measure_theory.function.ess_supMathlib.MeasureTheory.Function.EssSup

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 -/
 import MeasureTheory.Constructions.BorelSpace.Basic
-import Order.Filter.Ennreal
+import Order.Filter.ENNReal
 
 #align_import measure_theory.function.ess_sup from "leanprover-community/mathlib"@"4280f5f32e16755ec7985ce11e189b6cd6ff6735"
 
Diff
@@ -86,13 +86,13 @@ theorem essInf_const' [μ.ae.ne_bot] (c : β) : essInf (fun x : α => c) μ = c
 
 #print essSup_const /-
 theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c := by
-  rw [← ae_ne_bot] at hμ ; exact essSup_const' _
+  rw [← ae_ne_bot] at hμ; exact essSup_const' _
 #align ess_sup_const essSup_const
 -/
 
 #print essInf_const /-
 theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c := by
-  rw [← ae_ne_bot] at hμ ; exact essInf_const' _
+  rw [← ae_ne_bot] at hμ; exact essInf_const' _
 #align ess_inf_const essInf_const
 -/
 
@@ -380,7 +380,7 @@ theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeas
   rw [essSup_congr_ae hg.ae_eq_mk, essSup_map_measure_of_measurable hg.measurable_mk hf]
   refine' essSup_congr_ae _
   have h_eq := ae_of_ae_map hf hg.ae_eq_mk
-  rw [← eventually_eq] at h_eq 
+  rw [← eventually_eq] at h_eq
   exact h_eq.symm
 #align ess_sup_map_measure essSup_map_measure
 -/
@@ -420,19 +420,19 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
           is_bounded_default)
       fun c h_restrict_le => _
   rw [eventually_map] at h_restrict_le ⊢
-  rw [ae_restrict_iff' hs] at h_restrict_le 
+  rw [ae_restrict_iff' hs] at h_restrict_le
   have hc : 0 ≤ c := by
     rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c; exact hx.1.trans hx.2
     refine' frequently.exists _
     · exact μ.ae
-    rw [eventually_le, ae_restrict_iff' hs] at hf 
+    rw [eventually_le, ae_restrict_iff' hs] at hf
     have hs' : ∃ᵐ x ∂μ, x ∈ s := by
       contrapose! hs_not_null
-      rw [not_frequently, ae_iff] at hs_not_null 
+      rw [not_frequently, ae_iff] at hs_not_null
       suffices {a : α | ¬a ∉ s} = s by rwa [← this]
       simp
     refine' hs'.mp (hf.mp (h_restrict_le.mono fun x hxs_imp_c hxf_nonneg hxs => _))
-    rw [Pi.zero_apply] at hxf_nonneg 
+    rw [Pi.zero_apply] at hxf_nonneg
     exact ⟨hxf_nonneg hxs, hxs_imp_c hxs⟩
   refine' h_restrict_le.mono fun x hxc => _
   by_cases hxs : x ∈ s
Diff
@@ -397,7 +397,6 @@ variable [CompleteLinearOrder β]
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
-#print essSup_indicator_eq_essSup_restrict /-
 theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
     (hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
     essSup (s.indicator f) μ = essSup f (μ.restrict s) :=
@@ -440,7 +439,6 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
   · simpa [hxs] using hxc hxs
   · simpa [hxs] using hc
 #align ess_sup_indicator_eq_ess_sup_restrict essSup_indicator_eq_essSup_restrict
--/
 
 end CompleteLinearOrder
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 -/
-import Mathbin.MeasureTheory.Constructions.BorelSpace.Basic
-import Mathbin.Order.Filter.Ennreal
+import MeasureTheory.Constructions.BorelSpace.Basic
+import Order.Filter.Ennreal
 
 #align_import measure_theory.function.ess_sup from "leanprover-community/mathlib"@"4280f5f32e16755ec7985ce11e189b6cd6ff6735"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
-
-! This file was ported from Lean 3 source module measure_theory.function.ess_sup
-! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Constructions.BorelSpace.Basic
 import Mathbin.Order.Filter.Ennreal
 
+#align_import measure_theory.function.ess_sup from "leanprover-community/mathlib"@"4280f5f32e16755ec7985ce11e189b6cd6ff6735"
+
 /-!
 # Essential supremum and infimum
 
Diff
@@ -61,31 +61,43 @@ def essInf {m : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
 #align ess_inf essInf
 -/
 
+#print essSup_congr_ae /-
 theorem essSup_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essSup f μ = essSup g μ :=
   limsup_congr hfg
 #align ess_sup_congr_ae essSup_congr_ae
+-/
 
+#print essInf_congr_ae /-
 theorem essInf_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essInf f μ = essInf g μ :=
   @essSup_congr_ae α βᵒᵈ _ _ _ _ _ hfg
 #align ess_inf_congr_ae essInf_congr_ae
+-/
 
+#print essSup_const' /-
 @[simp]
 theorem essSup_const' [μ.ae.ne_bot] (c : β) : essSup (fun x : α => c) μ = c :=
   limsup_const _
 #align ess_sup_const' essSup_const'
+-/
 
+#print essInf_const' /-
 @[simp]
 theorem essInf_const' [μ.ae.ne_bot] (c : β) : essInf (fun x : α => c) μ = c :=
   liminf_const _
 #align ess_inf_const' essInf_const'
+-/
 
+#print essSup_const /-
 theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c := by
   rw [← ae_ne_bot] at hμ ; exact essSup_const' _
 #align ess_sup_const essSup_const
+-/
 
+#print essInf_const /-
 theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c := by
   rw [← ae_ne_bot] at hμ ; exact essInf_const' _
 #align ess_inf_const essInf_const
+-/
 
 end ConditionallyCompleteLattice
 
@@ -93,15 +105,19 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}
 
+#print essSup_eq_sInf /-
 theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
     essSup f μ = sInf {a | μ {x | a < f x} = 0} := by dsimp [essSup, limsup, Limsup];
   simp only [ae_iff, not_le]
 #align ess_sup_eq_Inf essSup_eq_sInf
+-/
 
+#print essInf_eq_sSup /-
 theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
     essInf f μ = sSup {a | μ {x | f x < a} = 0} := by dsimp [essInf, liminf, Liminf];
   simp only [ae_iff, not_le]
 #align ess_inf_eq_Sup essInf_eq_sSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 #print ae_lt_of_essSup_lt /-
@@ -150,20 +166,24 @@ theorem ae_essInf_le
 -/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+#print meas_essSup_lt /-
 theorem meas_essSup_lt
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
       run_tac
         is_bounded_default) :
     μ {y | essSup f μ < f y} = 0 := by simp_rw [← not_le]; exact ae_le_essSup hf
 #align meas_ess_sup_lt meas_essSup_lt
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+#print meas_lt_essInf /-
 theorem meas_lt_essInf
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
       run_tac
         is_bounded_default) :
     μ {y | f y < essInf f μ} = 0 := by simp_rw [← not_le]; exact ae_essInf_le hf
 #align meas_lt_ess_inf meas_lt_essInf
+-/
 
 end ConditionallyCompleteLinearOrder
 
@@ -171,24 +191,33 @@ section CompleteLattice
 
 variable [CompleteLattice β]
 
+#print essSup_measure_zero /-
 @[simp]
 theorem essSup_measure_zero {m : MeasurableSpace α} {f : α → β} : essSup f (0 : Measure α) = ⊥ :=
   le_bot_iff.mp (sInf_le (by simp [Set.mem_setOf_eq, eventually_le, ae_iff]))
 #align ess_sup_measure_zero essSup_measure_zero
+-/
 
+#print essInf_measure_zero /-
 @[simp]
 theorem essInf_measure_zero {m : MeasurableSpace α} {f : α → β} : essInf f (0 : Measure α) = ⊤ :=
   @essSup_measure_zero α βᵒᵈ _ _ _
 #align ess_inf_measure_zero essInf_measure_zero
+-/
 
+#print essSup_mono_ae /-
 theorem essSup_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essSup f μ ≤ essSup g μ :=
   limsup_le_limsup hfg
 #align ess_sup_mono_ae essSup_mono_ae
+-/
 
+#print essInf_mono_ae /-
 theorem essInf_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essInf f μ ≤ essInf g μ :=
   liminf_le_liminf hfg
 #align ess_inf_mono_ae essInf_mono_ae
+-/
 
+#print essSup_le_of_ae_le /-
 theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c :=
   by
   refine' (essSup_mono_ae hf).trans _
@@ -196,20 +225,28 @@ theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ =>
   · simp [hμ]
   · rwa [essSup_const]
 #align ess_sup_le_of_ae_le essSup_le_of_ae_le
+-/
 
+#print le_essInf_of_ae_le /-
 theorem le_essInf_of_ae_le {f : α → β} (c : β) (hf : (fun _ => c) ≤ᵐ[μ] f) : c ≤ essInf f μ :=
   @essSup_le_of_ae_le α βᵒᵈ _ _ _ _ c hf
 #align le_ess_inf_of_ae_le le_essInf_of_ae_le
+-/
 
+#print essSup_const_bot /-
 theorem essSup_const_bot : essSup (fun x : α => (⊥ : β)) μ = (⊥ : β) :=
   limsup_const_bot
 #align ess_sup_const_bot essSup_const_bot
+-/
 
+#print essInf_const_top /-
 theorem essInf_const_top : essInf (fun x : α => (⊤ : β)) μ = (⊤ : β) :=
   liminf_const_top
 #align ess_inf_const_top essInf_const_top
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print OrderIso.essSup_apply /-
 theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essSup f μ) = essSup (fun x => g (f x)) μ :=
   by
@@ -218,13 +255,17 @@ theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ]
     run_tac
       is_bounded_default
 #align order_iso.ess_sup_apply OrderIso.essSup_apply
+-/
 
+#print OrderIso.essInf_apply /-
 theorem OrderIso.essInf_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essInf f μ) = essInf (fun x => g (f x)) μ :=
   @OrderIso.essSup_apply α βᵒᵈ _ _ γᵒᵈ _ _ _ g.dual
 #align order_iso.ess_inf_apply OrderIso.essInf_apply
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print essSup_mono_measure /-
 theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν ≤ essSup f μ :=
   by
   refine' limsup_le_limsup_of_le (measure.ae_le_iff_absolutely_continuous.mpr hμν) _ _
@@ -232,14 +273,18 @@ theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν 
     run_tac
       is_bounded_default
 #align ess_sup_mono_measure essSup_mono_measure
+-/
 
+#print essSup_mono_measure' /-
 theorem essSup_mono_measure' {α : Type _} {β : Type _} {m : MeasurableSpace α}
     {μ ν : MeasureTheory.Measure α} [CompleteLattice β] {f : α → β} (hμν : ν ≤ μ) :
     essSup f ν ≤ essSup f μ :=
   essSup_mono_measure (Measure.absolutelyContinuous_of_le hμν)
 #align ess_sup_mono_measure' essSup_mono_measure'
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print essInf_antitone_measure /-
 theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f ν ≤ essInf f μ :=
   by
   refine' liminf_le_liminf_of_le (measure.ae_le_iff_absolutely_continuous.mpr hμν) _ _
@@ -247,7 +292,9 @@ theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f 
     run_tac
       is_bounded_default
 #align ess_inf_antitone_measure essInf_antitone_measure
+-/
 
+#print essSup_smul_measure /-
 theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) : essSup f (c • μ) = essSup f μ :=
   by
   simp_rw [essSup]
@@ -256,15 +303,15 @@ theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) : es
   simp_rw [mem_ae_iff]
   simp [hc]
 #align ess_sup_smul_measure essSup_smul_measure
+-/
 
 section TopologicalSpace
 
 variable {γ : Type _} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β}
 
-include mγ
-
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print essSup_comp_le_essSup_map_measure /-
 theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
     essSup (g ∘ f) μ ≤ essSup g (Measure.map f μ) :=
   by
@@ -281,9 +328,11 @@ theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
   rw [this]
   exact fun h => mem_ae_of_mem_ae_map hf h
 #align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measure
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print MeasurableEmbedding.essSup_map_measure /-
 theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
     essSup g (Measure.map f μ) = essSup (g ∘ f) μ :=
   by
@@ -300,6 +349,7 @@ theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
   rw [eventually_map] at h_le ⊢
   exact hf.ae_map_iff.mpr h_le
 #align measurable_embedding.ess_sup_map_measure MeasurableEmbedding.essSup_map_measure
+-/
 
 variable [MeasurableSpace β] [TopologicalSpace β] [SecondCountableTopology β]
   [OrderClosedTopology β] [OpensMeasurableSpace β]
@@ -338,8 +388,6 @@ theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeas
 #align ess_sup_map_measure essSup_map_measure
 -/
 
-omit mγ
-
 end TopologicalSpace
 
 end CompleteLattice
@@ -352,6 +400,7 @@ variable [CompleteLinearOrder β]
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print essSup_indicator_eq_essSup_restrict /-
 theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
     (hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
     essSup (s.indicator f) μ = essSup f (μ.restrict s) :=
@@ -394,6 +443,7 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
   · simpa [hxs] using hxc hxs
   · simpa [hxs] using hc
 #align ess_sup_indicator_eq_ess_sup_restrict essSup_indicator_eq_essSup_restrict
+-/
 
 end CompleteLinearOrder
 
@@ -401,39 +451,53 @@ namespace ENNReal
 
 variable {f : α → ℝ≥0∞}
 
+#print ENNReal.ae_le_essSup /-
 theorem ae_le_essSup (f : α → ℝ≥0∞) : ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
   eventually_le_limsup f
 #align ennreal.ae_le_ess_sup ENNReal.ae_le_essSup
+-/
 
+#print ENNReal.essSup_eq_zero_iff /-
 @[simp]
 theorem essSup_eq_zero_iff : essSup f μ = 0 ↔ f =ᵐ[μ] 0 :=
   limsup_eq_zero_iff
 #align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iff
+-/
 
+#print ENNReal.essSup_const_mul /-
 theorem essSup_const_mul {a : ℝ≥0∞} : essSup (fun x : α => a * f x) μ = a * essSup f μ :=
   limsup_const_mul
 #align ennreal.ess_sup_const_mul ENNReal.essSup_const_mul
+-/
 
+#print ENNReal.essSup_mul_le /-
 theorem essSup_mul_le (f g : α → ℝ≥0∞) : essSup (f * g) μ ≤ essSup f μ * essSup g μ :=
   limsup_mul_le f g
 #align ennreal.ess_sup_mul_le ENNReal.essSup_mul_le
+-/
 
