measure_theory.function.special_functions.inner
⟷
Mathlib.MeasureTheory.Function.SpecialFunctions.Inner
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -18,7 +18,7 @@ import MeasureTheory.Constructions.BorelSpace.Complex
variable {α : Type _} {𝕜 : Type _} {E : Type _}
-variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
+variable [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -25,8 +25,8 @@ local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
#print Measurable.inner /-
@[measurability]
theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
- [TopologicalSpace.SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
- (hg : Measurable g) : Measurable fun t => ⟪f t, g t⟫ :=
+ [SecondCountableTopology E] {f g : α → E} (hf : Measurable f) (hg : Measurable g) :
+ Measurable fun t => ⟪f t, g t⟫ :=
Continuous.measurable2 continuous_inner hf hg
#align measurable.inner Measurable.inner
-/
@@ -34,8 +34,8 @@ theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeas
#print AEMeasurable.inner /-
@[measurability]
theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
- [TopologicalSpace.SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
- (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) : AEMeasurable (fun x => ⟪f x, g x⟫) μ :=
+ [SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E} (hf : AEMeasurable f μ)
+ (hg : AEMeasurable g μ) : AEMeasurable (fun x => ⟪f x, g x⟫) μ :=
by
refine' ⟨fun x => ⟪hf.mk f x, hg.mk g x⟫, hf.measurable_mk.inner hg.measurable_mk, _⟩
refine' hf.ae_eq_mk.mp (hg.ae_eq_mk.mono fun x hxg hxf => _)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
-import Mathbin.Analysis.InnerProductSpace.Basic
-import Mathbin.MeasureTheory.Constructions.BorelSpace.Complex
+import Analysis.InnerProductSpace.Basic
+import MeasureTheory.Constructions.BorelSpace.Complex
#align_import measure_theory.function.special_functions.inner from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.function.special_functions.inner
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.InnerProductSpace.Basic
import Mathbin.MeasureTheory.Constructions.BorelSpace.Complex
+#align_import measure_theory.function.special_functions.inner from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
/-!
# Measurability of scalar products
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -23,16 +23,18 @@ variable {α : Type _} {𝕜 : Type _} {E : Type _}
variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
--- mathport name: «expr⟪ , ⟫»
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
+#print Measurable.inner /-
@[measurability]
theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
(hg : Measurable g) : Measurable fun t => ⟪f t, g t⟫ :=
Continuous.measurable2 continuous_inner hf hg
#align measurable.inner Measurable.inner
+-/
+#print AEMeasurable.inner /-
@[measurability]
theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
@@ -44,4 +46,5 @@ theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMe
congr
exacts [hxf, hxg]
#align ae_measurable.inner AEMeasurable.inner
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -42,6 +42,6 @@ theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMe
refine' hf.ae_eq_mk.mp (hg.ae_eq_mk.mono fun x hxg hxf => _)
dsimp only
congr
- exacts[hxf, hxg]
+ exacts [hxf, hxg]
#align ae_measurable.inner AEMeasurable.inner
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -26,12 +26,6 @@ variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
-- mathport name: «expr⟪ , ⟫»
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
-/- warning: measurable.inner -> Measurable.inner is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {𝕜 : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u1} α} [_inst_4 : MeasurableSpace.{u3} E] [_inst_5 : OpensMeasurableSpace.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2))))] {f : α -> E} {g : α -> E}, (Measurable.{u1, u3} α E m _inst_4 f) -> (Measurable.{u1, u3} α E m _inst_4 g) -> (Measurable.{u1, u2} α 𝕜 m (IsROrC.measurableSpace.{u2} 𝕜 _inst_1) (fun (t : α) => Inner.inner.{u2, u3} 𝕜 E (InnerProductSpace.toHasInner.{u2, u3} 𝕜 E _inst_1 _inst_2 _inst_3) (f t) (g t)))
