : CoeFun (α →ₘ[μ] β) fun _ => α → β :=
   ⟨fun f =>
-    AeStronglyMeasurable.mk _ (Quotient.out' f : { f : α → β // AeStronglyMeasurable f μ }).2⟩
+    AEStronglyMeasurable.mk _ (Quotient.out' f : { f : α → β // AEStronglyMeasurable f μ }).2⟩
 
 protected theorem stronglyMeasurable (f : α →ₘ[μ] β) : StronglyMeasurable f :=
-  AeStronglyMeasurable.stronglyMeasurable_mk _
+  AEStronglyMeasurable.stronglyMeasurable_mk _
 #align measure_theory.ae_eq_fun.strongly_measurable MeasureTheory.AeEqFun.stronglyMeasurable
 
-protected theorem aeStronglyMeasurable (f : α →ₘ[μ] β) : AeStronglyMeasurable f μ :=
-  f.StronglyMeasurable.AeStronglyMeasurable
-#align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AeEqFun.aeStronglyMeasurable
+protected theorem aEStronglyMeasurable (f : α →ₘ[μ] β) : AEStronglyMeasurable f μ :=
+  f.StronglyMeasurable.AEStronglyMeasurable
+#align measure_theory.ae_eq_fun.ae_strongly_measurable MeasureTheory.AeEqFun.aEStronglyMeasurable
 
 protected theorem measurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
     (f : α →ₘ[μ] β) : Measurable f :=
-  AeStronglyMeasurable.measurable_mk _
+  AEStronglyMeasurable.measurable_mk _
 #align measure_theory.ae_eq_fun.measurable MeasureTheory.AeEqFun.measurable
 
 protected theorem aEMeasurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
@@ -157,7 +157,7 @@ theorem mk_eq_mk {f g : α → β} {hf hg} : (mk f hf : α →ₘ[μ] β) = mk g
 #align measure_theory.ae_eq_fun.mk_eq_mk MeasureTheory.AeEqFun.mk_eq_mk
 
 @[simp]
-theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AeStronglyMeasurable = f :=
+theorem mk_coeFn (f : α →ₘ[μ] β) : mk f f.AEStronglyMeasurable = f :=
   by
   conv_rhs => rw [← Quotient.out_eq' f]
   set g : { f : α → β // ae_strongly_measurable f μ } := Quotient.out' f with hg
@@ -206,18 +206,18 @@ theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpa
     return the equivalence class of `g ∘ f`, i.e., the almost everywhere equal function
     `[g ∘ f] : α →ₘ γ`. -/
 def comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : α →ₘ[μ] γ :=
-  Quotient.liftOn' f (fun f => mk (g ∘ (f : α → β)) (hg.comp_aeStronglyMeasurable f.2))
+  Quotient.liftOn' f (fun f => mk (g ∘ (f : α → β)) (hg.comp_aestronglyMeasurable f.2))
     fun f f' H => mk_eq_mk.2 <| H.fun_comp g
 #align measure_theory.ae_eq_fun.comp MeasureTheory.AeEqFun.comp
 
 @[simp]
 theorem comp_mk (g : β → γ) (hg : Continuous g) (f : α → β) (hf) :
-    comp g hg (mk f hf : α →ₘ[μ] β) = mk (g ∘ f) (hg.comp_aeStronglyMeasurable hf) :=
+    comp g hg (mk f hf : α →ₘ[μ] β) = mk (g ∘ f) (hg.comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AeEqFun.comp_mk
 
 theorem comp_eq_mk (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
-    comp g hg f = mk (g ∘ f) (hg.comp_aeStronglyMeasurable f.AeStronglyMeasurable) := by
+    comp g hg f = mk (g ∘ f) (hg.comp_aestronglyMeasurable f.AEStronglyMeasurable) := by
   rw [← comp_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AeEqFun.comp_eq_mk
 
@@ -237,20 +237,20 @@ variable [MeasurableSpace β] [PseudoMetrizableSpace β] [BorelSpace β] [Measur
     `[g ∘ f] : α →ₘ γ`. This requires that `γ` has a second countable topology. -/
 def compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) : α →ₘ[μ] γ :=
   Quotient.liftOn' f
-    (fun f' => mk (g ∘ (f' : α → β)) (hg.comp_aemeasurable f'.2.AEMeasurable).AeStronglyMeasurable)
+    (fun f' => mk (g ∘ (f' : α → β)) (hg.comp_aemeasurable f'.2.AEMeasurable).AEStronglyMeasurable)
     fun f f' H => mk_eq_mk.2 <| H.fun_comp g
 #align measure_theory.ae_eq_fun.comp_measurable MeasureTheory.AeEqFun.compMeasurable
 
 @[simp]
 theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
-    (hf : AeStronglyMeasurable f μ) :
+    (hf : AEStronglyMeasurable f μ) :
     compMeasurable g hg (mk f hf : α →ₘ[μ] β) =
-      mk (g ∘ f) (hg.comp_aemeasurable hf.AEMeasurable).AeStronglyMeasurable :=
+      mk (g ∘ f) (hg.comp_aemeasurable hf.AEMeasurable).AEStronglyMeasurable :=
   rfl
 #align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AeEqFun.compMeasurable_mk
 
 theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
-    compMeasurable g hg f = mk (g ∘ f) (hg.comp_aemeasurable f.AEMeasurable).AeStronglyMeasurable :=
+    compMeasurable g hg f = mk (g ∘ f) (hg.comp_aemeasurable f.AEMeasurable).AEStronglyMeasurable :=
   by rw [← comp_measurable_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AeEqFun.compMeasurable_eq_mk
 
@@ -276,7 +276,7 @@ theorem pair_mk_mk (f : α → β) (hf) (g : α → γ) (hg) :
 #align measure_theory.ae_eq_fun.pair_mk_mk MeasureTheory.AeEqFun.pair_mk_mk
 
 theorem pair_eq_mk (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) :
-    f.pair g = mk (fun x => (f x, g x)) (f.AeStronglyMeasurable.prod_mk g.AeStronglyMeasurable) :=
+    f.pair g = mk (fun x => (f x, g x)) (f.AEStronglyMeasurable.prod_mk g.AEStronglyMeasurable) :=
   by simp only [← pair_mk_mk, mk_coe_fn]
 #align measure_theory.ae_eq_fun.pair_eq_mk MeasureTheory.AeEqFun.pair_eq_mk
 
@@ -299,7 +299,7 @@ def comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →
 theorem comp₂_mk_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α → β) (f₂ : α → γ)
     (hf₁ hf₂) :
     comp₂ g hg (mk f₁ hf₁ : α →ₘ[μ] β) (mk f₂ hf₂) =
-      mk (fun a => g (f₁ a) (f₂ a)) (hg.comp_aeStronglyMeasurable (hf₁.prod_mk hf₂)) :=
+      mk (fun a => g (f₁ a) (f₂ a)) (hg.comp_aestronglyMeasurable (hf₁.prod_mk hf₂)) :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AeEqFun.comp₂_mk_mk
 
@@ -312,7 +312,7 @@ theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
     (f₂ : α →ₘ[μ] γ) :
     comp₂ g hg f₁ f₂ =
       mk (fun a => g (f₁ a) (f₂ a))
-        (hg.comp_aeStronglyMeasurable (f₁.AeStronglyMeasurable.prod_mk f₂.AeStronglyMeasurable)) :=
+        (hg.comp_aestronglyMeasurable (f₁.AEStronglyMeasurable.prod_mk f₂.AEStronglyMeasurable)) :=
   by rw [comp₂_eq_pair, pair_eq_mk, comp_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AeEqFun.comp₂_eq_mk
 
@@ -343,7 +343,7 @@ theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry
     (f₂ : α → γ) (hf₁ hf₂) :
     comp₂Measurable g hg (mk f₁ hf₁ : α →ₘ[μ] β) (mk f₂ hf₂) =
       mk (fun a => g (f₁ a) (f₂ a))
-        (hg.comp_aemeasurable (hf₁.AEMeasurable.prod_mk hf₂.AEMeasurable)).AeStronglyMeasurable :=
+        (hg.comp_aemeasurable (hf₁.AEMeasurable.prod_mk hf₂.AEMeasurable)).AEStronglyMeasurable :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AeEqFun.comp₂Measurable_mk_mk
 
@@ -356,7 +356,7 @@ theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry
     (f₂ : α →ₘ[μ] γ) :
     comp₂Measurable g hg f₁ f₂ =
       mk (fun a => g (f₁ a) (f₂ a))
-        (hg.comp_aemeasurable (f₁.AEMeasurable.prod_mk f₂.AEMeasurable)).AeStronglyMeasurable :=
+        (hg.comp_aemeasurable (f₁.AEMeasurable.prod_mk f₂.AEMeasurable)).AEStronglyMeasurable :=
   by rw [comp₂_measurable_eq_pair, pair_eq_mk, comp_measurable_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AeEqFun.comp₂Measurable_eq_mk
 
