measure_theory.function.strongly_measurable.inner ⟷ Mathlib.MeasureTheory.Function.StronglyMeasurable.Inner

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -27,7 +27,7 @@ namespace MeasureTheory
 namespace StronglyMeasurable
 
 #print MeasureTheory.StronglyMeasurable.inner /-
-protected theorem inner {π•œ : Type _} {E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
+protected theorem inner {π•œ : Type _} {E : Type _} [RCLike π•œ] [NormedAddCommGroup E]
     [InnerProductSpace π•œ E] {m : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f)
     (hg : StronglyMeasurable g) : StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
   Continuous.comp_stronglyMeasurable continuous_inner (hf.prod_mk hg)
@@ -38,22 +38,22 @@ end StronglyMeasurable
 
 namespace AeStronglyMeasurable
 
-variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _} [IsROrC π•œ]
+variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _} [RCLike π•œ]
   [NormedAddCommGroup E] [InnerProductSpace π•œ E]
 
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
 #print MeasureTheory.AEStronglyMeasurable.re /-
 protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
-    AEStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
-  IsROrC.continuous_re.comp_aestronglyMeasurable hf
+    AEStronglyMeasurable (fun x => RCLike.re (f x)) ΞΌ :=
+  RCLike.continuous_re.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.re
 -/
 
 #print MeasureTheory.AEStronglyMeasurable.im /-
 protected theorem im {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
-    AEStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
-  IsROrC.continuous_im.comp_aestronglyMeasurable hf
+    AEStronglyMeasurable (fun x => RCLike.im (f x)) ΞΌ :=
+  RCLike.continuous_im.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.im
 -/
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 RΓ©my Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: RΓ©my Degenne, SΓ©bastien GouΓ«zel
 -/
-import Mathbin.MeasureTheory.Function.StronglyMeasurable.Basic
-import Mathbin.Analysis.InnerProductSpace.Basic
+import MeasureTheory.Function.StronglyMeasurable.Basic
+import Analysis.InnerProductSpace.Basic
 
 #align_import measure_theory.function.strongly_measurable.inner from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 RΓ©my Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: RΓ©my Degenne, SΓ©bastien GouΓ«zel
-
-! This file was ported from Lean 3 source module measure_theory.function.strongly_measurable.inner
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Function.StronglyMeasurable.Basic
 import Mathbin.Analysis.InnerProductSpace.Basic
 
+#align_import measure_theory.function.strongly_measurable.inner from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
 /-!
 # Inner products of strongly measurable functions are strongly measurable.
 
Diff
@@ -29,11 +29,13 @@ namespace MeasureTheory
 
 namespace StronglyMeasurable
 
+#print MeasureTheory.StronglyMeasurable.inner /-
 protected theorem inner {π•œ : Type _} {E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
     [InnerProductSpace π•œ E] {m : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f)
     (hg : StronglyMeasurable g) : StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
   Continuous.comp_stronglyMeasurable continuous_inner (hf.prod_mk hg)
 #align measure_theory.strongly_measurable.inner MeasureTheory.StronglyMeasurable.inner
+-/
 
 end StronglyMeasurable
 
@@ -42,24 +44,29 @@ namespace AeStronglyMeasurable
 variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _} [IsROrC π•œ]
   [NormedAddCommGroup E] [InnerProductSpace π•œ E]
 
--- mathport name: Β«exprβŸͺ , ⟫»
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
+#print MeasureTheory.AEStronglyMeasurable.re /-
 protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
   IsROrC.continuous_re.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.re
+-/
 
+#print MeasureTheory.AEStronglyMeasurable.im /-
 protected theorem im {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
   IsROrC.continuous_im.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.im
+-/
 
