measure_theory.function.ae_measurable_orderMathlib.MeasureTheory.Function.AEMeasurableOrder

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -61,7 +61,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
     · refine'
         ⟨univ, univ, MeasurableSet.univ, MeasurableSet.univ, subset_univ _, subset_univ _,
           fun ps qs pq => _⟩
-      simp only [not_and] at H 
+      simp only [not_and] at H
       exact (H ps qs pq).elim
   choose! u v huv using h'
   let u' : β → Set α := fun p => ⋂ q ∈ s ∩ Ioi p, u p q
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 -/
-import Mathbin.MeasureTheory.Constructions.BorelSpace.Basic
+import MeasureTheory.Constructions.BorelSpace.Basic
 
 #align_import measure_theory.function.ae_measurable_order from "leanprover-community/mathlib"@"4280f5f32e16755ec7985ce11e189b6cd6ff6735"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-
-! This file was ported from Lean 3 source module measure_theory.function.ae_measurable_order
-! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Constructions.BorelSpace.Basic
 
+#align_import measure_theory.function.ae_measurable_order from "leanprover-community/mathlib"@"4280f5f32e16755ec7985ce11e189b6cd6ff6735"
+
 /-!
 # Measurability criterion for ennreal-valued functions
 
Diff
@@ -33,6 +33,7 @@ open MeasureTheory Set TopologicalSpace
 
 open scoped Classical ENNReal NNReal
 
+#print MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets /-
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
 measurable. It is even enough to have this for `p` and `q` in a countable dense set. -/
@@ -120,7 +121,9 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
       simp only [A, rq, piecewise_eq_of_mem, Subtype.coe_mk]
   exact ⟨f', f'_meas, ff'⟩
 #align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets
+-/
 
+#print ENNReal.aemeasurable_of_exist_almost_disjoint_supersets /-
 /-- If a function `f : α → ℝ≥0∞` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
 `p < q`, then `f` is almost-everywhere measurable. -/
@@ -144,4 +147,5 @@ theorem ENNReal.aemeasurable_of_exist_almost_disjoint_supersets {α : Type _} {m
   lift q to ℝ≥0 using I q hq
   exact h p q (ENNReal.coe_lt_coe.1 hpq)
 #align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aemeasurable_of_exist_almost_disjoint_supersets
+-/
 