@@ -546,7 +546,7 @@ variable (α)
 /-- The equivalence class of a constant function: `[λ a:α, b]`, based on the equivalence relation of
     being almost everywhere equal -/
 def const (b : β) : α →ₘ[μ] β :=
-  mk (fun a : α => b) aeStronglyMeasurable_const
+  mk (fun a : α => b) aestronglyMeasurable_const
 #align measure_theory.ae_eq_fun.const MeasureTheory.AeEqFun.const
 
 theorem coeFn_const (b : β) : (const α b : α →ₘ[μ] β) =ᵐ[μ] Function.const α b :=
@@ -563,7 +563,7 @@ instance [One β] : One (α →ₘ[μ] β) :=
   ⟨const α 1⟩
 
 @[to_additive]
-theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aeStronglyMeasurable_const :=
+theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aestronglyMeasurable_const :=
   rfl
 #align measure_theory.ae_eq_fun.one_def MeasureTheory.AeEqFun.one_def
 #align measure_theory.ae_eq_fun.zero_def MeasureTheory.AeEqFun.zero_def
@@ -594,7 +594,7 @@ instance : SMul 𝕜 (α →ₘ[μ] γ) :=
   ⟨fun c f => comp ((· • ·) c) (continuous_id.const_smul c) f⟩
 
 @[simp]
-theorem smul_mk (c : 𝕜) (f : α → γ) (hf : AeStronglyMeasurable f μ) :
+theorem smul_mk (c : 𝕜) (f : α → γ) (hf : AEStronglyMeasurable f μ) :
     c • (mk f hf : α →ₘ[μ] γ) = mk (c • f) (hf.const_smul _) :=
   rfl
 #align measure_theory.ae_eq_fun.smul_mk MeasureTheory.AeEqFun.smul_mk
@@ -627,7 +627,7 @@ instance : Mul (α →ₘ[μ] γ) :=
   ⟨comp₂ (· * ·) continuous_mul⟩
 
 @[simp, to_additive]
-theorem mk_mul_mk (f g : α → γ) (hf : AeStronglyMeasurable f μ) (hg : AeStronglyMeasurable g μ) :
+theorem mk_mul_mk (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     (mk f hf : α →ₘ[μ] γ) * mk g hg = mk (f * g) (hf.mul hg) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_mul_mk MeasureTheory.AeEqFun.mk_mul_mk
@@ -662,7 +662,7 @@ instance : Pow (α →ₘ[μ] γ) ℕ :=
 
 @[simp]
 theorem mk_pow (f : α → γ) (hf) (n : ℕ) :
-    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_pow n).comp_aeStronglyMeasurable hf) :=
+    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_pow n).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AeEqFun.mk_pow
 
@@ -732,7 +732,7 @@ instance : Div (α →ₘ[μ] γ) :=
   ⟨comp₂ Div.div continuous_div'⟩
 
 @[simp, to_additive]
-theorem mk_div (f g : α → γ) (hf : AeStronglyMeasurable f μ) (hg : AeStronglyMeasurable g μ) :
+theorem mk_div (f g : α → γ) (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) :
     mk (f / g) (hf.div hg) = (mk f hf : α →ₘ[μ] γ) / mk g hg :=
   rfl
 #align measure_theory.ae_eq_fun.mk_div MeasureTheory.AeEqFun.mk_div
@@ -760,7 +760,7 @@ instance hasIntPow : Pow (α →ₘ[μ] γ) ℤ :=
 
 @[simp]
 theorem mk_zpow (f : α → γ) (hf) (n : ℤ) :
-    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_zpow n).comp_aeStronglyMeasurable hf) :=
+    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_zpow n).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AeEqFun.mk_zpow
 
@@ -870,7 +870,7 @@ def posPart (f : α →ₘ[μ] γ) : α →ₘ[μ] γ :=
 theorem posPart_mk (f : α → γ) (hf) :
     posPart (mk f hf : α →ₘ[μ] γ) =
       mk (fun x => max (f x) 0)
-        ((continuous_id.max continuous_const).comp_aeStronglyMeasurable hf) :=
+        ((continuous_id.max continuous_const).comp_aestronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AeEqFun.posPart_mk
 
@@ -895,7 +895,7 @@ variable [TopologicalSpace β] [SecondCountableTopologyEither α β] [PseudoMetr
 /-- The equivalence class of `μ`-almost-everywhere measurable functions associated to a continuous
 map. -/
 def toAeEqFun (f : C(α, β)) : α →ₘ[μ] β :=
-  AeEqFun.mk f f.Continuous.AeStronglyMeasurable
+  AeEqFun.mk f f.Continuous.AEStronglyMeasurable
 #align continuous_map.to_ae_eq_fun ContinuousMap.toAeEqFun
 
 theorem coeFn_toAeEqFun (f : C(α, β)) : f.toAeEqFun μ =ᵐ[μ] f :=
@@ -913,7 +913,7 @@ def toAeEqFunMulHom : C(α, β) →* α →ₘ[μ] β
   toFun := ContinuousMap.toAeEqFun μ
   map_one' := rfl
   map_mul' f g :=
-    AeEqFun.mk_mul_mk _ _ f.Continuous.AeStronglyMeasurable g.Continuous.AeStronglyMeasurable
+    AeEqFun.mk_mul_mk _ _ f.Continuous.AEStronglyMeasurable g.Continuous.AEStronglyMeasurable
 #align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAeEqFunMulHom
 #align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.toAeEqFunAddHom
 
@@ -926,7 +926,7 @@ variable [TopologicalSpace γ] [PseudoMetrizableSpace γ] [AddCommGroup γ] [Mod
 classes of `μ`-almost-everywhere measurable functions. -/
 def toAeEqFunLinearMap : C(α, γ) →ₗ[𝕜] α →ₘ[μ] γ :=
   { toAeEqFunAddHom μ with
-    map_smul' := fun c f => AeEqFun.smul_mk c f f.Continuous.AeStronglyMeasurable }
+    map_smul' := fun c f => AeEqFun.smul_mk c f f.Continuous.AEStronglyMeasurable }
 #align continuous_map.to_ae_eq_fun_linear_map ContinuousMap.toAeEqFunLinearMap
 
 end ContinuousMap
Diff
@@ -416,7 +416,7 @@ theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopo
 /-- Given a predicate `p` and an equivalence class `[f]`, return true if `p` holds of `f a`
     for almost all `a` -/
 def LiftPred (p : β → Prop) (f : α →ₘ[μ] β) : Prop :=
-  f.toGerm.lift_pred p
+  f.toGerm.LiftPred p
 #align measure_theory.ae_eq_fun.lift_pred MeasureTheory.AeEqFun.LiftPred
 
 /-- Given a relation `r` and equivalence class `[f]` and `[g]`, return true if `r` holds of
Diff
@@ -140,10 +140,10 @@ protected theorem measurable [PseudoMetrizableSpace β] [MeasurableSpace β] [Bo
   AeStronglyMeasurable.measurable_mk _
 #align measure_theory.ae_eq_fun.measurable MeasureTheory.AeEqFun.measurable
 
-protected theorem aeMeasurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
-    (f : α →ₘ[μ] β) : AeMeasurable f μ :=
-  f.Measurable.AeMeasurable
-#align measure_theory.ae_eq_fun.ae_measurable MeasureTheory.AeEqFun.aeMeasurable
+protected theorem aEMeasurable [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
+    (f : α →ₘ[μ] β) : AEMeasurable f μ :=
+  f.Measurable.AEMeasurable
+#align measure_theory.ae_eq_fun.ae_measurable MeasureTheory.AeEqFun.aEMeasurable
 
 @[simp]
 theorem quot_mk_eq_mk (f : α → β) (hf) :
@@ -182,42 +182,42 @@ theorem coeFn_mk (f : α → β) (hf) : (mk f hf : α →ₘ[μ] β) =ᵐ[μ] f
 #align measure_theory.ae_eq_fun.coe_fn_mk MeasureTheory.AeEqFun.coeFn_mk
 
 @[elab_as_elim]
-theorem inductionOn (f : α →ₘ[μ] β) {p : (α →ₘ[μ] β) → Prop} (H : ∀ f hf, p (mk f hf)) : p f :=
+theorem induction_on (f : α →ₘ[μ] β) {p : (α →ₘ[μ] β) → Prop} (H : ∀ f hf, p (mk f hf)) : p f :=
   Quotient.inductionOn' f <| Subtype.forall.2 H
-#align measure_theory.ae_eq_fun.induction_on MeasureTheory.AeEqFun.inductionOn
+#align measure_theory.ae_eq_fun.induction_on MeasureTheory.AeEqFun.induction_on
 
 @[elab_as_elim]
-theorem inductionOn₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
+theorem induction_on₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     (f : α →ₘ[μ] β) (f' : α' →ₘ[μ'] β') {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → Prop}
     (H : ∀ f hf f' hf', p (mk f hf) (mk f' hf')) : p f f' :=
-  inductionOn f fun f hf => inductionOn f' <| H f hf
-#align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AeEqFun.inductionOn₂
+  induction_on f fun f hf => induction_on f' <| H f hf
+#align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AeEqFun.induction_on₂
 
