measure_theory.function.special_functions.is_R_or_C ⟷ Mathlib.MeasureTheory.Function.SpecialFunctions.IsROrC

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
 import MeasureTheory.Function.SpecialFunctions.Basic
-import Data.IsROrC.Lemmas
+import Analysis.RCLike.Lemmas
 
 #align_import measure_theory.function.special_functions.is_R_or_C from "leanprover-community/mathlib"@"38df578a6450a8c5142b3727e3ae894c2300cae0"
 
@@ -21,55 +21,55 @@ noncomputable section
 
 open scoped NNReal ENNReal
 
-namespace IsROrC
+namespace RCLike
 
-variable {π•œ : Type _} [IsROrC π•œ]
+variable {π•œ : Type _} [RCLike π•œ]
 
-#print IsROrC.measurable_re /-
+#print RCLike.measurable_re /-
 @[measurability]
 theorem measurable_re : Measurable (re : π•œ β†’ ℝ) :=
   continuous_re.Measurable
-#align is_R_or_C.measurable_re IsROrC.measurable_re
+#align is_R_or_C.measurable_re RCLike.measurable_re
 -/
 
-#print IsROrC.measurable_im /-
+#print RCLike.measurable_im /-
 @[measurability]
 theorem measurable_im : Measurable (im : π•œ β†’ ℝ) :=
   continuous_im.Measurable
-#align is_R_or_C.measurable_im IsROrC.measurable_im
+#align is_R_or_C.measurable_im RCLike.measurable_im
 -/
 
-end IsROrC
+end RCLike
 
 section IsROrCComposition
 
-variable {Ξ± π•œ : Type _} [IsROrC π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
+variable {Ξ± π•œ : Type _} [RCLike π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
 #print Measurable.re /-
 @[measurability]
-theorem Measurable.re (hf : Measurable f) : Measurable fun x => IsROrC.re (f x) :=
-  IsROrC.measurable_re.comp hf
+theorem Measurable.re (hf : Measurable f) : Measurable fun x => RCLike.re (f x) :=
+  RCLike.measurable_re.comp hf
 #align measurable.re Measurable.re
 -/
 
 #print AEMeasurable.re /-
 @[measurability]
-theorem AEMeasurable.re (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
-  IsROrC.measurable_re.comp_aemeasurable hf
+theorem AEMeasurable.re (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => RCLike.re (f x)) ΞΌ :=
+  RCLike.measurable_re.comp_aemeasurable hf
 #align ae_measurable.re AEMeasurable.re
 -/
 
 #print Measurable.im /-
 @[measurability]
-theorem Measurable.im (hf : Measurable f) : Measurable fun x => IsROrC.im (f x) :=
-  IsROrC.measurable_im.comp hf
+theorem Measurable.im (hf : Measurable f) : Measurable fun x => RCLike.im (f x) :=
+  RCLike.measurable_im.comp hf
 #align measurable.im Measurable.im
 -/
 
 #print AEMeasurable.im /-
 @[measurability]
-theorem AEMeasurable.im (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
-  IsROrC.measurable_im.comp_aemeasurable hf
+theorem AEMeasurable.im (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => RCLike.im (f x)) ΞΌ :=
+  RCLike.measurable_im.comp_aemeasurable hf
 #align ae_measurable.im AEMeasurable.im
 -/
 
@@ -77,37 +77,37 @@ end IsROrCComposition
 
 section
 
-variable {Ξ± π•œ : Type _} [IsROrC π•œ] [MeasurableSpace Ξ±] {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
+variable {Ξ± π•œ : Type _} [RCLike π•œ] [MeasurableSpace Ξ±] {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
-#print IsROrC.measurable_ofReal /-
+#print RCLike.measurable_ofReal /-
 @[measurability]
-theorem IsROrC.measurable_ofReal : Measurable (coe : ℝ β†’ π•œ) :=
-  IsROrC.continuous_ofReal.Measurable
-#align is_R_or_C.measurable_of_real IsROrC.measurable_ofReal
+theorem RCLike.measurable_ofReal : Measurable (coe : ℝ β†’ π•œ) :=
+  RCLike.continuous_ofReal.Measurable
+#align is_R_or_C.measurable_of_real RCLike.measurable_ofReal
 -/
 