+#print ENNReal.essSup_add_le /-
 theorem essSup_add_le (f g : α → ℝ≥0∞) : essSup (f + g) μ ≤ essSup f μ + essSup g μ :=
   limsup_add_le f g
 #align ennreal.ess_sup_add_le ENNReal.essSup_add_le
+-/
 
+#print ENNReal.essSup_liminf_le /-
 theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α → ℝ≥0∞) :
     essSup (fun x => atTop.liminf fun n => f n x) μ ≤
       atTop.liminf fun n => essSup (fun x => f n x) μ :=
   by simp_rw [essSup]; exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
 #align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le
+-/
 
+#print ENNReal.coe_essSup /-
 theorem coe_essSup {f : α → ℝ≥0} (hf : IsBoundedUnder (· ≤ ·) μ.ae f) :
     (↑(essSup f μ) : ℝ≥0∞) = essSup (fun x => f x) μ :=
   (ENNReal.coe_sInf <| hf).trans <|
     eq_of_forall_le_iff fun r => by
       simp [essSup, limsup, Limsup, eventually_map, ENNReal.forall_ennreal]
 #align ennreal.coe_ess_sup ENNReal.coe_essSup
+-/
 
 end ENNReal
 
Diff
@@ -94,12 +94,12 @@ section ConditionallyCompleteLinearOrder
 variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}
 
 theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
-    essSup f μ = sInf { a | μ { x | a < f x } = 0 } := by dsimp [essSup, limsup, Limsup];
+    essSup f μ = sInf {a | μ {x | a < f x} = 0} := by dsimp [essSup, limsup, Limsup];
   simp only [ae_iff, not_le]
 #align ess_sup_eq_Inf essSup_eq_sInf
 
 theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
-    essInf f μ = sSup { a | μ { x | f x < a } = 0 } := by dsimp [essInf, liminf, Liminf];
+    essInf f μ = sSup {a | μ {x | f x < a} = 0} := by dsimp [essInf, liminf, Liminf];
   simp only [ae_iff, not_le]
 #align ess_inf_eq_Sup essInf_eq_sSup
 
@@ -154,7 +154,7 @@ theorem meas_essSup_lt
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
       run_tac
         is_bounded_default) :
-    μ { y | essSup f μ < f y } = 0 := by simp_rw [← not_le]; exact ae_le_essSup hf
+    μ {y | essSup f μ < f y} = 0 := by simp_rw [← not_le]; exact ae_le_essSup hf
 #align meas_ess_sup_lt meas_essSup_lt
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
@@ -162,7 +162,7 @@ theorem meas_lt_essInf
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
       run_tac
         is_bounded_default) :
-    μ { y | f y < essInf f μ } = 0 := by simp_rw [← not_le]; exact ae_essInf_le hf
+    μ {y | f y < essInf f μ} = 0 := by simp_rw [← not_le]; exact ae_essInf_le hf
 #align meas_lt_ess_inf meas_lt_essInf
 
 end ConditionallyCompleteLinearOrder
@@ -384,7 +384,7 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
     have hs' : ∃ᵐ x ∂μ, x ∈ s := by
       contrapose! hs_not_null
       rw [not_frequently, ae_iff] at hs_not_null 
-      suffices { a : α | ¬a ∉ s } = s by rwa [← this]
+      suffices {a : α | ¬a ∉ s} = s by rwa [← this]
       simp
     refine' hs'.mp (hf.mp (h_restrict_le.mono fun x hxs_imp_c hxf_nonneg hxs => _))
     rw [Pi.zero_apply] at hxf_nonneg 
Diff
@@ -80,11 +80,11 @@ theorem essInf_const' [μ.ae.ne_bot] (c : β) : essInf (fun x : α => c) μ = c
 #align ess_inf_const' essInf_const'
 
 theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c := by
-  rw [← ae_ne_bot] at hμ; exact essSup_const' _
+  rw [← ae_ne_bot] at hμ ; exact essSup_const' _
 #align ess_sup_const essSup_const
 
 theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c := by
-  rw [← ae_ne_bot] at hμ; exact essInf_const' _
+  rw [← ae_ne_bot] at hμ ; exact essInf_const' _
 #align ess_inf_const essInf_const
 
 end ConditionallyCompleteLattice
@@ -297,7 +297,7 @@ theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
         run_tac
           is_bounded_default)
       fun c h_le => _
-  rw [eventually_map] at h_le⊢
+  rw [eventually_map] at h_le ⊢
   exact hf.ae_map_iff.mpr h_le
 #align measurable_embedding.ess_sup_map_measure MeasurableEmbedding.essSup_map_measure
 
@@ -320,7 +320,7 @@ theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AEMeasurable
         run_tac
           is_bounded_default)
       fun c h_le => _
-  rw [eventually_map] at h_le⊢
+  rw [eventually_map] at h_le ⊢
   rw [ae_map_iff hf (measurableSet_le hg measurable_const)]
   exact h_le
 #align ess_sup_map_measure_of_measurable essSup_map_measure_of_measurable
@@ -333,7 +333,7 @@ theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeas
   rw [essSup_congr_ae hg.ae_eq_mk, essSup_map_measure_of_measurable hg.measurable_mk hf]
   refine' essSup_congr_ae _
   have h_eq := ae_of_ae_map hf hg.ae_eq_mk
-  rw [← eventually_eq] at h_eq
+  rw [← eventually_eq] at h_eq 
   exact h_eq.symm
 #align ess_sup_map_measure essSup_map_measure
 -/
@@ -374,20 +374,20 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
         run_tac
           is_bounded_default)
       fun c h_restrict_le => _
-  rw [eventually_map] at h_restrict_le⊢
-  rw [ae_restrict_iff' hs] at h_restrict_le
+  rw [eventually_map] at h_restrict_le ⊢
+  rw [ae_restrict_iff' hs] at h_restrict_le 
   have hc : 0 ≤ c := by
     rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c; exact hx.1.trans hx.2
     refine' frequently.exists _
     · exact μ.ae
-    rw [eventually_le, ae_restrict_iff' hs] at hf
+    rw [eventually_le, ae_restrict_iff' hs] at hf 
     have hs' : ∃ᵐ x ∂μ, x ∈ s := by
       contrapose! hs_not_null
-      rw [not_frequently, ae_iff] at hs_not_null
+      rw [not_frequently, ae_iff] at hs_not_null 
       suffices { a : α | ¬a ∉ s } = s by rwa [← this]
       simp
     refine' hs'.mp (hf.mp (h_restrict_le.mono fun x hxs_imp_c hxf_nonneg hxs => _))
-    rw [Pi.zero_apply] at hxf_nonneg
+    rw [Pi.zero_apply] at hxf_nonneg 
     exact ⟨hxf_nonneg hxs, hxs_imp_c hxs⟩
   refine' h_restrict_le.mono fun x hxc => _
   by_cases hxs : x ∈ s
Diff
@@ -37,7 +37,7 @@ sense). We do not define that quantity here, which is simply the supremum of a m
 
 open MeasureTheory Filter Set TopologicalSpace
 
-open ENNReal MeasureTheory NNReal
+open scoped ENNReal MeasureTheory NNReal
 
 variable {α β : Type _} {m : MeasurableSpace α} {μ ν : Measure α}
 
@@ -104,6 +104,7 @@ theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β
 #align ess_inf_eq_Sup essInf_eq_sSup
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+#print ae_lt_of_essSup_lt /-
 theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
       run_tac
@@ -111,8 +112,10 @@ theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
     ∀ᵐ y ∂μ, f y < x :=
   eventually_lt_of_limsup_lt hx hf
 #align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+#print ae_lt_of_lt_essInf /-
 theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
       run_tac
@@ -120,10 +123,12 @@ theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
     ∀ᵐ y ∂μ, x < f y :=
   eventually_lt_of_lt_liminf hx hf
 #align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInf
+-/
 
 variable [TopologicalSpace β] [FirstCountableTopology β] [OrderTopology β]
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+#print ae_le_essSup /-
 theorem ae_le_essSup
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
       run_tac
@@ -131,8 +136,10 @@ theorem ae_le_essSup
     ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
   eventually_le_limsup hf
 #align ae_le_ess_sup ae_le_essSup
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+#print ae_essInf_le /-
 theorem ae_essInf_le
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
       run_tac
@@ -140,6 +147,7 @@ theorem ae_essInf_le
     ∀ᵐ y ∂μ, essInf f μ ≤ f y :=
   eventually_liminf_le hf
 #align ae_ess_inf_le ae_essInf_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem meas_essSup_lt
@@ -344,7 +352,6 @@ variable [CompleteLinearOrder β]
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
-#print essSup_indicator_eq_essSup_restrict /-
 theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
     (hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
     essSup (s.indicator f) μ = essSup f (μ.restrict s) :=
@@ -387,7 +394,6 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
   · simpa [hxs] using hxc hxs
   · simpa [hxs] using hc
 #align ess_sup_indicator_eq_ess_sup_restrict essSup_indicator_eq_essSup_restrict
--/
 
 end CompleteLinearOrder
 
Diff
@@ -61,64 +61,28 @@ def essInf {m : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
 #align ess_inf essInf
 -/
 
-/- warning: ess_sup_congr_ae -> essSup_congr_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Eq.{succ u2} β (essSup.{u1, u2} α β _inst_1 m f μ) (essSup.{u1, u2} α β _inst_1 m g μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (Eq.{succ u1} β (essSup.{u2, u1} α β _inst_1 m f μ) (essSup.{u2, u1} α β _inst_1 m g μ))
-Case conversion may be inaccurate. Consider using '#align ess_sup_congr_ae essSup_congr_aeₓ'. -/
 theorem essSup_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essSup f μ = essSup g μ :=
   limsup_congr hfg
 #align ess_sup_congr_ae essSup_congr_ae
 
-/- warning: ess_inf_congr_ae -> essInf_congr_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Eq.{succ u2} β (essInf.{u1, u2} α β _inst_1 m f μ) (essInf.{u1, u2} α β _inst_1 m g μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (Eq.{succ u1} β (essInf.{u2, u1} α β _inst_1 m f μ) (essInf.{u2, u1} α β _inst_1 m g μ))
-Case conversion may be inaccurate. Consider using '#align ess_inf_congr_ae essInf_congr_aeₓ'. -/
 theorem essInf_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essInf f μ = essInf g μ :=
   @essSup_congr_ae α βᵒᵈ _ _ _ _ _ hfg
 #align ess_inf_congr_ae essInf_congr_ae
 
-/- warning: ess_sup_const' -> essSup_const' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] [_inst_2 : Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m μ)] (c : β), Eq.{succ u2} β (essSup.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] [_inst_2 : Filter.NeBot.{u2} α (MeasureTheory.Measure.ae.{u2} α m μ)] (c : β), Eq.{succ u1} β (essSup.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c
-Case conversion may be inaccurate. Consider using '#align ess_sup_const' essSup_const'ₓ'. -/
 @[simp]
 theorem essSup_const' [μ.ae.ne_bot] (c : β) : essSup (fun x : α => c) μ = c :=
   limsup_const _
 #align ess_sup_const' essSup_const'
 
-/- warning: ess_inf_const' -> essInf_const' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] [_inst_2 : Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m μ)] (c : β), Eq.{succ u2} β (essInf.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] [_inst_2 : Filter.NeBot.{u2} α (MeasureTheory.Measure.ae.{u2} α m μ)] (c : β), Eq.{succ u1} β (essInf.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c
-Case conversion may be inaccurate. Consider using '#align ess_inf_const' essInf_const'ₓ'. -/
 @[simp]
 theorem essInf_const' [μ.ae.ne_bot] (c : β) : essInf (fun x : α => c) μ = c :=
   liminf_const _
 #align ess_inf_const' essInf_const'
 
-/- warning: ess_sup_const -> essSup_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] (c : β), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (Eq.{succ u2} β (essSup.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] (c : β), (Ne.{succ u2} (MeasureTheory.Measure.{u2} α m) μ (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) -> (Eq.{succ u1} β (essSup.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c)
-Case conversion may be inaccurate. Consider using '#align ess_sup_const essSup_constₓ'. -/
 theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c := by
   rw [← ae_ne_bot] at hμ; exact essSup_const' _
 #align ess_sup_const essSup_const
 
-/- warning: ess_inf_const -> essInf_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] (c : β), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (Eq.{succ u2} β (essInf.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] (c : β), (Ne.{succ u2} (MeasureTheory.Measure.{u2} α m) μ (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) -> (Eq.{succ u1} β (essInf.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c)
-Case conversion may be inaccurate. Consider using '#align ess_inf_const essInf_constₓ'. -/
 theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c := by
   rw [← ae_ne_bot] at hμ; exact essInf_const' _
 #align ess_inf_const essInf_const
@@ -129,31 +93,16 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}
 
-/- warning: ess_sup_eq_Inf -> essSup_eq_sInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> β), Eq.{succ u2} β (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)) (setOf.{u2} β (fun (a : β) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) a (f x)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) (f : α -> β), Eq.{succ u1} β (essSup.{u2, u1} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)) (setOf.{u1} β (fun (a : β) => Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)))))) a (f x)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
-Case conversion may be inaccurate. Consider using '#align ess_sup_eq_Inf essSup_eq_sInfₓ'. -/
 theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
     essSup f μ = sInf { a | μ { x | a < f x } = 0 } := by dsimp [essSup, limsup, Limsup];
   simp only [ae_iff, not_le]
 #align ess_sup_eq_Inf essSup_eq_sInf
 
-/- warning: ess_inf_eq_Sup -> essInf_eq_sSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> β), Eq.{succ u2} β (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)) (setOf.{u2} β (fun (a : β) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f x) a))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) (f : α -> β), Eq.{succ u1} β (essInf.{u2, u1} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)) (setOf.{u1} β (fun (a : β) => Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)))))) (f x) a))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
-Case conversion may be inaccurate. Consider using '#align ess_inf_eq_Sup essInf_eq_sSupₓ'. -/
 theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
     essInf f μ = sSup { a | μ { x | f x < a } = 0 } := by dsimp [essInf, liminf, Liminf];
   simp only [ae_iff, not_le]
 #align ess_inf_eq_Sup essInf_eq_sSup
 
-/- warning: ae_lt_of_ess_sup_lt -> ae_lt_of_essSup_lt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ae_lt_of_ess_sup_lt ae_lt_of_essSup_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
@@ -163,9 +112,6 @@ theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
   eventually_lt_of_limsup_lt hx hf
 #align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt
 