+#print MeasureTheory.AEStronglyMeasurable.inner /-
 protected theorem inner {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {f g : Ξ± β†’ E}
     (hf : AEStronglyMeasurable f ΞΌ) (hg : AEStronglyMeasurable g ΞΌ) :
     AEStronglyMeasurable (fun x => βŸͺf x, g x⟫) ΞΌ :=
   continuous_inner.comp_aestronglyMeasurable (hf.prod_mk hg)
 #align measure_theory.ae_strongly_measurable.inner MeasureTheory.AEStronglyMeasurable.inner
+-/
 
 end AeStronglyMeasurable
 
Diff
@@ -29,12 +29,6 @@ namespace MeasureTheory
 
 namespace StronglyMeasurable
 
-/- warning: measure_theory.strongly_measurable.inner -> MeasureTheory.StronglyMeasurable.inner is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.StronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m f) -> (MeasureTheory.StronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m g) -> (MeasureTheory.StronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m (fun (t : Ξ±) => Inner.inner.{u2, u3} π•œ E (InnerProductSpace.toHasInner.{u2, u3} π•œ E _inst_1 _inst_2 _inst_3) (f t) (g t)))
-but is expected to have type
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u3}} {E : Type.{u2}} [_inst_1 : IsROrC.{u3} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u3, u2} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.StronglyMeasurable.{u1, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m f) -> (MeasureTheory.StronglyMeasurable.{u1, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m g) -> (MeasureTheory.StronglyMeasurable.{u1, u3} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u3} π•œ (PseudoMetricSpace.toUniformSpace.{u3} π•œ (SeminormedRing.toPseudoMetricSpace.{u3} π•œ (SeminormedCommRing.toSeminormedRing.{u3} π•œ (NormedCommRing.toSeminormedCommRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (DenselyNormedField.toNormedField.{u3} π•œ (IsROrC.toDenselyNormedField.{u3} π•œ _inst_1)))))))) m (fun (t : Ξ±) => Inner.inner.{u3, u2} π•œ E (InnerProductSpace.toInner.{u3, u2} π•œ E _inst_1 _inst_2 _inst_3) (f t) (g t)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.strongly_measurable.inner MeasureTheory.StronglyMeasurable.innerβ‚“'. -/
 protected theorem inner {π•œ : Type _} {E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
     [InnerProductSpace π•œ E] {m : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f)
     (hg : StronglyMeasurable g) : StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
@@ -51,28 +45,16 @@ variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _}
 -- mathport name: Β«exprβŸͺ , ⟫»
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
-/- warning: measure_theory.ae_strongly_measurable.re -> MeasureTheory.AEStronglyMeasurable.re is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.reβ‚“'. -/
 protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
   IsROrC.continuous_re.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.re
 
-/- warning: measure_theory.ae_strongly_measurable.im -> MeasureTheory.AEStronglyMeasurable.im is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.imβ‚“'. -/
 protected theorem im {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
   IsROrC.continuous_im.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.im
 
-/- warning: measure_theory.ae_strongly_measurable.inner -> MeasureTheory.AEStronglyMeasurable.inner is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u1} Ξ±} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.AEStronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m g ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m (fun (x : Ξ±) => Inner.inner.{u2, u3} π•œ E (InnerProductSpace.toHasInner.{u2, u3} π•œ E _inst_1 _inst_2 _inst_3) (f x) (g x)) ΞΌ)
-but is expected to have type
-  forall {Ξ± : Type.{u3}} {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u3} Ξ±} {ΞΌ : MeasureTheory.Measure.{u3} Ξ± m} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.AEStronglyMeasurable.{u3, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u3, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m g ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u3, u1} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) m (fun (x : Ξ±) => Inner.inner.{u1, u2} π•œ E (InnerProductSpace.toInner.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3) (f x) (g x)) ΞΌ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.inner MeasureTheory.AEStronglyMeasurable.innerβ‚“'. -/
 protected theorem inner {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {f g : Ξ± β†’ E}
     (hf : AEStronglyMeasurable f ΞΌ) (hg : AEStronglyMeasurable g ΞΌ) :
     AEStronglyMeasurable (fun x => βŸͺf x, g x⟫) ΞΌ :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: RΓ©my Degenne, SΓ©bastien GouΓ«zel
 
 ! This file was ported from Lean 3 source module measure_theory.function.strongly_measurable.inner
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.Analysis.InnerProductSpace.Basic
 /-!
 # Inner products of strongly measurable functions are strongly measurable.
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 -/
 