 #print measurable_of_re_im /-
-theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
-    (him : Measurable fun x => IsROrC.im (f x)) : Measurable f :=
+theorem measurable_of_re_im (hre : Measurable fun x => RCLike.re (f x))
+    (him : Measurable fun x => RCLike.im (f x)) : Measurable f :=
   by
   convert
     (is_R_or_C.measurable_of_real.comp hre).add
-      ((is_R_or_C.measurable_of_real.comp him).mul_const IsROrC.i)
+      ((is_R_or_C.measurable_of_real.comp him).mul_const RCLike.i)
   Β· ext1 x
-    exact (IsROrC.re_add_im _).symm
+    exact (RCLike.re_add_im _).symm
   all_goals infer_instance
 #align measurable_of_re_im measurable_of_re_im
 -/
 
 #print aemeasurable_of_re_im /-
-theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
-    (him : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ) : AEMeasurable f ΞΌ :=
+theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => RCLike.re (f x)) ΞΌ)
+    (him : AEMeasurable (fun x => RCLike.im (f x)) ΞΌ) : AEMeasurable f ΞΌ :=
   by
   convert
     (is_R_or_C.measurable_of_real.comp_ae_measurable hre).add
-      ((is_R_or_C.measurable_of_real.comp_ae_measurable him).mul_const IsROrC.i)
+      ((is_R_or_C.measurable_of_real.comp_ae_measurable him).mul_const RCLike.i)
   Β· ext1 x
-    exact (IsROrC.re_add_im _).symm
+    exact (RCLike.re_add_im _).symm
   all_goals infer_instance
 #align ae_measurable_of_re_im aemeasurable_of_re_im
 -/
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Mathbin.MeasureTheory.Function.SpecialFunctions.Basic
-import Mathbin.Data.IsROrC.Lemmas
+import MeasureTheory.Function.SpecialFunctions.Basic
+import Data.IsROrC.Lemmas
 
 #align_import measure_theory.function.special_functions.is_R_or_C from "leanprover-community/mathlib"@"38df578a6450a8c5142b3727e3ae894c2300cae0"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.function.special_functions.is_R_or_C
-! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Function.SpecialFunctions.Basic
 import Mathbin.Data.IsROrC.Lemmas
 
+#align_import measure_theory.function.special_functions.is_R_or_C from "leanprover-community/mathlib"@"38df578a6450a8c5142b3727e3ae894c2300cae0"
+
 /-!
 # Measurability of the basic `is_R_or_C` functions
 
Diff
@@ -28,15 +28,19 @@ namespace IsROrC
 
 variable {π•œ : Type _} [IsROrC π•œ]
 
+#print IsROrC.measurable_re /-
 @[measurability]
 theorem measurable_re : Measurable (re : π•œ β†’ ℝ) :=
   continuous_re.Measurable
 #align is_R_or_C.measurable_re IsROrC.measurable_re
+-/
 
+#print IsROrC.measurable_im /-
 @[measurability]
 theorem measurable_im : Measurable (im : π•œ β†’ ℝ) :=
   continuous_im.Measurable
 #align is_R_or_C.measurable_im IsROrC.measurable_im
+-/
 
 end IsROrC
 
@@ -44,29 +48,33 @@ section IsROrCComposition
 
 variable {Ξ± π•œ : Type _} [IsROrC π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
-include m
-
+#print Measurable.re /-
 @[measurability]
 theorem Measurable.re (hf : Measurable f) : Measurable fun x => IsROrC.re (f x) :=
   IsROrC.measurable_re.comp hf
 #align measurable.re Measurable.re
+-/
 
+#print AEMeasurable.re /-
 @[measurability]
 theorem AEMeasurable.re (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
   IsROrC.measurable_re.comp_aemeasurable hf
 #align ae_measurable.re AEMeasurable.re
+-/
 