-/- warning: ae_lt_of_lt_ess_inf -> ae_lt_of_lt_essInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
@@ -177,9 +123,6 @@ theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
 
 variable [TopologicalSpace β] [FirstCountableTopology β] [OrderTopology β]
 
-/- warning: ae_le_ess_sup -> ae_le_essSup is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ae_le_ess_sup ae_le_essSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_le_essSup
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
@@ -189,9 +132,6 @@ theorem ae_le_essSup
   eventually_le_limsup hf
 #align ae_le_ess_sup ae_le_essSup
 
-/- warning: ae_ess_inf_le -> ae_essInf_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ae_ess_inf_le ae_essInf_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_essInf_le
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
@@ -201,9 +141,6 @@ theorem ae_essInf_le
   eventually_liminf_le hf
 #align ae_ess_inf_le ae_essInf_le
 
-/- warning: meas_ess_sup_lt -> meas_essSup_lt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align meas_ess_sup_lt meas_essSup_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem meas_essSup_lt
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
@@ -212,9 +149,6 @@ theorem meas_essSup_lt
     μ { y | essSup f μ < f y } = 0 := by simp_rw [← not_le]; exact ae_le_essSup hf
 #align meas_ess_sup_lt meas_essSup_lt
 
-/- warning: meas_lt_ess_inf -> meas_lt_essInf is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align meas_lt_ess_inf meas_lt_essInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem meas_lt_essInf
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
@@ -229,54 +163,24 @@ section CompleteLattice
 
 variable [CompleteLattice β]
 
-/- warning: ess_sup_measure_zero -> essSup_measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {f : α -> β}, Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_1))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u2} α} {f : α -> β}, Eq.{succ u1} β (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) (Bot.bot.{u1} β (CompleteLattice.toBot.{u1} β _inst_1))
-Case conversion may be inaccurate. Consider using '#align ess_sup_measure_zero essSup_measure_zeroₓ'. -/
 @[simp]
 theorem essSup_measure_zero {m : MeasurableSpace α} {f : α → β} : essSup f (0 : Measure α) = ⊥ :=
   le_bot_iff.mp (sInf_le (by simp [Set.mem_setOf_eq, eventually_le, ae_iff]))
 #align ess_sup_measure_zero essSup_measure_zero
 
-/- warning: ess_inf_measure_zero -> essInf_measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {f : α -> β}, Eq.{succ u2} β (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_1))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u2} α} {f : α -> β}, Eq.{succ u1} β (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) (Top.top.{u1} β (CompleteLattice.toTop.{u1} β _inst_1))
-Case conversion may be inaccurate. Consider using '#align ess_inf_measure_zero essInf_measure_zeroₓ'. -/
 @[simp]
 theorem essInf_measure_zero {m : MeasurableSpace α} {f : α → β} : essInf f (0 : Measure α) = ⊤ :=
   @essSup_measure_zero α βᵒᵈ _ _ _
 #align ess_inf_measure_zero essInf_measure_zero
 
-/- warning: ess_sup_mono_ae -> essSup_mono_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m g μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m g μ))
-Case conversion may be inaccurate. Consider using '#align ess_sup_mono_ae essSup_mono_aeₓ'. -/
 theorem essSup_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essSup f μ ≤ essSup g μ :=
   limsup_le_limsup hfg
 #align ess_sup_mono_ae essSup_mono_ae
 
-/- warning: ess_inf_mono_ae -> essInf_mono_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m g μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m g μ))
-Case conversion may be inaccurate. Consider using '#align ess_inf_mono_ae essInf_mono_aeₓ'. -/
 theorem essInf_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essInf f μ ≤ essInf g μ :=
   liminf_le_liminf hfg
 #align ess_inf_mono_ae essInf_mono_ae
 
-/- warning: ess_sup_le_of_ae_le -> essSup_le_of_ae_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) f (fun (_x : α) => c)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) c)
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) f (fun (_x : α) => c)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) c)
-Case conversion may be inaccurate. Consider using '#align ess_sup_le_of_ae_le essSup_le_of_ae_leₓ'. -/
 theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c :=
   by
   refine' (essSup_mono_ae hf).trans _
@@ -285,39 +189,18 @@ theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ =>
   · rwa [essSup_const]
 #align ess_sup_le_of_ae_le essSup_le_of_ae_le
 
-/- warning: le_ess_inf_of_ae_le -> le_essInf_of_ae_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) (fun (_x : α) => c) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) c (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) (fun (_x : α) => c) f) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) c (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ))
-Case conversion may be inaccurate. Consider using '#align le_ess_inf_of_ae_le le_essInf_of_ae_leₓ'. -/
 theorem le_essInf_of_ae_le {f : α → β} (c : β) (hf : (fun _ => c) ≤ᵐ[μ] f) : c ≤ essInf f μ :=
   @essSup_le_of_ae_le α βᵒᵈ _ _ _ _ c hf
 #align le_ess_inf_of_ae_le le_essInf_of_ae_le
 
-/- warning: ess_sup_const_bot -> essSup_const_bot is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_1)) μ) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_1)) μ) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_1))
-Case conversion may be inaccurate. Consider using '#align ess_sup_const_bot essSup_const_botₓ'. -/
 theorem essSup_const_bot : essSup (fun x : α => (⊥ : β)) μ = (⊥ : β) :=
   limsup_const_bot
 #align ess_sup_const_bot essSup_const_bot
 
-/- warning: ess_inf_const_top -> essInf_const_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_1)) μ) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_1))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_1)) μ) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_1))
-Case conversion may be inaccurate. Consider using '#align ess_inf_const_top essInf_const_topₓ'. -/
 theorem essInf_const_top : essInf (fun x : α => (⊤ : β)) μ = (⊤ : β) :=
   liminf_const_top
 #align ess_inf_const_top essInf_const_top
 
-/- warning: order_iso.ess_sup_apply -> OrderIso.essSup_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.ess_sup_apply OrderIso.essSup_applyₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essSup f μ) = essSup (fun x => g (f x)) μ :=
@@ -328,20 +211,11 @@ theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ]
       is_bounded_default
 #align order_iso.ess_sup_apply OrderIso.essSup_apply
 
-/- warning: order_iso.ess_inf_apply -> OrderIso.essInf_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align order_iso.ess_inf_apply OrderIso.essInf_applyₓ'. -/
 theorem OrderIso.essInf_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essInf f μ) = essInf (fun x => g (f x)) μ :=
   @OrderIso.essSup_apply α βᵒᵈ _ _ γᵒᵈ _ _ _ g.dual
 #align order_iso.ess_inf_apply OrderIso.essInf_apply
 
-/- warning: ess_sup_mono_measure -> essSup_mono_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m ν μ) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f ν) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {ν : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m ν μ) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f ν) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ))
-Case conversion may be inaccurate. Consider using '#align ess_sup_mono_measure essSup_mono_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν ≤ essSup f μ :=
   by
@@ -351,24 +225,12 @@ theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν 
       is_bounded_default
 #align ess_sup_mono_measure essSup_mono_measure
 
-/- warning: ess_sup_mono_measure' -> essSup_mono_measure' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) ν μ) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2) m f ν) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2) m f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {ν : MeasureTheory.Measure.{u2} α m} [_inst_2 : CompleteLattice.{u1} β] {f : α -> β}, (LE.le.{u2} (MeasureTheory.Measure.{u2} α m) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instPartialOrder.{u2} α m))) ν μ) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_2)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_2) m f ν) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_2) m f μ))
-Case conversion may be inaccurate. Consider using '#align ess_sup_mono_measure' essSup_mono_measure'ₓ'. -/
 theorem essSup_mono_measure' {α : Type _} {β : Type _} {m : MeasurableSpace α}
     {μ ν : MeasureTheory.Measure α} [CompleteLattice β] {f : α → β} (hμν : ν ≤ μ) :
     essSup f ν ≤ essSup f μ :=
   essSup_mono_measure (Measure.absolutelyContinuous_of_le hμν)
 #align ess_sup_mono_measure' essSup_mono_measure'
 
-/- warning: ess_inf_antitone_measure -> essInf_antitone_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m μ ν) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f ν) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {ν : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m μ ν) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f ν) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ))
-Case conversion may be inaccurate. Consider using '#align ess_inf_antitone_measure essInf_antitone_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f ν ≤ essInf f μ :=
   by
@@ -378,9 +240,6 @@ theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f 
       is_bounded_default
 #align ess_inf_antitone_measure essInf_antitone_measure
 
-/- warning: ess_sup_smul_measure -> essSup_smul_measure is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ess_sup_smul_measure essSup_smul_measureₓ'. -/
 theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) : essSup f (c • μ) = essSup f μ :=
   by
   simp_rw [essSup]
@@ -396,12 +255,6 @@ variable {γ : Type _} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β
 
 include mγ
 
-/- warning: ess_sup_comp_le_ess_sup_map_measure -> essSup_comp_le_essSup_map_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {γ : Type.{u3}} {mγ : MeasurableSpace.{u3} γ} {f : α -> γ} {g : γ -> β}, (AEMeasurable.{u1, u3} α γ mγ m f μ) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (Function.comp.{succ u1, succ u3, succ u2} α γ β g f) μ) (essSup.{u3, u2} γ β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) mγ g (MeasureTheory.Measure.map.{u1, u3} α γ mγ m f μ)))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {m : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m} [_inst_1 : CompleteLattice.{u1} β] {γ : Type.{u2}} {mγ : MeasurableSpace.{u2} γ} {f : α -> γ} {g : γ -> β}, (AEMeasurable.{u3, u2} α γ mγ m f μ) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m (Function.comp.{succ u3, succ u2, succ u1} α γ β g f) μ) (essSup.{u2, u1} γ β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) mγ g (MeasureTheory.Measure.map.{u3, u2} α γ mγ m f μ)))
-Case conversion may be inaccurate. Consider using '#align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
@@ -421,12 +274,6 @@ theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
   exact fun h => mem_ae_of_mem_ae_map hf h
 #align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measure
 
-/- warning: measurable_embedding.ess_sup_map_measure -> MeasurableEmbedding.essSup_map_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {γ : Type.{u3}} {mγ : MeasurableSpace.{u3} γ} {f : α -> γ} {g : γ -> β}, (MeasurableEmbedding.{u1, u3} α γ m mγ f) -> (Eq.{succ u2} β (essSup.{u3, u2} γ β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) mγ g (MeasureTheory.Measure.map.{u1, u3} α γ mγ m f μ)) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (Function.comp.{succ u1, succ u3, succ u2} α γ β g f) μ))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} {m : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m} [_inst_1 : CompleteLattice.{u1} β] {γ : Type.{u2}} {mγ : MeasurableSpace.{u2} γ} {f : α -> γ} {g : γ -> β}, (MeasurableEmbedding.{u3, u2} α γ m mγ f) -> (Eq.{succ u1} β (essSup.{u2, u1} γ β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) mγ g (MeasureTheory.Measure.map.{u3, u2} α γ mγ m f μ)) (essSup.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m (Function.comp.{succ u3, succ u2, succ u1} α γ β g f) μ))
-Case conversion may be inaccurate. Consider using '#align measurable_embedding.ess_sup_map_measure MeasurableEmbedding.essSup_map_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
@@ -548,75 +395,33 @@ namespace ENNReal
 
 variable {f : α → ℝ≥0∞}
 
-/- warning: ennreal.ae_le_ess_sup -> ENNReal.ae_le_essSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Filter.Eventually.{u1} α (fun (y : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f y) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Filter.Eventually.{u1} α (fun (y : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f y) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ)
-Case conversion may be inaccurate. Consider using '#align ennreal.ae_le_ess_sup ENNReal.ae_le_essSupₓ'. -/
 theorem ae_le_essSup (f : α → ℝ≥0∞) : ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
   eventually_le_limsup f
 #align ennreal.ae_le_ess_sup ENNReal.ae_le_essSup
 
-/- warning: ennreal.ess_sup_eq_zero_iff -> ENNReal.essSup_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iffₓ'. -/
 @[simp]
 theorem essSup_eq_zero_iff : essSup f μ = 0 ↔ f =ᵐ[μ] 0 :=
   limsup_eq_zero_iff
 #align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iff
 
-/- warning: ennreal.ess_sup_const_mul -> ENNReal.essSup_const_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f x)) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f x)) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ))
-Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_const_mul ENNReal.essSup_const_mulₓ'. -/
 theorem essSup_const_mul {a : ℝ≥0∞} : essSup (fun x : α => a * f x) μ = a * essSup f μ :=
   limsup_const_mul
 #align ennreal.ess_sup_const_mul ENNReal.essSup_const_mul
 
-/- warning: ennreal.ess_sup_mul_le -> ENNReal.essSup_mul_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m g μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m g μ))
-Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_mul_le ENNReal.essSup_mul_leₓ'. -/
 theorem essSup_mul_le (f g : α → ℝ≥0∞) : essSup (f * g) μ ≤ essSup f μ * essSup g μ :=
   limsup_mul_le f g
 #align ennreal.ess_sup_mul_le ENNReal.essSup_mul_le
 
-/- warning: ennreal.ess_sup_add_le -> ENNReal.essSup_add_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g) μ) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m g μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g) μ) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m g μ))
-Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_add_le ENNReal.essSup_add_leₓ'. -/
 theorem essSup_add_le (f g : α → ℝ≥0∞) : essSup (f + g) μ ≤ essSup f μ + essSup g μ :=
   limsup_add_le f g
 #align ennreal.ess_sup_add_le ENNReal.essSup_add_le
 
-/- warning: ennreal.ess_sup_liminf_le -> ENNReal.essSup_liminf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : LinearOrder.{u2} ι] (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => Filter.liminf.{0, u2} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => f n x) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_2)))))) μ) (Filter.liminf.{0, u2} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => f n x) μ) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_2))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : LinearOrder.{u2} ι] (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => Filter.liminf.{0, u2} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => f n x) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_2))))))) μ) (Filter.liminf.{0, u2} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => f n x) μ) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_2)))))))
-Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_leₓ'. -/
 theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α → ℝ≥0∞) :
     essSup (fun x => atTop.liminf fun n => f n x) μ ≤
       atTop.liminf fun n => essSup (fun x => f n x) μ :=
   by simp_rw [essSup]; exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
 #align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le
 
