measure_theory.group.integration
⟷
Mathlib.MeasureTheory.Group.Integral
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2022 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
-import Mathbin.MeasureTheory.Integral.Bochner
-import Mathbin.MeasureTheory.Group.Measure
-import Mathbin.MeasureTheory.Group.Action
+import MeasureTheory.Integral.Bochner
+import MeasureTheory.Group.Measure
+import MeasureTheory.Group.Action
#align_import measure_theory.group.integration from "leanprover-community/mathlib"@"fd4551cfe4b7484b81c2c9ba3405edae27659676"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2022 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-
-! This file was ported from Lean 3 source module measure_theory.group.integration
-! leanprover-community/mathlib commit fd4551cfe4b7484b81c2c9ba3405edae27659676
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.MeasureTheory.Integral.Bochner
import Mathbin.MeasureTheory.Group.Measure
import Mathbin.MeasureTheory.Group.Action
+#align_import measure_theory.group.integration from "leanprover-community/mathlib"@"fd4551cfe4b7484b81c2c9ba3405edae27659676"
+
/-!
# Integration on Groups
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -39,13 +39,16 @@ section MeasurableInv
variable [Group G] [MeasurableInv G]
+#print MeasureTheory.Integrable.comp_inv /-
@[to_additive]
theorem Integrable.comp_inv [IsInvInvariant μ] {f : G → F} (hf : Integrable f μ) :
Integrable (fun t => f t⁻¹) μ :=
(hf.mono_measure (map_inv_eq_self μ).le).comp_measurable measurable_inv
#align measure_theory.integrable.comp_inv MeasureTheory.Integrable.comp_inv
#align measure_theory.integrable.comp_neg MeasureTheory.Integrable.comp_neg
+-/
+#print MeasureTheory.integral_inv_eq_self /-
@[to_additive]
theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ] :
∫ x, f x⁻¹ ∂μ = ∫ x, f x ∂μ :=
@@ -54,6 +57,7 @@ theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ]
rw [← h.integral_map, map_inv_eq_self]
#align measure_theory.integral_inv_eq_self MeasureTheory.integral_inv_eq_self
#align measure_theory.integral_neg_eq_self MeasureTheory.integral_neg_eq_self
+-/
end MeasurableInv
@@ -61,6 +65,7 @@ section MeasurableMul
variable [Group G] [MeasurableMul G]
+#print MeasureTheory.lintegral_mul_left_eq_self /-
/-- Translating a function by left-multiplication does not change its `measure_theory.lintegral`
with respect to a left-invariant measure. -/
@[to_additive
@@ -72,7 +77,9 @@ theorem lintegral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → ℝ≥0∞
simp [map_mul_left_eq_self μ g]
#align measure_theory.lintegral_mul_left_eq_self MeasureTheory.lintegral_mul_left_eq_self
#align measure_theory.lintegral_add_left_eq_self MeasureTheory.lintegral_add_left_eq_self
+-/
+#print MeasureTheory.lintegral_mul_right_eq_self /-
/-- Translating a function by right-multiplication does not change its `measure_theory.lintegral`
with respect to a right-invariant measure. -/
@[to_additive
@@ -84,14 +91,18 @@ theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0
simp [map_mul_right_eq_self μ g]
#align measure_theory.lintegral_mul_right_eq_self MeasureTheory.lintegral_mul_right_eq_self
#align measure_theory.lintegral_add_right_eq_self MeasureTheory.lintegral_add_right_eq_self
+-/
+#print MeasureTheory.lintegral_div_right_eq_self /-
@[simp, to_additive]
theorem lintegral_div_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
∫⁻ x, f (x / g) ∂μ = ∫⁻ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, lintegral_mul_right_eq_self f g⁻¹]
#align measure_theory.lintegral_div_right_eq_self MeasureTheory.lintegral_div_right_eq_self
#align measure_theory.lintegral_sub_right_eq_self MeasureTheory.lintegral_sub_right_eq_self
+-/
+#print MeasureTheory.integral_mul_left_eq_self /-
/-- Translating a function by left-multiplication does not change its integral with respect to a
left-invariant measure. -/
@[simp,
@@ -104,7 +115,9 @@ theorem integral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → E) (g : G)
rw [← h_mul.integral_map, map_mul_left_eq_self]
#align measure_theory.integral_mul_left_eq_self MeasureTheory.integral_mul_left_eq_self
#align measure_theory.integral_add_left_eq_self MeasureTheory.integral_add_left_eq_self
+-/
+#print MeasureTheory.integral_mul_right_eq_self /-
/-- Translating a function by right-multiplication does not change its integral with respect to a
right-invariant measure. -/
@[simp,
@@ -118,13 +131,17 @@ theorem integral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G
rw [← h_mul.integral_map, map_mul_right_eq_self]
#align measure_theory.integral_mul_right_eq_self MeasureTheory.integral_mul_right_eq_self
#align measure_theory.integral_add_right_eq_self MeasureTheory.integral_add_right_eq_self
+-/
+#print MeasureTheory.integral_div_right_eq_self /-
@[simp, to_additive]
theorem integral_div_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G) :
∫ x, f (x / g) ∂μ = ∫ x, f x ∂μ := by simp_rw [div_eq_mul_inv, integral_mul_right_eq_self f g⁻¹]
#align measure_theory.integral_div_right_eq_self MeasureTheory.integral_div_right_eq_self
#align measure_theory.integral_sub_right_eq_self MeasureTheory.integral_sub_right_eq_self
+-/
+#print MeasureTheory.integral_eq_zero_of_mul_left_eq_neg /-
/-- If some left-translate of a function negates it, then the integral of the function with respect
to a left-invariant measure is 0. -/
@[to_additive
@@ -134,7 +151,9 @@ theorem integral_eq_zero_of_mul_left_eq_neg [IsMulLeftInvariant μ] (hf' : ∀ x
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_left_eq_self]
#align measure_theory.integral_eq_zero_of_mul_left_eq_neg MeasureTheory.integral_eq_zero_of_mul_left_eq_neg
#align measure_theory.integral_eq_zero_of_add_left_eq_neg MeasureTheory.integral_eq_zero_of_add_left_eq_neg
+-/
+#print MeasureTheory.integral_eq_zero_of_mul_right_eq_neg /-
/-- If some right-translate of a function negates it, then the integral of the function with respect
to a right-invariant measure is 0. -/
@[to_additive
@@ -144,37 +163,47 @@ theorem integral_eq_zero_of_mul_right_eq_neg [IsMulRightInvariant μ] (hf' : ∀
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_right_eq_self]
#align measure_theory.integral_eq_zero_of_mul_right_eq_neg MeasureTheory.integral_eq_zero_of_mul_right_eq_neg