 @[elab_as_elim]
-theorem inductionOn₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
+theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     {α'' β'' : Type _} [MeasurableSpace α''] [TopologicalSpace β''] {μ'' : Measure α''}
     (f : α →ₘ[μ] β) (f' : α' →ₘ[μ'] β') (f'' : α'' →ₘ[μ''] β'')
     {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → (α'' →ₘ[μ''] β'') → Prop}
     (H : ∀ f hf f' hf' f'' hf'', p (mk f hf) (mk f' hf') (mk f'' hf'')) : p f f' f'' :=
-  inductionOn f fun f hf => inductionOn₂ f' f'' <| H f hf
-#align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AeEqFun.inductionOn₃
+  induction_on f fun f hf => induction_on₂ f' f'' <| H f hf
+#align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AeEqFun.induction_on₃
 
 /-- Given a continuous function `g : β → γ`, and an almost everywhere equal function `[f] : α →ₘ β`,
     return the equivalence class of `g ∘ f`, i.e., the almost everywhere equal function
     `[g ∘ f] : α →ₘ γ`. -/
 def comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : α →ₘ[μ] γ :=
-  Quotient.liftOn' f (fun f => mk (g ∘ (f : α → β)) (hg.compAeStronglyMeasurable f.2)) fun f f' H =>
-    mk_eq_mk.2 <| H.fun_comp g
+  Quotient.liftOn' f (fun f => mk (g ∘ (f : α → β)) (hg.comp_aeStronglyMeasurable f.2))
+    fun f f' H => mk_eq_mk.2 <| H.fun_comp g
 #align measure_theory.ae_eq_fun.comp MeasureTheory.AeEqFun.comp
 
 @[simp]
 theorem comp_mk (g : β → γ) (hg : Continuous g) (f : α → β) (hf) :
-    comp g hg (mk f hf : α →ₘ[μ] β) = mk (g ∘ f) (hg.compAeStronglyMeasurable hf) :=
+    comp g hg (mk f hf : α →ₘ[μ] β) = mk (g ∘ f) (hg.comp_aeStronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.comp_mk MeasureTheory.AeEqFun.comp_mk
 
 theorem comp_eq_mk (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
-    comp g hg f = mk (g ∘ f) (hg.compAeStronglyMeasurable f.AeStronglyMeasurable) := by
+    comp g hg f = mk (g ∘ f) (hg.comp_aeStronglyMeasurable f.AeStronglyMeasurable) := by
   rw [← comp_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_eq_mk MeasureTheory.AeEqFun.comp_eq_mk
 
@@ -237,7 +237,7 @@ variable [MeasurableSpace β] [PseudoMetrizableSpace β] [BorelSpace β] [Measur
     `[g ∘ f] : α →ₘ γ`. This requires that `γ` has a second countable topology. -/
 def compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) : α →ₘ[μ] γ :=
   Quotient.liftOn' f
-    (fun f' => mk (g ∘ (f' : α → β)) (hg.compAeMeasurable f'.2.AeMeasurable).AeStronglyMeasurable)
+    (fun f' => mk (g ∘ (f' : α → β)) (hg.comp_aemeasurable f'.2.AEMeasurable).AeStronglyMeasurable)
     fun f f' H => mk_eq_mk.2 <| H.fun_comp g
 #align measure_theory.ae_eq_fun.comp_measurable MeasureTheory.AeEqFun.compMeasurable
 
@@ -245,12 +245,12 @@ def compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
 theorem compMeasurable_mk (g : β → γ) (hg : Measurable g) (f : α → β)
     (hf : AeStronglyMeasurable f μ) :
     compMeasurable g hg (mk f hf : α →ₘ[μ] β) =
-      mk (g ∘ f) (hg.compAeMeasurable hf.AeMeasurable).AeStronglyMeasurable :=
+      mk (g ∘ f) (hg.comp_aemeasurable hf.AEMeasurable).AeStronglyMeasurable :=
   rfl
 #align measure_theory.ae_eq_fun.comp_measurable_mk MeasureTheory.AeEqFun.compMeasurable_mk
 
 theorem compMeasurable_eq_mk (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
-    compMeasurable g hg f = mk (g ∘ f) (hg.compAeMeasurable f.AeMeasurable).AeStronglyMeasurable :=
+    compMeasurable g hg f = mk (g ∘ f) (hg.comp_aemeasurable f.AEMeasurable).AeStronglyMeasurable :=
   by rw [← comp_measurable_mk g hg f f.ae_strongly_measurable, mk_coe_fn]
 #align measure_theory.ae_eq_fun.comp_measurable_eq_mk MeasureTheory.AeEqFun.compMeasurable_eq_mk
 
@@ -299,7 +299,7 @@ def comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →
 theorem comp₂_mk_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α → β) (f₂ : α → γ)
     (hf₁ hf₂) :
     comp₂ g hg (mk f₁ hf₁ : α →ₘ[μ] β) (mk f₂ hf₂) =
-      mk (fun a => g (f₁ a) (f₂ a)) (hg.compAeStronglyMeasurable (hf₁.prod_mk hf₂)) :=
+      mk (fun a => g (f₁ a) (f₂ a)) (hg.comp_aeStronglyMeasurable (hf₁.prod_mk hf₂)) :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_mk_mk MeasureTheory.AeEqFun.comp₂_mk_mk
 
@@ -312,7 +312,7 @@ theorem comp₂_eq_mk (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
     (f₂ : α →ₘ[μ] γ) :
     comp₂ g hg f₁ f₂ =
       mk (fun a => g (f₁ a) (f₂ a))
-        (hg.compAeStronglyMeasurable (f₁.AeStronglyMeasurable.prod_mk f₂.AeStronglyMeasurable)) :=
+        (hg.comp_aeStronglyMeasurable (f₁.AeStronglyMeasurable.prod_mk f₂.AeStronglyMeasurable)) :=
   by rw [comp₂_eq_pair, pair_eq_mk, comp_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_eq_mk MeasureTheory.AeEqFun.comp₂_eq_mk
 
@@ -343,7 +343,7 @@ theorem comp₂Measurable_mk_mk (g : β → γ → δ) (hg : Measurable (uncurry
     (f₂ : α → γ) (hf₁ hf₂) :
     comp₂Measurable g hg (mk f₁ hf₁ : α →ₘ[μ] β) (mk f₂ hf₂) =
       mk (fun a => g (f₁ a) (f₂ a))
-        (hg.compAeMeasurable (hf₁.AeMeasurable.prod_mk hf₂.AeMeasurable)).AeStronglyMeasurable :=
+        (hg.comp_aemeasurable (hf₁.AEMeasurable.prod_mk hf₂.AEMeasurable)).AeStronglyMeasurable :=
   rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_mk_mk MeasureTheory.AeEqFun.comp₂Measurable_mk_mk
 
@@ -356,7 +356,7 @@ theorem comp₂Measurable_eq_mk (g : β → γ → δ) (hg : Measurable (uncurry
     (f₂ : α →ₘ[μ] γ) :
     comp₂Measurable g hg f₁ f₂ =
       mk (fun a => g (f₁ a) (f₂ a))
-        (hg.compAeMeasurable (f₁.AeMeasurable.prod_mk f₂.AeMeasurable)).AeStronglyMeasurable :=
+        (hg.comp_aemeasurable (f₁.AEMeasurable.prod_mk f₂.AEMeasurable)).AeStronglyMeasurable :=
   by rw [comp₂_measurable_eq_pair, pair_eq_mk, comp_measurable_mk] <;> rfl
 #align measure_theory.ae_eq_fun.comp₂_measurable_eq_mk MeasureTheory.AeEqFun.comp₂Measurable_eq_mk
 
@@ -389,19 +389,19 @@ theorem toGerm_injective : Injective (toGerm : (α →ₘ[μ] β) → Germ μ.ae
 
 theorem comp_toGerm (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
     (comp g hg f).toGerm = f.toGerm.map g :=
-  inductionOn f fun f hf => by simp
+  induction_on f fun f hf => by simp
 #align measure_theory.ae_eq_fun.comp_to_germ MeasureTheory.AeEqFun.comp_toGerm
 
 theorem compMeasurable_toGerm [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace β]
     [PseudoMetrizableSpace γ] [SecondCountableTopology γ] [MeasurableSpace γ]
     [OpensMeasurableSpace γ] (g : β → γ) (hg : Measurable g) (f : α →ₘ[μ] β) :
     (compMeasurable g hg f).toGerm = f.toGerm.map g :=
-  inductionOn f fun f hf => by simp
+  induction_on f fun f hf => by simp
 #align measure_theory.ae_eq_fun.comp_measurable_to_germ MeasureTheory.AeEqFun.compMeasurable_toGerm
 
 theorem comp₂_toGerm (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁ : α →ₘ[μ] β)
     (f₂ : α →ₘ[μ] γ) : (comp₂ g hg f₁ f₂).toGerm = f₁.toGerm.zipWith g f₂.toGerm :=
-  inductionOn₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
+  induction_on₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
 #align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AeEqFun.comp₂_toGerm
 
 theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopology β]
@@ -410,7 +410,7 @@ theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopo
     [MeasurableSpace δ] [OpensMeasurableSpace δ] (g : β → γ → δ) (hg : Measurable (uncurry g))
     (f₁ : α →ₘ[μ] β) (f₂ : α →ₘ[μ] γ) :
     (comp₂Measurable g hg f₁ f₂).toGerm = f₁.toGerm.zipWith g f₂.toGerm :=
-  inductionOn₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
+  induction_on₂ f₁ f₂ fun f₁ hf₁ f₂ hf₂ => by simp
 #align measure_theory.ae_eq_fun.comp₂_measurable_to_germ MeasureTheory.AeEqFun.comp₂Measurable_toGerm
 