Diff
@@ -91,7 +91,6 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
       _ = ∑' (p : s) (q : s ∩ Ioi p), (0 : ℝ≥0∞) := by congr; ext1 p; congr; ext1 q;
         exact (huv p q).2.2.2.2 p.2 q.2.1 q.2.2
       _ = 0 := by simp only [tsum_zero]
-      
   have ff' : ∀ᵐ x ∂μ, f x = f' x :=
     by
     have : ∀ᵐ x ∂μ, x ∉ t := by
Diff
@@ -46,7 +46,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
           p < q →
             ∃ u v,
               MeasurableSet u ∧
-                MeasurableSet v ∧ { x | f x < p } ⊆ u ∧ { x | q < f x } ⊆ v ∧ μ (u ∩ v) = 0) :
+                MeasurableSet v ∧ {x | f x < p} ⊆ u ∧ {x | q < f x} ⊆ v ∧ μ (u ∩ v) = 0) :
     AEMeasurable f μ := by
   haveI : Encodable s := s_count.to_encodable
   have h' :
@@ -54,7 +54,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
       ∃ u v,
         MeasurableSet u ∧
           MeasurableSet v ∧
-            { x | f x < p } ⊆ u ∧ { x | q < f x } ⊆ v ∧ (p ∈ s → q ∈ s → p < q → μ (u ∩ v) = 0) :=
+            {x | f x < p} ⊆ u ∧ {x | q < f x} ⊆ v ∧ (p ∈ s → q ∈ s → p < q → μ (u ∩ v) = 0) :=
     by
     intro p q
     by_cases H : p ∈ s ∧ q ∈ s ∧ p < q
@@ -100,7 +100,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
       convert this
       ext y
       simp only [not_exists, exists_prop, mem_set_of_eq, mem_compl_iff, not_not_mem]
-    filter_upwards [this]with x hx
+    filter_upwards [this] with x hx
     apply (iInf_eq_of_forall_ge_of_forall_gt_exists_lt _ _).symm
     · intro i
       by_cases H : x ∈ u' i
@@ -132,8 +132,7 @@ theorem ENNReal.aemeasurable_of_exist_almost_disjoint_supersets {α : Type _} {m
         p < q →
           ∃ u v,
             MeasurableSet u ∧
-              MeasurableSet v ∧
-                { x | f x < p } ⊆ u ∧ { x | (q : ℝ≥0∞) < f x } ⊆ v ∧ μ (u ∩ v) = 0) :
+              MeasurableSet v ∧ {x | f x < p} ⊆ u ∧ {x | (q : ℝ≥0∞) < f x} ⊆ v ∧ μ (u ∩ v) = 0) :
     AEMeasurable f μ :=
   by
   obtain ⟨s, s_count, s_dense, s_zero, s_top⟩ :
Diff
@@ -63,7 +63,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
     · refine'
         ⟨univ, univ, MeasurableSet.univ, MeasurableSet.univ, subset_univ _, subset_univ _,
           fun ps qs pq => _⟩
-      simp only [not_and] at H
+      simp only [not_and] at H 
       exact (H ps qs pq).elim
   choose! u v huv using h'
   let u' : β → Set α := fun p => ⋂ q ∈ s ∩ Ioi p, u p q
@@ -88,7 +88,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
         apply ENNReal.tsum_le_tsum fun p => _
         refine' ENNReal.tsum_le_tsum fun q => measure_mono _
         exact inter_subset_inter_left _ (bInter_subset_of_mem q.2)
-      _ = ∑' (p : s) (q : s ∩ Ioi p), (0 : ℝ≥0∞) := by congr ; ext1 p; congr ; ext1 q;
+      _ = ∑' (p : s) (q : s ∩ Ioi p), (0 : ℝ≥0∞) := by congr; ext1 p; congr; ext1 q;
         exact (huv p q).2.2.2.2 p.2 q.2.1 q.2.2
       _ = 0 := by simp only [tsum_zero]
       
Diff
@@ -31,7 +31,7 @@ as possible.
 
 open MeasureTheory Set TopologicalSpace
 
-open Classical ENNReal NNReal
+open scoped Classical ENNReal NNReal
 
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
Diff
@@ -33,9 +33,6 @@ open MeasureTheory Set TopologicalSpace
 
 open Classical ENNReal NNReal
 
-/- warning: measure_theory.ae_measurable_of_exist_almost_disjoint_supersets -> MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersetsₓ'. -/
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
 measurable. It is even enough to have this for `p` and `q` in a countable dense set. -/
@@ -125,9 +122,6 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
   exact ⟨f', f'_meas, ff'⟩
 #align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets
 
-/- warning: ennreal.ae_measurable_of_exist_almost_disjoint_supersets -> ENNReal.aemeasurable_of_exist_almost_disjoint_supersets is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aemeasurable_of_exist_almost_disjoint_supersetsₓ'. -/
 /-- If a function `f : α → ℝ≥0∞` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
 `p < q`, then `f` is almost-everywhere measurable. -/
Diff
@@ -91,12 +91,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
         apply ENNReal.tsum_le_tsum fun p => _
         refine' ENNReal.tsum_le_tsum fun q => measure_mono _
         exact inter_subset_inter_left _ (bInter_subset_of_mem q.2)
-      _ = ∑' (p : s) (q : s ∩ Ioi p), (0 : ℝ≥0∞) :=
-        by
-        congr
-        ext1 p
-        congr
-        ext1 q
+      _ = ∑' (p : s) (q : s ∩ Ioi p), (0 : ℝ≥0∞) := by congr ; ext1 p; congr ; ext1 q;
         exact (huv p q).2.2.2.2 p.2 q.2.1 q.2.2
       _ = 0 := by simp only [tsum_zero]
       
@@ -112,8 +107,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
     apply (iInf_eq_of_forall_ge_of_forall_gt_exists_lt _ _).symm
     · intro i
       by_cases H : x ∈ u' i
-      swap
-      · simp only [H, le_top, not_false_iff, piecewise_eq_of_not_mem]
+      swap; · simp only [H, le_top, not_false_iff, piecewise_eq_of_not_mem]
       simp only [H, piecewise_eq_of_mem]
       contrapose! hx
       obtain ⟨r, ⟨xr, rq⟩, rs⟩ : ∃ r, r ∈ Ioo (i : β) (f x) ∩ s :=
Diff
@@ -34,10 +34,7 @@ open MeasureTheory Set TopologicalSpace
 open Classical ENNReal NNReal
 