 
@@ -49,10 +52,7 @@ variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _}
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
 /- warning: measure_theory.ae_strongly_measurable.re -> MeasureTheory.AEStronglyMeasurable.re is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {m : MeasurableSpace.{u1} Ξ±} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)) ΞΌ)
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {m : MeasurableSpace.{u2} Ξ±} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u2, u1} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u2, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)) ΞΌ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.reβ‚“'. -/
 protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
@@ -60,10 +60,7 @@ protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
 #align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.re
 
 /- warning: measure_theory.ae_strongly_measurable.im -> MeasureTheory.AEStronglyMeasurable.im is a dubious translation:
-lean 3 declaration is
-  forall {Ξ± : Type.{u1}} {m : MeasurableSpace.{u1} Ξ±} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)) ΞΌ)
-but is expected to have type
-  forall {Ξ± : Type.{u2}} {m : MeasurableSpace.{u2} Ξ±} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u2, u1} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u2, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)) ΞΌ)
+<too large>
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.imβ‚“'. -/
 protected theorem im {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
Diff
@@ -26,6 +26,12 @@ namespace MeasureTheory
 
 namespace StronglyMeasurable
 
+/- warning: measure_theory.strongly_measurable.inner -> MeasureTheory.StronglyMeasurable.inner is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.StronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m f) -> (MeasureTheory.StronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m g) -> (MeasureTheory.StronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m (fun (t : Ξ±) => Inner.inner.{u2, u3} π•œ E (InnerProductSpace.toHasInner.{u2, u3} π•œ E _inst_1 _inst_2 _inst_3) (f t) (g t)))
+but is expected to have type
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u3}} {E : Type.{u2}} [_inst_1 : IsROrC.{u3} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u3, u2} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u1} Ξ±} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.StronglyMeasurable.{u1, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m f) -> (MeasureTheory.StronglyMeasurable.{u1, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m g) -> (MeasureTheory.StronglyMeasurable.{u1, u3} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u3} π•œ (PseudoMetricSpace.toUniformSpace.{u3} π•œ (SeminormedRing.toPseudoMetricSpace.{u3} π•œ (SeminormedCommRing.toSeminormedRing.{u3} π•œ (NormedCommRing.toSeminormedCommRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (DenselyNormedField.toNormedField.{u3} π•œ (IsROrC.toDenselyNormedField.{u3} π•œ _inst_1)))))))) m (fun (t : Ξ±) => Inner.inner.{u3, u2} π•œ E (InnerProductSpace.toInner.{u3, u2} π•œ E _inst_1 _inst_2 _inst_3) (f t) (g t)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.strongly_measurable.inner MeasureTheory.StronglyMeasurable.innerβ‚“'. -/
 protected theorem inner {π•œ : Type _} {E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
     [InnerProductSpace π•œ E] {m : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f)
     (hg : StronglyMeasurable g) : StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
@@ -42,16 +48,34 @@ variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _}
 -- mathport name: Β«exprβŸͺ , ⟫»
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
+/- warning: measure_theory.ae_strongly_measurable.re -> MeasureTheory.AEStronglyMeasurable.re is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {m : MeasurableSpace.{u1} Ξ±} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.re.{u2} π•œ _inst_1) (f x)) ΞΌ)
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {m : MeasurableSpace.{u2} Ξ±} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u2, u1} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u2, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.re.{u1} π•œ _inst_1) (f x)) ΞΌ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.reβ‚“'. -/
 protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
   IsROrC.continuous_re.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.re
 