+#print Measurable.im /-
 @[measurability]
 theorem Measurable.im (hf : Measurable f) : Measurable fun x => IsROrC.im (f x) :=
   IsROrC.measurable_im.comp hf
 #align measurable.im Measurable.im
+-/
 
+#print AEMeasurable.im /-
 @[measurability]
 theorem AEMeasurable.im (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
   IsROrC.measurable_im.comp_aemeasurable hf
 #align ae_measurable.im AEMeasurable.im
-
-omit m
+-/
 
 end IsROrCComposition
 
@@ -81,6 +89,7 @@ theorem IsROrC.measurable_ofReal : Measurable (coe : ℝ β†’ π•œ) :=
 #align is_R_or_C.measurable_of_real IsROrC.measurable_ofReal
 -/
 
+#print measurable_of_re_im /-
 theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
     (him : Measurable fun x => IsROrC.im (f x)) : Measurable f :=
   by
@@ -91,7 +100,9 @@ theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
     exact (IsROrC.re_add_im _).symm
   all_goals infer_instance
 #align measurable_of_re_im measurable_of_re_im
+-/
 
+#print aemeasurable_of_re_im /-
 theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
     (him : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ) : AEMeasurable f ΞΌ :=
   by
@@ -102,6 +113,7 @@ theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
     exact (IsROrC.re_add_im _).symm
   all_goals infer_instance
 #align ae_measurable_of_re_im aemeasurable_of_re_im
+-/
 
 end
 
Diff
@@ -84,7 +84,8 @@ theorem IsROrC.measurable_ofReal : Measurable (coe : ℝ β†’ π•œ) :=
 theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
     (him : Measurable fun x => IsROrC.im (f x)) : Measurable f :=
   by
-  convert(is_R_or_C.measurable_of_real.comp hre).add
+  convert
+    (is_R_or_C.measurable_of_real.comp hre).add
       ((is_R_or_C.measurable_of_real.comp him).mul_const IsROrC.i)
   Β· ext1 x
     exact (IsROrC.re_add_im _).symm
@@ -94,7 +95,8 @@ theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
 theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
     (him : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ) : AEMeasurable f ΞΌ :=
   by
-  convert(is_R_or_C.measurable_of_real.comp_ae_measurable hre).add
+  convert
+    (is_R_or_C.measurable_of_real.comp_ae_measurable hre).add
       ((is_R_or_C.measurable_of_real.comp_ae_measurable him).mul_const IsROrC.i)
   Β· ext1 x
     exact (IsROrC.re_add_im _).symm
Diff
@@ -22,7 +22,7 @@ import Mathbin.Data.IsROrC.Lemmas
 
 noncomputable section
 
-open NNReal ENNReal
+open scoped NNReal ENNReal
 
 namespace IsROrC
 
Diff
@@ -28,23 +28,11 @@ namespace IsROrC
 
 variable {π•œ : Type _} [IsROrC π•œ]
 
-/- warning: is_R_or_C.measurable_re -> IsROrC.measurable_re is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u1} π•œ _inst_1))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1))
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.measurable_re IsROrC.measurable_reβ‚“'. -/
 @[measurability]
 theorem measurable_re : Measurable (re : π•œ β†’ ℝ) :=
   continuous_re.Measurable
 #align is_R_or_C.measurable_re IsROrC.measurable_re
 
-/- warning: is_R_or_C.measurable_im -> IsROrC.measurable_im is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u1} π•œ _inst_1))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1))
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.measurable_im IsROrC.measurable_imβ‚“'. -/
 @[measurability]
 theorem measurable_im : Measurable (im : π•œ β†’ ℝ) :=
   continuous_im.Measurable
@@ -58,33 +46,21 @@ variable {Ξ± π•œ : Type _} [IsROrC π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ 
 
 include m
 
-/- warning: measurable.re -> Measurable.re is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measurable.re Measurable.reβ‚“'. -/
 @[measurability]
 theorem Measurable.re (hf : Measurable f) : Measurable fun x => IsROrC.re (f x) :=
   IsROrC.measurable_re.comp hf
 #align measurable.re Measurable.re
 