 /-- Given a predicate `p` and an equivalence class `[f]`, return true if `p` holds of `f a`
@@ -546,7 +546,7 @@ variable (α)
 /-- The equivalence class of a constant function: `[λ a:α, b]`, based on the equivalence relation of
     being almost everywhere equal -/
 def const (b : β) : α →ₘ[μ] β :=
-  mk (fun a : α => b) aeStronglyMeasurableConst
+  mk (fun a : α => b) aeStronglyMeasurable_const
 #align measure_theory.ae_eq_fun.const MeasureTheory.AeEqFun.const
 
 theorem coeFn_const (b : β) : (const α b : α →ₘ[μ] β) =ᵐ[μ] Function.const α b :=
@@ -563,7 +563,7 @@ instance [One β] : One (α →ₘ[μ] β) :=
   ⟨const α 1⟩
 
 @[to_additive]
-theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aeStronglyMeasurableConst :=
+theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aeStronglyMeasurable_const :=
   rfl
 #align measure_theory.ae_eq_fun.one_def MeasureTheory.AeEqFun.one_def
 #align measure_theory.ae_eq_fun.zero_def MeasureTheory.AeEqFun.zero_def
@@ -572,13 +572,13 @@ theorem one_def [One β] : (1 : α →ₘ[μ] β) = mk (fun a : α => 1) aeStron
 theorem coeFn_one [One β] : ⇑(1 : α →ₘ[μ] β) =ᵐ[μ] 1 :=
   coeFn_const _ _
 #align measure_theory.ae_eq_fun.coe_fn_one MeasureTheory.AeEqFun.coeFn_one
-#align measure_theory.ae_eq_fun.coe_fn_zero MeasureTheory.AeEqFun.coe_fn_zero
+#align measure_theory.ae_eq_fun.coe_fn_zero MeasureTheory.AeEqFun.coeFn_zero
 
 @[simp, to_additive]
 theorem one_toGerm [One β] : (1 : α →ₘ[μ] β).toGerm = 1 :=
   rfl
 #align measure_theory.ae_eq_fun.one_to_germ MeasureTheory.AeEqFun.one_toGerm
-#align measure_theory.ae_eq_fun.zero_to_germ MeasureTheory.AeEqFun.zero_to_germ
+#align measure_theory.ae_eq_fun.zero_to_germ MeasureTheory.AeEqFun.zero_toGerm
 
 -- Note we set up the scalar actions before the `monoid` structures in case we want to
 -- try to override the `nsmul` or `zsmul` fields in future.
@@ -608,13 +608,13 @@ theorem smul_toGerm (c : 𝕜) (f : α →ₘ[μ] γ) : (c • f).toGerm = c •
 #align measure_theory.ae_eq_fun.smul_to_germ MeasureTheory.AeEqFun.smul_toGerm
 
 instance [SMulCommClass 𝕜 𝕜' γ] : SMulCommClass 𝕜 𝕜' (α →ₘ[μ] γ) :=
-  ⟨fun a b f => inductionOn f fun f hf => by simp_rw [smul_mk, smul_comm]⟩
+  ⟨fun a b f => induction_on f fun f hf => by simp_rw [smul_mk, smul_comm]⟩
 
 instance [SMul 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' γ] : IsScalarTower 𝕜 𝕜' (α →ₘ[μ] γ) :=
-  ⟨fun a b f => inductionOn f fun f hf => by simp_rw [smul_mk, smul_assoc]⟩
+  ⟨fun a b f => induction_on f fun f hf => by simp_rw [smul_mk, smul_assoc]⟩
 
 instance [SMul 𝕜ᵐᵒᵖ γ] [IsCentralScalar 𝕜 γ] : IsCentralScalar 𝕜 (α →ₘ[μ] γ) :=
-  ⟨fun a f => inductionOn f fun f hf => by simp_rw [smul_mk, op_smul_eq_smul]⟩
+  ⟨fun a f => induction_on f fun f hf => by simp_rw [smul_mk, op_smul_eq_smul]⟩
 
 end SMul
 
@@ -637,21 +637,21 @@ theorem mk_mul_mk (f g : α → γ) (hf : AeStronglyMeasurable f μ) (hg : AeStr
 theorem coeFn_mul (f g : α →ₘ[μ] γ) : ⇑(f * g) =ᵐ[μ] f * g :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_mul MeasureTheory.AeEqFun.coeFn_mul
-#align measure_theory.ae_eq_fun.coe_fn_add MeasureTheory.AeEqFun.coe_fn_add
+#align measure_theory.ae_eq_fun.coe_fn_add MeasureTheory.AeEqFun.coeFn_add
 
 @[simp, to_additive]
 theorem mul_toGerm (f g : α →ₘ[μ] γ) : (f * g).toGerm = f.toGerm * g.toGerm :=
   comp₂_toGerm _ _ _ _
 #align measure_theory.ae_eq_fun.mul_to_germ MeasureTheory.AeEqFun.mul_toGerm
-#align measure_theory.ae_eq_fun.add_to_germ MeasureTheory.AeEqFun.add_to_germ
+#align measure_theory.ae_eq_fun.add_to_germ MeasureTheory.AeEqFun.add_toGerm
 
 end Mul
 
 instance [AddMonoid γ] [ContinuousAdd γ] : AddMonoid (α →ₘ[μ] γ) :=
-  toGerm_injective.AddMonoid toGerm zero_to_germ add_to_germ fun _ _ => smul_toGerm _ _
+  toGerm_injective.AddMonoid toGerm zero_toGerm add_toGerm fun _ _ => smul_toGerm _ _
 
 instance [AddCommMonoid γ] [ContinuousAdd γ] : AddCommMonoid (α →ₘ[μ] γ) :=
-  toGerm_injective.AddCommMonoid toGerm zero_to_germ add_to_germ fun _ _ => smul_toGerm _ _
+  toGerm_injective.AddCommMonoid toGerm zero_toGerm add_toGerm fun _ _ => smul_toGerm _ _
 
 section Monoid
 
@@ -662,7 +662,7 @@ instance : Pow (α →ₘ[μ] γ) ℕ :=
 
 @[simp]
 theorem mk_pow (f : α → γ) (hf) (n : ℕ) :
-    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_pow n).compAeStronglyMeasurable hf) :=
+    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_pow n).comp_aeStronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_pow MeasureTheory.AeEqFun.mk_pow
 
@@ -687,7 +687,7 @@ def toGermMonoidHom : (α →ₘ[μ] γ) →* μ.ae.Germ γ
   map_one' := one_toGerm
   map_mul' := mul_toGerm
 #align measure_theory.ae_eq_fun.to_germ_monoid_hom MeasureTheory.AeEqFun.toGermMonoidHom
-#align measure_theory.ae_eq_fun.to_germ_add_monoid_hom MeasureTheory.AeEqFun.to_germ_add_monoid_hom
+#align measure_theory.ae_eq_fun.to_germ_add_monoid_hom MeasureTheory.AeEqFun.toGermAddMonoidHom
 
 end Monoid
 
@@ -715,13 +715,13 @@ theorem inv_mk (f : α → γ) (hf) : (mk f hf : α →ₘ[μ] γ)⁻¹ = mk f
 theorem coeFn_inv (f : α →ₘ[μ] γ) : ⇑f⁻¹ =ᵐ[μ] f⁻¹ :=
   coeFn_comp _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_inv MeasureTheory.AeEqFun.coeFn_inv
-#align measure_theory.ae_eq_fun.coe_fn_neg MeasureTheory.AeEqFun.coe_fn_neg
+#align measure_theory.ae_eq_fun.coe_fn_neg MeasureTheory.AeEqFun.coeFn_neg
 
 @[to_additive]
 theorem inv_toGerm (f : α →ₘ[μ] γ) : f⁻¹.toGerm = f.toGerm⁻¹ :=
   comp_toGerm _ _ _
 #align measure_theory.ae_eq_fun.inv_to_germ MeasureTheory.AeEqFun.inv_toGerm
-#align measure_theory.ae_eq_fun.neg_to_germ MeasureTheory.AeEqFun.neg_to_germ
+#align measure_theory.ae_eq_fun.neg_to_germ MeasureTheory.AeEqFun.neg_toGerm
 
 end Inv
 
@@ -742,13 +742,13 @@ theorem mk_div (f g : α → γ) (hf : AeStronglyMeasurable f μ) (hg : AeStrong
 theorem coeFn_div (f g : α →ₘ[μ] γ) : ⇑(f / g) =ᵐ[μ] f / g :=
   coeFn_comp₂ _ _ _ _
 #align measure_theory.ae_eq_fun.coe_fn_div MeasureTheory.AeEqFun.coeFn_div
-#align measure_theory.ae_eq_fun.coe_fn_sub MeasureTheory.AeEqFun.coe_fn_sub
+#align measure_theory.ae_eq_fun.coe_fn_sub MeasureTheory.AeEqFun.coeFn_sub
 