#align measure_theory.integral_eq_zero_of_add_right_eq_neg MeasureTheory.integral_eq_zero_of_add_right_eq_neg
+-/
+#print MeasureTheory.Integrable.comp_mul_left /-
@[to_additive]
theorem Integrable.comp_mul_left {f : G → F} [IsMulLeftInvariant μ] (hf : Integrable f μ) (g : G) :
Integrable (fun t => f (g * t)) μ :=
(hf.mono_measure (map_mul_left_eq_self μ g).le).comp_measurable <| measurable_const_mul g
#align measure_theory.integrable.comp_mul_left MeasureTheory.Integrable.comp_mul_left
#align measure_theory.integrable.comp_add_left MeasureTheory.Integrable.comp_add_left
+-/
+#print MeasureTheory.Integrable.comp_mul_right /-
@[to_additive]
theorem Integrable.comp_mul_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
(g : G) : Integrable (fun t => f (t * g)) μ :=
(hf.mono_measure (map_mul_right_eq_self μ g).le).comp_measurable <| measurable_mul_const g
#align measure_theory.integrable.comp_mul_right MeasureTheory.Integrable.comp_mul_right
#align measure_theory.integrable.comp_add_right MeasureTheory.Integrable.comp_add_right
+-/
+#print MeasureTheory.Integrable.comp_div_right /-
@[to_additive]
theorem Integrable.comp_div_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
(g : G) : Integrable (fun t => f (t / g)) μ := by simp_rw [div_eq_mul_inv];
exact hf.comp_mul_right g⁻¹
#align measure_theory.integrable.comp_div_right MeasureTheory.Integrable.comp_div_right
#align measure_theory.integrable.comp_sub_right MeasureTheory.Integrable.comp_sub_right
+-/
variable [MeasurableInv G]
+#print MeasureTheory.Integrable.comp_div_left /-
@[to_additive]
theorem Integrable.comp_div_left {f : G → F} [IsInvInvariant μ] [IsMulLeftInvariant μ]
(hf : Integrable f μ) (g : G) : Integrable (fun t => f (g / t)) μ :=
((measurePreserving_div_left μ g).integrable_comp hf.AEStronglyMeasurable).mpr hf
#align measure_theory.integrable.comp_div_left MeasureTheory.Integrable.comp_div_left
#align measure_theory.integrable.comp_sub_left MeasureTheory.Integrable.comp_sub_left
+-/
+#print MeasureTheory.integrable_comp_div_left /-
@[simp, to_additive]
theorem integrable_comp_div_left (f : G → F) [IsInvInvariant μ] [IsMulLeftInvariant μ] (g : G) :
Integrable (fun t => f (g / t)) μ ↔ Integrable f μ :=
@@ -184,7 +213,9 @@ theorem integrable_comp_div_left (f : G → F) [IsInvInvariant μ] [IsMulLeftInv
simp_rw [div_inv_eq_mul, mul_inv_cancel_left]
#align measure_theory.integrable_comp_div_left MeasureTheory.integrable_comp_div_left
#align measure_theory.integrable_comp_sub_left MeasureTheory.integrable_comp_sub_left
+-/
+#print MeasureTheory.integral_div_left_eq_self /-
@[simp, to_additive]
theorem integral_div_left_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ]
[IsMulLeftInvariant μ] (x' : G) : ∫ x, f (x' / x) ∂μ = ∫ x, f x ∂μ := by
@@ -192,6 +223,7 @@ theorem integral_div_left_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant
integral_mul_left_eq_self f x']
#align measure_theory.integral_div_left_eq_self MeasureTheory.integral_div_left_eq_self
#align measure_theory.integral_sub_left_eq_self MeasureTheory.integral_sub_left_eq_self
+-/
end MeasurableMul
@@ -199,6 +231,7 @@ section Smul
variable [Group G] [MeasurableSpace α] [MulAction G α] [MeasurableSMul G α]
+#print MeasureTheory.integral_smul_eq_self /-
@[simp, to_additive]
theorem integral_smul_eq_self {μ : Measure α} [SMulInvariantMeasure G α μ] (f : α → E) {g : G} :
∫ x, f (g • x) ∂μ = ∫ x, f x ∂μ :=
@@ -207,6 +240,7 @@ theorem integral_smul_eq_self {μ : Measure α} [SMulInvariantMeasure G α μ] (
rw [← h.integral_map, map_smul]
#align measure_theory.integral_smul_eq_self MeasureTheory.integral_smul_eq_self
#align measure_theory.integral_vadd_eq_self MeasureTheory.integral_vadd_eq_self
+-/
end Smul
@@ -214,6 +248,7 @@ section TopologicalGroup
variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [IsMulLeftInvariant μ]
+#print MeasureTheory.lintegral_eq_zero_of_isMulLeftInvariant /-
/-- For nonzero regular left invariant measures, the integral of a continuous nonnegative function
`f` is 0 iff `f` is 0. -/
@[to_additive
@@ -225,6 +260,7 @@ theorem lintegral_eq_zero_of_isMulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f
rw [lintegral_eq_zero_iff hf.measurable, hf.ae_eq_iff_eq μ continuous_zero]
#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_isMulLeftInvariant
#align measure_theory.lintegral_eq_zero_of_is_add_left_invariant MeasureTheory.lintegral_eq_zero_of_isAddLeftInvariant
+-/
end TopologicalGroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/c471da714c044131b90c133701e51b877c246677
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
! This file was ported from Lean 3 source module measure_theory.group.integration
-! leanprover-community/mathlib commit ec247d43814751ffceb33b758e8820df2372bf6f
+! leanprover-community/mathlib commit fd4551cfe4b7484b81c2c9ba3405edae27659676
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.MeasureTheory.Group.Action
/-!
# Integration on Groups
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
We develop properties of integrals with a group as domain.
This file contains properties about integrability, Lebesgue integration and Bochner integration.
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/a3e83f0fa4391c8740f7d773a7a9b74e311ae2a3
@@ -45,7 +45,7 @@ theorem Integrable.comp_inv [IsInvInvariant μ] {f : G → F} (hf : Integrable f
@[to_additive]
theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ] :
- (∫ x, f x⁻¹ ∂μ) = ∫ x, f x ∂μ :=
+ ∫ x, f x⁻¹ ∂μ = ∫ x, f x ∂μ :=
by
have h : MeasurableEmbedding fun x : G => x⁻¹ := (MeasurableEquiv.inv G).MeasurableEmbedding
rw [← h.integral_map, map_inv_eq_self]
@@ -63,7 +63,7 @@ with respect to a left-invariant measure. -/
@[to_additive
"Translating a function by left-addition does not change its\n`measure_theory.lintegral` with respect to a left-invariant measure."]
theorem lintegral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → ℝ≥0∞) (g : G) :
- (∫⁻ x, f (g * x) ∂μ) = ∫⁻ x, f x ∂μ :=
+ ∫⁻ x, f (g * x) ∂μ = ∫⁻ x, f x ∂μ :=
by
convert (lintegral_map_equiv f <| MeasurableEquiv.mulLeft g).symm
simp [map_mul_left_eq_self μ g]
@@ -75,7 +75,7 @@ with respect to a right-invariant measure. -/
@[to_additive
"Translating a function by right-addition does not change its\n`measure_theory.lintegral` with respect to a right-invariant measure."]
theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
- (∫⁻ x, f (x * g) ∂μ) = ∫⁻ x, f x ∂μ :=
+ ∫⁻ x, f (x * g) ∂μ = ∫⁻ x, f x ∂μ :=
by
convert (lintegral_map_equiv f <| MeasurableEquiv.mulRight g).symm
simp [map_mul_right_eq_self μ g]
@@ -84,7 +84,7 @@ theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0
@[simp, to_additive]
theorem lintegral_div_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
- (∫⁻ x, f (x / g) ∂μ) = ∫⁻ x, f x ∂μ := by
+ ∫⁻ x, f (x / g) ∂μ = ∫⁻ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, lintegral_mul_right_eq_self f g⁻¹]
#align measure_theory.lintegral_div_right_eq_self MeasureTheory.lintegral_div_right_eq_self
#align measure_theory.lintegral_sub_right_eq_self MeasureTheory.lintegral_sub_right_eq_self
@@ -95,7 +95,7 @@ left-invariant measure. -/
to_additive
"Translating a function by left-addition does not change its integral with\n respect to a left-invariant measure."]
theorem integral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → E) (g : G) :
- (∫ x, f (g * x) ∂μ) = ∫ x, f x ∂μ :=
+ ∫ x, f (g * x) ∂μ = ∫ x, f x ∂μ :=
by
have h_mul : MeasurableEmbedding fun x => g * x := (MeasurableEquiv.mulLeft g).MeasurableEmbedding
rw [← h_mul.integral_map, map_mul_left_eq_self]
@@ -108,7 +108,7 @@ right-invariant measure. -/
to_additive
"Translating a function by right-addition does not change its integral with\n respect to a right-invariant measure."]
theorem integral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G) :
- (∫ x, f (x * g) ∂μ) = ∫ x, f x ∂μ :=
+ ∫ x, f (x * g) ∂μ = ∫ x, f x ∂μ :=
by
have h_mul : MeasurableEmbedding fun x => x * g :=
(MeasurableEquiv.mulRight g).MeasurableEmbedding
@@ -118,8 +118,7 @@ theorem integral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G
@[simp, to_additive]
theorem integral_div_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G) :
- (∫ x, f (x / g) ∂μ) = ∫ x, f x ∂μ := by
- simp_rw [div_eq_mul_inv, integral_mul_right_eq_self f g⁻¹]
+ ∫ x, f (x / g) ∂μ = ∫ x, f x ∂μ := by simp_rw [div_eq_mul_inv, integral_mul_right_eq_self f g⁻¹]
#align measure_theory.integral_div_right_eq_self MeasureTheory.integral_div_right_eq_self
#align measure_theory.integral_sub_right_eq_self MeasureTheory.integral_sub_right_eq_self
@@ -128,7 +127,7 @@ to a left-invariant measure is 0. -/
@[to_additive
"If some left-translate of a function negates it, then the integral of the function\nwith respect to a left-invariant measure is 0."]
theorem integral_eq_zero_of_mul_left_eq_neg [IsMulLeftInvariant μ] (hf' : ∀ x, f (g * x) = -f x) :
- (∫ x, f x ∂μ) = 0 := by
+ ∫ x, f x ∂μ = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_left_eq_self]
#align measure_theory.integral_eq_zero_of_mul_left_eq_neg MeasureTheory.integral_eq_zero_of_mul_left_eq_neg
#align measure_theory.integral_eq_zero_of_add_left_eq_neg MeasureTheory.integral_eq_zero_of_add_left_eq_neg
@@ -138,7 +137,7 @@ to a right-invariant measure is 0. -/
@[to_additive
"If some right-translate of a function negates it, then the integral of the function\nwith respect to a right-invariant measure is 0."]
theorem integral_eq_zero_of_mul_right_eq_neg [IsMulRightInvariant μ] (hf' : ∀ x, f (x * g) = -f x) :
- (∫ x, f x ∂μ) = 0 := by
+ ∫ x, f x ∂μ = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_right_eq_self]
#align measure_theory.integral_eq_zero_of_mul_right_eq_neg MeasureTheory.integral_eq_zero_of_mul_right_eq_neg
#align measure_theory.integral_eq_zero_of_add_right_eq_neg MeasureTheory.integral_eq_zero_of_add_right_eq_neg
@@ -185,7 +184,7 @@ theorem integrable_comp_div_left (f : G → F) [IsInvInvariant μ] [IsMulLeftInv
@[simp, to_additive]
theorem integral_div_left_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ]
- [IsMulLeftInvariant μ] (x' : G) : (∫ x, f (x' / x) ∂μ) = ∫ x, f x ∂μ := by
+ [IsMulLeftInvariant μ] (x' : G) : ∫ x, f (x' / x) ∂μ = ∫ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, integral_inv_eq_self (fun x => f (x' * x)) μ,
integral_mul_left_eq_self f x']
#align measure_theory.integral_div_left_eq_self MeasureTheory.integral_div_left_eq_self
@@ -199,7 +198,7 @@ variable [Group G] [MeasurableSpace α] [MulAction G α] [MeasurableSMul G α]
@[simp, to_additive]
theorem integral_smul_eq_self {μ : Measure α} [SMulInvariantMeasure G α μ] (f : α → E) {g : G} :
- (∫ x, f (g • x) ∂μ) = ∫ x, f x ∂μ :=
+ ∫ x, f (g • x) ∂μ = ∫ x, f x ∂μ :=
by
have h : MeasurableEmbedding fun x : α => g • x := (MeasurableEquiv.smul g).MeasurableEmbedding
rw [← h.integral_map, map_smul]
@@ -217,7 +216,7 @@ variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [IsM
@[to_additive
"For nonzero regular left invariant measures, the integral of a continuous nonnegative\nfunction `f` is 0 iff `f` is 0."]
theorem lintegral_eq_zero_of_isMulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f : G → ℝ≥0∞}
- (hf : Continuous f) : (∫⁻ x, f x ∂μ) = 0 ↔ f = 0 :=
+ (hf : Continuous f) : ∫⁻ x, f x ∂μ = 0 ↔ f = 0 :=
by
haveI := is_open_pos_measure_of_mul_left_invariant_of_regular hμ
rw [lintegral_eq_zero_iff hf.measurable, hf.ae_eq_iff_eq μ continuous_zero]
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -222,7 +222,7 @@ theorem lintegral_eq_zero_of_isMulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f
haveI := is_open_pos_measure_of_mul_left_invariant_of_regular hμ
rw [lintegral_eq_zero_iff hf.measurable, hf.ae_eq_iff_eq μ continuous_zero]
#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_isMulLeftInvariant
-#align measure_theory.lintegral_eq_zero_of_is_add_left_invariant MeasureTheory.lintegral_eq_zero_of_is_add_left_invariant
+#align measure_theory.lintegral_eq_zero_of_is_add_left_invariant MeasureTheory.lintegral_eq_zero_of_isAddLeftInvariant
end TopologicalGroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -37,14 +37,14 @@ section MeasurableInv
variable [Group G] [MeasurableInv G]
@[to_additive]
-theorem Integrable.comp_inv [InvInvariant μ] {f : G → F} (hf : Integrable f μ) :
+theorem Integrable.comp_inv [IsInvInvariant μ] {f : G → F} (hf : Integrable f μ) :
Integrable (fun t => f t⁻¹) μ :=
(hf.mono_measure (map_inv_eq_self μ).le).comp_measurable measurable_inv
#align measure_theory.integrable.comp_inv MeasureTheory.Integrable.comp_inv
#align measure_theory.integrable.comp_neg MeasureTheory.Integrable.comp_neg
@[to_additive]
-theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [InvInvariant μ] :
+theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ] :
(∫ x, f x⁻¹ ∂μ) = ∫ x, f x ∂μ :=
by
have h : MeasurableEmbedding fun x : G => x⁻¹ := (MeasurableEquiv.inv G).MeasurableEmbedding
@@ -62,10 +62,10 @@ variable [Group G] [MeasurableMul G]
with respect to a left-invariant measure. -/
@[to_additive
"Translating a function by left-addition does not change its\n`measure_theory.lintegral` with respect to a left-invariant measure."]