-/- warning: ae_measurable.re -> AEMeasurable.re is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ae_measurable.re AEMeasurable.reβ‚“'. -/
 @[measurability]
 theorem AEMeasurable.re (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
   IsROrC.measurable_re.comp_aemeasurable hf
 #align ae_measurable.re AEMeasurable.re
 
-/- warning: measurable.im -> Measurable.im is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measurable.im Measurable.imβ‚“'. -/
 @[measurability]
 theorem Measurable.im (hf : Measurable f) : Measurable fun x => IsROrC.im (f x) :=
   IsROrC.measurable_im.comp hf
 #align measurable.im Measurable.im
 
-/- warning: ae_measurable.im -> AEMeasurable.im is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ae_measurable.im AEMeasurable.imβ‚“'. -/
 @[measurability]
 theorem AEMeasurable.im (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
   IsROrC.measurable_im.comp_aemeasurable hf
@@ -105,9 +81,6 @@ theorem IsROrC.measurable_ofReal : Measurable (coe : ℝ β†’ π•œ) :=
 #align is_R_or_C.measurable_of_real IsROrC.measurable_ofReal
 -/
 
-/- warning: measurable_of_re_im -> measurable_of_re_im is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measurable_of_re_im measurable_of_re_imβ‚“'. -/
 theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
     (him : Measurable fun x => IsROrC.im (f x)) : Measurable f :=
   by
@@ -118,9 +91,6 @@ theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
   all_goals infer_instance
 #align measurable_of_re_im measurable_of_re_im
 
-/- warning: ae_measurable_of_re_im -> aemeasurable_of_re_im is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ae_measurable_of_re_im aemeasurable_of_re_imβ‚“'. -/
 theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
     (him : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ) : AEMeasurable f ΞΌ :=
   by
Diff
@@ -59,10 +59,7 @@ variable {Ξ± π•œ : Type _} [IsROrC π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ 
 include m
 
 /- warning: measurable.re -> Measurable.re is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u1, u2} Ξ± π•œ m (IsROrC.measurableSpace.{u2} π•œ _inst_1) f) -> (Measurable.{u1, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)))
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u2, u1} Ξ± π•œ m (IsROrC.measurableSpace.{u1} π•œ _inst_1) f) -> (Measurable.{u2, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measurable.re Measurable.reβ‚“'. -/
 @[measurability]
 theorem Measurable.re (hf : Measurable f) : Measurable fun x => IsROrC.re (f x) :=
@@ -70,10 +67,7 @@ theorem Measurable.re (hf : Measurable f) : Measurable fun x => IsROrC.re (f x)
 #align measurable.re Measurable.re
 
 /- warning: ae_measurable.re -> AEMeasurable.re is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m}, (AEMeasurable.{u1, u2} Ξ± π•œ (IsROrC.measurableSpace.{u2} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)) ΞΌ)
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m}, (AEMeasurable.{u2, u1} Ξ± π•œ (IsROrC.measurableSpace.{u1} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)) ΞΌ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align ae_measurable.re AEMeasurable.reβ‚“'. -/
 @[measurability]
 theorem AEMeasurable.re (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
@@ -81,10 +75,7 @@ theorem AEMeasurable.re (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC
 #align ae_measurable.re AEMeasurable.re
 
 /- warning: measurable.im -> Measurable.im is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u1, u2} Ξ± π•œ m (IsROrC.measurableSpace.{u2} π•œ _inst_1) f) -> (Measurable.{u1, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)))
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u2, u1} Ξ± π•œ m (IsROrC.measurableSpace.{u1} π•œ _inst_1) f) -> (Measurable.{u2, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align measurable.im Measurable.imβ‚“'. -/
 @[measurability]
 theorem Measurable.im (hf : Measurable f) : Measurable fun x => IsROrC.im (f x) :=
@@ -92,10 +83,7 @@ theorem Measurable.im (hf : Measurable f) : Measurable fun x => IsROrC.im (f x)
 #align measurable.im Measurable.im
 