 @[to_additive]
 theorem div_toGerm (f g : α →ₘ[μ] γ) : (f / g).toGerm = f.toGerm / g.toGerm :=
   comp₂_toGerm _ _ _ _
 #align measure_theory.ae_eq_fun.div_to_germ MeasureTheory.AeEqFun.div_toGerm
-#align measure_theory.ae_eq_fun.sub_to_germ MeasureTheory.AeEqFun.sub_to_germ
+#align measure_theory.ae_eq_fun.sub_to_germ MeasureTheory.AeEqFun.sub_toGerm
 
 end Div
 
@@ -760,7 +760,7 @@ instance hasIntPow : Pow (α →ₘ[μ] γ) ℤ :=
 
 @[simp]
 theorem mk_zpow (f : α → γ) (hf) (n : ℤ) :
-    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_zpow n).compAeStronglyMeasurable hf) :=
+    (mk f hf : α →ₘ[μ] γ) ^ n = mk (f ^ n) ((continuous_zpow n).comp_aeStronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.mk_zpow MeasureTheory.AeEqFun.mk_zpow
 
@@ -778,11 +778,11 @@ end Zpow
 end Group
 
 instance [AddGroup γ] [TopologicalAddGroup γ] : AddGroup (α →ₘ[μ] γ) :=
-  toGerm_injective.AddGroup toGerm zero_to_germ add_to_germ neg_to_germ sub_to_germ
+  toGerm_injective.AddGroup toGerm zero_toGerm add_toGerm neg_toGerm sub_toGerm
     (fun _ _ => smul_toGerm _ _) fun _ _ => smul_toGerm _ _
 
 instance [AddCommGroup γ] [TopologicalAddGroup γ] : AddCommGroup (α →ₘ[μ] γ) :=
-  toGerm_injective.AddCommGroup toGerm zero_to_germ add_to_germ neg_to_germ sub_to_germ
+  toGerm_injective.AddCommGroup toGerm zero_toGerm add_toGerm neg_toGerm sub_toGerm
     (fun _ _ => smul_toGerm _ _) fun _ _ => smul_toGerm _ _
 
 @[to_additive]
@@ -802,12 +802,12 @@ instance [Monoid 𝕜] [MulAction 𝕜 γ] [ContinuousConstSMul 𝕜 γ] : MulAc
 
 instance [Monoid 𝕜] [AddMonoid γ] [ContinuousAdd γ] [DistribMulAction 𝕜 γ]
     [ContinuousConstSMul 𝕜 γ] : DistribMulAction 𝕜 (α →ₘ[μ] γ) :=
-  toGerm_injective.DistribMulAction (to_germ_add_monoid_hom : (α →ₘ[μ] γ) →+ _) fun c : 𝕜 =>
+  toGerm_injective.DistribMulAction (toGermAddMonoidHom : (α →ₘ[μ] γ) →+ _) fun c : 𝕜 =>
     smul_toGerm c
 
 instance [Semiring 𝕜] [AddCommMonoid γ] [ContinuousAdd γ] [Module 𝕜 γ] [ContinuousConstSMul 𝕜 γ] :
     Module 𝕜 (α →ₘ[μ] γ) :=
-  toGerm_injective.Module 𝕜 (to_germ_add_monoid_hom : (α →ₘ[μ] γ) →+ _) smul_toGerm
+  toGerm_injective.Module 𝕜 (toGermAddMonoidHom : (α →ₘ[μ] γ) →+ _) smul_toGerm
 
 end Module
 
@@ -834,15 +834,15 @@ theorem lintegral_zero : lintegral (0 : α →ₘ[μ] ℝ≥0∞) = 0 :=
 
 @[simp]
 theorem lintegral_eq_zero_iff {f : α →ₘ[μ] ℝ≥0∞} : lintegral f = 0 ↔ f = 0 :=
-  inductionOn f fun f hf => (lintegral_eq_zero_iff' hf.AeMeasurable).trans mk_eq_mk.symm
+  induction_on f fun f hf => (lintegral_eq_zero_iff' hf.AEMeasurable).trans mk_eq_mk.symm
 #align measure_theory.ae_eq_fun.lintegral_eq_zero_iff MeasureTheory.AeEqFun.lintegral_eq_zero_iff
 
 theorem lintegral_add (f g : α →ₘ[μ] ℝ≥0∞) : lintegral (f + g) = lintegral f + lintegral g :=
-  inductionOn₂ f g fun f hf g hg => by simp [lintegral_add_left' hf.ae_measurable]
+  induction_on₂ f g fun f hf g hg => by simp [lintegral_add_left' hf.ae_measurable]
 #align measure_theory.ae_eq_fun.lintegral_add MeasureTheory.AeEqFun.lintegral_add
 
 theorem lintegral_mono {f g : α →ₘ[μ] ℝ≥0∞} : f ≤ g → lintegral f ≤ lintegral g :=
-  inductionOn₂ f g fun f hf g hg hfg => lintegral_mono_ae hfg
+  induction_on₂ f g fun f hf g hg hfg => lintegral_mono_ae hfg
 #align measure_theory.ae_eq_fun.lintegral_mono MeasureTheory.AeEqFun.lintegral_mono
 
 section Abs
@@ -870,7 +870,7 @@ def posPart (f : α →ₘ[μ] γ) : α →ₘ[μ] γ :=
 theorem posPart_mk (f : α → γ) (hf) :
     posPart (mk f hf : α →ₘ[μ] γ) =
       mk (fun x => max (f x) 0)
-        ((continuous_id.max continuous_const).compAeStronglyMeasurable hf) :=
+        ((continuous_id.max continuous_const).comp_aeStronglyMeasurable hf) :=
   rfl
 #align measure_theory.ae_eq_fun.pos_part_mk MeasureTheory.AeEqFun.posPart_mk
 
@@ -915,7 +915,7 @@ def toAeEqFunMulHom : C(α, β) →* α →ₘ[μ] β
   map_mul' f g :=
     AeEqFun.mk_mul_mk _ _ f.Continuous.AeStronglyMeasurable g.Continuous.AeStronglyMeasurable
 #align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAeEqFunMulHom
-#align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.to_ae_eq_fun_add_hom
+#align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.toAeEqFunAddHom
 
 variable {𝕜 : Type _} [Semiring 𝕜]
 
@@ -925,7 +925,7 @@ variable [TopologicalSpace γ] [PseudoMetrizableSpace γ] [AddCommGroup γ] [Mod
 /-- The linear map from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
 def toAeEqFunLinearMap : C(α, γ) →ₗ[𝕜] α →ₘ[μ] γ :=
-  { to_ae_eq_fun_add_hom μ with
+  { toAeEqFunAddHom μ with
     map_smul' := fun c f => AeEqFun.smul_mk c f f.Continuous.AeStronglyMeasurable }
 #align continuous_map.to_ae_eq_fun_linear_map ContinuousMap.toAeEqFunLinearMap
 
Diff
@@ -224,7 +224,7 @@ theorem comp_eq_mk (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) :
 theorem coeFn_comp (g : β → γ) (hg : Continuous g) (f : α →ₘ[μ] β) : comp g hg f =ᵐ[μ] g ∘ f :=
   by
   rw [comp_eq_mk]
-  apply [anonymous]
+  apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp MeasureTheory.AeEqFun.coeFn_comp
 
 section CompMeasurable
@@ -258,7 +258,7 @@ theorem coeFn_compMeasurable (g : β → γ) (hg : Measurable g) (f : α →ₘ[
     compMeasurable g hg f =ᵐ[μ] g ∘ f :=
   by
   rw [comp_measurable_eq_mk]
-  apply [anonymous]
+  apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp_measurable MeasureTheory.AeEqFun.coeFn_compMeasurable
 
 end CompMeasurable
@@ -283,7 +283,7 @@ theorem pair_eq_mk (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) :
 theorem coeFn_pair (f : α →ₘ[μ] β) (g : α →ₘ[μ] γ) : f.pair g =ᵐ[μ] fun x => (f x, g x) :=
   by
   rw [pair_eq_mk]
-  apply [anonymous]
+  apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_pair MeasureTheory.AeEqFun.coeFn_pair
 
 /-- Given a continuous function `g : β → γ → δ`, and almost everywhere equal functions
@@ -320,7 +320,7 @@ theorem coeFn_comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
     (f₂ : α →ₘ[μ] γ) : comp₂ g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) :=
   by
   rw [comp₂_eq_mk]
-  apply [anonymous]
+  apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp₂ MeasureTheory.AeEqFun.coeFn_comp₂
 
 section
@@ -364,7 +364,7 @@ theorem coeFn_comp₂Measurable (g : β → γ → δ) (hg : Measurable (uncurry
     (f₂ : α →ₘ[μ] γ) : comp₂Measurable g hg f₁ f₂ =ᵐ[μ] fun a => g (f₁ a) (f₂ a) :=
   by
   rw [comp₂_measurable_eq_mk]
-  apply [anonymous]
+  apply coe_fn_mk
 #align measure_theory.ae_eq_fun.coe_fn_comp₂_measurable MeasureTheory.AeEqFun.coeFn_comp₂Measurable
 
 end
Diff
@@ -458,7 +458,7 @@ section Sup
 
 variable [SemilatticeSup β] [ContinuousSup β]
 