-but is expected to have type
- forall {α : Type.{u3}} {𝕜 : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u3} α} [_inst_4 : MeasurableSpace.{u2} E] [_inst_5 : OpensMeasurableSpace.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))] {f : α -> E} {g : α -> E}, (Measurable.{u3, u2} α E m _inst_4 f) -> (Measurable.{u3, u2} α E m _inst_4 g) -> (Measurable.{u3, u1} α 𝕜 m (IsROrC.measurableSpace.{u1} 𝕜 _inst_1) (fun (t : α) => Inner.inner.{u1, u2} 𝕜 E (InnerProductSpace.toInner.{u1, u2} 𝕜 E _inst_1 _inst_2 _inst_3) (f t) (g t)))
-Case conversion may be inaccurate. Consider using '#align measurable.inner Measurable.innerₓ'. -/
@[measurability]
theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
@@ -39,12 +33,6 @@ theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeas
Continuous.measurable2 continuous_inner hf hg
#align measurable.inner Measurable.inner
-/- warning: ae_measurable.inner -> AEMeasurable.inner is a dubious translation:
-lean 3 declaration is
- forall {α : Type.{u1}} {𝕜 : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u1} α} [_inst_4 : MeasurableSpace.{u3} E] [_inst_5 : OpensMeasurableSpace.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2))))] {μ : MeasureTheory.Measure.{u1} α m} {f : α -> E} {g : α -> E}, (AEMeasurable.{u1, u3} α E _inst_4 m f μ) -> (AEMeasurable.{u1, u3} α E _inst_4 m g μ) -> (AEMeasurable.{u1, u2} α 𝕜 (IsROrC.measurableSpace.{u2} 𝕜 _inst_1) m (fun (x : α) => Inner.inner.{u2, u3} 𝕜 E (InnerProductSpace.toHasInner.{u2, u3} 𝕜 E _inst_1 _inst_2 _inst_3) (f x) (g x)) μ)
-but is expected to have type
- forall {α : Type.{u3}} {𝕜 : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u3} α} [_inst_4 : MeasurableSpace.{u2} E] [_inst_5 : OpensMeasurableSpace.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))] {μ : MeasureTheory.Measure.{u3} α m} {f : α -> E} {g : α -> E}, (AEMeasurable.{u3, u2} α E _inst_4 m f μ) -> (AEMeasurable.{u3, u2} α E _inst_4 m g μ) -> (AEMeasurable.{u3, u1} α 𝕜 (IsROrC.measurableSpace.{u1} 𝕜 _inst_1) m (fun (x : α) => Inner.inner.{u1, u2} 𝕜 E (InnerProductSpace.toInner.{u1, u2} 𝕜 E _inst_1 _inst_2 _inst_3) (f x) (g x)) μ)
-Case conversion may be inaccurate. Consider using '#align ae_measurable.inner AEMeasurable.innerₓ'. -/
@[measurability]
theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
! This file was ported from Lean 3 source module measure_theory.function.special_functions.inner
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -13,6 +13,9 @@ import Mathbin.MeasureTheory.Constructions.BorelSpace.Complex
/-!
# Measurability of scalar products
+
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/e1a18cad9cd462973d760af7de36b05776b8811c
@@ -23,6 +23,12 @@ variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
-- mathport name: «expr⟪ , ⟫»
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
+/- warning: measurable.inner -> Measurable.inner is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {𝕜 : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u1} α} [_inst_4 : MeasurableSpace.{u3} E] [_inst_5 : OpensMeasurableSpace.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2))))] {f : α -> E} {g : α -> E}, (Measurable.{u1, u3} α E m _inst_4 f) -> (Measurable.{u1, u3} α E m _inst_4 g) -> (Measurable.{u1, u2} α 𝕜 m (IsROrC.measurableSpace.{u2} 𝕜 _inst_1) (fun (t : α) => Inner.inner.{u2, u3} 𝕜 E (InnerProductSpace.toHasInner.{u2, u3} 𝕜 E _inst_1 _inst_2 _inst_3) (f t) (g t)))
+but is expected to have type
+ forall {α : Type.{u3}} {𝕜 : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u3} α} [_inst_4 : MeasurableSpace.{u2} E] [_inst_5 : OpensMeasurableSpace.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))] {f : α -> E} {g : α -> E}, (Measurable.{u3, u2} α E m _inst_4 f) -> (Measurable.{u3, u2} α E m _inst_4 g) -> (Measurable.{u3, u1} α 𝕜 m (IsROrC.measurableSpace.{u1} 𝕜 _inst_1) (fun (t : α) => Inner.inner.{u1, u2} 𝕜 E (InnerProductSpace.toInner.{u1, u2} 𝕜 E _inst_1 _inst_2 _inst_3) (f t) (g t)))
+Case conversion may be inaccurate. Consider using '#align measurable.inner Measurable.innerₓ'. -/
@[measurability]
theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
@@ -30,6 +36,12 @@ theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeas
Continuous.measurable2 continuous_inner hf hg
#align measurable.inner Measurable.inner
+/- warning: ae_measurable.inner -> AEMeasurable.inner is a dubious translation:
+lean 3 declaration is
+ forall {α : Type.{u1}} {𝕜 : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} 𝕜] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u1} α} [_inst_4 : MeasurableSpace.{u3} E] [_inst_5 : OpensMeasurableSpace.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u3} E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2))))] {μ : MeasureTheory.Measure.{u1} α m} {f : α -> E} {g : α -> E}, (AEMeasurable.{u1, u3} α E _inst_4 m f μ) -> (AEMeasurable.{u1, u3} α E _inst_4 m g μ) -> (AEMeasurable.{u1, u2} α 𝕜 (IsROrC.measurableSpace.{u2} 𝕜 _inst_1) m (fun (x : α) => Inner.inner.{u2, u3} 𝕜 E (InnerProductSpace.toHasInner.{u2, u3} 𝕜 E _inst_1 _inst_2 _inst_3) (f x) (g x)) μ)
+but is expected to have type
+ forall {α : Type.{u3}} {𝕜 : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} 𝕜] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} 𝕜 E _inst_1 _inst_2] {m : MeasurableSpace.{u3} α} [_inst_4 : MeasurableSpace.{u2} E] [_inst_5 : OpensMeasurableSpace.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) _inst_4] [_inst_6 : TopologicalSpace.SecondCountableTopology.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))] {μ : MeasureTheory.Measure.{u3} α m} {f : α -> E} {g : α -> E}, (AEMeasurable.{u3, u2} α E _inst_4 m f μ) -> (AEMeasurable.{u3, u2} α E _inst_4 m g μ) -> (AEMeasurable.{u3, u1} α 𝕜 (IsROrC.measurableSpace.{u1} 𝕜 _inst_1) m (fun (x : α) => Inner.inner.{u1, u2} 𝕜 E (InnerProductSpace.toInner.{u1, u2} 𝕜 E _inst_1 _inst_2 _inst_3) (f x) (g x)) μ)
+Case conversion may be inaccurate. Consider using '#align ae_measurable.inner AEMeasurable.innerₓ'. -/
@[measurability]
theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -4,12 +4,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
! This file was ported from Lean 3 source module measure_theory.function.special_functions.inner
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
+! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.Analysis.InnerProductSpace.Basic
-import Mathbin.MeasureTheory.Constructions.BorelSpace
+import Mathbin.MeasureTheory.Constructions.BorelSpace.Complex
/-!
# Measurability of scalar products
mathlib commit https://github.com/leanprover-community/mathlib/commit/92c69b77c5a7dc0f7eeddb552508633305157caa
@@ -31,14 +31,14 @@ theorem Measurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeas
#align measurable.inner Measurable.inner
@[measurability]
-theorem AeMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
+theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
- (hf : AeMeasurable f μ) (hg : AeMeasurable g μ) : AeMeasurable (fun x => ⟪f x, g x⟫) μ :=
+ (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) : AEMeasurable (fun x => ⟪f x, g x⟫) μ :=
by
refine' ⟨fun x => ⟪hf.mk f x, hg.mk g x⟫, hf.measurable_mk.inner hg.measurable_mk, _⟩
refine' hf.ae_eq_mk.mp (hg.ae_eq_mk.mono fun x hxg hxf => _)
dsimp only
congr
exacts[hxf, hxg]
-#align ae_measurable.inner AeMeasurable.inner
+#align ae_measurable.inner AEMeasurable.inner
mathlib commit https://github.com/leanprover-community/mathlib/commit/55d771df074d0dd020139ee1cd4b95521422df9f
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
! This file was ported from Lean 3 source module measure_theory.function.special_functions.inner
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -16,7 +16,9 @@ import Mathbin.MeasureTheory.Constructions.BorelSpace
-/
-variable {α : Type _} {𝕜 : Type _} {E : Type _} [IsROrC 𝕜] [InnerProductSpace 𝕜 E]
+variable {α : Type _} {𝕜 : Type _} {E : Type _}
+
+variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
-- mathport name: «expr⟪ , ⟫»
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
IsROrC
to RCLike
(#10819)
IsROrC
contains data, which goes against the expectation that classes prefixed with Is
are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC
to RCLike
.