-/- warning: ennreal.coe_ess_sup -> ENNReal.coe_essSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Filter.IsBoundedUnder.{0, u1} NNReal α (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) -> (Eq.{1} ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (essSup.{u1, 0} α NNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} NNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} NNReal NNReal.conditionallyCompleteLinearOrderBot)) m f μ)) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)) μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Filter.IsBoundedUnder.{0, u1} NNReal α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3950 : NNReal) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3952 : NNReal) => LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3950 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3952) (MeasureTheory.Measure.ae.{u1} α m μ) f) -> (Eq.{1} ENNReal (ENNReal.some (essSup.{u1, 0} α NNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} NNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} NNReal NNReal.instConditionallyCompleteLinearOrderBotNNReal)) m f μ)) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => ENNReal.some (f x)) μ))
-Case conversion may be inaccurate. Consider using '#align ennreal.coe_ess_sup ENNReal.coe_essSupₓ'. -/
 theorem coe_essSup {f : α → ℝ≥0} (hf : IsBoundedUnder (· ≤ ·) μ.ae f) :
     (↑(essSup f μ) : ℝ≥0∞) = essSup (fun x => f x) μ :=
   (ENNReal.coe_sInf <| hf).trans <|
Diff
@@ -109,10 +109,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] (c : β), (Ne.{succ u2} (MeasureTheory.Measure.{u2} α m) μ (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) -> (Eq.{succ u1} β (essSup.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c)
 Case conversion may be inaccurate. Consider using '#align ess_sup_const essSup_constₓ'. -/
-theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c :=
-  by
-  rw [← ae_ne_bot] at hμ
-  exact essSup_const' _
+theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c := by
+  rw [← ae_ne_bot] at hμ; exact essSup_const' _
 #align ess_sup_const essSup_const
 
 /- warning: ess_inf_const -> essInf_const is a dubious translation:
@@ -121,10 +119,8 @@ lean 3 declaration is
 but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] (c : β), (Ne.{succ u2} (MeasureTheory.Measure.{u2} α m) μ (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) -> (Eq.{succ u1} β (essInf.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c)
 Case conversion may be inaccurate. Consider using '#align ess_inf_const essInf_constₓ'. -/
-theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c :=
-  by
-  rw [← ae_ne_bot] at hμ
-  exact essInf_const' _
+theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c := by
+  rw [← ae_ne_bot] at hμ; exact essInf_const' _
 #align ess_inf_const essInf_const
 
 end ConditionallyCompleteLattice
@@ -140,9 +136,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) (f : α -> β), Eq.{succ u1} β (essSup.{u2, u1} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)) (setOf.{u1} β (fun (a : β) => Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)))))) a (f x)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
 Case conversion may be inaccurate. Consider using '#align ess_sup_eq_Inf essSup_eq_sInfₓ'. -/
 theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
-    essSup f μ = sInf { a | μ { x | a < f x } = 0 } :=
-  by
-  dsimp [essSup, limsup, Limsup]
+    essSup f μ = sInf { a | μ { x | a < f x } = 0 } := by dsimp [essSup, limsup, Limsup];
   simp only [ae_iff, not_le]
 #align ess_sup_eq_Inf essSup_eq_sInf
 
@@ -153,9 +147,7 @@ but is expected to have type
   forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) (f : α -> β), Eq.{succ u1} β (essInf.{u2, u1} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)) (setOf.{u1} β (fun (a : β) => Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)))))) (f x) a))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
 Case conversion may be inaccurate. Consider using '#align ess_inf_eq_Sup essInf_eq_sSupₓ'. -/
 theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
-    essInf f μ = sSup { a | μ { x | f x < a } = 0 } :=
-  by
-  dsimp [essInf, liminf, Liminf]
+    essInf f μ = sSup { a | μ { x | f x < a } = 0 } := by dsimp [essInf, liminf, Liminf];
   simp only [ae_iff, not_le]
 #align ess_inf_eq_Sup essInf_eq_sSup
 
@@ -217,9 +209,7 @@ theorem meas_essSup_lt
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
       run_tac
         is_bounded_default) :
-    μ { y | essSup f μ < f y } = 0 := by
-  simp_rw [← not_le]
-  exact ae_le_essSup hf
+    μ { y | essSup f μ < f y } = 0 := by simp_rw [← not_le]; exact ae_le_essSup hf
 #align meas_ess_sup_lt meas_essSup_lt
 
 /- warning: meas_lt_ess_inf -> meas_lt_essInf is a dubious translation:
@@ -230,9 +220,7 @@ theorem meas_lt_essInf
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
       run_tac
         is_bounded_default) :
-    μ { y | f y < essInf f μ } = 0 := by
-  simp_rw [← not_le]
-  exact ae_essInf_le hf
+    μ { y | f y < essInf f μ } = 0 := by simp_rw [← not_le]; exact ae_essInf_le hf
 #align meas_lt_ess_inf meas_lt_essInf
 
 end ConditionallyCompleteLinearOrder
@@ -428,9 +416,7 @@ theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
         run_tac
           is_bounded_default)
   simp_rw [Filter.mem_map]
-  have : g ∘ f ⁻¹' t = f ⁻¹' (g ⁻¹' t) := by
-    ext1 x
-    simp_rw [Set.mem_preimage]
+  have : g ∘ f ⁻¹' t = f ⁻¹' (g ⁻¹' t) := by ext1 x; simp_rw [Set.mem_preimage]
   rw [this]
   exact fun h => mem_ae_of_mem_ae_map hf h
 #align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measure
@@ -537,8 +523,7 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
   rw [eventually_map] at h_restrict_le⊢
   rw [ae_restrict_iff' hs] at h_restrict_le
   have hc : 0 ≤ c := by
-    rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c
-    exact hx.1.trans hx.2
+    rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c; exact hx.1.trans hx.2
     refine' frequently.exists _
     · exact μ.ae
     rw [eventually_le, ae_restrict_iff' hs] at hf
@@ -623,9 +608,7 @@ Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_liminf
 theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α → ℝ≥0∞) :
     essSup (fun x => atTop.liminf fun n => f n x) μ ≤
       atTop.liminf fun n => essSup (fun x => f n x) μ :=
-  by
-  simp_rw [essSup]
-  exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
+  by simp_rw [essSup]; exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
 #align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le
 
 /- warning: ennreal.coe_ess_sup -> ENNReal.coe_essSup is a dubious translation:
Diff
@@ -160,10 +160,7 @@ theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β
 #align ess_inf_eq_Sup essInf_eq_sSup
 
 /- warning: ae_lt_of_ess_sup_lt -> ae_lt_of_essSup_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) x) -> (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) x) (MeasureTheory.Measure.ae.{u1} α m μ))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) x) -> (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.634 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.636 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.634 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.636) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.600) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) x) (MeasureTheory.Measure.ae.{u1} α m μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ae_lt_of_ess_sup_lt ae_lt_of_essSup_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
@@ -175,10 +172,7 @@ theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
 #align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt
 
 /- warning: ae_lt_of_lt_ess_inf -> ae_lt_of_lt_essInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) -> (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (GE.ge.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) -> (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.734 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.736 : β) => GE.ge.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.734 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.736) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.706) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
@@ -192,10 +186,7 @@ theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
 variable [TopologicalSpace β] [FirstCountableTopology β] [OrderTopology β]
 
 /- warning: ae_le_ess_sup -> ae_le_essSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.868 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.870 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.868 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.870) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.840) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ae_le_ess_sup ae_le_essSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_le_essSup
@@ -207,10 +198,7 @@ theorem ae_le_essSup
 #align ae_le_ess_sup ae_le_essSup
 
 /- warning: ae_ess_inf_le -> ae_essInf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (GE.ge.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.973 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.975 : β) => GE.ge.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.973 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.975) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.945) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ae_ess_inf_le ae_essInf_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_essInf_le
@@ -222,10 +210,7 @@ theorem ae_essInf_le
 #align ae_ess_inf_le ae_essInf_le
 
 /- warning: meas_ess_sup_lt -> meas_essSup_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1076 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1078 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1076 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1078) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1048) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align meas_ess_sup_lt meas_essSup_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem meas_essSup_lt
@@ -238,10 +223,7 @@ theorem meas_essSup_lt
 #align meas_ess_sup_lt meas_essSup_lt
 
 /- warning: meas_lt_ess_inf -> meas_lt_essInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (GE.ge.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1178 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1180 : β) => GE.ge.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1178 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1180) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1150) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align meas_lt_ess_inf meas_lt_essInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem meas_lt_essInf
@@ -346,10 +328,7 @@ theorem essInf_const_top : essInf (fun x : α => (⊤ : β)) μ = (⊤ : β) :=
 #align ess_inf_const_top essInf_const_top
 
 /- warning: order_iso.ess_sup_apply -> OrderIso.essSup_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {γ : Type.{u3}} [_inst_2 : CompleteLattice.{u3} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u1} α m) (g : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (essSup.{u1, u3} α γ (CompleteLattice.toConditionallyCompleteLattice.{u3} γ _inst_2) m (fun (x : α) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (f x)) μ)
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u3} α} {γ : Type.{u2}} [_inst_2 : CompleteLattice.{u2} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u3} α m) (g : OrderIso.{u1, u2} β γ (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2))))), Eq.{succ u2} γ (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (essSup.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ)) (essSup.{u3, u2} α γ (CompleteLattice.toConditionallyCompleteLattice.{u2} γ _inst_2) m (fun (x : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (f x)) μ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.ess_sup_apply OrderIso.essSup_applyₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
@@ -362,10 +341,7 @@ theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ]
 #align order_iso.ess_sup_apply OrderIso.essSup_apply
 
 /- warning: order_iso.ess_inf_apply -> OrderIso.essInf_apply is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {γ : Type.{u3}} [_inst_2 : CompleteLattice.{u3} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u1} α m) (g : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (essInf.{u1, u3} α γ (CompleteLattice.toConditionallyCompleteLattice.{u3} γ _inst_2) m (fun (x : α) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (f x)) μ)
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u3} α} {γ : Type.{u2}} [_inst_2 : CompleteLattice.{u2} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u3} α m) (g : OrderIso.{u1, u2} β γ (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2))))), Eq.{succ u2} γ (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (essInf.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ)) (essInf.{u3, u2} α γ (CompleteLattice.toConditionallyCompleteLattice.{u2} γ _inst_2) m (fun (x : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (f x)) μ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align order_iso.ess_inf_apply OrderIso.essInf_applyₓ'. -/
 theorem OrderIso.essInf_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essInf f μ) = essInf (fun x => g (f x)) μ :=
@@ -415,10 +391,7 @@ theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f 
 #align ess_inf_antitone_measure essInf_antitone_measure
 
 /- warning: ess_sup_smul_measure -> essSup_smul_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) c μ)) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) c μ)) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ess_sup_smul_measure essSup_smul_measureₓ'. -/
 theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) : essSup f (c • μ) = essSup f μ :=
   by
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.function.ess_sup
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
+! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.Order.Filter.Ennreal
 
 /-!
 # Essential supremum and infimum
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
 We define the essential supremum and infimum of a function `f : α → β` with respect to a measure
 `μ` on `α`. The essential supremum is the infimum of the constants `c : β` such that `f x ≤ c`
 almost everywhere.
Diff
@@ -42,42 +42,82 @@ section ConditionallyCompleteLattice
 
 variable [ConditionallyCompleteLattice β]
 
+#print essSup /-
 /-- Essential supremum of `f` with respect to measure `μ`: the smallest `c : β` such that
 `f x ≤ c` a.e. -/
 def essSup {m : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
   μ.ae.limsup f
 #align ess_sup essSup
+-/
 
+#print essInf /-
 /-- Essential infimum of `f` with respect to measure `μ`: the greatest `c : β` such that
 `c ≤ f x` a.e. -/
 def essInf {m : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
   μ.ae.liminf f
 #align ess_inf essInf
+-/
 
+/- warning: ess_sup_congr_ae -> essSup_congr_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Eq.{succ u2} β (essSup.{u1, u2} α β _inst_1 m f μ) (essSup.{u1, u2} α β _inst_1 m g μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (Eq.{succ u1} β (essSup.{u2, u1} α β _inst_1 m f μ) (essSup.{u2, u1} α β _inst_1 m g μ))
+Case conversion may be inaccurate. Consider using '#align ess_sup_congr_ae essSup_congr_aeₓ'. -/
 theorem essSup_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essSup f μ = essSup g μ :=
   limsup_congr hfg
 #align ess_sup_congr_ae essSup_congr_ae
 
+/- warning: ess_inf_congr_ae -> essInf_congr_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Eq.{succ u2} β (essInf.{u1, u2} α β _inst_1 m f μ) (essInf.{u1, u2} α β _inst_1 m g μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (Eq.{succ u1} β (essInf.{u2, u1} α β _inst_1 m f μ) (essInf.{u2, u1} α β _inst_1 m g μ))
+Case conversion may be inaccurate. Consider using '#align ess_inf_congr_ae essInf_congr_aeₓ'. -/
 theorem essInf_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essInf f μ = essInf g μ :=
   @essSup_congr_ae α βᵒᵈ _ _ _ _ _ hfg
 #align ess_inf_congr_ae essInf_congr_ae
 
+/- warning: ess_sup_const' -> essSup_const' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] [_inst_2 : Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m μ)] (c : β), Eq.{succ u2} β (essSup.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] [_inst_2 : Filter.NeBot.{u2} α (MeasureTheory.Measure.ae.{u2} α m μ)] (c : β), Eq.{succ u1} β (essSup.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c
+Case conversion may be inaccurate. Consider using '#align ess_sup_const' essSup_const'ₓ'. -/
 @[simp]
 theorem essSup_const' [μ.ae.ne_bot] (c : β) : essSup (fun x : α => c) μ = c :=
   limsup_const _
 #align ess_sup_const' essSup_const'
 
+/- warning: ess_inf_const' -> essInf_const' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] [_inst_2 : Filter.NeBot.{u1} α (MeasureTheory.Measure.ae.{u1} α m μ)] (c : β), Eq.{succ u2} β (essInf.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] [_inst_2 : Filter.NeBot.{u2} α (MeasureTheory.Measure.ae.{u2} α m μ)] (c : β), Eq.{succ u1} β (essInf.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c
+Case conversion may be inaccurate. Consider using '#align ess_inf_const' essInf_const'ₓ'. -/
 @[simp]
 theorem essInf_const' [μ.ae.ne_bot] (c : β) : essInf (fun x : α => c) μ = c :=
   liminf_const _
 #align ess_inf_const' essInf_const'
 
+/- warning: ess_sup_const -> essSup_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] (c : β), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (Eq.{succ u2} β (essSup.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] (c : β), (Ne.{succ u2} (MeasureTheory.Measure.{u2} α m) μ (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) -> (Eq.{succ u1} β (essSup.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c)
+Case conversion may be inaccurate. Consider using '#align ess_sup_const essSup_constₓ'. -/
 theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c :=
   by
   rw [← ae_ne_bot] at hμ
   exact essSup_const' _
 #align ess_sup_const essSup_const
 