-instance : HasSup (α →ₘ[μ] β) where sup f g := AeEqFun.comp₂ (· ⊔ ·) continuous_sup f g
+instance : Sup (α →ₘ[μ] β) where sup f g := AeEqFun.comp₂ (· ⊔ ·) continuous_sup f g
 
 theorem coeFn_sup (f g : α →ₘ[μ] β) : ⇑(f ⊔ g) =ᵐ[μ] fun x => f x ⊔ g x :=
   coeFn_comp₂ _ _ _ _
@@ -494,7 +494,7 @@ section Inf
 
 variable [SemilatticeInf β] [ContinuousInf β]
 
-instance : HasInf (α →ₘ[μ] β) where inf f g := AeEqFun.comp₂ (· ⊓ ·) continuous_inf f g
+instance : Inf (α →ₘ[μ] β) where inf f g := AeEqFun.comp₂ (· ⊓ ·) continuous_inf f g
 
 theorem coeFn_inf (f g : α →ₘ[μ] β) : ⇑(f ⊓ g) =ᵐ[μ] fun x => f x ⊓ g x :=
   coeFn_comp₂ _ _ _ _
@@ -528,11 +528,11 @@ end Inf
 
 instance [Lattice β] [TopologicalLattice β] : Lattice (α →ₘ[μ] β) :=
   { AeEqFun.partialOrder with
-    sup := HasSup.sup
+    sup := Sup.sup
     le_sup_left := AeEqFun.le_sup_left
     le_sup_right := AeEqFun.le_sup_right
     sup_le := AeEqFun.sup_le
-    inf := HasInf.inf
+    inf := Inf.inf
     inf_le_left := AeEqFun.inf_le_left
     inf_le_right := AeEqFun.inf_le_right
     le_inf := AeEqFun.le_inf }
Diff
@@ -75,9 +75,9 @@ function space, almost everywhere equal, `L⁰`, ae_eq_fun
 
 noncomputable section
 
-open Classical Ennreal Topology
+open Classical ENNReal Topology
 
-open Set Filter TopologicalSpace Ennreal Emetric MeasureTheory Function
+open Set Filter TopologicalSpace ENNReal Emetric MeasureTheory Function
 
 variable {α β γ δ : Type _} [MeasurableSpace α] {μ ν : Measure α}
 
@@ -811,7 +811,7 @@ instance [Semiring 𝕜] [AddCommMonoid γ] [ContinuousAdd γ] [Module 𝕜 γ]
 
 end Module
 
-open Ennreal
+open ENNReal
 
 /-- For `f : α → ℝ≥0∞`, define `∫ [f]` to be `∫ f` -/
 def lintegral (f : α →ₘ[μ] ℝ≥0∞) : ℝ≥0∞ :=

Changes in mathlib4

mathlib3
mathlib4
chore: remove mathport name: <expression> lines (#11928)

Quoting [@digama0](https://github.com/digama0):

These were actually never meant to go in the file, they are basically debugging information and only useful on significantly broken mathport files. You can safely remove all of them.

Diff
@@ -106,7 +106,6 @@ def AEEqFun (μ : Measure α) : Type _ :=
 
 variable {α β}
 
--- mathport name: «expr →ₘ[ ] »
 @[inherit_doc MeasureTheory.AEEqFun]
 notation:25 α " →ₘ[" μ "] " β => AEEqFun α β μ
 
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -86,7 +86,6 @@ namespace MeasureTheory
 section MeasurableSpace
 
 variable [TopologicalSpace β]
-
 variable (β)
 
 /-- The equivalence relation of being almost everywhere equal for almost everywhere strongly
@@ -652,9 +651,7 @@ theorem one_toGerm [One β] : (1 : α →ₘ[μ] β).toGerm = 1 :=
 section SMul
 
 variable {𝕜 𝕜' : Type*}
-
 variable [SMul 𝕜 γ] [ContinuousConstSMul 𝕜 γ]
-
 variable [SMul 𝕜' γ] [ContinuousConstSMul 𝕜' γ]
 
 instance instSMul : SMul 𝕜 (α →ₘ[μ] γ) :=
@@ -979,7 +976,6 @@ namespace ContinuousMap
 open MeasureTheory
 
 variable [TopologicalSpace α] [BorelSpace α] (μ)
-
 variable [TopologicalSpace β] [SecondCountableTopologyEither α β] [PseudoMetrizableSpace β]
 
 /-- The equivalence class of `μ`-almost-everywhere measurable functions associated to a continuous
@@ -1007,7 +1003,6 @@ def toAEEqFunMulHom : C(α, β) →* α →ₘ[μ] β where
 #align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.toAEEqFunAddHom
 
 variable {𝕜 : Type*} [Semiring 𝕜]
-
 variable [TopologicalSpace γ] [PseudoMetrizableSpace γ] [AddCommGroup γ] [Module 𝕜 γ]
   [TopologicalAddGroup γ] [ContinuousConstSMul 𝕜 γ] [SecondCountableTopologyEither α γ]
 
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -74,7 +74,8 @@ set_option autoImplicit true
 
 noncomputable section
 
-open Classical ENNReal Topology
+open scoped Classical
+open ENNReal Topology
 
 open Set Filter TopologicalSpace ENNReal EMetric MeasureTheory Function
 
refactor: Multiplicativise abs (#9553)

The current design for abs is flawed:

  • The Abs notation typeclass has exactly two instances: one for [Neg α] [Sup α], one for [Inv α] [Sup α]. This means that:
    • We can't write a meaningful hover for Abs.abs
    • Fields have two Abs instances!
  • We have the multiplicative definition but:
    • All the lemmas in Algebra.Order.Group.Abs are about the additive version.
    • The only lemmas about the multiplicative version are in Algebra.Order.Group.PosPart, and they get additivised to duplicates of the lemmas in Algebra.Order.Group.Abs!

This PR changes the notation typeclass with two new definitions (related through to_additive): mabs and abs. abs inherits the |a| notation and mabs gets |a|ₘ instead.

The first half of Algebra.Order.Group.Abs gets multiplicativised. A later PR will multiplicativise the second half, and another one will deduplicate the lemmas in Algebra.Order.Group.PosPart.

Part of #9411.

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com>

Diff
@@ -939,7 +939,7 @@ section Abs
 
 theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β] [AddGroup β]
     [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑|f| =ᵐ[μ] fun x => |f x| := by
-  simp_rw [abs_eq_sup_neg]
+  simp_rw [abs]
   filter_upwards [AEEqFun.coeFn_sup f (-f), AEEqFun.coeFn_neg f] with x hx_sup hx_neg
   rw [hx_sup, hx_neg, Pi.neg_apply]
 #align measure_theory.ae_eq_fun.coe_fn_abs MeasureTheory.AEEqFun.coeFn_abs
chore(*): drop $/<| before fun (#9361)

Subset of #9319

Diff
@@ -220,7 +220,7 @@ open MeasureTheory.Measure (QuasiMeasurePreserving)
 See also `AEEqFun.compMeasurePreserving`. -/
 def compQuasiMeasurePreserving (g : β →ₘ[ν] γ) (f : α → β) (hf : QuasiMeasurePreserving f μ ν) :
     α →ₘ[μ] γ :=
-  Quotient.liftOn' g (fun g ↦ mk (g ∘ f) <| g.2.comp_quasiMeasurePreserving hf) <| fun _ _ h ↦
+  Quotient.liftOn' g (fun g ↦ mk (g ∘ f) <| g.2.comp_quasiMeasurePreserving hf) fun _ _ h ↦
     mk_eq_mk.2 <| h.comp_tendsto hf.tendsto_ae
 
 @[simp]
chore: Nsmul -> NSMul, Zpow -> ZPow, etc (#9067)

Normalising to naming convention rule number 6.

Diff
@@ -835,7 +835,7 @@ theorem div_toGerm (f g : α →ₘ[μ] γ) : (f / g).toGerm = f.toGerm / g.toGe
 
 end Div
 
-section Zpow
+section ZPow
 
 instance instPowInt : Pow (α →ₘ[μ] γ) ℤ :=
   ⟨fun f n => comp _ (continuous_zpow n) f⟩
@@ -856,7 +856,7 @@ theorem zpow_toGerm (f : α →ₘ[μ] γ) (n : ℤ) : (f ^ n).toGerm = f.toGerm
   comp_toGerm _ _ _
 #align measure_theory.ae_eq_fun.zpow_to_germ MeasureTheory.AEEqFun.zpow_toGerm
 
-end Zpow
+end ZPow
 
 end Group
 
chore: Replace (· op ·) a by (a op ·) (#8843)

I used the regex \(\(· (.) ·\) (.)\), replacing with ($2 $1 ·).

Diff
@@ -657,7 +657,7 @@ variable [SMul 𝕜 γ] [ContinuousConstSMul 𝕜 γ]
 variable [SMul 𝕜' γ] [ContinuousConstSMul 𝕜' γ]
 
 instance instSMul : SMul 𝕜 (α →ₘ[μ] γ) :=
-  ⟨fun c f => comp ((· • ·) c) (continuous_id.const_smul c) f⟩
+  ⟨fun c f => comp (c • ·) (continuous_id.const_smul c) f⟩
 #align measure_theory.ae_eq_fun.has_smul MeasureTheory.AEEqFun.instSMul
 
 @[simp]
perf (Filter.Germ): direct inheritance patterns for instances (#7540)

We replace uses of Function.Surjective.x with terms constructed using direct inheritance from parents.