-theorem lintegral_mul_left_eq_self [MulLeftInvariant μ] (f : G → ℝ≥0∞) (g : G) :
+theorem lintegral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (g * x) ∂μ) = ∫⁻ x, f x ∂μ :=
by
- convert(lintegral_map_equiv f <| MeasurableEquiv.mulLeft g).symm
+ convert (lintegral_map_equiv f <| MeasurableEquiv.mulLeft g).symm
simp [map_mul_left_eq_self μ g]
#align measure_theory.lintegral_mul_left_eq_self MeasureTheory.lintegral_mul_left_eq_self
#align measure_theory.lintegral_add_left_eq_self MeasureTheory.lintegral_add_left_eq_self
@@ -74,16 +74,16 @@ theorem lintegral_mul_left_eq_self [MulLeftInvariant μ] (f : G → ℝ≥0∞)
with respect to a right-invariant measure. -/
@[to_additive
"Translating a function by right-addition does not change its\n`measure_theory.lintegral` with respect to a right-invariant measure."]
-theorem lintegral_mul_right_eq_self [MulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
+theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (x * g) ∂μ) = ∫⁻ x, f x ∂μ :=
by
- convert(lintegral_map_equiv f <| MeasurableEquiv.mulRight g).symm
+ convert (lintegral_map_equiv f <| MeasurableEquiv.mulRight g).symm
simp [map_mul_right_eq_self μ g]
#align measure_theory.lintegral_mul_right_eq_self MeasureTheory.lintegral_mul_right_eq_self
#align measure_theory.lintegral_add_right_eq_self MeasureTheory.lintegral_add_right_eq_self
@[simp, to_additive]
-theorem lintegral_div_right_eq_self [MulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
+theorem lintegral_div_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (x / g) ∂μ) = ∫⁻ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, lintegral_mul_right_eq_self f g⁻¹]
#align measure_theory.lintegral_div_right_eq_self MeasureTheory.lintegral_div_right_eq_self
@@ -94,7 +94,7 @@ left-invariant measure. -/
@[simp,
to_additive
"Translating a function by left-addition does not change its integral with\n respect to a left-invariant measure."]
-theorem integral_mul_left_eq_self [MulLeftInvariant μ] (f : G → E) (g : G) :
+theorem integral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → E) (g : G) :
(∫ x, f (g * x) ∂μ) = ∫ x, f x ∂μ :=
by
have h_mul : MeasurableEmbedding fun x => g * x := (MeasurableEquiv.mulLeft g).MeasurableEmbedding
@@ -107,7 +107,7 @@ right-invariant measure. -/
@[simp,
to_additive
"Translating a function by right-addition does not change its integral with\n respect to a right-invariant measure."]
-theorem integral_mul_right_eq_self [MulRightInvariant μ] (f : G → E) (g : G) :
+theorem integral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G) :
(∫ x, f (x * g) ∂μ) = ∫ x, f x ∂μ :=
by
have h_mul : MeasurableEmbedding fun x => x * g :=
@@ -117,7 +117,7 @@ theorem integral_mul_right_eq_self [MulRightInvariant μ] (f : G → E) (g : G)
#align measure_theory.integral_add_right_eq_self MeasureTheory.integral_add_right_eq_self
@[simp, to_additive]
-theorem integral_div_right_eq_self [MulRightInvariant μ] (f : G → E) (g : G) :
+theorem integral_div_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G) :
(∫ x, f (x / g) ∂μ) = ∫ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, integral_mul_right_eq_self f g⁻¹]
#align measure_theory.integral_div_right_eq_self MeasureTheory.integral_div_right_eq_self
@@ -127,7 +127,7 @@ theorem integral_div_right_eq_self [MulRightInvariant μ] (f : G → E) (g : G)
to a left-invariant measure is 0. -/
@[to_additive
"If some left-translate of a function negates it, then the integral of the function\nwith respect to a left-invariant measure is 0."]
-theorem integral_eq_zero_of_mul_left_eq_neg [MulLeftInvariant μ] (hf' : ∀ x, f (g * x) = -f x) :
+theorem integral_eq_zero_of_mul_left_eq_neg [IsMulLeftInvariant μ] (hf' : ∀ x, f (g * x) = -f x) :
(∫ x, f x ∂μ) = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_left_eq_self]
#align measure_theory.integral_eq_zero_of_mul_left_eq_neg MeasureTheory.integral_eq_zero_of_mul_left_eq_neg
@@ -137,43 +137,44 @@ theorem integral_eq_zero_of_mul_left_eq_neg [MulLeftInvariant μ] (hf' : ∀ x,
to a right-invariant measure is 0. -/
@[to_additive
"If some right-translate of a function negates it, then the integral of the function\nwith respect to a right-invariant measure is 0."]