 /- warning: measure_theory.ae_measurable_of_exist_almost_disjoint_supersets -> MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {β : Type.{u2}} [_inst_1 : CompleteLinearOrder.{u2} β] [_inst_2 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1)))))] [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : OrderTopology.{u2} β _inst_3 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : MeasurableSpace.{u2} β] [_inst_7 : BorelSpace.{u2} β _inst_3 _inst_6] (s : Set.{u2} β), (Set.Countable.{u2} β s) -> (Dense.{u2} β _inst_3 s) -> (forall (f : α -> β), (forall (p : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) p s) -> (forall (q : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) q s) -> (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))) p q) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{succ u1} (Set.{u1} α) (fun (v : Set.{u1} α) => And (MeasurableSet.{u1} α m u) (And (MeasurableSet.{u1} α m v) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))) (f x) p)) u) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))) q (f x))) v) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))))))))) -> (AEMeasurable.{u1, u2} α β _inst_6 m f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {β : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} β] [_inst_2 : DenselyOrdered.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1)))))] [_inst_3 : TopologicalSpace.{u1} β] [_inst_4 : OrderTopology.{u1} β _inst_3 (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u1} β _inst_3] [_inst_6 : MeasurableSpace.{u1} β] [_inst_7 : BorelSpace.{u1} β _inst_3 _inst_6] (s : Set.{u1} β), (Set.Countable.{u1} β s) -> (Dense.{u1} β _inst_3 s) -> (forall (f : α -> β), (forall (p : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) p s) -> (forall (q : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) q s) -> (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))) p q) -> (Exists.{succ u2} (Set.{u2} α) (fun (u : Set.{u2} α) => Exists.{succ u2} (Set.{u2} α) (fun (v : Set.{u2} α) => And (MeasurableSet.{u2} α m u) (And (MeasurableSet.{u2} α m v) (And (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))) (f x) p)) u) (And (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))) q (f x))) v) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))))))))) -> (AEMeasurable.{u2, u1} α β _inst_6 m f μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersetsₓ'. -/
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
@@ -135,10 +132,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
 #align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets
 
 /- warning: ennreal.ae_measurable_of_exist_almost_disjoint_supersets -> ENNReal.aemeasurable_of_exist_almost_disjoint_supersets is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), (forall (p : NNReal) (q : NNReal), (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p q) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{succ u1} (Set.{u1} α) (fun (v : Set.{u1} α) => And (MeasurableSet.{u1} α m u) (And (MeasurableSet.{u1} α m v) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) p))) u) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) q) (f x))) v) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))))))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), (forall (p : NNReal) (q : NNReal), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) p q) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{succ u1} (Set.{u1} α) (fun (v : Set.{u1} α) => And (MeasurableSet.{u1} α m u) (And (MeasurableSet.{u1} α m v) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (ENNReal.some p))) u) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some q) (f x))) v) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))))))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aemeasurable_of_exist_almost_disjoint_supersetsₓ'. -/
 /-- If a function `f : α → ℝ≥0∞` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 
 ! This file was ported from Lean 3 source module measure_theory.function.ae_measurable_order
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
+! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.MeasureTheory.Constructions.BorelSpace.Basic
 /-!
 # Measurability criterion for ennreal-valued functions
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 Consider a function `f : α → ℝ≥0∞`. If the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
 `p < q`, then `f` is almost-everywhere measurable. This is proved in
Diff
@@ -30,10 +30,16 @@ open MeasureTheory Set TopologicalSpace
 