+/- warning: ess_inf_const -> essInf_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLattice.{u2} β] (c : β), (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (Eq.{succ u2} β (essInf.{u1, u2} α β _inst_1 m (fun (x : α) => c) μ) c)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : ConditionallyCompleteLattice.{u1} β] (c : β), (Ne.{succ u2} (MeasureTheory.Measure.{u2} α m) μ (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) -> (Eq.{succ u1} β (essInf.{u2, u1} α β _inst_1 m (fun (x : α) => c) μ) c)
+Case conversion may be inaccurate. Consider using '#align ess_inf_const essInf_constₓ'. -/
 theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c :=
   by
   rw [← ae_ne_bot] at hμ
@@ -90,6 +130,12 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}
 
+/- warning: ess_sup_eq_Inf -> essSup_eq_sInf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> β), Eq.{succ u2} β (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (InfSet.sInf.{u2} β (ConditionallyCompleteLattice.toHasInf.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)) (setOf.{u2} β (fun (a : β) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) a (f x)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) (f : α -> β), Eq.{succ u1} β (essSup.{u2, u1} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (InfSet.sInf.{u1} β (ConditionallyCompleteLattice.toInfSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)) (setOf.{u1} β (fun (a : β) => Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)))))) a (f x)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
+Case conversion may be inaccurate. Consider using '#align ess_sup_eq_Inf essSup_eq_sInfₓ'. -/
 theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
     essSup f μ = sInf { a | μ { x | a < f x } = 0 } :=
   by
@@ -97,6 +143,12 @@ theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β
   simp only [ae_iff, not_le]
 #align ess_sup_eq_Inf essSup_eq_sInf
 
+/- warning: ess_inf_eq_Sup -> essInf_eq_sSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> β), Eq.{succ u2} β (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (SupSet.sSup.{u2} β (ConditionallyCompleteLattice.toHasSup.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)) (setOf.{u2} β (fun (a : β) => Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f x) a))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : ConditionallyCompleteLinearOrder.{u1} β] {m : MeasurableSpace.{u2} α} (μ : MeasureTheory.Measure.{u2} α m) (f : α -> β), Eq.{succ u1} β (essInf.{u2, u1} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (SupSet.sSup.{u1} β (ConditionallyCompleteLattice.toSupSet.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)) (setOf.{u1} β (fun (a : β) => Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u2} α (MeasureTheory.Measure.toOuterMeasure.{u2} α m μ) (setOf.{u2} α (fun (x : α) => LT.lt.{u1} β (Preorder.toLT.{u1} β (PartialOrder.toPreorder.{u1} β (SemilatticeInf.toPartialOrder.{u1} β (Lattice.toSemilatticeInf.{u1} β (ConditionallyCompleteLattice.toLattice.{u1} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u1} β _inst_1)))))) (f x) a))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
+Case conversion may be inaccurate. Consider using '#align ess_inf_eq_Sup essInf_eq_sSupₓ'. -/
 theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
     essInf f μ = sSup { a | μ { x | f x < a } = 0 } :=
   by
@@ -104,6 +156,12 @@ theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β
   simp only [ae_iff, not_le]
 #align ess_inf_eq_Sup essInf_eq_sSup
 
+/- warning: ae_lt_of_ess_sup_lt -> ae_lt_of_essSup_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) x) -> (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) x) (MeasureTheory.Measure.ae.{u1} α m μ))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) x) -> (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.634 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.636 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.634 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.636) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.600) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) x) (MeasureTheory.Measure.ae.{u1} α m μ))
+Case conversion may be inaccurate. Consider using '#align ae_lt_of_ess_sup_lt ae_lt_of_essSup_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
@@ -113,6 +171,12 @@ theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
   eventually_lt_of_limsup_lt hx hf
 #align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt
 
+/- warning: ae_lt_of_lt_ess_inf -> ae_lt_of_lt_essInf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) -> (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (GE.ge.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {x : β} {f : α -> β}, (LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) -> (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.734 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.736 : β) => GE.ge.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.734 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.736) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.706) -> (Filter.Eventually.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
+Case conversion may be inaccurate. Consider using '#align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
@@ -124,6 +188,12 @@ theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
 
 variable [TopologicalSpace β] [FirstCountableTopology β] [OrderTopology β]
 
+/- warning: ae_le_ess_sup -> ae_le_essSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.868 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.870 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.868 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.870) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.840) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ))
+Case conversion may be inaccurate. Consider using '#align ae_le_ess_sup ae_le_essSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_le_essSup
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
@@ -133,6 +203,12 @@ theorem ae_le_essSup
   eventually_le_limsup hf
 #align ae_le_ess_sup ae_le_essSup
 
+/- warning: ae_ess_inf_le -> ae_essInf_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (GE.ge.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.973 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.975 : β) => GE.ge.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.973 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.975) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.945) -> (Filter.Eventually.{u1} α (fun (y : α) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)) (MeasureTheory.Measure.ae.{u1} α m μ))
+Case conversion may be inaccurate. Consider using '#align ae_ess_inf_le ae_essInf_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_essInf_le
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
@@ -142,6 +218,12 @@ theorem ae_essInf_le
   eventually_liminf_le hf
 #align ae_ess_inf_le ae_essInf_le
 
+/- warning: meas_ess_sup_lt -> meas_essSup_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1076 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1078 : β) => LE.le.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1076 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1078) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1048) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (essSup.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (f y)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align meas_ess_sup_lt meas_essSup_ltₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem meas_essSup_lt
     (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
@@ -152,6 +234,12 @@ theorem meas_essSup_lt
   exact ae_le_essSup hf
 #align meas_ess_sup_lt meas_essSup_lt
 
+/- warning: meas_lt_ess_inf -> meas_lt_essInf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParamₓ.{0} (Filter.IsBoundedUnder.{u2, u1} β α (GE.ge.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1))))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 115 (OfNat.mk.{0} Nat 115 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 98 (OfNat.mk.{0} Nat 98 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 111 (OfNat.mk.{0} Nat 111 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 110 (OfNat.mk.{0} Nat 110 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 95 (OfNat.mk.{0} Nat 95 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 100 (OfNat.mk.{0} Nat 100 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 97 (OfNat.mk.{0} Nat 97 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 117 (OfNat.mk.{0} Nat 117 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Name.mk_string (String.str (String.str (String.str (String.str (String.str (String.str String.empty (Char.ofNat (OfNat.ofNat.{0} Nat 102 (OfNat.mk.{0} Nat 102 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 105 (OfNat.mk.{0} Nat 105 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 108 (OfNat.mk.{0} Nat 108 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 116 (OfNat.mk.{0} Nat 116 (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 101 (OfNat.mk.{0} Nat 101 (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) (Char.ofNat (OfNat.ofNat.{0} Nat 114 (OfNat.mk.{0} Nat 114 (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit0.{0} Nat Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (bit1.{0} Nat Nat.hasOne Nat.hasAdd (One.one.{0} Nat Nat.hasOne))))))))))) Name.anonymous))) -> (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toHasLt.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : ConditionallyCompleteLinearOrder.{u2} β] {f : α -> β} [_inst_2 : TopologicalSpace.{u2} β] [_inst_3 : TopologicalSpace.FirstCountableTopology.{u2} β _inst_2] [_inst_4 : OrderTopology.{u2} β _inst_2 (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))], (autoParam.{0} (Filter.IsBoundedUnder.{u2, u1} β α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1178 : β) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1180 : β) => GE.ge.{u2} β (Preorder.toLE.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1178 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1180) (MeasureTheory.Measure.ae.{u1} α m μ) f) _auto._@.Mathlib.MeasureTheory.Function.EssSup._hyg.1150) -> (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (y : α) => LT.lt.{u2} β (Preorder.toLT.{u2} β (PartialOrder.toPreorder.{u2} β (SemilatticeInf.toPartialOrder.{u2} β (Lattice.toSemilatticeInf.{u2} β (ConditionallyCompleteLattice.toLattice.{u2} β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1)))))) (f y) (essInf.{u1, u2} α β (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align meas_lt_ess_inf meas_lt_essInfₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem meas_lt_essInf
     (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
@@ -168,24 +256,54 @@ section CompleteLattice
 
 variable [CompleteLattice β]
 
+/- warning: ess_sup_measure_zero -> essSup_measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {f : α -> β}, Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_1))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u2} α} {f : α -> β}, Eq.{succ u1} β (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) (Bot.bot.{u1} β (CompleteLattice.toBot.{u1} β _inst_1))
+Case conversion may be inaccurate. Consider using '#align ess_sup_measure_zero essSup_measure_zeroₓ'. -/
 @[simp]
 theorem essSup_measure_zero {m : MeasurableSpace α} {f : α → β} : essSup f (0 : Measure α) = ⊥ :=
   le_bot_iff.mp (sInf_le (by simp [Set.mem_setOf_eq, eventually_le, ae_iff]))
 #align ess_sup_measure_zero essSup_measure_zero
 
+/- warning: ess_inf_measure_zero -> essInf_measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {f : α -> β}, Eq.{succ u2} β (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_1))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u2} α} {f : α -> β}, Eq.{succ u1} β (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f (OfNat.ofNat.{u2} (MeasureTheory.Measure.{u2} α m) 0 (Zero.toOfNat0.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instZero.{u2} α m)))) (Top.top.{u1} β (CompleteLattice.toTop.{u1} β _inst_1))
+Case conversion may be inaccurate. Consider using '#align ess_inf_measure_zero essInf_measure_zeroₓ'. -/
 @[simp]
 theorem essInf_measure_zero {m : MeasurableSpace α} {f : α → β} : essInf f (0 : Measure α) = ⊤ :=
   @essSup_measure_zero α βᵒᵈ _ _ _
 #align ess_inf_measure_zero essInf_measure_zero
 
+/- warning: ess_sup_mono_ae -> essSup_mono_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m g μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m g μ))
+Case conversion may be inaccurate. Consider using '#align ess_sup_mono_ae essSup_mono_aeₓ'. -/
 theorem essSup_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essSup f μ ≤ essSup g μ :=
   limsup_le_limsup hfg
 #align ess_sup_mono_ae essSup_mono_ae
 
+/- warning: ess_inf_mono_ae -> essInf_mono_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m g μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} {g : α -> β}, (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) f g) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m g μ))
+Case conversion may be inaccurate. Consider using '#align ess_inf_mono_ae essInf_mono_aeₓ'. -/
 theorem essInf_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essInf f μ ≤ essInf g μ :=
   liminf_le_liminf hfg
 #align ess_inf_mono_ae essInf_mono_ae
 
+/- warning: ess_sup_le_of_ae_le -> essSup_le_of_ae_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) f (fun (_x : α) => c)) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ) c)
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) f (fun (_x : α) => c)) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ) c)
+Case conversion may be inaccurate. Consider using '#align ess_sup_le_of_ae_le essSup_le_of_ae_leₓ'. -/
 theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c :=
   by
   refine' (essSup_mono_ae hf).trans _
@@ -194,18 +312,42 @@ theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ =>
   · rwa [essSup_const]
 #align ess_sup_le_of_ae_le essSup_le_of_ae_le
 
+/- warning: le_ess_inf_of_ae_le -> le_essInf_of_ae_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u1, u2} α β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (MeasureTheory.Measure.ae.{u1} α m μ) (fun (_x : α) => c) f) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) c (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β} (c : β), (Filter.EventuallyLE.{u2, u1} α β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (MeasureTheory.Measure.ae.{u2} α m μ) (fun (_x : α) => c) f) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) c (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ))
+Case conversion may be inaccurate. Consider using '#align le_ess_inf_of_ae_le le_essInf_of_ae_leₓ'. -/
 theorem le_essInf_of_ae_le {f : α → β} (c : β) (hf : (fun _ => c) ≤ᵐ[μ] f) : c ≤ essInf f μ :=
   @essSup_le_of_ae_le α βᵒᵈ _ _ _ _ c hf
 #align le_ess_inf_of_ae_le le_essInf_of_ae_le
 
+/- warning: ess_sup_const_bot -> essSup_const_bot is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_1)) μ) (Bot.bot.{u2} β (CompleteLattice.toHasBot.{u2} β _inst_1))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_1)) μ) (Bot.bot.{u2} β (CompleteLattice.toBot.{u2} β _inst_1))
+Case conversion may be inaccurate. Consider using '#align ess_sup_const_bot essSup_const_botₓ'. -/
 theorem essSup_const_bot : essSup (fun x : α => (⊥ : β)) μ = (⊥ : β) :=
   limsup_const_bot
 #align ess_sup_const_bot essSup_const_bot
 
+/- warning: ess_inf_const_top -> essInf_const_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_1)) μ) (Top.top.{u2} β (CompleteLattice.toHasTop.{u2} β _inst_1))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β], Eq.{succ u2} β (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (fun (x : α) => Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_1)) μ) (Top.top.{u2} β (CompleteLattice.toTop.{u2} β _inst_1))
+Case conversion may be inaccurate. Consider using '#align ess_inf_const_top essInf_const_topₓ'. -/
 theorem essInf_const_top : essInf (fun x : α => (⊤ : β)) μ = (⊤ : β) :=
   liminf_const_top
 #align ess_inf_const_top essInf_const_top
 
+/- warning: order_iso.ess_sup_apply -> OrderIso.essSup_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {γ : Type.{u3}} [_inst_2 : CompleteLattice.{u3} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u1} α m) (g : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (essSup.{u1, u3} α γ (CompleteLattice.toConditionallyCompleteLattice.{u3} γ _inst_2) m (fun (x : α) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (f x)) μ)
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u3} α} {γ : Type.{u2}} [_inst_2 : CompleteLattice.{u2} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u3} α m) (g : OrderIso.{u1, u2} β γ (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2))))), Eq.{succ u2} γ (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (essSup.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ)) (essSup.{u3, u2} α γ (CompleteLattice.toConditionallyCompleteLattice.{u2} γ _inst_2) m (fun (x : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (f x)) μ)
+Case conversion may be inaccurate. Consider using '#align order_iso.ess_sup_apply OrderIso.essSup_applyₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essSup f μ) = essSup (fun x => g (f x)) μ :=
@@ -216,11 +358,23 @@ theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ]
       is_bounded_default
 #align order_iso.ess_sup_apply OrderIso.essSup_apply
 