-theorem integral_eq_zero_of_mul_right_eq_neg [MulRightInvariant μ] (hf' : ∀ x, f (x * g) = -f x) :
+theorem integral_eq_zero_of_mul_right_eq_neg [IsMulRightInvariant μ] (hf' : ∀ x, f (x * g) = -f x) :
(∫ x, f x ∂μ) = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_right_eq_self]
#align measure_theory.integral_eq_zero_of_mul_right_eq_neg MeasureTheory.integral_eq_zero_of_mul_right_eq_neg
#align measure_theory.integral_eq_zero_of_add_right_eq_neg MeasureTheory.integral_eq_zero_of_add_right_eq_neg
@[to_additive]
-theorem Integrable.comp_mul_left {f : G → F} [MulLeftInvariant μ] (hf : Integrable f μ) (g : G) :
+theorem Integrable.comp_mul_left {f : G → F} [IsMulLeftInvariant μ] (hf : Integrable f μ) (g : G) :
Integrable (fun t => f (g * t)) μ :=
(hf.mono_measure (map_mul_left_eq_self μ g).le).comp_measurable <| measurable_const_mul g
#align measure_theory.integrable.comp_mul_left MeasureTheory.Integrable.comp_mul_left
#align measure_theory.integrable.comp_add_left MeasureTheory.Integrable.comp_add_left
@[to_additive]
-theorem Integrable.comp_mul_right {f : G → F} [MulRightInvariant μ] (hf : Integrable f μ) (g : G) :
- Integrable (fun t => f (t * g)) μ :=
+theorem Integrable.comp_mul_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
+ (g : G) : Integrable (fun t => f (t * g)) μ :=
(hf.mono_measure (map_mul_right_eq_self μ g).le).comp_measurable <| measurable_mul_const g
#align measure_theory.integrable.comp_mul_right MeasureTheory.Integrable.comp_mul_right
#align measure_theory.integrable.comp_add_right MeasureTheory.Integrable.comp_add_right
@[to_additive]
-theorem Integrable.comp_div_right {f : G → F} [MulRightInvariant μ] (hf : Integrable f μ) (g : G) :
- Integrable (fun t => f (t / g)) μ := by simp_rw [div_eq_mul_inv]; exact hf.comp_mul_right g⁻¹
+theorem Integrable.comp_div_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
+ (g : G) : Integrable (fun t => f (t / g)) μ := by simp_rw [div_eq_mul_inv];
+ exact hf.comp_mul_right g⁻¹
#align measure_theory.integrable.comp_div_right MeasureTheory.Integrable.comp_div_right
#align measure_theory.integrable.comp_sub_right MeasureTheory.Integrable.comp_sub_right
variable [MeasurableInv G]
@[to_additive]
-theorem Integrable.comp_div_left {f : G → F} [InvInvariant μ] [MulLeftInvariant μ]
+theorem Integrable.comp_div_left {f : G → F} [IsInvInvariant μ] [IsMulLeftInvariant μ]
(hf : Integrable f μ) (g : G) : Integrable (fun t => f (g / t)) μ :=
((measurePreserving_div_left μ g).integrable_comp hf.AEStronglyMeasurable).mpr hf
#align measure_theory.integrable.comp_div_left MeasureTheory.Integrable.comp_div_left
#align measure_theory.integrable.comp_sub_left MeasureTheory.Integrable.comp_sub_left
@[simp, to_additive]
-theorem integrable_comp_div_left (f : G → F) [InvInvariant μ] [MulLeftInvariant μ] (g : G) :
+theorem integrable_comp_div_left (f : G → F) [IsInvInvariant μ] [IsMulLeftInvariant μ] (g : G) :
Integrable (fun t => f (g / t)) μ ↔ Integrable f μ :=
by
refine' ⟨fun h => _, fun h => h.comp_div_left g⟩
@@ -183,8 +184,8 @@ theorem integrable_comp_div_left (f : G → F) [InvInvariant μ] [MulLeftInvaria
#align measure_theory.integrable_comp_sub_left MeasureTheory.integrable_comp_sub_left
@[simp, to_additive]
-theorem integral_div_left_eq_self (f : G → E) (μ : Measure G) [InvInvariant μ] [MulLeftInvariant μ]
- (x' : G) : (∫ x, f (x' / x) ∂μ) = ∫ x, f x ∂μ := by
+theorem integral_div_left_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ]
+ [IsMulLeftInvariant μ] (x' : G) : (∫ x, f (x' / x) ∂μ) = ∫ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, integral_inv_eq_self (fun x => f (x' * x)) μ,
integral_mul_left_eq_self f x']
#align measure_theory.integral_div_left_eq_self MeasureTheory.integral_div_left_eq_self
@@ -209,18 +210,18 @@ end Smul
section TopologicalGroup
-variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [MulLeftInvariant μ]
+variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [IsMulLeftInvariant μ]
/-- For nonzero regular left invariant measures, the integral of a continuous nonnegative function
`f` is 0 iff `f` is 0. -/
@[to_additive
"For nonzero regular left invariant measures, the integral of a continuous nonnegative\nfunction `f` is 0 iff `f` is 0."]
-theorem lintegral_eq_zero_of_mulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f : G → ℝ≥0∞}
+theorem lintegral_eq_zero_of_isMulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f : G → ℝ≥0∞}
(hf : Continuous f) : (∫⁻ x, f x ∂μ) = 0 ↔ f = 0 :=
by
haveI := is_open_pos_measure_of_mul_left_invariant_of_regular hμ
rw [lintegral_eq_zero_iff hf.measurable, hf.ae_eq_iff_eq μ continuous_zero]
-#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_mulLeftInvariant
+#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_isMulLeftInvariant
#align measure_theory.lintegral_eq_zero_of_is_add_left_invariant MeasureTheory.lintegral_eq_zero_of_is_add_left_invariant
end TopologicalGroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -37,14 +37,14 @@ section MeasurableInv
variable [Group G] [MeasurableInv G]
@[to_additive]
-theorem Integrable.comp_inv [IsInvInvariant μ] {f : G → F} (hf : Integrable f μ) :
+theorem Integrable.comp_inv [InvInvariant μ] {f : G → F} (hf : Integrable f μ) :
Integrable (fun t => f t⁻¹) μ :=
(hf.mono_measure (map_inv_eq_self μ).le).comp_measurable measurable_inv
#align measure_theory.integrable.comp_inv MeasureTheory.Integrable.comp_inv
#align measure_theory.integrable.comp_neg MeasureTheory.Integrable.comp_neg
@[to_additive]
-theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ] :
+theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [InvInvariant μ] :
(∫ x, f x⁻¹ ∂μ) = ∫ x, f x ∂μ :=
by
have h : MeasurableEmbedding fun x : G => x⁻¹ := (MeasurableEquiv.inv G).MeasurableEmbedding
@@ -62,7 +62,7 @@ variable [Group G] [MeasurableMul G]
with respect to a left-invariant measure. -/
@[to_additive
"Translating a function by left-addition does not change its\n`measure_theory.lintegral` with respect to a left-invariant measure."]
-theorem lintegral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → ℝ≥0∞) (g : G) :
+theorem lintegral_mul_left_eq_self [MulLeftInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (g * x) ∂μ) = ∫⁻ x, f x ∂μ :=
by
convert(lintegral_map_equiv f <| MeasurableEquiv.mulLeft g).symm
@@ -74,7 +74,7 @@ theorem lintegral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → ℝ≥0∞
with respect to a right-invariant measure. -/
@[to_additive
"Translating a function by right-addition does not change its\n`measure_theory.lintegral` with respect to a right-invariant measure."]
-theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
+theorem lintegral_mul_right_eq_self [MulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (x * g) ∂μ) = ∫⁻ x, f x ∂μ :=
by
convert(lintegral_map_equiv f <| MeasurableEquiv.mulRight g).symm
@@ -83,7 +83,7 @@ theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0
#align measure_theory.lintegral_add_right_eq_self MeasureTheory.lintegral_add_right_eq_self
@[simp, to_additive]
-theorem lintegral_div_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
+theorem lintegral_div_right_eq_self [MulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (x / g) ∂μ) = ∫⁻ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, lintegral_mul_right_eq_self f g⁻¹]
#align measure_theory.lintegral_div_right_eq_self MeasureTheory.lintegral_div_right_eq_self
@@ -94,7 +94,7 @@ left-invariant measure. -/
@[simp,
to_additive
"Translating a function by left-addition does not change its integral with\n respect to a left-invariant measure."]
-theorem integral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → E) (g : G) :
+theorem integral_mul_left_eq_self [MulLeftInvariant μ] (f : G → E) (g : G) :
(∫ x, f (g * x) ∂μ) = ∫ x, f x ∂μ :=
by
have h_mul : MeasurableEmbedding fun x => g * x := (MeasurableEquiv.mulLeft g).MeasurableEmbedding
@@ -107,7 +107,7 @@ right-invariant measure. -/
@[simp,
to_additive
"Translating a function by right-addition does not change its integral with\n respect to a right-invariant measure."]