+/- warning: measure_theory.ae_strongly_measurable.im -> MeasureTheory.AEStronglyMeasurable.im is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {m : MeasurableSpace.{u1} Ξ±} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m} {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => coeFn.{succ u2, succ u2} (AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (fun (_x : AddMonoidHom.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) => π•œ -> Real) (AddMonoidHom.hasCoeToFun.{u2, 0} π•œ Real (AddMonoid.toAddZeroClass.{u2} π•œ (AddMonoidWithOne.toAddMonoid.{u2} π•œ (AddGroupWithOne.toAddMonoidWithOne.{u2} π•œ (AddCommGroupWithOne.toAddGroupWithOne.{u2} π•œ (Ring.toAddCommGroupWithOne.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.addMonoid)) (IsROrC.im.{u2} π•œ _inst_1) (f x)) ΞΌ)
+but is expected to have type
+  forall {Ξ± : Type.{u2}} {m : MeasurableSpace.{u2} Ξ±} {ΞΌ : MeasureTheory.Measure.{u2} Ξ± m} {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {f : Ξ± -> π•œ}, (MeasureTheory.AEStronglyMeasurable.{u2, u1} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u2, 0} Ξ± Real (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) m (fun (x : Ξ±) => FunLike.coe.{succ u1, succ u1, 1} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ (fun (_x : π•œ) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.403 : π•œ) => Real) _x) (AddHomClass.toFunLike.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddZeroClass.toAdd.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (AddZeroClass.toAdd.{0} Real (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) (AddMonoidHomClass.toAddHomClass.{u1, u1, 0} (AddMonoidHom.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)) π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal) (AddMonoidHom.addMonoidHomClass.{u1, 0} π•œ Real (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalSemiring.toNonUnitalNonAssocSemiring.{u1} π•œ (Semiring.toNonUnitalSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ (Field.toCommRing.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))))) (AddMonoid.toAddZeroClass.{0} Real Real.instAddMonoidReal)))) (IsROrC.im.{u1} π•œ _inst_1) (f x)) ΞΌ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.imβ‚“'. -/
 protected theorem im {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
     AEStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
   IsROrC.continuous_im.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.im
 
+/- warning: measure_theory.ae_strongly_measurable.inner -> MeasureTheory.AEStronglyMeasurable.inner is a dubious translation:
+lean 3 declaration is
+  forall {Ξ± : Type.{u1}} {π•œ : Type.{u2}} {E : Type.{u3}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : InnerProductSpace.{u2, u3} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u1} Ξ±} {ΞΌ : MeasureTheory.Measure.{u1} Ξ± m} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.AEStronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, u3} Ξ± E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) m g ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u1, u2} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSemiNormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) m (fun (x : Ξ±) => Inner.inner.{u2, u3} π•œ E (InnerProductSpace.toHasInner.{u2, u3} π•œ E _inst_1 _inst_2 _inst_3) (f x) (g x)) ΞΌ)
+but is expected to have type
+  forall {Ξ± : Type.{u3}} {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π•œ E _inst_1 _inst_2] {m : MeasurableSpace.{u3} Ξ±} {ΞΌ : MeasureTheory.Measure.{u3} Ξ± m} {f : Ξ± -> E} {g : Ξ± -> E}, (MeasureTheory.AEStronglyMeasurable.{u3, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m f ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u3, u2} Ξ± E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) m g ΞΌ) -> (MeasureTheory.AEStronglyMeasurable.{u3, u1} Ξ± π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) m (fun (x : Ξ±) => Inner.inner.{u1, u2} π•œ E (InnerProductSpace.toInner.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3) (f x) (g x)) ΞΌ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_strongly_measurable.inner MeasureTheory.AEStronglyMeasurable.innerβ‚“'. -/
 protected theorem inner {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {f g : Ξ± β†’ E}
     (hf : AEStronglyMeasurable f ΞΌ) (hg : AEStronglyMeasurable g ΞΌ) :
     AEStronglyMeasurable (fun x => βŸͺf x, g x⟫) ΞΌ :=
Diff
@@ -42,21 +42,21 @@ variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _}
 -- mathport name: Β«exprβŸͺ , ⟫»
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
-protected theorem re {f : Ξ± β†’ π•œ} (hf : AeStronglyMeasurable f ΞΌ) :
-    AeStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
-  IsROrC.continuous_re.comp_aeStronglyMeasurable hf
-#align measure_theory.ae_strongly_measurable.re MeasureTheory.AeStronglyMeasurable.re
+protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
+    AEStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
+  IsROrC.continuous_re.comp_aestronglyMeasurable hf
+#align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.re
 