 open Classical ENNReal NNReal
 
+/- warning: measure_theory.ae_measurable_of_exist_almost_disjoint_supersets -> MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {β : Type.{u2}} [_inst_1 : CompleteLinearOrder.{u2} β] [_inst_2 : DenselyOrdered.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1)))))] [_inst_3 : TopologicalSpace.{u2} β] [_inst_4 : OrderTopology.{u2} β _inst_3 (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u2} β _inst_3] [_inst_6 : MeasurableSpace.{u2} β] [_inst_7 : BorelSpace.{u2} β _inst_3 _inst_6] (s : Set.{u2} β), (Set.Countable.{u2} β s) -> (Dense.{u2} β _inst_3 s) -> (forall (f : α -> β), (forall (p : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) p s) -> (forall (q : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) q s) -> (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))) p q) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{succ u1} (Set.{u1} α) (fun (v : Set.{u1} α) => And (MeasurableSet.{u1} α m u) (And (MeasurableSet.{u1} α m v) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))) (f x) p)) u) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β (CompleteLinearOrder.toCompleteLattice.{u2} β _inst_1))))) q (f x))) v) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))))))))) -> (AEMeasurable.{u1, u2} α β _inst_6 m f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) {β : Type.{u1}} [_inst_1 : CompleteLinearOrder.{u1} β] [_inst_2 : DenselyOrdered.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1)))))] [_inst_3 : TopologicalSpace.{u1} β] [_inst_4 : OrderTopology.{u1} β _inst_3 (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))] [_inst_5 : TopologicalSpace.SecondCountableTopology.{u1} β _inst_3] [_inst_6 : MeasurableSpace.{u1} β] [_inst_7 : BorelSpace.{u1} β _inst_3 _inst_6] (s : Set.{u1} β), (Set.Countable.{u1} β s) -> (Dense.{u1} β _inst_3 s) -> (forall (f : α -> β), (forall (p : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) p s) -> (forall (q : β), (Membership.mem.{u1, u1} β (Set.{u1} β) (Set.instMembershipSet.{u1} β) q s) -> (LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))) p q) -> (Exists.{succ u2} (Set.{u2} α) (fun (u : Set.{u2} α) => Exists.{succ u2} (Set.{u2} α) (fun (v : Set.{u2} α) => And (MeasurableSet.{u2} α m u) (And (MeasurableSet.{u2} α m v) (And (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))) (f x) p)) u) (And (HasSubset.Subset.{u2} (Set.{u2} α) (Set.instHasSubsetSet.{u2} α) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β (CompleteLinearOrder.toCompleteLattice.{u1} β _inst_1))))) q (f x))) v) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (Inter.inter.{u2} (Set.{u2} α) (Set.instInterSet.{u2} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))))))))) -> (AEMeasurable.{u2, u1} α β _inst_6 m f μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersetsₓ'. -/
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
 measurable. It is even enough to have this for `p` and `q` in a countable dense set. -/
-theorem MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type _}
+theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type _}
     {m : MeasurableSpace α} (μ : Measure α) {β : Type _} [CompleteLinearOrder β] [DenselyOrdered β]
     [TopologicalSpace β] [OrderTopology β] [SecondCountableTopology β] [MeasurableSpace β]
     [BorelSpace β] (s : Set β) (s_count : s.Countable) (s_dense : Dense s) (f : α → β)
@@ -123,12 +129,18 @@ theorem MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type
       have A : x ∈ u' r := mem_bInter fun i hi => (huv r i).2.2.1 xr
       simp only [A, rq, piecewise_eq_of_mem, Subtype.coe_mk]
   exact ⟨f', f'_meas, ff'⟩
-#align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets
+#align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets
 