-theorem integral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G) :
+theorem integral_mul_right_eq_self [MulRightInvariant μ] (f : G → E) (g : G) :
(∫ x, f (x * g) ∂μ) = ∫ x, f x ∂μ :=
by
have h_mul : MeasurableEmbedding fun x => x * g :=
@@ -117,7 +117,7 @@ theorem integral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G
#align measure_theory.integral_add_right_eq_self MeasureTheory.integral_add_right_eq_self
@[simp, to_additive]
-theorem integral_div_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G) :
+theorem integral_div_right_eq_self [MulRightInvariant μ] (f : G → E) (g : G) :
(∫ x, f (x / g) ∂μ) = ∫ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, integral_mul_right_eq_self f g⁻¹]
#align measure_theory.integral_div_right_eq_self MeasureTheory.integral_div_right_eq_self
@@ -127,7 +127,7 @@ theorem integral_div_right_eq_self [IsMulRightInvariant μ] (f : G → E) (g : G
to a left-invariant measure is 0. -/
@[to_additive
"If some left-translate of a function negates it, then the integral of the function\nwith respect to a left-invariant measure is 0."]
-theorem integral_eq_zero_of_mul_left_eq_neg [IsMulLeftInvariant μ] (hf' : ∀ x, f (g * x) = -f x) :
+theorem integral_eq_zero_of_mul_left_eq_neg [MulLeftInvariant μ] (hf' : ∀ x, f (g * x) = -f x) :
(∫ x, f x ∂μ) = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_left_eq_self]
#align measure_theory.integral_eq_zero_of_mul_left_eq_neg MeasureTheory.integral_eq_zero_of_mul_left_eq_neg
@@ -137,44 +137,43 @@ theorem integral_eq_zero_of_mul_left_eq_neg [IsMulLeftInvariant μ] (hf' : ∀ x
to a right-invariant measure is 0. -/
@[to_additive
"If some right-translate of a function negates it, then the integral of the function\nwith respect to a right-invariant measure is 0."]
-theorem integral_eq_zero_of_mul_right_eq_neg [IsMulRightInvariant μ] (hf' : ∀ x, f (x * g) = -f x) :
+theorem integral_eq_zero_of_mul_right_eq_neg [MulRightInvariant μ] (hf' : ∀ x, f (x * g) = -f x) :
(∫ x, f x ∂μ) = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_right_eq_self]
#align measure_theory.integral_eq_zero_of_mul_right_eq_neg MeasureTheory.integral_eq_zero_of_mul_right_eq_neg
#align measure_theory.integral_eq_zero_of_add_right_eq_neg MeasureTheory.integral_eq_zero_of_add_right_eq_neg
@[to_additive]
-theorem Integrable.comp_mul_left {f : G → F} [IsMulLeftInvariant μ] (hf : Integrable f μ) (g : G) :
+theorem Integrable.comp_mul_left {f : G → F} [MulLeftInvariant μ] (hf : Integrable f μ) (g : G) :
Integrable (fun t => f (g * t)) μ :=
(hf.mono_measure (map_mul_left_eq_self μ g).le).comp_measurable <| measurable_const_mul g
#align measure_theory.integrable.comp_mul_left MeasureTheory.Integrable.comp_mul_left
#align measure_theory.integrable.comp_add_left MeasureTheory.Integrable.comp_add_left
@[to_additive]
-theorem Integrable.comp_mul_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
- (g : G) : Integrable (fun t => f (t * g)) μ :=
+theorem Integrable.comp_mul_right {f : G → F} [MulRightInvariant μ] (hf : Integrable f μ) (g : G) :
+ Integrable (fun t => f (t * g)) μ :=
(hf.mono_measure (map_mul_right_eq_self μ g).le).comp_measurable <| measurable_mul_const g
#align measure_theory.integrable.comp_mul_right MeasureTheory.Integrable.comp_mul_right
#align measure_theory.integrable.comp_add_right MeasureTheory.Integrable.comp_add_right
@[to_additive]
-theorem Integrable.comp_div_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
- (g : G) : Integrable (fun t => f (t / g)) μ := by simp_rw [div_eq_mul_inv];
- exact hf.comp_mul_right g⁻¹
+theorem Integrable.comp_div_right {f : G → F} [MulRightInvariant μ] (hf : Integrable f μ) (g : G) :
+ Integrable (fun t => f (t / g)) μ := by simp_rw [div_eq_mul_inv]; exact hf.comp_mul_right g⁻¹
#align measure_theory.integrable.comp_div_right MeasureTheory.Integrable.comp_div_right
#align measure_theory.integrable.comp_sub_right MeasureTheory.Integrable.comp_sub_right
variable [MeasurableInv G]
@[to_additive]
-theorem Integrable.comp_div_left {f : G → F} [IsInvInvariant μ] [IsMulLeftInvariant μ]
+theorem Integrable.comp_div_left {f : G → F} [InvInvariant μ] [MulLeftInvariant μ]
(hf : Integrable f μ) (g : G) : Integrable (fun t => f (g / t)) μ :=
((measurePreserving_div_left μ g).integrable_comp hf.AEStronglyMeasurable).mpr hf
#align measure_theory.integrable.comp_div_left MeasureTheory.Integrable.comp_div_left
#align measure_theory.integrable.comp_sub_left MeasureTheory.Integrable.comp_sub_left
@[simp, to_additive]
-theorem integrable_comp_div_left (f : G → F) [IsInvInvariant μ] [IsMulLeftInvariant μ] (g : G) :
+theorem integrable_comp_div_left (f : G → F) [InvInvariant μ] [MulLeftInvariant μ] (g : G) :
Integrable (fun t => f (g / t)) μ ↔ Integrable f μ :=
by
refine' ⟨fun h => _, fun h => h.comp_div_left g⟩
@@ -184,8 +183,8 @@ theorem integrable_comp_div_left (f : G → F) [IsInvInvariant μ] [IsMulLeftInv
#align measure_theory.integrable_comp_sub_left MeasureTheory.integrable_comp_sub_left
@[simp, to_additive]
-theorem integral_div_left_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ]
- [IsMulLeftInvariant μ] (x' : G) : (∫ x, f (x' / x) ∂μ) = ∫ x, f x ∂μ := by
+theorem integral_div_left_eq_self (f : G → E) (μ : Measure G) [InvInvariant μ] [MulLeftInvariant μ]
+ (x' : G) : (∫ x, f (x' / x) ∂μ) = ∫ x, f x ∂μ := by
simp_rw [div_eq_mul_inv, integral_inv_eq_self (fun x => f (x' * x)) μ,
integral_mul_left_eq_self f x']
#align measure_theory.integral_div_left_eq_self MeasureTheory.integral_div_left_eq_self
@@ -198,7 +197,7 @@ section Smul
variable [Group G] [MeasurableSpace α] [MulAction G α] [MeasurableSMul G α]
@[simp, to_additive]
-theorem integral_smul_eq_self {μ : Measure α} [SmulInvariantMeasure G α μ] (f : α → E) {g : G} :
+theorem integral_smul_eq_self {μ : Measure α} [SMulInvariantMeasure G α μ] (f : α → E) {g : G} :
(∫ x, f (g • x) ∂μ) = ∫ x, f x ∂μ :=
by
have h : MeasurableEmbedding fun x : α => g • x := (MeasurableEquiv.smul g).MeasurableEmbedding
@@ -210,18 +209,18 @@ end Smul
section TopologicalGroup
-variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [IsMulLeftInvariant μ]
+variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [MulLeftInvariant μ]
/-- For nonzero regular left invariant measures, the integral of a continuous nonnegative function
`f` is 0 iff `f` is 0. -/
@[to_additive
"For nonzero regular left invariant measures, the integral of a continuous nonnegative\nfunction `f` is 0 iff `f` is 0."]