 /- warning: ae_measurable.im -> AEMeasurable.im is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m}, (AEMeasurable.{u1, u2} Ξ± π•œ (IsROrC.measurableSpace.{u2} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)) ΞΌ)
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m}, (AEMeasurable.{u2, u1} Ξ± π•œ (IsROrC.measurableSpace.{u1} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)) ΞΌ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align ae_measurable.im AEMeasurable.imβ‚“'. -/
 @[measurability]
 theorem AEMeasurable.im (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
@@ -110,18 +98,15 @@ section
 
 variable {Ξ± π•œ : Type _} [IsROrC π•œ] [MeasurableSpace Ξ±] {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
-#print IsROrC.measurable_of_real /-
+#print IsROrC.measurable_ofReal /-
 @[measurability]
-theorem IsROrC.measurable_of_real : Measurable (coe : ℝ β†’ π•œ) :=
+theorem IsROrC.measurable_ofReal : Measurable (coe : ℝ β†’ π•œ) :=
   IsROrC.continuous_ofReal.Measurable
-#align is_R_or_C.measurable_of_real IsROrC.measurable_of_real
+#align is_R_or_C.measurable_of_real IsROrC.measurable_ofReal
 -/
 
 /- warning: measurable_of_re_im -> measurable_of_re_im is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : MeasurableSpace.{u1} Ξ±] {f : Ξ± -> π•œ}, (Measurable.{u1, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x))) -> (Measurable.{u1, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x))) -> (Measurable.{u1, u2} Ξ± π•œ _inst_2 (IsROrC.measurableSpace.{u2} π•œ _inst_1) f)
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : MeasurableSpace.{u2} Ξ±] {f : Ξ± -> π•œ}, (Measurable.{u2, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x))) -> (Measurable.{u2, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x))) -> (Measurable.{u2, u1} Ξ± π•œ _inst_2 (IsROrC.measurableSpace.{u1} π•œ _inst_1) f)
+<too large>
 Case conversion may be inaccurate. Consider using '#align measurable_of_re_im measurable_of_re_imβ‚“'. -/
 theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
     (him : Measurable fun x => IsROrC.im (f x)) : Measurable f :=
@@ -134,10 +119,7 @@ theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
 #align measurable_of_re_im measurable_of_re_im
 
 /- warning: ae_measurable_of_re_im -> aemeasurable_of_re_im is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : MeasurableSpace.{u1} Ξ±] {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± _inst_2}, (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u1, u2} Ξ± π•œ (IsROrC.measurableSpace.{u2} π•œ _inst_1) _inst_2 f ΞΌ)
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : MeasurableSpace.{u2} Ξ±] {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± _inst_2}, (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u2, u1} Ξ± π•œ (IsROrC.measurableSpace.{u1} π•œ _inst_1) _inst_2 f ΞΌ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align ae_measurable_of_re_im aemeasurable_of_re_imβ‚“'. -/
 theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
     (him : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ) : AEMeasurable f ΞΌ :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.function.special_functions.is_R_or_C
-! leanprover-community/mathlib commit 83a66c8775fa14ee5180c85cab98e970956401ad
+! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.Data.IsROrC.Lemmas
 /-!
 # Measurability of the basic `is_R_or_C` functions
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 -/
 
 
Diff
@@ -25,11 +25,23 @@ namespace IsROrC
 
 variable {π•œ : Type _} [IsROrC π•œ]
 
+/- warning: is_R_or_C.measurable_re -> IsROrC.measurable_re is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u1} π•œ _inst_1))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.measurable_re IsROrC.measurable_reβ‚“'. -/
 @[measurability]
 theorem measurable_re : Measurable (re : π•œ β†’ ℝ) :=
   continuous_re.Measurable
 #align is_R_or_C.measurable_re IsROrC.measurable_re
 