Diff
@@ -866,8 +866,7 @@ instance instAddGroup [AddGroup γ] [TopologicalAddGroup γ] : AddGroup (α →
 #align measure_theory.ae_eq_fun.add_group MeasureTheory.AEEqFun.instAddGroup
 
 instance instAddCommGroup [AddCommGroup γ] [TopologicalAddGroup γ] : AddCommGroup (α →ₘ[μ] γ) :=
-  toGerm_injective.addCommGroup toGerm zero_toGerm add_toGerm neg_toGerm sub_toGerm
-    (fun _ _ => smul_toGerm _ _) fun _ _ => smul_toGerm _ _
+  { add_comm := add_comm }
 #align measure_theory.ae_eq_fun.add_comm_group MeasureTheory.AEEqFun.instAddCommGroup
 
 @[to_additive existing]
@@ -877,7 +876,7 @@ instance instGroup [Group γ] [TopologicalGroup γ] : Group (α →ₘ[μ] γ) :
 
 @[to_additive existing]
 instance instCommGroup [CommGroup γ] [TopologicalGroup γ] : CommGroup (α →ₘ[μ] γ) :=
-  toGerm_injective.commGroup _ one_toGerm mul_toGerm inv_toGerm div_toGerm pow_toGerm zpow_toGerm
+  { mul_comm := mul_comm }
 #align measure_theory.ae_eq_fun.comm_group MeasureTheory.AEEqFun.instCommGroup
 
 section Module
feat: the product of Borel spaces is Borel when either of them is second-countable (#6689)

We have currently that the product of two Borel spaces is Borel when both of them are second-countable. It is in fact sufficient to assume that only one of them is second-countable. We prove this in this PR.

Also move the definition of SecondCountableEither from Function.StronglyMeasurable to BorelSpace.Basic to be able to use it in the statement of the above theorem.

Diff
@@ -390,8 +390,8 @@ theorem coeFn_comp₂ (g : β → γ → δ) (hg : Continuous (uncurry g)) (f₁
 
 section
 
-variable [MeasurableSpace β] [PseudoMetrizableSpace β] [BorelSpace β] [SecondCountableTopology β]
-  [MeasurableSpace γ] [PseudoMetrizableSpace γ] [BorelSpace γ] [SecondCountableTopology γ]
+variable [MeasurableSpace β] [PseudoMetrizableSpace β] [BorelSpace β]
+  [MeasurableSpace γ] [PseudoMetrizableSpace γ] [BorelSpace γ] [SecondCountableTopologyEither β γ]
   [MeasurableSpace δ] [PseudoMetrizableSpace δ] [OpensMeasurableSpace δ] [SecondCountableTopology δ]
 
 /-- Given a measurable function `g : β → γ → δ`, and almost everywhere equal functions
@@ -468,8 +468,8 @@ theorem comp₂_toGerm (g : β → γ → δ) (hg : Continuous (uncurry g)) (f
   induction_on₂ f₁ f₂ fun f₁ _ f₂ _ => by simp
 #align measure_theory.ae_eq_fun.comp₂_to_germ MeasureTheory.AEEqFun.comp₂_toGerm
 
-theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [SecondCountableTopology β]
-    [MeasurableSpace β] [BorelSpace β] [PseudoMetrizableSpace γ] [SecondCountableTopology γ]
+theorem comp₂Measurable_toGerm [PseudoMetrizableSpace β] [MeasurableSpace β] [BorelSpace β]
+    [PseudoMetrizableSpace γ] [SecondCountableTopologyEither β γ]
     [MeasurableSpace γ] [BorelSpace γ] [PseudoMetrizableSpace δ] [SecondCountableTopology δ]
     [MeasurableSpace δ] [OpensMeasurableSpace δ] (g : β → γ → δ) (hg : Measurable (uncurry g))
     (f₁ : α →ₘ[μ] β) (f₂ : α →ₘ[μ] γ) :
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -69,6 +69,8 @@ function space, almost everywhere equal, `L⁰`, ae_eq_fun
 
 -/
 
+set_option autoImplicit true
+
 
 noncomputable section
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -76,7 +76,7 @@ open Classical ENNReal Topology
 
 open Set Filter TopologicalSpace ENNReal EMetric MeasureTheory Function
 
-variable {α β γ δ : Type _} [MeasurableSpace α] {μ ν : Measure α}
+variable {α β γ δ : Type*} [MeasurableSpace α] {μ ν : Measure α}
 
 namespace MeasureTheory
 
@@ -116,7 +116,7 @@ variable [TopologicalSpace β] [TopologicalSpace γ] [TopologicalSpace δ]
 
 /-- Construct the equivalence class `[f]` of an almost everywhere measurable function `f`, based
     on the equivalence relation of being almost everywhere equal. -/
-def mk {β : Type _} [TopologicalSpace β] (f : α → β) (hf : AEStronglyMeasurable f μ) : α →ₘ[μ] β :=
+def mk {β : Type*} [TopologicalSpace β] (f : α → β) (hf : AEStronglyMeasurable f μ) : α →ₘ[μ] β :=
   Quotient.mk'' ⟨f, hf⟩
 #align measure_theory.ae_eq_fun.mk MeasureTheory.AEEqFun.mk
 
@@ -188,15 +188,15 @@ theorem induction_on (f : α →ₘ[μ] β) {p : (α →ₘ[μ] β) → Prop} (H
 #align measure_theory.ae_eq_fun.induction_on MeasureTheory.AEEqFun.induction_on
 
 @[elab_as_elim]
-theorem induction_on₂ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
+theorem induction_on₂ {α' β' : Type*} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
     (f : α →ₘ[μ] β) (f' : α' →ₘ[μ'] β') {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → Prop}
     (H : ∀ f hf f' hf', p (mk f hf) (mk f' hf')) : p f f' :=
   induction_on f fun f hf => induction_on f' <| H f hf
 #align measure_theory.ae_eq_fun.induction_on₂ MeasureTheory.AEEqFun.induction_on₂
 
 @[elab_as_elim]
-theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
-    {α'' β'' : Type _} [MeasurableSpace α''] [TopologicalSpace β''] {μ'' : Measure α''}
+theorem induction_on₃ {α' β' : Type*} [MeasurableSpace α'] [TopologicalSpace β'] {μ' : Measure α'}
+    {α'' β'' : Type*} [MeasurableSpace α''] [TopologicalSpace β''] {μ'' : Measure α''}
     (f : α →ₘ[μ] β) (f' : α' →ₘ[μ'] β') (f'' : α'' →ₘ[μ''] β'')
     {p : (α →ₘ[μ] β) → (α' →ₘ[μ'] β') → (α'' →ₘ[μ''] β'') → Prop}
     (H : ∀ f hf f' hf' f'' hf'', p (mk f hf) (mk f' hf') (mk f'' hf'')) : p f f' f'' :=
@@ -648,7 +648,7 @@ theorem one_toGerm [One β] : (1 : α →ₘ[μ] β).toGerm = 1 :=
 -- try to override the `nsmul` or `zsmul` fields in future.
 section SMul
 
-variable {𝕜 𝕜' : Type _}
+variable {𝕜 𝕜' : Type*}
 
 variable [SMul 𝕜 γ] [ContinuousConstSMul 𝕜 γ]
 
@@ -880,7 +880,7 @@ instance instCommGroup [CommGroup γ] [TopologicalGroup γ] : CommGroup (α →
 
 section Module
 
-variable {𝕜 : Type _}
+variable {𝕜 : Type*}
 
 instance instMulAction [Monoid 𝕜] [MulAction 𝕜 γ] [ContinuousConstSMul 𝕜 γ] :
     MulAction 𝕜 (α →ₘ[μ] γ) :=
@@ -1004,7 +1004,7 @@ def toAEEqFunMulHom : C(α, β) →* α →ₘ[μ] β where
 #align continuous_map.to_ae_eq_fun_mul_hom ContinuousMap.toAEEqFunMulHom
 #align continuous_map.to_ae_eq_fun_add_hom ContinuousMap.toAEEqFunAddHom
 
-variable {𝕜 : Type _} [Semiring 𝕜]
+variable {𝕜 : Type*} [Semiring 𝕜]
 
 variable [TopologicalSpace γ] [PseudoMetrizableSpace γ] [AddCommGroup γ] [Module 𝕜 γ]
   [TopologicalAddGroup γ] [ContinuousConstSMul 𝕜 γ] [SecondCountableTopologyEither α γ]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2019 Johannes Hölzl, Zhouhang Zhou. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Johannes Hölzl, Zhouhang Zhou
-
-! This file was ported from Lean 3 source module measure_theory.function.ae_eq_fun
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Integral.Lebesgue
 import Mathlib.Order.Filter.Germ
 import Mathlib.Topology.ContinuousFunction.Algebra
 import Mathlib.MeasureTheory.Function.StronglyMeasurable.Basic
 