+/- warning: ennreal.ae_measurable_of_exist_almost_disjoint_supersets -> ENNReal.aemeasurable_of_exist_almost_disjoint_supersets is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), (forall (p : NNReal) (q : NNReal), (LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) p q) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{succ u1} (Set.{u1} α) (fun (v : Set.{u1} α) => And (MeasurableSet.{u1} α m u) (And (MeasurableSet.{u1} α m v) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) p))) u) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) q) (f x))) v) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))))))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), (forall (p : NNReal) (q : NNReal), (LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) p q) -> (Exists.{succ u1} (Set.{u1} α) (fun (u : Set.{u1} α) => Exists.{succ u1} (Set.{u1} α) (fun (v : Set.{u1} α) => And (MeasurableSet.{u1} α m u) (And (MeasurableSet.{u1} α m v) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (ENNReal.some p))) u) (And (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some q) (f x))) v) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) u v)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))))))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ)
+Case conversion may be inaccurate. Consider using '#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aemeasurable_of_exist_almost_disjoint_supersetsₓ'. -/
 /-- If a function `f : α → ℝ≥0∞` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
 `p < q`, then `f` is almost-everywhere measurable. -/
-theorem ENNReal.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type _} {m : MeasurableSpace α}
+theorem ENNReal.aemeasurable_of_exist_almost_disjoint_supersets {α : Type _} {m : MeasurableSpace α}
     (μ : Measure α) (f : α → ℝ≥0∞)
     (h :
       ∀ (p : ℝ≥0) (q : ℝ≥0),
@@ -143,10 +155,10 @@ theorem ENNReal.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type _} {m
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s :=
     ENNReal.exists_countable_dense_no_zero_top
   have I : ∀ x ∈ s, x ≠ ∞ := fun x xs hx => s_top (hx ▸ xs)
-  apply MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets μ s s_count s_dense _
+  apply MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets μ s s_count s_dense _
   rintro p hp q hq hpq
   lift p to ℝ≥0 using I p hp
   lift q to ℝ≥0 using I q hq
   exact h p q (ENNReal.coe_lt_coe.1 hpq)
-#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aEMeasurable_of_exist_almost_disjoint_supersets
+#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aemeasurable_of_exist_almost_disjoint_supersets
 
Diff
@@ -4,11 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
 
 ! This file was ported from Lean 3 source module measure_theory.function.ae_measurable_order
-! leanprover-community/mathlib commit 951bf1d9e98a2042979ced62c0620bcfb3587cf8
+! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathbin.MeasureTheory.Constructions.BorelSpace
+import Mathbin.MeasureTheory.Constructions.BorelSpace.Basic
 
 /-!
 # Measurability criterion for ennreal-valued functions
Diff
@@ -66,10 +66,10 @@ theorem MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type
   let u' : β → Set α := fun p => ⋂ q ∈ s ∩ Ioi p, u p q
   have u'_meas : ∀ i, MeasurableSet (u' i) := by
     intro i
-    exact MeasurableSet.binterᵢ (s_count.mono (inter_subset_left _ _)) fun b hb => (huv i b).1
+    exact MeasurableSet.biInter (s_count.mono (inter_subset_left _ _)) fun b hb => (huv i b).1
   let f' : α → β := fun x => ⨅ i : s, piecewise (u' i) (fun x => (i : β)) (fun x => (⊤ : β)) x
   have f'_meas : Measurable f' := by
-    apply measurable_infᵢ
+    apply measurable_iInf
     exact fun i => Measurable.piecewise (u'_meas i) measurable_const measurable_const
   let t := ⋃ (p : s) (q : s ∩ Ioi p), u' p ∩ v p q
   have μt : μ t ≤ 0 :=
@@ -103,7 +103,7 @@ theorem MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type
       ext y
       simp only [not_exists, exists_prop, mem_set_of_eq, mem_compl_iff, not_not_mem]
     filter_upwards [this]with x hx
-    apply (infᵢ_eq_of_forall_ge_of_forall_gt_exists_lt _ _).symm
+    apply (iInf_eq_of_forall_ge_of_forall_gt_exists_lt _ _).symm
     · intro i
       by_cases H : x ∈ u' i
       swap
Diff
@@ -33,7 +33,7 @@ open Classical ENNReal NNReal
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
 measurable. It is even enough to have this for `p` and `q` in a countable dense set. -/
-theorem MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _}
+theorem MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type _}
     {m : MeasurableSpace α} (μ : Measure α) {β : Type _} [CompleteLinearOrder β] [DenselyOrdered β]
     [TopologicalSpace β] [OrderTopology β] [SecondCountableTopology β] [MeasurableSpace β]
     [BorelSpace β] (s : Set β) (s_count : s.Countable) (s_dense : Dense s) (f : α → β)
@@ -44,7 +44,7 @@ theorem MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _}
             ∃ u v,
               MeasurableSet u ∧
                 MeasurableSet v ∧ { x | f x < p } ⊆ u ∧ { x | q < f x } ⊆ v ∧ μ (u ∩ v) = 0) :
-    AeMeasurable f μ := by
+    AEMeasurable f μ := by
   haveI : Encodable s := s_count.to_encodable
   have h' :
     ∀ p q,
@@ -123,12 +123,12 @@ theorem MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _}
       have A : x ∈ u' r := mem_bInter fun i hi => (huv r i).2.2.1 xr
       simp only [A, rq, piecewise_eq_of_mem, Subtype.coe_mk]
   exact ⟨f', f'_meas, ff'⟩
-#align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets
+#align measure_theory.ae_measurable_of_exist_almost_disjoint_supersets MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets
 