+/- warning: is_R_or_C.measurable_im -> IsROrC.measurable_im is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (coeFn.{succ u1, succ u1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddMonoidWithOne.toAddMonoid.{u1} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u1} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u1} π•œ (Ring.toAddCommGroupWithOne.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u1} π•œ _inst_1))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ], Measurable.{u1, 0} π•œ Real (IsROrC.measurableSpace.{u1} π•œ _inst_1) Real.measurableSpace (FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1))
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.measurable_im IsROrC.measurable_imβ‚“'. -/
 @[measurability]
 theorem measurable_im : Measurable (im : π•œ β†’ ℝ) :=
   continuous_im.Measurable
@@ -43,21 +55,45 @@ variable {Ξ± π•œ : Type _} [IsROrC π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ 
 
 include m
 
+/- warning: measurable.re -> Measurable.re is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u1, u2} Ξ± π•œ m (IsROrC.measurableSpace.{u2} π•œ _inst_1) f) -> (Measurable.{u1, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)))
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u2, u1} Ξ± π•œ m (IsROrC.measurableSpace.{u1} π•œ _inst_1) f) -> (Measurable.{u2, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)))
+Case conversion may be inaccurate. Consider using '#align measurable.re Measurable.reβ‚“'. -/
 @[measurability]
 theorem Measurable.re (hf : Measurable f) : Measurable fun x => IsROrC.re (f x) :=
   IsROrC.measurable_re.comp hf
 #align measurable.re Measurable.re
 
+/- warning: ae_measurable.re -> AEMeasurable.re is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m}, (AEMeasurable.{u1, u2} Ξ± π•œ (IsROrC.measurableSpace.{u2} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)) ΞΌ)
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m}, (AEMeasurable.{u2, u1} Ξ± π•œ (IsROrC.measurableSpace.{u1} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)) ΞΌ)
+Case conversion may be inaccurate. Consider using '#align ae_measurable.re AEMeasurable.reβ‚“'. -/
 @[measurability]
 theorem AEMeasurable.re (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
   IsROrC.measurable_re.comp_aemeasurable hf
 #align ae_measurable.re AEMeasurable.re
 
+/- warning: measurable.im -> Measurable.im is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u1, u2} Ξ± π•œ m (IsROrC.measurableSpace.{u2} π•œ _inst_1) f) -> (Measurable.{u1, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)))
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ}, (Measurable.{u2, u1} Ξ± π•œ m (IsROrC.measurableSpace.{u1} π•œ _inst_1) f) -> (Measurable.{u2, 0} Ξ± Real m Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)))
+Case conversion may be inaccurate. Consider using '#align measurable.im Measurable.imβ‚“'. -/
 @[measurability]
 theorem Measurable.im (hf : Measurable f) : Measurable fun x => IsROrC.im (f x) :=
   IsROrC.measurable_im.comp hf
 #align measurable.im Measurable.im
 
+/- warning: ae_measurable.im -> AEMeasurable.im is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m}, (AEMeasurable.{u1, u2} Ξ± π•œ (IsROrC.measurableSpace.{u2} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)) ΞΌ)
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {m : MeasurableSpace.{u2} Ξ±} {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m}, (AEMeasurable.{u2, u1} Ξ± π•œ (IsROrC.measurableSpace.{u1} π•œ _inst_1) m f ΞΌ) -> (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)) ΞΌ)
+Case conversion may be inaccurate. Consider using '#align ae_measurable.im AEMeasurable.imβ‚“'. -/
 @[measurability]
 theorem AEMeasurable.im (hf : AEMeasurable f ΞΌ) : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
   IsROrC.measurable_im.comp_aemeasurable hf
@@ -71,11 +107,19 @@ section
 
 variable {Ξ± π•œ : Type _} [IsROrC π•œ] [MeasurableSpace Ξ±] {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
+#print IsROrC.measurable_of_real /-
 @[measurability]
 theorem IsROrC.measurable_of_real : Measurable (coe : ℝ β†’ π•œ) :=
   IsROrC.continuous_ofReal.Measurable
 #align is_R_or_C.measurable_of_real IsROrC.measurable_of_real
+-/
 