-protected theorem im {f : Ξ± β†’ π•œ} (hf : AeStronglyMeasurable f ΞΌ) :
-    AeStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
-  IsROrC.continuous_im.comp_aeStronglyMeasurable hf
-#align measure_theory.ae_strongly_measurable.im MeasureTheory.AeStronglyMeasurable.im
+protected theorem im {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
+    AEStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
+  IsROrC.continuous_im.comp_aestronglyMeasurable hf
+#align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.im
 
 protected theorem inner {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {f g : Ξ± β†’ E}
-    (hf : AeStronglyMeasurable f ΞΌ) (hg : AeStronglyMeasurable g ΞΌ) :
-    AeStronglyMeasurable (fun x => βŸͺf x, g x⟫) ΞΌ :=
-  continuous_inner.comp_aeStronglyMeasurable (hf.prod_mk hg)
-#align measure_theory.ae_strongly_measurable.inner MeasureTheory.AeStronglyMeasurable.inner
+    (hf : AEStronglyMeasurable f ΞΌ) (hg : AEStronglyMeasurable g ΞΌ) :
+    AEStronglyMeasurable (fun x => βŸͺf x, g x⟫) ΞΌ :=
+  continuous_inner.comp_aestronglyMeasurable (hf.prod_mk hg)
+#align measure_theory.ae_strongly_measurable.inner MeasureTheory.AEStronglyMeasurable.inner
 
 end AeStronglyMeasurable
 
Diff
@@ -44,18 +44,18 @@ local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
 protected theorem re {f : Ξ± β†’ π•œ} (hf : AeStronglyMeasurable f ΞΌ) :
     AeStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
-  IsROrC.continuous_re.compAeStronglyMeasurable hf
+  IsROrC.continuous_re.comp_aeStronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.re MeasureTheory.AeStronglyMeasurable.re
 
 protected theorem im {f : Ξ± β†’ π•œ} (hf : AeStronglyMeasurable f ΞΌ) :
     AeStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
-  IsROrC.continuous_im.compAeStronglyMeasurable hf
+  IsROrC.continuous_im.comp_aeStronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.im MeasureTheory.AeStronglyMeasurable.im
 
 protected theorem inner {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {f g : Ξ± β†’ E}
     (hf : AeStronglyMeasurable f ΞΌ) (hg : AeStronglyMeasurable g ΞΌ) :
     AeStronglyMeasurable (fun x => βŸͺf x, g x⟫) ΞΌ :=
-  continuous_inner.compAeStronglyMeasurable (hf.prod_mk hg)
+  continuous_inner.comp_aeStronglyMeasurable (hf.prod_mk hg)
 #align measure_theory.ae_strongly_measurable.inner MeasureTheory.AeStronglyMeasurable.inner
 
 end AeStronglyMeasurable
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: RΓ©my Degenne, SΓ©bastien GouΓ«zel
 
 ! This file was ported from Lean 3 source module measure_theory.function.strongly_measurable.inner
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -26,9 +26,9 @@ namespace MeasureTheory
 
 namespace StronglyMeasurable
 
-protected theorem inner {π•œ : Type _} {E : Type _} [IsROrC π•œ] [InnerProductSpace π•œ E]
-    {m : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f) (hg : StronglyMeasurable g) :
-    StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
+protected theorem inner {π•œ : Type _} {E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
+    [InnerProductSpace π•œ E] {m : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f)
+    (hg : StronglyMeasurable g) : StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
   Continuous.comp_stronglyMeasurable continuous_inner (hf.prod_mk hg)
 #align measure_theory.strongly_measurable.inner MeasureTheory.StronglyMeasurable.inner
 
@@ -37,7 +37,7 @@ end StronglyMeasurable
 namespace AeStronglyMeasurable
 
 variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _} [IsROrC π•œ]
-  [InnerProductSpace π•œ E]
+  [NormedAddCommGroup E] [InnerProductSpace π•œ E]
 
 -- mathport name: Β«exprβŸͺ , ⟫»
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y

Changes in mathlib4

mathlib3
mathlib4
chore: Rename IsROrC to RCLike (#10819)

IsROrC contains data, which goes against the expectation that classes prefixed with Is are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC to RCLike.