+#align_import measure_theory.function.ae_eq_fun from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 
 # Almost everywhere equal functions
fix: precedence of , and abs (#5619)
Diff
@@ -940,7 +940,7 @@ theorem lintegral_mono {f g : α →ₘ[μ] ℝ≥0∞} : f ≤ g → lintegral
 section Abs
 
 theorem coeFn_abs {β} [TopologicalSpace β] [Lattice β] [TopologicalLattice β] [AddGroup β]
-    [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑(|f|) =ᵐ[μ] fun x => |f x| := by
+    [TopologicalAddGroup β] (f : α →ₘ[μ] β) : ⇑|f| =ᵐ[μ] fun x => |f x| := by
   simp_rw [abs_eq_sup_neg]
   filter_upwards [AEEqFun.coeFn_sup f (-f), AEEqFun.coeFn_neg f] with x hx_sup hx_neg
   rw [hx_sup, hx_neg, Pi.neg_apply]
feat: define composition of an AEEqFun with a (quasi)measure preserving function (#5217)
Diff
@@ -206,6 +206,71 @@ theorem induction_on₃ {α' β' : Type _} [MeasurableSpace α'] [TopologicalSpa
   induction_on f fun f hf => induction_on₂ f' f'' <| H f hf
 #align measure_theory.ae_eq_fun.induction_on₃ MeasureTheory.AEEqFun.induction_on₃
 
+/-!
+### Composition of an a.e. equal function with a (quasi) measure preserving function
+-/
+
+section compQuasiMeasurePreserving
+
+variable [MeasurableSpace β] {ν : MeasureTheory.Measure β} {f : α → β}
+
+open MeasureTheory.Measure (QuasiMeasurePreserving)
+
+/-- Composition of an almost everywhere equal function and a quasi measure preserving function.
+
+See also `AEEqFun.compMeasurePreserving`. -/
+def compQuasiMeasurePreserving (g : β →ₘ[ν] γ) (f : α → β) (hf : QuasiMeasurePreserving f μ ν) :
+    α →ₘ[μ] γ :=
+  Quotient.liftOn' g (fun g ↦ mk (g ∘ f) <| g.2.comp_quasiMeasurePreserving hf) <| fun _ _ h ↦
+    mk_eq_mk.2 <| h.comp_tendsto hf.tendsto_ae
+
+@[simp]
+theorem compQuasiMeasurePreserving_mk {g : β → γ} (hg : AEStronglyMeasurable g ν)
+    (hf : QuasiMeasurePreserving f μ ν) :
+    (mk g hg).compQuasiMeasurePreserving f hf = mk (g ∘ f) (hg.comp_quasiMeasurePreserving hf) :=
+  rfl
+
+theorem compQuasiMeasurePreserving_eq_mk (g : β →ₘ[ν] γ) (hf : QuasiMeasurePreserving f μ ν) :
+    g.compQuasiMeasurePreserving f hf =
+      mk (g ∘ f) (g.aestronglyMeasurable.comp_quasiMeasurePreserving hf) := by
+  rw [← compQuasiMeasurePreserving_mk g.aestronglyMeasurable hf, mk_coeFn]
+
+theorem coeFn_compQuasiMeasurePreserving (g : β →ₘ[ν] γ) (hf : QuasiMeasurePreserving f μ ν) :
+    g.compQuasiMeasurePreserving f hf =ᵐ[μ] g ∘ f := by
+  rw [compQuasiMeasurePreserving_eq_mk]
+  apply coeFn_mk
+
+end compQuasiMeasurePreserving
+
+section compMeasurePreserving
+
+variable [MeasurableSpace β] {ν : MeasureTheory.Measure β}
+
+/-- Composition of an almost everywhere equal function and a quasi measure preserving function.
+
+This is an important special case of `AEEqFun.compQuasiMeasurePreserving`. We use a separate
+definition so that lemmas that need `f` to be measure preserving can be `@[simp]` lemmas.  -/
+def compMeasurePreserving (g : β →ₘ[ν] γ) (f : α → β) (hf : MeasurePreserving f μ ν) : α →ₘ[μ] γ :=
+  g.compQuasiMeasurePreserving f hf.quasiMeasurePreserving
+
+@[simp]
+theorem compMeasurePreserving_mk {g : β → γ} (hg : AEStronglyMeasurable g ν)
+    (hf : MeasurePreserving f μ ν) :
+    (mk g hg).compMeasurePreserving f hf =
+      mk (g ∘ f) (hg.comp_quasiMeasurePreserving hf.quasiMeasurePreserving) :=
+  rfl
+
+theorem compMeasurePreserving_eq_mk (g : β →ₘ[ν] γ) (hf : MeasurePreserving f μ ν) :
+    g.compMeasurePreserving f hf =
+      mk (g ∘ f) (g.aestronglyMeasurable.comp_quasiMeasurePreserving hf.quasiMeasurePreserving) :=
+  g.compQuasiMeasurePreserving_eq_mk _
+
+theorem coeFn_compMeasurePreserving (g : β →ₘ[ν] γ) (hf : MeasurePreserving f μ ν) :
+    g.compMeasurePreserving f hf =ᵐ[μ] g ∘ f :=
+  g.coeFn_compQuasiMeasurePreserving _
+
+end compMeasurePreserving
+
 /-- Given a continuous function `g : β → γ`, and an almost everywhere equal function `[f] : α →ₘ β`,
     return the equivalence class of `g ∘ f`, i.e., the almost everywhere equal function
     `[g ∘ f] : α →ₘ γ`. -/
chore: remove superfluous parentheses around integrals (#5591)
Diff
@@ -850,7 +850,7 @@ theorem lintegral_mk (f : α → ℝ≥0∞) (hf) : (mk f hf : α →ₘ[μ] ℝ
   rfl
 #align measure_theory.ae_eq_fun.lintegral_mk MeasureTheory.AEEqFun.lintegral_mk
 
-theorem lintegral_coeFn (f : α →ₘ[μ] ℝ≥0∞) : (∫⁻ a, f a ∂μ) = f.lintegral := by
+theorem lintegral_coeFn (f : α →ₘ[μ] ℝ≥0∞) : ∫⁻ a, f a ∂μ = f.lintegral := by
   rw [← lintegral_mk, mk_coeFn]
 #align measure_theory.ae_eq_fun.lintegral_coe_fn MeasureTheory.AEEqFun.lintegral_coeFn
 
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -482,7 +482,7 @@ protected theorem le_sup_right (f g : α →ₘ[μ] β) : g ≤ f ⊔ g := by
 #align measure_theory.ae_eq_fun.le_sup_right MeasureTheory.AEEqFun.le_sup_right
 
 protected theorem sup_le (f g f' : α →ₘ[μ] β) (hf : f ≤ f') (hg : g ≤ f') : f ⊔ g ≤ f' := by
-  rw [← coeFn_le] at hf hg⊢
+  rw [← coeFn_le] at hf hg ⊢
   filter_upwards [hf, hg, coeFn_sup f g] with _ haf hag ha_sup
   rw [ha_sup]
   exact sup_le haf hag
@@ -516,7 +516,7 @@ protected theorem inf_le_right (f g : α →ₘ[μ] β) : f ⊓ g ≤ g := by
 #align measure_theory.ae_eq_fun.inf_le_right MeasureTheory.AEEqFun.inf_le_right
 
 protected theorem le_inf (f' f g : α →ₘ[μ] β) (hf : f' ≤ f) (hg : f' ≤ g) : f' ≤ f ⊓ g := by
-  rw [← coeFn_le] at hf hg⊢
+  rw [← coeFn_le] at hf hg ⊢
   filter_upwards [hf, hg, coeFn_inf f g] with _ haf hag ha_inf
   rw [ha_inf]
   exact le_inf haf hag
chore: convert lambda in docs to fun (#5045)

Found with git grep -n "λ [a-zA-Z_ ]*,"

Diff
@@ -62,7 +62,7 @@ See `L1Space.lean` for `L¹` space.
 * `comp`         : Use `comp g f` to get `[g ∘ f]` from `g : β → γ` and `[f] : α →ₘ γ` when `g` is
                  continuous. Use `comp_measurable` if `g` is only measurable (this requires the
                  target space to be second countable).
-* `comp₂`        : Use `comp₂ g f₁ f₂ to get `[λ a, g (f₁ a) (f₂ a)]`.
+* `comp₂`        : Use `comp₂ g f₁ f₂` to get `[fun a ↦ g (f₁ a) (f₂ a)]`.
                  For example, `[f + g]` is `comp₂ (+)`
 
 
chore: fix many typos (#4967)

These are all doc fixes

Diff
@@ -930,7 +930,7 @@ theorem coeFn_toAEEqFun (f : C(α, β)) : f.toAEEqFun μ =ᵐ[μ] f :=
 
 variable [Group β] [TopologicalGroup β]
 
-/-- The `MulFom` from the group of continuous maps from `α` to `β` to the group of equivalence
+/-- The `MulHom` from the group of continuous maps from `α` to `β` to the group of equivalence
 classes of `μ`-almost-everywhere measurable functions. -/
 @[to_additive "The `AddHom` from the group of continuous maps from `α` to `β` to the group of
 equivalence classes of `μ`-almost-everywhere measurable functions."]
feat: port MeasureTheory.Function.AEEqFun (#4286)

Dependencies 12 + 866

867 files ported (98.6%)
392754 lines ported (98.6%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file