 /-- If a function `f : α → ℝ≥0∞` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
 `p < q`, then `f` is almost-everywhere measurable. -/
-theorem ENNReal.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _} {m : MeasurableSpace α}
+theorem ENNReal.aEMeasurable_of_exist_almost_disjoint_supersets {α : Type _} {m : MeasurableSpace α}
     (μ : Measure α) (f : α → ℝ≥0∞)
     (h :
       ∀ (p : ℝ≥0) (q : ℝ≥0),
@@ -137,16 +137,16 @@ theorem ENNReal.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _} {m : Me
             MeasurableSet u ∧
               MeasurableSet v ∧
                 { x | f x < p } ⊆ u ∧ { x | (q : ℝ≥0∞) < f x } ⊆ v ∧ μ (u ∩ v) = 0) :
-    AeMeasurable f μ :=
+    AEMeasurable f μ :=
   by
   obtain ⟨s, s_count, s_dense, s_zero, s_top⟩ :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s :=
     ENNReal.exists_countable_dense_no_zero_top
   have I : ∀ x ∈ s, x ≠ ∞ := fun x xs hx => s_top (hx ▸ xs)
-  apply MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets μ s s_count s_dense _
+  apply MeasureTheory.aEMeasurable_of_exist_almost_disjoint_supersets μ s s_count s_dense _
   rintro p hp q hq hpq
   lift p to ℝ≥0 using I p hp
   lift q to ℝ≥0 using I q hq
   exact h p q (ENNReal.coe_lt_coe.1 hpq)
-#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aeMeasurableOfExistAlmostDisjointSupersets
+#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aEMeasurable_of_exist_almost_disjoint_supersets
 
Diff
@@ -28,7 +28,7 @@ as possible.
 
 open MeasureTheory Set TopologicalSpace
 
-open Classical Ennreal NNReal
+open Classical ENNReal NNReal
 
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
@@ -77,13 +77,13 @@ theorem MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _}
       μ t ≤ ∑' (p : s) (q : s ∩ Ioi p), μ (u' p ∩ v p q) :=
         by
         refine' (measure_Union_le _).trans _
-        apply Ennreal.tsum_le_tsum fun p => _
+        apply ENNReal.tsum_le_tsum fun p => _
         apply measure_Union_le _
         exact (s_count.mono (inter_subset_left _ _)).to_subtype
       _ ≤ ∑' (p : s) (q : s ∩ Ioi p), μ (u p q ∩ v p q) :=
         by
-        apply Ennreal.tsum_le_tsum fun p => _
-        refine' Ennreal.tsum_le_tsum fun q => measure_mono _
+        apply ENNReal.tsum_le_tsum fun p => _
+        refine' ENNReal.tsum_le_tsum fun q => measure_mono _
         exact inter_subset_inter_left _ (bInter_subset_of_mem q.2)
       _ = ∑' (p : s) (q : s ∩ Ioi p), (0 : ℝ≥0∞) :=
         by
@@ -128,7 +128,7 @@ theorem MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _}
 /-- If a function `f : α → ℝ≥0∞` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
 `p < q`, then `f` is almost-everywhere measurable. -/
-theorem Ennreal.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _} {m : MeasurableSpace α}
+theorem ENNReal.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _} {m : MeasurableSpace α}
     (μ : Measure α) (f : α → ℝ≥0∞)
     (h :
       ∀ (p : ℝ≥0) (q : ℝ≥0),
@@ -141,12 +141,12 @@ theorem Ennreal.aeMeasurableOfExistAlmostDisjointSupersets {α : Type _} {m : Me
   by
   obtain ⟨s, s_count, s_dense, s_zero, s_top⟩ :
     ∃ s : Set ℝ≥0∞, s.Countable ∧ Dense s ∧ 0 ∉ s ∧ ∞ ∉ s :=
-    Ennreal.exists_countable_dense_no_zero_top
+    ENNReal.exists_countable_dense_no_zero_top
   have I : ∀ x ∈ s, x ≠ ∞ := fun x xs hx => s_top (hx ▸ xs)
   apply MeasureTheory.aeMeasurableOfExistAlmostDisjointSupersets μ s s_count s_dense _
   rintro p hp q hq hpq
   lift p to ℝ≥0 using I p hp
   lift q to ℝ≥0 using I q hq
-  exact h p q (Ennreal.coe_lt_coe.1 hpq)
-#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets Ennreal.aeMeasurableOfExistAlmostDisjointSupersets
+  exact h p q (ENNReal.coe_lt_coe.1 hpq)
+#align ennreal.ae_measurable_of_exist_almost_disjoint_supersets ENNReal.aeMeasurableOfExistAlmostDisjointSupersets
 