+/- warning: order_iso.ess_inf_apply -> OrderIso.essInf_apply is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} [_inst_1 : CompleteLattice.{u2} β] {m : MeasurableSpace.{u1} α} {γ : Type.{u3}} [_inst_2 : CompleteLattice.{u3} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u1} α m) (g : OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))), Eq.{succ u3} γ (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ)) (essInf.{u1, u3} α γ (CompleteLattice.toConditionallyCompleteLattice.{u3} γ _inst_2) m (fun (x : α) => coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (OrderIso.{u2, u3} β γ (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2))))) (fun (_x : RelIso.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) => β -> γ) (RelIso.hasCoeToFun.{u2, u3} β γ (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1))))) (LE.le.{u3} γ (Preorder.toHasLe.{u3} γ (PartialOrder.toPreorder.{u3} γ (CompleteSemilatticeInf.toPartialOrder.{u3} γ (CompleteLattice.toCompleteSemilatticeInf.{u3} γ _inst_2)))))) g (f x)) μ)
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u1}} [_inst_1 : CompleteLattice.{u1} β] {m : MeasurableSpace.{u3} α} {γ : Type.{u2}} [_inst_2 : CompleteLattice.{u2} γ] (f : α -> β) (μ : MeasureTheory.Measure.{u3} α m) (g : OrderIso.{u1, u2} β γ (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2))))), Eq.{succ u2} γ (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (essInf.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ)) (essInf.{u3, u2} α γ (CompleteLattice.toConditionallyCompleteLattice.{u2} γ _inst_2) m (fun (x : α) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β (fun (_x : β) => γ) (RelHomClass.toFunLike.{max u1 u2, u1, u2} (RelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302)) β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302) (RelIso.instRelHomClassRelIso.{u1, u2} β γ (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1285 : β) (x._@.Mathlib.Order.Hom.Basic._hyg.1287 : β) => LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) x._@.Mathlib.Order.Hom.Basic._hyg.1285 x._@.Mathlib.Order.Hom.Basic._hyg.1287) (fun (x._@.Mathlib.Order.Hom.Basic._hyg.1300 : γ) (x._@.Mathlib.Order.Hom.Basic._hyg.1302 : γ) => LE.le.{u2} γ (Preorder.toLE.{u2} γ (PartialOrder.toPreorder.{u2} γ (OmegaCompletePartialOrder.toPartialOrder.{u2} γ (CompleteLattice.instOmegaCompletePartialOrder.{u2} γ _inst_2)))) x._@.Mathlib.Order.Hom.Basic._hyg.1300 x._@.Mathlib.Order.Hom.Basic._hyg.1302))) g (f x)) μ)
+Case conversion may be inaccurate. Consider using '#align order_iso.ess_inf_apply OrderIso.essInf_applyₓ'. -/
 theorem OrderIso.essInf_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essInf f μ) = essInf (fun x => g (f x)) μ :=
   @OrderIso.essSup_apply α βᵒᵈ _ _ γᵒᵈ _ _ _ g.dual
 #align order_iso.ess_inf_apply OrderIso.essInf_apply
 
+/- warning: ess_sup_mono_measure -> essSup_mono_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m ν μ) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f ν) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {ν : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m ν μ) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f ν) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ))
+Case conversion may be inaccurate. Consider using '#align ess_sup_mono_measure essSup_mono_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν ≤ essSup f μ :=
   by
@@ -230,12 +384,24 @@ theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν 
       is_bounded_default
 #align ess_sup_mono_measure essSup_mono_measure
 
+/- warning: ess_sup_mono_measure' -> essSup_mono_measure' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [_inst_2 : CompleteLattice.{u2} β] {f : α -> β}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) ν μ) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_2)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2) m f ν) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_2) m f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {ν : MeasureTheory.Measure.{u2} α m} [_inst_2 : CompleteLattice.{u1} β] {f : α -> β}, (LE.le.{u2} (MeasureTheory.Measure.{u2} α m) (Preorder.toLE.{u2} (MeasureTheory.Measure.{u2} α m) (PartialOrder.toPreorder.{u2} (MeasureTheory.Measure.{u2} α m) (MeasureTheory.Measure.instPartialOrder.{u2} α m))) ν μ) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_2)))) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_2) m f ν) (essSup.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_2) m f μ))
+Case conversion may be inaccurate. Consider using '#align ess_sup_mono_measure' essSup_mono_measure'ₓ'. -/
 theorem essSup_mono_measure' {α : Type _} {β : Type _} {m : MeasurableSpace α}
     {μ ν : MeasureTheory.Measure α} [CompleteLattice β] {f : α → β} (hμν : ν ≤ μ) :
     essSup f ν ≤ essSup f μ :=
   essSup_mono_measure (Measure.absolutelyContinuous_of_le hμν)
 #align ess_sup_mono_measure' essSup_mono_measure'
 
+/- warning: ess_inf_antitone_measure -> essInf_antitone_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ν : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u1} α m μ ν) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f ν) (essInf.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {ν : MeasureTheory.Measure.{u2} α m} [_inst_1 : CompleteLattice.{u1} β] {f : α -> β}, (MeasureTheory.Measure.AbsolutelyContinuous.{u2} α m μ ν) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f ν) (essInf.{u2, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m f μ))
+Case conversion may be inaccurate. Consider using '#align ess_inf_antitone_measure essInf_antitone_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f ν ≤ essInf f μ :=
   by
@@ -245,6 +411,12 @@ theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f 
       is_bounded_default
 #align ess_inf_antitone_measure essInf_antitone_measure
 
+/- warning: ess_sup_smul_measure -> essSup_smul_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) c μ)) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {f : α -> β} {c : ENNReal}, (Ne.{1} ENNReal c (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{succ u2} β (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) c μ)) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m f μ))
+Case conversion may be inaccurate. Consider using '#align ess_sup_smul_measure essSup_smul_measureₓ'. -/
 theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) : essSup f (c • μ) = essSup f μ :=
   by
   simp_rw [essSup]
@@ -260,6 +432,12 @@ variable {γ : Type _} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β
 
 include mγ
 
+/- warning: ess_sup_comp_le_ess_sup_map_measure -> essSup_comp_le_essSup_map_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {γ : Type.{u3}} {mγ : MeasurableSpace.{u3} γ} {f : α -> γ} {g : γ -> β}, (AEMeasurable.{u1, u3} α γ mγ m f μ) -> (LE.le.{u2} β (Preorder.toHasLe.{u2} β (PartialOrder.toPreorder.{u2} β (CompleteSemilatticeInf.toPartialOrder.{u2} β (CompleteLattice.toCompleteSemilatticeInf.{u2} β _inst_1)))) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (Function.comp.{succ u1, succ u3, succ u2} α γ β g f) μ) (essSup.{u3, u2} γ β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) mγ g (MeasureTheory.Measure.map.{u1, u3} α γ mγ m f μ)))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u1}} {m : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m} [_inst_1 : CompleteLattice.{u1} β] {γ : Type.{u2}} {mγ : MeasurableSpace.{u2} γ} {f : α -> γ} {g : γ -> β}, (AEMeasurable.{u3, u2} α γ mγ m f μ) -> (LE.le.{u1} β (Preorder.toLE.{u1} β (PartialOrder.toPreorder.{u1} β (OmegaCompletePartialOrder.toPartialOrder.{u1} β (CompleteLattice.instOmegaCompletePartialOrder.{u1} β _inst_1)))) (essSup.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m (Function.comp.{succ u3, succ u2, succ u1} α γ β g f) μ) (essSup.{u2, u1} γ β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) mγ g (MeasureTheory.Measure.map.{u3, u2} α γ mγ m f μ)))
+Case conversion may be inaccurate. Consider using '#align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
@@ -281,6 +459,12 @@ theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
   exact fun h => mem_ae_of_mem_ae_map hf h
 #align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measure
 
+/- warning: measurable_embedding.ess_sup_map_measure -> MeasurableEmbedding.essSup_map_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : CompleteLattice.{u2} β] {γ : Type.{u3}} {mγ : MeasurableSpace.{u3} γ} {f : α -> γ} {g : γ -> β}, (MeasurableEmbedding.{u1, u3} α γ m mγ f) -> (Eq.{succ u2} β (essSup.{u3, u2} γ β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) mγ g (MeasureTheory.Measure.map.{u1, u3} α γ mγ m f μ)) (essSup.{u1, u2} α β (CompleteLattice.toConditionallyCompleteLattice.{u2} β _inst_1) m (Function.comp.{succ u1, succ u3, succ u2} α γ β g f) μ))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u1}} {m : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m} [_inst_1 : CompleteLattice.{u1} β] {γ : Type.{u2}} {mγ : MeasurableSpace.{u2} γ} {f : α -> γ} {g : γ -> β}, (MeasurableEmbedding.{u3, u2} α γ m mγ f) -> (Eq.{succ u1} β (essSup.{u2, u1} γ β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) mγ g (MeasureTheory.Measure.map.{u3, u2} α γ mγ m f μ)) (essSup.{u3, u1} α β (CompleteLattice.toConditionallyCompleteLattice.{u1} β _inst_1) m (Function.comp.{succ u3, succ u2, succ u1} α γ β g f) μ))
+Case conversion may be inaccurate. Consider using '#align measurable_embedding.ess_sup_map_measure MeasurableEmbedding.essSup_map_measureₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
@@ -305,6 +489,7 @@ variable [MeasurableSpace β] [TopologicalSpace β] [SecondCountableTopology β]
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print essSup_map_measure_of_measurable /-
 theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AEMeasurable f μ) :
     essSup g (Measure.map f μ) = essSup (g ∘ f) μ :=
   by
@@ -322,7 +507,9 @@ theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AEMeasurable
   rw [ae_map_iff hf (measurableSet_le hg measurable_const)]
   exact h_le
 #align ess_sup_map_measure_of_measurable essSup_map_measure_of_measurable
+-/
 
+#print essSup_map_measure /-
 theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
     essSup g (Measure.map f μ) = essSup (g ∘ f) μ :=
   by
@@ -332,6 +519,7 @@ theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeas
   rw [← eventually_eq] at h_eq
   exact h_eq.symm
 #align ess_sup_map_measure essSup_map_measure
+-/
 
 omit mγ
 
@@ -347,6 +535,7 @@ variable [CompleteLinearOrder β]
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+#print essSup_indicator_eq_essSup_restrict /-
 theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
     (hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
     essSup (s.indicator f) μ = essSup f (μ.restrict s) :=
@@ -390,6 +579,7 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
   · simpa [hxs] using hxc hxs
   · simpa [hxs] using hc
 #align ess_sup_indicator_eq_ess_sup_restrict essSup_indicator_eq_essSup_restrict
+-/
 
 end CompleteLinearOrder
 
@@ -397,27 +587,63 @@ namespace ENNReal
 
 variable {f : α → ℝ≥0∞}
 
+/- warning: ennreal.ae_le_ess_sup -> ENNReal.ae_le_essSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Filter.Eventually.{u1} α (fun (y : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f y) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Filter.Eventually.{u1} α (fun (y : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f y) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ)) (MeasureTheory.Measure.ae.{u1} α m μ)
+Case conversion may be inaccurate. Consider using '#align ennreal.ae_le_ess_sup ENNReal.ae_le_essSupₓ'. -/
 theorem ae_le_essSup (f : α → ℝ≥0∞) : ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
   eventually_le_limsup f
 #align ennreal.ae_le_ess_sup ENNReal.ae_le_essSup
 
+/- warning: ennreal.ess_sup_eq_zero_iff -> ENNReal.essSup_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, Iff (Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iffₓ'. -/
 @[simp]
 theorem essSup_eq_zero_iff : essSup f μ = 0 ↔ f =ᵐ[μ] 0 :=
   limsup_eq_zero_iff
 #align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iff
 
+/- warning: ennreal.ess_sup_const_mul -> ENNReal.essSup_const_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (f x)) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) a (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {a : ENNReal}, Eq.{1} ENNReal (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (f x)) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) a (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ))
+Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_const_mul ENNReal.essSup_const_mulₓ'. -/
 theorem essSup_const_mul {a : ℝ≥0∞} : essSup (fun x : α => a * f x) μ = a * essSup f μ :=
   limsup_const_mul
 #align ennreal.ess_sup_const_mul ENNReal.essSup_const_mul
 
+/- warning: ennreal.ess_sup_mul_le -> ENNReal.essSup_mul_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m g μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g) μ) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m g μ))
+Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_mul_le ENNReal.essSup_mul_leₓ'. -/
 theorem essSup_mul_le (f g : α → ℝ≥0∞) : essSup (f * g) μ ≤ essSup f μ * essSup g μ :=
   limsup_mul_le f g
 #align ennreal.ess_sup_mul_le ENNReal.essSup_mul_le
 
+/- warning: ennreal.ess_sup_add_le -> ENNReal.essSup_add_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g) μ) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m f μ) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m g μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g) μ) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m f μ) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m g μ))
+Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_add_le ENNReal.essSup_add_leₓ'. -/
 theorem essSup_add_le (f g : α → ℝ≥0∞) : essSup (f + g) μ ≤ essSup f μ + essSup g μ :=
   limsup_add_le f g
 #align ennreal.ess_sup_add_le ENNReal.essSup_add_le
 
+/- warning: ennreal.ess_sup_liminf_le -> ENNReal.essSup_liminf_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : LinearOrder.{u2} ι] (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => Filter.liminf.{0, u2} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => f n x) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_2)))))) μ) (Filter.liminf.{0, u2} ENNReal ι (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : ι) => essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => f n x) μ) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (LinearOrder.toLattice.{u2} ι _inst_2))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} [_inst_1 : Countable.{succ u2} ι] [_inst_2 : LinearOrder.{u2} ι] (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => Filter.liminf.{0, u2} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => f n x) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_2))))))) μ) (Filter.liminf.{0, u2} ENNReal ι (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : ι) => essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => f n x) μ) (Filter.atTop.{u2} ι (PartialOrder.toPreorder.{u2} ι (SemilatticeInf.toPartialOrder.{u2} ι (Lattice.toSemilatticeInf.{u2} ι (DistribLattice.toLattice.{u2} ι (instDistribLattice.{u2} ι _inst_2)))))))
+Case conversion may be inaccurate. Consider using '#align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_leₓ'. -/
 theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α → ℝ≥0∞) :
     essSup (fun x => atTop.liminf fun n => f n x) μ ≤
       atTop.liminf fun n => essSup (fun x => f n x) μ :=
@@ -426,6 +652,12 @@ theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α →
   exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
 #align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le
 