-theorem lintegral_eq_zero_of_isMulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f : G → ℝ≥0∞}
+theorem lintegral_eq_zero_of_mulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f : G → ℝ≥0∞}
(hf : Continuous f) : (∫⁻ x, f x ∂μ) = 0 ↔ f = 0 :=
by
haveI := is_open_pos_measure_of_mul_left_invariant_of_regular hμ
rw [lintegral_eq_zero_iff hf.measurable, hf.ae_eq_iff_eq μ continuous_zero]
-#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_isMulLeftInvariant
+#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_mulLeftInvariant
#align measure_theory.lintegral_eq_zero_of_is_add_left_invariant MeasureTheory.lintegral_eq_zero_of_is_add_left_invariant
end TopologicalGroup
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -24,7 +24,7 @@ namespace MeasureTheory
open Measure TopologicalSpace
-open ENNReal
+open scoped ENNReal
variable {𝕜 M α G E F : Type _} [MeasurableSpace G]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -159,9 +159,7 @@ theorem Integrable.comp_mul_right {f : G → F} [IsMulRightInvariant μ] (hf : I
@[to_additive]
theorem Integrable.comp_div_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
- (g : G) : Integrable (fun t => f (t / g)) μ :=
- by
- simp_rw [div_eq_mul_inv]
+ (g : G) : Integrable (fun t => f (t / g)) μ := by simp_rw [div_eq_mul_inv];
exact hf.comp_mul_right g⁻¹
#align measure_theory.integrable.comp_div_right MeasureTheory.Integrable.comp_div_right
#align measure_theory.integrable.comp_sub_right MeasureTheory.Integrable.comp_sub_right
mathlib commit https://github.com/leanprover-community/mathlib/commit/75e7fca56381d056096ce5d05e938f63a6567828
@@ -171,7 +171,7 @@ variable [MeasurableInv G]
@[to_additive]
theorem Integrable.comp_div_left {f : G → F} [IsInvInvariant μ] [IsMulLeftInvariant μ]
(hf : Integrable f μ) (g : G) : Integrable (fun t => f (g / t)) μ :=
- ((measurePreserving_div_left μ g).integrable_comp hf.AeStronglyMeasurable).mpr hf
+ ((measurePreserving_div_left μ g).integrable_comp hf.AEStronglyMeasurable).mpr hf
#align measure_theory.integrable.comp_div_left MeasureTheory.Integrable.comp_div_left
#align measure_theory.integrable.comp_sub_left MeasureTheory.Integrable.comp_sub_left
mathlib commit https://github.com/leanprover-community/mathlib/commit/cc5dd6244981976cc9da7afc4eee5682b037a013
@@ -34,7 +34,7 @@ variable {μ : Measure G} {f : G → E} {g : G}
section MeasurableInv
-variable [Group G] [HasMeasurableInv G]
+variable [Group G] [MeasurableInv G]
@[to_additive]
theorem Integrable.comp_inv [IsInvInvariant μ] {f : G → F} (hf : Integrable f μ) :
@@ -56,7 +56,7 @@ end MeasurableInv
section MeasurableMul
-variable [Group G] [HasMeasurableMul G]
+variable [Group G] [MeasurableMul G]
/-- Translating a function by left-multiplication does not change its `measure_theory.lintegral`
with respect to a left-invariant measure. -/
@@ -166,7 +166,7 @@ theorem Integrable.comp_div_right {f : G → F} [IsMulRightInvariant μ] (hf : I
#align measure_theory.integrable.comp_div_right MeasureTheory.Integrable.comp_div_right
#align measure_theory.integrable.comp_sub_right MeasureTheory.Integrable.comp_sub_right
-variable [HasMeasurableInv G]
+variable [MeasurableInv G]
@[to_additive]
theorem Integrable.comp_div_left {f : G → F} [IsInvInvariant μ] [IsMulLeftInvariant μ]
@@ -197,7 +197,7 @@ end MeasurableMul
section Smul
-variable [Group G] [MeasurableSpace α] [MulAction G α] [HasMeasurableSmul G α]
+variable [Group G] [MeasurableSpace α] [MulAction G α] [MeasurableSMul G α]
@[simp, to_additive]
theorem integral_smul_eq_self {μ : Measure α} [SmulInvariantMeasure G α μ] (f : α → E) {g : G} :
mathlib commit https://github.com/leanprover-community/mathlib/commit/92c69b77c5a7dc0f7eeddb552508633305157caa
@@ -37,10 +37,10 @@ section MeasurableInv
variable [Group G] [HasMeasurableInv G]
@[to_additive]
-theorem Integrable.compInv [IsInvInvariant μ] {f : G → F} (hf : Integrable f μ) :
+theorem Integrable.comp_inv [IsInvInvariant μ] {f : G → F} (hf : Integrable f μ) :
Integrable (fun t => f t⁻¹) μ :=
- (hf.monoMeasure (map_inv_eq_self μ).le).compMeasurable measurable_inv
-#align measure_theory.integrable.comp_inv MeasureTheory.Integrable.compInv
+ (hf.mono_measure (map_inv_eq_self μ).le).comp_measurable measurable_inv
+#align measure_theory.integrable.comp_inv MeasureTheory.Integrable.comp_inv
#align measure_theory.integrable.comp_neg MeasureTheory.Integrable.comp_neg
@[to_additive]
@@ -144,42 +144,42 @@ theorem integral_eq_zero_of_mul_right_eq_neg [IsMulRightInvariant μ] (hf' : ∀
#align measure_theory.integral_eq_zero_of_add_right_eq_neg MeasureTheory.integral_eq_zero_of_add_right_eq_neg
@[to_additive]
-theorem Integrable.compMulLeft {f : G → F} [IsMulLeftInvariant μ] (hf : Integrable f μ) (g : G) :
+theorem Integrable.comp_mul_left {f : G → F} [IsMulLeftInvariant μ] (hf : Integrable f μ) (g : G) :
Integrable (fun t => f (g * t)) μ :=
- (hf.monoMeasure (map_mul_left_eq_self μ g).le).compMeasurable <| measurable_const_mul g
-#align measure_theory.integrable.comp_mul_left MeasureTheory.Integrable.compMulLeft
+ (hf.mono_measure (map_mul_left_eq_self μ g).le).comp_measurable <| measurable_const_mul g
+#align measure_theory.integrable.comp_mul_left MeasureTheory.Integrable.comp_mul_left
#align measure_theory.integrable.comp_add_left MeasureTheory.Integrable.comp_add_left
@[to_additive]
-theorem Integrable.compMulRight {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ) (g : G) :
- Integrable (fun t => f (t * g)) μ :=
- (hf.monoMeasure (map_mul_right_eq_self μ g).le).compMeasurable <| measurable_mul_const g
-#align measure_theory.integrable.comp_mul_right MeasureTheory.Integrable.compMulRight
+theorem Integrable.comp_mul_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
+ (g : G) : Integrable (fun t => f (t * g)) μ :=