@@ -14,7 +14,7 @@ import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
variable {α : Type*} {𝕜 : Type*} {E : Type*}
-variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
+variable [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -14,7 +14,6 @@ import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
variable {α : Type*} {𝕜 : Type*} {E : Type*}
-
variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
@@ -19,7 +19,7 @@ variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
-@[aesop safe 20 apply (rule_sets [Measurable])]
+@[aesop safe 20 apply (rule_sets := [Measurable])]
theorem Measurable.inner {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
(hg : Measurable g) : Measurable fun t => ⟪f t, g t⟫ :=
@@ -38,7 +38,7 @@ theorem Measurable.inner_const {_ : MeasurableSpace α} [MeasurableSpace E] [Ope
Measurable fun t => ⟪f t, c⟫ :=
Measurable.inner hf measurable_const
-@[aesop safe 20 apply (rule_sets [Measurable])]
+@[aesop safe 20 apply (rule_sets := [Measurable])]
theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
(hf : AEMeasurable f μ) (hg : AEMeasurable g μ) : AEMeasurable (fun x => ⟪f x, g x⟫) μ := by
All the other properties of topological spaces like T0Space or RegularSpace are in the root namespace. Many files were opening TopologicalSpace
just for the sake of shortening TopologicalSpace.SecondCountableTopology
...
@@ -21,26 +21,26 @@ local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
@[aesop safe 20 apply (rule_sets [Measurable])]
theorem Measurable.inner {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
- [TopologicalSpace.SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
+ [SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
(hg : Measurable g) : Measurable fun t => ⟪f t, g t⟫ :=
Continuous.measurable2 continuous_inner hf hg
#align measurable.inner Measurable.inner
@[measurability]
theorem Measurable.const_inner {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
- [TopologicalSpace.SecondCountableTopology E] {c : E} {f : α → E} (hf : Measurable f) :
+ [SecondCountableTopology E] {c : E} {f : α → E} (hf : Measurable f) :
Measurable fun t => ⟪c, f t⟫ :=
Measurable.inner measurable_const hf
@[measurability]
theorem Measurable.inner_const {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
- [TopologicalSpace.SecondCountableTopology E] {c : E} {f : α → E} (hf : Measurable f) :
+ [SecondCountableTopology E] {c : E} {f : α → E} (hf : Measurable f) :
Measurable fun t => ⟪f t, c⟫ :=
Measurable.inner hf measurable_const
@[aesop safe 20 apply (rule_sets [Measurable])]
theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
- [TopologicalSpace.SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
+ [SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
(hf : AEMeasurable f μ) (hg : AEMeasurable g μ) : AEMeasurable (fun x => ⟪f x, g x⟫) μ := by
refine' ⟨fun x => ⟪hf.mk f x, hg.mk g x⟫, hf.measurable_mk.inner hg.measurable_mk, _⟩
refine' hf.ae_eq_mk.mp (hg.ae_eq_mk.mono fun x hxg hxf => _)
@@ -51,7 +51,7 @@ theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMe
set_option linter.unusedVariables false in
@[measurability]
theorem AEMeasurable.const_inner {m : MeasurableSpace α} [MeasurableSpace E]
- [OpensMeasurableSpace E] [TopologicalSpace.SecondCountableTopology E]
+ [OpensMeasurableSpace E] [SecondCountableTopology E]
{μ : MeasureTheory.Measure α} {f : α → E} {c : E} (hf : AEMeasurable f μ) :
AEMeasurable (fun x => ⟪c, f x⟫) μ :=
AEMeasurable.inner aemeasurable_const hf
@@ -59,7 +59,7 @@ theorem AEMeasurable.const_inner {m : MeasurableSpace α} [MeasurableSpace E]
set_option linter.unusedVariables false in
@[measurability]
theorem AEMeasurable.inner_const {m : MeasurableSpace α} [MeasurableSpace E]
- [OpensMeasurableSpace E] [TopologicalSpace.SecondCountableTopology E]
+ [OpensMeasurableSpace E] [SecondCountableTopology E]
{μ : MeasureTheory.Measure α} {f : α → E} {c : E} (hf : AEMeasurable f μ) :
AEMeasurable (fun x => ⟪f x, c⟫) μ :=
AEMeasurable.inner hf aemeasurable_const
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -13,7 +13,7 @@ import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
-/
-variable {α : Type _} {𝕜 : Type _} {E : Type _}
+variable {α : Type*} {𝕜 : Type*} {E : Type*}
variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
@@ -2,15 +2,12 @@
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.function.special_functions.inner
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
+#align_import measure_theory.function.special_functions.inner from "leanprover-community/mathlib"@"bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf"
+
/-!