Diff
@@ -23,7 +23,7 @@ namespace MeasureTheory
 
 namespace StronglyMeasurable
 
-protected theorem inner {π•œ : Type*} {E : Type*} [IsROrC π•œ] [NormedAddCommGroup E]
+protected theorem inner {π•œ : Type*} {E : Type*} [RCLike π•œ] [NormedAddCommGroup E]
     [InnerProductSpace π•œ E] {_ : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f)
     (hg : StronglyMeasurable g) : StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
   Continuous.comp_stronglyMeasurable continuous_inner (hf.prod_mk hg)
@@ -33,19 +33,19 @@ end StronglyMeasurable
 
 namespace AEStronglyMeasurable
 
-variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type*} {E : Type*} [IsROrC π•œ]
+variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type*} {E : Type*} [RCLike π•œ]
   [NormedAddCommGroup E] [InnerProductSpace π•œ E]
 
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
 
 protected theorem re {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
-    AEStronglyMeasurable (fun x => IsROrC.re (f x)) ΞΌ :=
-  IsROrC.continuous_re.comp_aestronglyMeasurable hf
+    AEStronglyMeasurable (fun x => RCLike.re (f x)) ΞΌ :=
+  RCLike.continuous_re.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.re MeasureTheory.AEStronglyMeasurable.re
 
 protected theorem im {f : Ξ± β†’ π•œ} (hf : AEStronglyMeasurable f ΞΌ) :
-    AEStronglyMeasurable (fun x => IsROrC.im (f x)) ΞΌ :=
-  IsROrC.continuous_im.comp_aestronglyMeasurable hf
+    AEStronglyMeasurable (fun x => RCLike.im (f x)) ΞΌ :=
+  RCLike.continuous_im.comp_aestronglyMeasurable hf
 #align measure_theory.ae_strongly_measurable.im MeasureTheory.AEStronglyMeasurable.im
 
 protected theorem inner {_ : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {f g : Ξ± β†’ E}
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -14,7 +14,7 @@ import Mathlib.Analysis.InnerProductSpace.Basic
 -/
 
 
-variable {Ξ± : Type _}
+variable {Ξ± : Type*}
 
 namespace MeasureTheory
 
@@ -23,7 +23,7 @@ namespace MeasureTheory
 
 namespace StronglyMeasurable
 
-protected theorem inner {π•œ : Type _} {E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
+protected theorem inner {π•œ : Type*} {E : Type*} [IsROrC π•œ] [NormedAddCommGroup E]
     [InnerProductSpace π•œ E] {_ : MeasurableSpace Ξ±} {f g : Ξ± β†’ E} (hf : StronglyMeasurable f)
     (hg : StronglyMeasurable g) : StronglyMeasurable fun t => @inner π•œ _ _ (f t) (g t) :=
   Continuous.comp_stronglyMeasurable continuous_inner (hf.prod_mk hg)
@@ -33,7 +33,7 @@ end StronglyMeasurable
 
 namespace AEStronglyMeasurable
 
-variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type _} {E : Type _} [IsROrC π•œ]
+variable {m : MeasurableSpace Ξ±} {ΞΌ : Measure Ξ±} {π•œ : Type*} {E : Type*} [IsROrC π•œ]
   [NormedAddCommGroup E] [InnerProductSpace π•œ E]
 
 local notation "βŸͺ" x ", " y "⟫" => @inner π•œ _ _ x y
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 RΓ©my Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: RΓ©my Degenne, SΓ©bastien GouΓ«zel
-
-! This file was ported from Lean 3 source module measure_theory.function.strongly_measurable.inner
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Function.StronglyMeasurable.Basic
 import Mathlib.Analysis.InnerProductSpace.Basic
 
+#align_import measure_theory.function.strongly_measurable.inner from "leanprover-community/mathlib"@"46b633fd842bef9469441c0209906f6dddd2b4f5"
+
 /-!
 # Inner products of strongly measurable functions are strongly measurable.
 
feat: port MeasureTheory.Function.StronglyMeasurable.Inner (#4371)

Dependencies 12 + 897

898 files ported (98.7%)
408854 lines ported (98.6%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file