+/- warning: measurable_of_re_im -> measurable_of_re_im is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : MeasurableSpace.{u1} Ξ±] {f : Ξ± -> π•œ}, (Measurable.{u1, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x))) -> (Measurable.{u1, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x))) -> (Measurable.{u1, u2} Ξ± π•œ _inst_2 (IsROrC.measurableSpace.{u2} π•œ _inst_1) f)
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : MeasurableSpace.{u2} Ξ±] {f : Ξ± -> π•œ}, (Measurable.{u2, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x))) -> (Measurable.{u2, 0} Ξ± Real _inst_2 Real.measurableSpace (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x))) -> (Measurable.{u2, u1} Ξ± π•œ _inst_2 (IsROrC.measurableSpace.{u1} π•œ _inst_1) f)
+Case conversion may be inaccurate. Consider using '#align measurable_of_re_im measurable_of_re_imβ‚“'. -/
 theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
     (him : Measurable fun x => IsROrC.im (f x)) : Measurable f :=
   by
@@ -86,7 +130,13 @@ theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
   all_goals infer_instance
 #align measurable_of_re_im measurable_of_re_im
 
-theorem aEMeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
+/- warning: ae_measurable_of_re_im -> aemeasurable_of_re_im is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : MeasurableSpace.{u1} Ξ±] {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± _inst_2}, (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u1, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u1, u2} Ξ± π•œ (IsROrC.measurableSpace.{u2} π•œ _inst_1) _inst_2 f ΞΌ)
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : MeasurableSpace.{u2} Ξ±] {f : Ξ± -> π•œ} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± _inst_2}, (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u2, 0} Ξ± Real Real.measurableSpace _inst_2 (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)) ΞΌ) -> (AEMeasurable.{u2, u1} Ξ± π•œ (IsROrC.measurableSpace.{u1} π•œ _inst_1) _inst_2 f ΞΌ)
+Case conversion may be inaccurate. Consider using '#align ae_measurable_of_re_im aemeasurable_of_re_imβ‚“'. -/
+theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
     (him : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ) : AEMeasurable f ΞΌ :=
   by
   convert(is_R_or_C.measurable_of_real.comp_ae_measurable hre).add
@@ -94,7 +144,7 @@ theorem aEMeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
   Β· ext1 x
     exact (IsROrC.re_add_im _).symm
   all_goals infer_instance
-#align ae_measurable_of_re_im aEMeasurable_of_re_im
+#align ae_measurable_of_re_im aemeasurable_of_re_im
 
 end
 

Changes in mathlib4

mathlib3
mathlib4
move(RCLike): Move out of Data (#11753)

RCLike is an analytic typeclass, hence should be under Analysis

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Mathlib.Data.RCLike.Lemmas
+import Mathlib.Analysis.RCLike.Lemmas
 import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
 
 #align_import measure_theory.function.special_functions.is_R_or_C from "leanprover-community/mathlib"@"83a66c8775fa14ee5180c85cab98e970956401ad"
chore: Rename IsROrC to RCLike (#10819)

IsROrC contains data, which goes against the expectation that classes prefixed with Is are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC to RCLike.

chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -3,8 +3,8 @@ Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
 -/
-import Mathlib.MeasureTheory.Function.SpecialFunctions.Basic
 import Mathlib.Data.IsROrC.Lemmas
+import Mathlib.MeasureTheory.Constructions.BorelSpace.Complex
 
 #align_import measure_theory.function.special_functions.is_R_or_C from "leanprover-community/mathlib"@"83a66c8775fa14ee5180c85cab98e970956401ad"
 
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -20,7 +20,7 @@ open NNReal ENNReal
 
 namespace IsROrC
 
-variable {π•œ : Type _} [IsROrC π•œ]
+variable {π•œ : Type*} [IsROrC π•œ]
 