# Measurability of scalar products
-/
measurability?
tactic (#5427)
This PR adds aesop tags to a few lemmas pertaining to strong measurability, allowing to prove e.g. StronglyMeasurable Real.log
using the measurability
tactic.
It also implements measurability?
via aesop?
.
Co-authored-by: Frédéric Dupuis <31101893+dupuisf@users.noreply.github.com>
@@ -22,7 +22,7 @@ variable [IsROrC 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
local notation "⟪" x ", " y "⟫" => @inner 𝕜 _ _ x y
-@[measurability]
+@[aesop safe 20 apply (rule_sets [Measurable])]
theorem Measurable.inner {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {f g : α → E} (hf : Measurable f)
(hg : Measurable g) : Measurable fun t => ⟪f t, g t⟫ :=
@@ -30,6 +30,18 @@ theorem Measurable.inner {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeas
#align measurable.inner Measurable.inner
@[measurability]
+theorem Measurable.const_inner {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
+ [TopologicalSpace.SecondCountableTopology E] {c : E} {f : α → E} (hf : Measurable f) :
+ Measurable fun t => ⟪c, f t⟫ :=
+ Measurable.inner measurable_const hf
+
+@[measurability]
+theorem Measurable.inner_const {_ : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
+ [TopologicalSpace.SecondCountableTopology E] {c : E} {f : α → E} (hf : Measurable f) :
+ Measurable fun t => ⟪f t, c⟫ :=
+ Measurable.inner hf measurable_const
+
+@[aesop safe 20 apply (rule_sets [Measurable])]
theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMeasurableSpace E]
[TopologicalSpace.SecondCountableTopology E] {μ : MeasureTheory.Measure α} {f g : α → E}
(hf : AEMeasurable f μ) (hg : AEMeasurable g μ) : AEMeasurable (fun x => ⟪f x, g x⟫) μ := by
@@ -38,3 +50,19 @@ theorem AEMeasurable.inner {m : MeasurableSpace α} [MeasurableSpace E] [OpensMe
dsimp only
congr
#align ae_measurable.inner AEMeasurable.inner
+
+set_option linter.unusedVariables false in
+@[measurability]
+theorem AEMeasurable.const_inner {m : MeasurableSpace α} [MeasurableSpace E]
+ [OpensMeasurableSpace E] [TopologicalSpace.SecondCountableTopology E]
+ {μ : MeasureTheory.Measure α} {f : α → E} {c : E} (hf : AEMeasurable f μ) :
+ AEMeasurable (fun x => ⟪c, f x⟫) μ :=
+ AEMeasurable.inner aemeasurable_const hf
+
+set_option linter.unusedVariables false in
+@[measurability]
+theorem AEMeasurable.inner_const {m : MeasurableSpace α} [MeasurableSpace E]
+ [OpensMeasurableSpace E] [TopologicalSpace.SecondCountableTopology E]
+ {μ : MeasureTheory.Measure α} {f : α → E} {c : E} (hf : AEMeasurable f μ) :
+ AEMeasurable (fun x => ⟪f x, c⟫) μ :=
+ AEMeasurable.inner hf aemeasurable_const
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file