+/- warning: ennreal.coe_ess_sup -> ENNReal.coe_essSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Filter.IsBoundedUnder.{0, u1} NNReal α (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) (MeasureTheory.Measure.ae.{u1} α m μ) f) -> (Eq.{1} ENNReal ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (essSup.{u1, 0} α NNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} NNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} NNReal NNReal.conditionallyCompleteLinearOrderBot)) m f μ)) (essSup.{u1, 0} α ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) m (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)) μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Filter.IsBoundedUnder.{0, u1} NNReal α (fun (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3950 : NNReal) (x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3952 : NNReal) => LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3950 x._@.Mathlib.MeasureTheory.Function.EssSup._hyg.3952) (MeasureTheory.Measure.ae.{u1} α m μ) f) -> (Eq.{1} ENNReal (ENNReal.some (essSup.{u1, 0} α NNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} NNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} NNReal NNReal.instConditionallyCompleteLinearOrderBotNNReal)) m f μ)) (essSup.{u1, 0} α ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) m (fun (x : α) => ENNReal.some (f x)) μ))
+Case conversion may be inaccurate. Consider using '#align ennreal.coe_ess_sup ENNReal.coe_essSupₓ'. -/
 theorem coe_essSup {f : α → ℝ≥0} (hf : IsBoundedUnder (· ≤ ·) μ.ae f) :
     (↑(essSup f μ) : ℝ≥0∞) = essSup (fun x => f x) μ :=
   (ENNReal.coe_sInf <| hf).trans <|
Diff
@@ -4,11 +4,11 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.function.ess_sup
-! leanprover-community/mathlib commit 52932b3a083d4142e78a15dc928084a22fea9ba0
+! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathbin.MeasureTheory.Constructions.BorelSpace
+import Mathbin.MeasureTheory.Constructions.BorelSpace.Basic
 import Mathbin.Order.Filter.Ennreal
 
 /-!
Diff
@@ -90,19 +90,19 @@ section ConditionallyCompleteLinearOrder
 
 variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}
 
-theorem essSup_eq_infₛ {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
-    essSup f μ = infₛ { a | μ { x | a < f x } = 0 } :=
+theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
+    essSup f μ = sInf { a | μ { x | a < f x } = 0 } :=
   by
   dsimp [essSup, limsup, Limsup]
   simp only [ae_iff, not_le]
-#align ess_sup_eq_Inf essSup_eq_infₛ
+#align ess_sup_eq_Inf essSup_eq_sInf
 
-theorem essInf_eq_supₛ {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
-    essInf f μ = supₛ { a | μ { x | f x < a } = 0 } :=
+theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
+    essInf f μ = sSup { a | μ { x | f x < a } = 0 } :=
   by
   dsimp [essInf, liminf, Liminf]
   simp only [ae_iff, not_le]
-#align ess_inf_eq_Sup essInf_eq_supₛ
+#align ess_inf_eq_Sup essInf_eq_sSup
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
 theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
@@ -170,7 +170,7 @@ variable [CompleteLattice β]
 
 @[simp]
 theorem essSup_measure_zero {m : MeasurableSpace α} {f : α → β} : essSup f (0 : Measure α) = ⊥ :=
-  le_bot_iff.mp (infₛ_le (by simp [Set.mem_setOf_eq, eventually_le, ae_iff]))
+  le_bot_iff.mp (sInf_le (by simp [Set.mem_setOf_eq, eventually_le, ae_iff]))
 #align ess_sup_measure_zero essSup_measure_zero
 
 @[simp]
@@ -428,7 +428,7 @@ theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α →
 
 theorem coe_essSup {f : α → ℝ≥0} (hf : IsBoundedUnder (· ≤ ·) μ.ae f) :
     (↑(essSup f μ) : ℝ≥0∞) = essSup (fun x => f x) μ :=
-  (ENNReal.coe_infₛ <| hf).trans <|
+  (ENNReal.coe_sInf <| hf).trans <|
     eq_of_forall_le_iff fun r => by
       simp [essSup, limsup, Limsup, eventually_map, ENNReal.forall_ennreal]
 #align ennreal.coe_ess_sup ENNReal.coe_essSup
Diff
@@ -233,7 +233,7 @@ theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν 
 theorem essSup_mono_measure' {α : Type _} {β : Type _} {m : MeasurableSpace α}
     {μ ν : MeasureTheory.Measure α} [CompleteLattice β] {f : α → β} (hμν : ν ≤ μ) :
     essSup f ν ≤ essSup f μ :=
-  essSup_mono_measure (Measure.absolutelyContinuousOfLe hμν)
+  essSup_mono_measure (Measure.absolutelyContinuous_of_le hμν)
 #align ess_sup_mono_measure' essSup_mono_measure'
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
@@ -262,7 +262,7 @@ include mγ
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
-theorem essSup_comp_le_essSup_map_measure (hf : AeMeasurable f μ) :
+theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
     essSup (g ∘ f) μ ≤ essSup g (Measure.map f μ) :=
   by
   refine'
@@ -305,7 +305,7 @@ variable [MeasurableSpace β] [TopologicalSpace β] [SecondCountableTopology β]
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
-theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AeMeasurable f μ) :
+theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AEMeasurable f μ) :
     essSup g (Measure.map f μ) = essSup (g ∘ f) μ :=
   by
   refine' le_antisymm _ (essSup_comp_le_essSup_map_measure hf)
@@ -323,7 +323,7 @@ theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AeMeasurable
   exact h_le
 #align ess_sup_map_measure_of_measurable essSup_map_measure_of_measurable
 
-theorem essSup_map_measure (hg : AeMeasurable g (Measure.map f μ)) (hf : AeMeasurable f μ) :
+theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
     essSup g (Measure.map f μ) = essSup (g ∘ f) μ :=
   by
   rw [essSup_congr_ae hg.ae_eq_mk, essSup_map_measure_of_measurable hg.measurable_mk hf]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.function.ess_sup
-! leanprover-community/mathlib commit 394f6e63f63ebc49b2b723e62f89f1604aa4b87d
+! leanprover-community/mathlib commit 52932b3a083d4142e78a15dc928084a22fea9ba0
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -32,9 +32,9 @@ sense). We do not define that quantity here, which is simply the supremum of a m
 -/
 
 
-open MeasureTheory Filter TopologicalSpace
+open MeasureTheory Filter Set TopologicalSpace
 
-open ENNReal MeasureTheory
+open ENNReal MeasureTheory NNReal
 
 variable {α β : Type _} {m : MeasurableSpace α} {μ ν : Measure α}
 
@@ -62,21 +62,106 @@ theorem essInf_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essInf f μ = e
   @essSup_congr_ae α βᵒᵈ _ _ _ _ _ hfg
 #align ess_inf_congr_ae essInf_congr_ae
 
+@[simp]
+theorem essSup_const' [μ.ae.ne_bot] (c : β) : essSup (fun x : α => c) μ = c :=
+  limsup_const _
+#align ess_sup_const' essSup_const'
+
+@[simp]
+theorem essInf_const' [μ.ae.ne_bot] (c : β) : essInf (fun x : α => c) μ = c :=
+  liminf_const _
+#align ess_inf_const' essInf_const'
+
+theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c :=
+  by
+  rw [← ae_ne_bot] at hμ
+  exact essSup_const' _
+#align ess_sup_const essSup_const
+
+theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c :=
+  by
+  rw [← ae_ne_bot] at hμ
+  exact essInf_const' _
+#align ess_inf_const essInf_const
+
 end ConditionallyCompleteLattice
 
 section ConditionallyCompleteLinearOrder
 
-variable [ConditionallyCompleteLinearOrder β]
+variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}
 
 theorem essSup_eq_infₛ {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
     essSup f μ = infₛ { a | μ { x | a < f x } = 0 } :=
   by
   dsimp [essSup, limsup, Limsup]
-  congr
-  ext a
-  simp [eventually_map, ae_iff]
+  simp only [ae_iff, not_le]
 #align ess_sup_eq_Inf essSup_eq_infₛ
 
+theorem essInf_eq_supₛ {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
+    essInf f μ = supₛ { a | μ { x | f x < a } = 0 } :=
+  by
+  dsimp [essInf, liminf, Liminf]
+  simp only [ae_iff, not_le]
+#align ess_inf_eq_Sup essInf_eq_supₛ
+
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
+    (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
+      run_tac
+        is_bounded_default) :
+    ∀ᵐ y ∂μ, f y < x :=
+  eventually_lt_of_limsup_lt hx hf
+#align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt
+
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
+    (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
+      run_tac
+        is_bounded_default) :
+    ∀ᵐ y ∂μ, x < f y :=
+  eventually_lt_of_lt_liminf hx hf
+#align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInf
+
+variable [TopologicalSpace β] [FirstCountableTopology β] [OrderTopology β]
+
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+theorem ae_le_essSup
+    (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
+      run_tac
+        is_bounded_default) :
+    ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
+  eventually_le_limsup hf
+#align ae_le_ess_sup ae_le_essSup
+
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+theorem ae_essInf_le
+    (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
+      run_tac
+        is_bounded_default) :
+    ∀ᵐ y ∂μ, essInf f μ ≤ f y :=
+  eventually_liminf_le hf
+#align ae_ess_inf_le ae_essInf_le
+
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+theorem meas_essSup_lt
+    (hf : IsBoundedUnder (· ≤ ·) μ.ae f := by
+      run_tac
+        is_bounded_default) :
+    μ { y | essSup f μ < f y } = 0 := by
+  simp_rw [← not_le]
+  exact ae_le_essSup hf
+#align meas_ess_sup_lt meas_essSup_lt
+
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic is_bounded_default -/
+theorem meas_lt_essInf
+    (hf : IsBoundedUnder (· ≥ ·) μ.ae f := by
+      run_tac
+        is_bounded_default) :
+    μ { y | f y < essInf f μ } = 0 := by
+  simp_rw [← not_le]
+  exact ae_essInf_le hf
+#align meas_lt_ess_inf meas_lt_essInf
+
 end ConditionallyCompleteLinearOrder
 
 section CompleteLattice
@@ -101,11 +186,6 @@ theorem essInf_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essInf f μ 
   liminf_le_liminf hfg
 #align ess_inf_mono_ae essInf_mono_ae
 
-theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun x : α => c) μ = c :=
-  haveI hμ_ne_bot : μ.ae.ne_bot := by rwa [ne_bot_iff, Ne.def, ae_eq_bot]
-  limsup_const c
-#align ess_sup_const essSup_const
-
 theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c :=
   by
   refine' (essSup_mono_ae hf).trans _
@@ -114,10 +194,6 @@ theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ =>
   · rwa [essSup_const]
 #align ess_sup_le_of_ae_le essSup_le_of_ae_le
 
-theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun x : α => c) μ = c :=
-  @essSup_const α βᵒᵈ _ _ _ _ hμ
-#align ess_inf_const essInf_const
-
 theorem le_essInf_of_ae_le {f : α → β} (c : β) (hf : (fun _ => c) ≤ᵐ[μ] f) : c ≤ essInf f μ :=
   @essSup_le_of_ae_le α βᵒᵈ _ _ _ _ c hf
 #align le_ess_inf_of_ae_le le_essInf_of_ae_le
@@ -267,14 +343,6 @@ section CompleteLinearOrder
 
 variable [CompleteLinearOrder β]
 
-theorem ae_lt_of_essSup_lt {f : α → β} {x : β} (hf : essSup f μ < x) : ∀ᵐ y ∂μ, f y < x :=
-  Filter.eventually_lt_of_limsup_lt hf
-#align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt
-
-theorem ae_lt_of_lt_essInf {f : α → β} {x : β} (hf : x < essInf f μ) : ∀ᵐ y ∂μ, x < f y :=
-  @ae_lt_of_essSup_lt α βᵒᵈ _ _ _ _ _ hf
-#align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInf
-
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
@@ -358,5 +426,12 @@ theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α →
   exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
 #align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le
 
+theorem coe_essSup {f : α → ℝ≥0} (hf : IsBoundedUnder (· ≤ ·) μ.ae f) :
+    (↑(essSup f μ) : ℝ≥0∞) = essSup (fun x => f x) μ :=
+  (ENNReal.coe_infₛ <| hf).trans <|
+    eq_of_forall_le_iff fun r => by
+      simp [essSup, limsup, Limsup, eventually_map, ENNReal.forall_ennreal]
+#align ennreal.coe_ess_sup ENNReal.coe_essSup
+
 end ENNReal
 
Diff
@@ -130,7 +130,7 @@ theorem essInf_const_top : essInf (fun x : α => (⊤ : β)) μ = (⊤ : β) :=
   liminf_const_top
 #align ess_inf_const_top essInf_const_top
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
     (μ : Measure α) (g : β ≃o γ) : g (essSup f μ) = essSup (fun x => g (f x)) μ :=
   by
@@ -145,7 +145,7 @@ theorem OrderIso.essInf_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ]
   @OrderIso.essSup_apply α βᵒᵈ _ _ γᵒᵈ _ _ _ g.dual
 #align order_iso.ess_inf_apply OrderIso.essInf_apply
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν ≤ essSup f μ :=
   by
   refine' limsup_le_limsup_of_le (measure.ae_le_iff_absolutely_continuous.mpr hμν) _ _
@@ -160,7 +160,7 @@ theorem essSup_mono_measure' {α : Type _} {β : Type _} {m : MeasurableSpace α
   essSup_mono_measure (Measure.absolutelyContinuousOfLe hμν)
 #align ess_sup_mono_measure' essSup_mono_measure'
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f ν ≤ essInf f μ :=
   by
   refine' liminf_le_liminf_of_le (measure.ae_le_iff_absolutely_continuous.mpr hμν) _ _
@@ -184,8 +184,8 @@ variable {γ : Type _} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β
 
 include mγ
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_comp_le_essSup_map_measure (hf : AeMeasurable f μ) :
     essSup (g ∘ f) μ ≤ essSup g (Measure.map f μ) :=
   by
@@ -205,8 +205,8 @@ theorem essSup_comp_le_essSup_map_measure (hf : AeMeasurable f μ) :
   exact fun h => mem_ae_of_mem_ae_map hf h
 #align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measure
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
     essSup g (Measure.map f μ) = essSup (g ∘ f) μ :=
   by
@@ -227,8 +227,8 @@ theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
 variable [MeasurableSpace β] [TopologicalSpace β] [SecondCountableTopology β]
   [OrderClosedTopology β] [OpensMeasurableSpace β]
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AeMeasurable f μ) :
     essSup g (Measure.map f μ) = essSup (g ∘ f) μ :=
   by
@@ -275,10 +275,10 @@ theorem ae_lt_of_lt_essInf {f : α → β} {x : β} (hf : x < essInf f μ) : ∀
   @ae_lt_of_essSup_lt α βᵒᵈ _ _ _ _ _ hf
 #align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInf
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:69:18: unsupported non-interactive tactic filter.is_bounded_default -/
 theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
     (hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
     essSup (s.indicator f) μ = essSup f (μ.restrict s) :=
Diff
@@ -34,7 +34,7 @@ sense). We do not define that quantity here, which is simply the supremum of a m
 
 open MeasureTheory Filter TopologicalSpace
 
-open Ennreal MeasureTheory
+open ENNReal MeasureTheory
 
 variable {α β : Type _} {m : MeasurableSpace α} {μ ν : Measure α}
 
@@ -325,38 +325,38 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
 
 end CompleteLinearOrder
 
-namespace Ennreal
+namespace ENNReal
 
 variable {f : α → ℝ≥0∞}
 
 theorem ae_le_essSup (f : α → ℝ≥0∞) : ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
   eventually_le_limsup f
-#align ennreal.ae_le_ess_sup Ennreal.ae_le_essSup
+#align ennreal.ae_le_ess_sup ENNReal.ae_le_essSup
 