 @[measurability]
 theorem measurable_re : Measurable (re : π•œ β†’ ℝ) :=
@@ -36,7 +36,7 @@ end IsROrC
 
 section IsROrCComposition
 
-variable {Ξ± π•œ : Type _} [IsROrC π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
+variable {Ξ± π•œ : Type*} [IsROrC π•œ] {m : MeasurableSpace Ξ±} {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
 @[measurability]
 theorem Measurable.re (hf : Measurable f) : Measurable fun x => IsROrC.re (f x) :=
@@ -62,7 +62,7 @@ end IsROrCComposition
 
 section
 
-variable {Ξ± π•œ : Type _} [IsROrC π•œ] [MeasurableSpace Ξ±] {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
+variable {Ξ± π•œ : Type*} [IsROrC π•œ] [MeasurableSpace Ξ±] {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
 @[measurability]
 theorem IsROrC.measurable_ofReal : Measurable ((↑) : ℝ β†’ π•œ) :=
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2020 Yury Kudryashov. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.function.special_functions.is_R_or_C
-! leanprover-community/mathlib commit 83a66c8775fa14ee5180c85cab98e970956401ad
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Function.SpecialFunctions.Basic
 import Mathlib.Data.IsROrC.Lemmas
 
+#align_import measure_theory.function.special_functions.is_R_or_C from "leanprover-community/mathlib"@"83a66c8775fa14ee5180c85cab98e970956401ad"
+
 /-!
 # Measurability of the basic `IsROrC` functions
 
chore: tidy various files (#4304)

Co-authored-by: Jeremy Tan Jie Rui <reddeloostw@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Diff
@@ -68,21 +68,21 @@ section
 variable {Ξ± π•œ : Type _} [IsROrC π•œ] [MeasurableSpace Ξ±] {f : Ξ± β†’ π•œ} {ΞΌ : MeasureTheory.Measure Ξ±}
 
 @[measurability]
-theorem IsROrC.measurable_of_real : Measurable ((↑) : ℝ β†’ π•œ) :=
+theorem IsROrC.measurable_ofReal : Measurable ((↑) : ℝ β†’ π•œ) :=
   IsROrC.continuous_ofReal.measurable
-#align is_R_or_C.measurable_of_real IsROrC.measurable_of_real
+#align is_R_or_C.measurable_of_real IsROrC.measurable_ofReal
 
 theorem measurable_of_re_im (hre : Measurable fun x => IsROrC.re (f x))
     (him : Measurable fun x => IsROrC.im (f x)) : Measurable f := by
-  convert Measurable.add (M := π•œ) (IsROrC.measurable_of_real.comp hre)
-      ((IsROrC.measurable_of_real.comp him).mul_const IsROrC.I)
+  convert Measurable.add (M := π•œ) (IsROrC.measurable_ofReal.comp hre)
+      ((IsROrC.measurable_ofReal.comp him).mul_const IsROrC.I)
   exact (IsROrC.re_add_im _).symm
 #align measurable_of_re_im measurable_of_re_im
 
 theorem aemeasurable_of_re_im (hre : AEMeasurable (fun x => IsROrC.re (f x)) ΞΌ)
     (him : AEMeasurable (fun x => IsROrC.im (f x)) ΞΌ) : AEMeasurable f ΞΌ := by
-  convert AEMeasurable.add (M := π•œ) (IsROrC.measurable_of_real.comp_aemeasurable hre)
-      ((IsROrC.measurable_of_real.comp_aemeasurable him).mul_const IsROrC.I)
+  convert AEMeasurable.add (M := π•œ) (IsROrC.measurable_ofReal.comp_aemeasurable hre)
+      ((IsROrC.measurable_ofReal.comp_aemeasurable him).mul_const IsROrC.I)
   exact (IsROrC.re_add_im _).symm
 #align ae_measurable_of_re_im aemeasurable_of_re_im
 
feat: port MeasureTheory.Function.SpecialFunctions.IsROrC (#4194)

Dependencies 12 + 883

884 files ported (98.7%)
395764 lines ported (98.6%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file