Changes in mathlib4

mathlib3
mathlib4
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -25,7 +25,8 @@ as possible.
 
 open MeasureTheory Set TopologicalSpace
 
-open Classical ENNReal NNReal
+open scoped Classical
+open ENNReal NNReal
 
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -84,7 +84,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
       convert this
       ext y
       simp only [not_exists, exists_prop, mem_setOf_eq, mem_compl_iff, not_not_mem]
-    filter_upwards [this]with x hx
+    filter_upwards [this] with x hx
     apply (iInf_eq_of_forall_ge_of_forall_gt_exists_lt _ _).symm
     · intro i
       by_cases H : x ∈ u' i
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -30,8 +30,8 @@ open Classical ENNReal NNReal
 /-- If a function `f : α → β` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p < q`, then `f` is almost-everywhere
 measurable. It is even enough to have this for `p` and `q` in a countable dense set. -/
-theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type _}
-    {m : MeasurableSpace α} (μ : Measure α) {β : Type _} [CompleteLinearOrder β] [DenselyOrdered β]
+theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type*}
+    {m : MeasurableSpace α} (μ : Measure α) {β : Type*} [CompleteLinearOrder β] [DenselyOrdered β]
     [TopologicalSpace β] [OrderTopology β] [SecondCountableTopology β] [MeasurableSpace β]
     [BorelSpace β] (s : Set β) (s_count : s.Countable) (s_dense : Dense s) (f : α → β)
     (h : ∀ p ∈ s, ∀ q ∈ s, p < q → ∃ u v, MeasurableSet u ∧ MeasurableSet v ∧
@@ -110,7 +110,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
 /-- If a function `f : α → ℝ≥0∞` is such that the level sets `{f < p}` and `{q < f}` have measurable
 supersets which are disjoint up to measure zero when `p` and `q` are finite numbers satisfying
 `p < q`, then `f` is almost-everywhere measurable. -/
-theorem ENNReal.aemeasurable_of_exist_almost_disjoint_supersets {α : Type _} {m : MeasurableSpace α}
+theorem ENNReal.aemeasurable_of_exist_almost_disjoint_supersets {α : Type*} {m : MeasurableSpace α}
     (μ : Measure α) (f : α → ℝ≥0∞)
     (h : ∀ (p : ℝ≥0) (q : ℝ≥0), p < q →
       ∃ u v, MeasurableSet u ∧ MeasurableSet v ∧
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Sébastien Gouëzel
-
-! This file was ported from Lean 3 source module measure_theory.function.ae_measurable_order
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
 
+#align_import measure_theory.function.ae_measurable_order from "leanprover-community/mathlib"@"bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf"
+
 /-!
 # Measurability criterion for ennreal-valued functions
 
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -73,7 +73,7 @@ theorem MeasureTheory.aemeasurable_of_exist_almost_disjoint_supersets {α : Type
         refine ENNReal.tsum_le_tsum fun p => ?_
         refine ENNReal.tsum_le_tsum fun q => measure_mono ?_
         exact inter_subset_inter_left _ (biInter_subset_of_mem q.2)
-      _ = ∑' (p : s) (_q : ↥(s ∩ Ioi p)), (0 : ℝ≥0∞) := by
+      _ = ∑' (p : s) (_ : ↥(s ∩ Ioi p)), (0 : ℝ≥0∞) := by
         congr
         ext1 p
         congr
feat: port MeasureTheory.Function.AEMeasurableOrder (#4073)

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Dependencies 10 + 633

634 files ported (98.4%)
284519 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file