 @[simp]
 theorem essSup_eq_zero_iff : essSup f μ = 0 ↔ f =ᵐ[μ] 0 :=
   limsup_eq_zero_iff
-#align ennreal.ess_sup_eq_zero_iff Ennreal.essSup_eq_zero_iff
+#align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iff
 
 theorem essSup_const_mul {a : ℝ≥0∞} : essSup (fun x : α => a * f x) μ = a * essSup f μ :=
   limsup_const_mul
-#align ennreal.ess_sup_const_mul Ennreal.essSup_const_mul
+#align ennreal.ess_sup_const_mul ENNReal.essSup_const_mul
 
 theorem essSup_mul_le (f g : α → ℝ≥0∞) : essSup (f * g) μ ≤ essSup f μ * essSup g μ :=
   limsup_mul_le f g
-#align ennreal.ess_sup_mul_le Ennreal.essSup_mul_le
+#align ennreal.ess_sup_mul_le ENNReal.essSup_mul_le
 
 theorem essSup_add_le (f g : α → ℝ≥0∞) : essSup (f + g) μ ≤ essSup f μ + essSup g μ :=
   limsup_add_le f g
-#align ennreal.ess_sup_add_le Ennreal.essSup_add_le
+#align ennreal.ess_sup_add_le ENNReal.essSup_add_le
 
 theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α → ℝ≥0∞) :
     essSup (fun x => atTop.liminf fun n => f n x) μ ≤
       atTop.liminf fun n => essSup (fun x => f n x) μ :=
   by
   simp_rw [essSup]
-  exact Ennreal.limsup_liminf_le_liminf_limsup fun a b => f b a
-#align ennreal.ess_sup_liminf_le Ennreal.essSup_liminf_le
+  exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
+#align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le
 
-end Ennreal
+end ENNReal
 

Changes in mathlib4

mathlib3
mathlib4
chore: tidy various files (#12213)
Diff
@@ -15,12 +15,12 @@ We define the essential supremum and infimum of a function `f : α → β` with
 almost everywhere.
 
 TODO: The essential supremum of functions `α → ℝ≥0∞` is used in particular to define the norm in
-the `L∞` space (see `MeasureTheory.Function.LpSpace`).
+the `L∞` space (see `Mathlib.MeasureTheory.Function.LpSpace`).
 
 There is a different quantity which is sometimes also called essential supremum: the least
 upper-bound among measurable functions of a family of measurable functions (in an almost-everywhere
 sense). We do not define that quantity here, which is simply the supremum of a map with values in
-`α →ₘ[μ] β` (see `MeasureTheory.Function.AEEqFun`).
+`α →ₘ[μ] β` (see `Mathlib.MeasureTheory.Function.AEEqFun`).
 
 ## Main definitions
 
chore: remove some mathlib3 names in doc comments (#11931)
Diff
@@ -15,12 +15,12 @@ We define the essential supremum and infimum of a function `f : α → β` with
 almost everywhere.
 
 TODO: The essential supremum of functions `α → ℝ≥0∞` is used in particular to define the norm in
-the `L∞` space (see MeasureTheory/LpSpace.lean).
+the `L∞` space (see `MeasureTheory.Function.LpSpace`).
 
 There is a different quantity which is sometimes also called essential supremum: the least
 upper-bound among measurable functions of a family of measurable functions (in an almost-everywhere
 sense). We do not define that quantity here, which is simply the supremum of a map with values in
-`α →ₘ[μ] β` (see MeasureTheory/AEEqFun.lean).
+`α →ₘ[μ] β` (see `MeasureTheory.Function.AEEqFun`).
 
 ## Main definitions
 
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -205,7 +205,7 @@ theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f 
 theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) :
     essSup f (c • μ) = essSup f μ := by
   simp_rw [essSup]
-  suffices h_smul : (c • μ).ae = μ.ae; · rw [h_smul]
+  suffices h_smul : (c • μ).ae = μ.ae by rw [h_smul]
   ext1
   simp_rw [mem_ae_iff]
   simp [hc]
feat(LiminfLimsup, LpSeminorm): add lemmas/golf (#8300)
  • Add blimsup_eq_limsup and bliminf_eq_liminf
  • Generalize limsup_nat_add and liminf_nat_add to a ConditionallyCompleteLattice.
  • Add Filter.HasBasis.blimsup_eq_iInf_iSup.
  • Add limsup_sup_filter, liminf_sup_filter, blimsup_sup_not, bliminf_inf_not, blimsup_not_sup, bliminf_not_inf, limsup_piecewise, and liminf_piecewise.
  • Add essSup_piecewise.
  • Assume that the codomain is ℝ≥0∞ in essSup_indicator_eq_essSup_restrict. This allows us to drop assumptions 0 ≤ᵐ[_] f and μ s ≠ 0.
  • Upgrade inequality to an equality in snormEssSup_piecewise_le (now snormEssSup_piecewise) and snorm_top_piecewise_le (now snorm_top_piecewise).
  • Use new lemmas to golf some proofs.
Diff
@@ -159,11 +159,8 @@ theorem essInf_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essInf f μ 
   liminf_le_liminf hfg
 #align ess_inf_mono_ae essInf_mono_ae
 
-theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c := by
-  refine' (essSup_mono_ae hf).trans _
-  by_cases hμ : μ = 0
-  · simp [hμ]
-  · rwa [essSup_const]
+theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c :=
+  limsup_le_of_le (by isBoundedDefault) hf
 #align ess_sup_le_of_ae_le essSup_le_of_ae_le
 
 theorem le_essInf_of_ae_le {f : α → β} (c : β) (hf : (fun _ => c) ≤ᵐ[μ] f) : c ≤ essInf f μ :=
@@ -262,45 +259,20 @@ end TopologicalSpace
 
 end CompleteLattice
 
-section CompleteLinearOrder
-
-variable [CompleteLinearOrder β]
-theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
-    (hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
-    essSup (s.indicator f) μ = essSup f (μ.restrict s) := by
-  refine'
-    le_antisymm _
-      (limsSup_le_limsSup_of_le (map_restrict_ae_le_map_indicator_ae hs)
-        (by isBoundedDefault) (by isBoundedDefault) )
-  refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_restrict_le => _)
-  rw [eventually_map] at h_restrict_le ⊢
-  rw [ae_restrict_iff' hs] at h_restrict_le
-  have hc : 0 ≤ c := by
-    rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c
-    exact hx.1.trans hx.2
-    refine' Frequently.exists _
-    · exact μ.ae
-    rw [EventuallyLE, ae_restrict_iff' hs] at hf
-    have hs' : ∃ᵐ x ∂μ, x ∈ s := by
-      contrapose! hs_not_null
-      rw [not_frequently, ae_iff] at hs_not_null
-      suffices { a : α | ¬a ∉ s } = s by rwa [← this]
-      simp
-    refine' hs'.mp (hf.mp (h_restrict_le.mono fun x hxs_imp_c hxf_nonneg hxs => _))
-    rw [Pi.zero_apply] at hxf_nonneg
-    exact ⟨hxf_nonneg hxs, hxs_imp_c hxs⟩
-  refine' h_restrict_le.mono fun x hxc => _
-  by_cases hxs : x ∈ s
-  · simpa [hxs] using hxc hxs
-  · simpa [hxs] using hc
-#align ess_sup_indicator_eq_ess_sup_restrict essSup_indicator_eq_essSup_restrict
-
-end CompleteLinearOrder
-
 namespace ENNReal
 
 variable {f : α → ℝ≥0∞}
 
+lemma essSup_piecewise {s : Set α} [DecidablePred (· ∈ s)] {g} (hs : MeasurableSet s) :
+    essSup (s.piecewise f g) μ = max (essSup f (μ.restrict s)) (essSup g (μ.restrict sᶜ)) := by
+  simp only [essSup, limsup_piecewise, blimsup_eq_limsup, ae_restrict_eq, hs, hs.compl]; rfl
+
+theorem essSup_indicator_eq_essSup_restrict {s : Set α} {f : α → ℝ≥0∞} (hs : MeasurableSet s) :
+    essSup (s.indicator f) μ = essSup f (μ.restrict s) := by
+  classical
+  simp only [← piecewise_eq_indicator, essSup_piecewise hs, max_eq_left_iff]
+  exact limsup_const_bot.trans_le (zero_le _)
+
 theorem ae_le_essSup (f : α → ℝ≥0∞) : ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
   eventually_le_limsup f
 #align ennreal.ae_le_ess_sup ENNReal.ae_le_essSup
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -33,7 +33,7 @@ open MeasureTheory Filter Set TopologicalSpace
 
 open ENNReal MeasureTheory NNReal
 
-variable {α β : Type _} {m : MeasurableSpace α} {μ ν : Measure α}
+variable {α β : Type*} {m : MeasurableSpace α} {μ ν : Measure α}
 
 section ConditionallyCompleteLattice
 
@@ -194,7 +194,7 @@ theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν 
   all_goals isBoundedDefault
 #align ess_sup_mono_measure essSup_mono_measure
 
-theorem essSup_mono_measure' {α : Type _} {β : Type _} {_ : MeasurableSpace α}
+theorem essSup_mono_measure' {α : Type*} {β : Type*} {_ : MeasurableSpace α}
     {μ ν : MeasureTheory.Measure α} [CompleteLattice β] {f : α → β} (hμν : ν ≤ μ) :
     essSup f ν ≤ essSup f μ :=
   essSup_mono_measure (Measure.absolutelyContinuous_of_le hμν)
@@ -216,7 +216,7 @@ theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) :
 
 section TopologicalSpace
 
-variable {γ : Type _} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β}
+variable {γ : Type*} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β}
 
 theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
     essSup (g ∘ f) μ ≤ essSup g (Measure.map f μ) := by
refactor: use NeZero for measures (#6048)

Assume NeZero μ instead of μ.ae.NeBot everywhere, and sometimes instead of μ ≠ 0.

API changes

  • Convex.average_mem, Convex.set_average_mem, ConvexOn.average_mem_epigraph, ConcaveOn.average_mem_hypograph, ConvexOn.map_average_le, ConcaveOn.le_map_average: assume [NeZero μ] instead of μ ≠ 0;
  • MeasureTheory.condexp_bot', essSup_const', essInf_const', MeasureTheory.laverage_const, MeasureTheory.laverage_one, MeasureTheory.average_const: assume [NeZero μ] instead of [μ.ae.NeBot]
  • MeasureTheory.Measure.measure_ne_zero: replace with an instance;
  • remove @[simp] from MeasureTheory.ae_restrict_neBot, use ≠ 0 in the RHS;
  • turn MeasureTheory.IsProbabilityMeasure.ae_neBot into a theorem because inferInstance can find it now;
  • add instances:
    • [NeZero μ] : NeZero (μ univ);
    • [NeZero (μ s)] : NeZero (μ.restrict s);
    • [NeZero μ] : μ.ae.NeBot;
    • [IsProbabilityMeasure μ] : NeZero μ;
    • [IsFiniteMeasure μ] [NeZero μ] : IsProbabilityMeasure ((μ univ)⁻¹ • μ) this was a theorem MeasureTheory.isProbabilityMeasureSmul assuming μ ≠ 0;
Diff
@@ -60,23 +60,21 @@ theorem essInf_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essInf f μ = e
 #align ess_inf_congr_ae essInf_congr_ae
 
 @[simp]
-theorem essSup_const' [μ.ae.NeBot] (c : β) : essSup (fun _ : α => c) μ = c :=
+theorem essSup_const' [NeZero μ] (c : β) : essSup (fun _ : α => c) μ = c :=
   limsup_const _
 #align ess_sup_const' essSup_const'
 
 @[simp]
-theorem essInf_const' [μ.ae.NeBot] (c : β) : essInf (fun _ : α => c) μ = c :=
+theorem essInf_const' [NeZero μ] (c : β) : essInf (fun _ : α => c) μ = c :=
   liminf_const _
 #align ess_inf_const' essInf_const'
 
-theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun _ : α => c) μ = c := by
-  rw [← ae_neBot] at hμ
-  exact essSup_const' _
+theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun _ : α => c) μ = c :=
+  have := NeZero.mk hμ; essSup_const' _
 #align ess_sup_const essSup_const
 
-theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun _ : α => c) μ = c := by
-  rw [← ae_neBot] at hμ
-  exact essInf_const' _
+theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun _ : α => c) μ = c :=
+  have := NeZero.mk hμ; essInf_const' _
 #align ess_inf_const essInf_const
 
 end ConditionallyCompleteLattice
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
-
-! This file was ported from Lean 3 source module measure_theory.function.ess_sup
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
 import Mathlib.Order.Filter.ENNReal
 
+#align_import measure_theory.function.ess_sup from "leanprover-community/mathlib"@"bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf"
+
 /-!
 # Essential supremum and infimum
 We define the essential supremum and infimum of a function `f : α → β` with respect to a measure
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -278,7 +278,7 @@ theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → 
       (limsSup_le_limsSup_of_le (map_restrict_ae_le_map_indicator_ae hs)
         (by isBoundedDefault) (by isBoundedDefault) )
   refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_restrict_le => _)
-  rw [eventually_map] at h_restrict_le⊢
+  rw [eventually_map] at h_restrict_le ⊢
   rw [ae_restrict_iff' hs] at h_restrict_le
   have hc : 0 ≤ c := by
     rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c
feat: port MeasureTheory.Function.EssSup (#4098)

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>

Dependencies 10 + 634

635 files ported (98.4%)
284788 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file