+ (hf.mono_measure (map_mul_right_eq_self μ g).le).comp_measurable <| measurable_mul_const g
+#align measure_theory.integrable.comp_mul_right MeasureTheory.Integrable.comp_mul_right
#align measure_theory.integrable.comp_add_right MeasureTheory.Integrable.comp_add_right
@[to_additive]
-theorem Integrable.compDivRight {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ) (g : G) :
- Integrable (fun t => f (t / g)) μ :=
+theorem Integrable.comp_div_right {f : G → F} [IsMulRightInvariant μ] (hf : Integrable f μ)
+ (g : G) : Integrable (fun t => f (t / g)) μ :=
by
simp_rw [div_eq_mul_inv]
exact hf.comp_mul_right g⁻¹
-#align measure_theory.integrable.comp_div_right MeasureTheory.Integrable.compDivRight
+#align measure_theory.integrable.comp_div_right MeasureTheory.Integrable.comp_div_right
#align measure_theory.integrable.comp_sub_right MeasureTheory.Integrable.comp_sub_right
variable [HasMeasurableInv G]
@[to_additive]
-theorem Integrable.compDivLeft {f : G → F} [IsInvInvariant μ] [IsMulLeftInvariant μ]
+theorem Integrable.comp_div_left {f : G → F} [IsInvInvariant μ] [IsMulLeftInvariant μ]
(hf : Integrable f μ) (g : G) : Integrable (fun t => f (g / t)) μ :=
- ((measurePreservingDivLeft μ g).integrable_comp hf.AeStronglyMeasurable).mpr hf
-#align measure_theory.integrable.comp_div_left MeasureTheory.Integrable.compDivLeft
+ ((measurePreserving_div_left μ g).integrable_comp hf.AeStronglyMeasurable).mpr hf
+#align measure_theory.integrable.comp_div_left MeasureTheory.Integrable.comp_div_left
#align measure_theory.integrable.comp_sub_left MeasureTheory.Integrable.comp_sub_left
@[simp, to_additive]
theorem integrable_comp_div_left (f : G → F) [IsInvInvariant μ] [IsMulLeftInvariant μ] (g : G) :
Integrable (fun t => f (g / t)) μ ↔ Integrable f μ :=
by
- refine' ⟨fun h => _, fun h => h.compDivLeft g⟩
+ refine' ⟨fun h => _, fun h => h.comp_div_left g⟩
convert h.comp_inv.comp_mul_left g⁻¹
simp_rw [div_inv_eq_mul, mul_inv_cancel_left]
#align measure_theory.integrable_comp_div_left MeasureTheory.integrable_comp_div_left
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce7e9d53d4bbc38065db3b595cd5bd73c323bc1d
@@ -65,7 +65,7 @@ with respect to a left-invariant measure. -/
theorem lintegral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (g * x) ∂μ) = ∫⁻ x, f x ∂μ :=
by
- convert (lintegral_map_equiv f <| MeasurableEquiv.mulLeft g).symm
+ convert(lintegral_map_equiv f <| MeasurableEquiv.mulLeft g).symm
simp [map_mul_left_eq_self μ g]
#align measure_theory.lintegral_mul_left_eq_self MeasureTheory.lintegral_mul_left_eq_self
#align measure_theory.lintegral_add_left_eq_self MeasureTheory.lintegral_add_left_eq_self
@@ -77,7 +77,7 @@ with respect to a right-invariant measure. -/
theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
(∫⁻ x, f (x * g) ∂μ) = ∫⁻ x, f x ∂μ :=
by
- convert (lintegral_map_equiv f <| MeasurableEquiv.mulRight g).symm
+ convert(lintegral_map_equiv f <| MeasurableEquiv.mulRight g).symm
simp [map_mul_right_eq_self μ g]
#align measure_theory.lintegral_mul_right_eq_self MeasureTheory.lintegral_mul_right_eq_self
#align measure_theory.lintegral_add_right_eq_self MeasureTheory.lintegral_add_right_eq_self
mathlib commit https://github.com/leanprover-community/mathlib/commit/eb0cb4511aaef0da2462207b67358a0e1fe1e2ee
@@ -24,7 +24,7 @@ namespace MeasureTheory
open Measure TopologicalSpace
-open Ennreal
+open ENNReal
variable {𝕜 M α G E F : Type _} [MeasurableSpace G]
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -22,9 +22,7 @@ open Measure TopologicalSpace
open scoped ENNReal
variable {𝕜 M α G E F : Type*} [MeasurableSpace G]
-
variable [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] [NormedAddCommGroup F]
-
variable {μ : Measure G} {f : G → E} {g : G}
section MeasurableInv
MeasureTheory.Group.Integration
(#6715)
I want to use the lemma lintegral_add_right_eq_self
in a file that doesn't import Bochner integration.
@@ -9,13 +9,12 @@ import Mathlib.MeasureTheory.Group.Measure
#align_import measure_theory.group.integration from "leanprover-community/mathlib"@"ec247d43814751ffceb33b758e8820df2372bf6f"
/-!
-# Integration on Groups
+# Bochner Integration on Groups
We develop properties of integrals with a group as domain.
-This file contains properties about integrability, Lebesgue integration and Bochner integration.
+This file contains properties about integrability and Bochner integration.
-/
-
namespace MeasureTheory
open Measure TopologicalSpace
@@ -53,39 +52,6 @@ section MeasurableMul
variable [Group G] [MeasurableMul G]
-/-- Translating a function by left-multiplication does not change its `MeasureTheory.lintegral`
-with respect to a left-invariant measure. -/
-@[to_additive
- "Translating a function by left-addition does not change its `MeasureTheory.lintegral` with
- respect to a left-invariant measure."]
-theorem lintegral_mul_left_eq_self [IsMulLeftInvariant μ] (f : G → ℝ≥0∞) (g : G) :
- (∫⁻ x, f (g * x) ∂μ) = ∫⁻ x, f x ∂μ := by
- convert (lintegral_map_equiv f <| MeasurableEquiv.mulLeft g).symm
- simp [map_mul_left_eq_self μ g]
-#align measure_theory.lintegral_mul_left_eq_self MeasureTheory.lintegral_mul_left_eq_self
-#align measure_theory.lintegral_add_left_eq_self MeasureTheory.lintegral_add_left_eq_self
-
-/-- Translating a function by right-multiplication does not change its `MeasureTheory.lintegral`
-with respect to a right-invariant measure. -/
-@[to_additive
- "Translating a function by right-addition does not change its `MeasureTheory.lintegral` with
- respect to a right-invariant measure."]
-theorem lintegral_mul_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
- (∫⁻ x, f (x * g) ∂μ) = ∫⁻ x, f x ∂μ := by
- convert (lintegral_map_equiv f <| MeasurableEquiv.mulRight g).symm using 1
- simp [map_mul_right_eq_self μ g]
-#align measure_theory.lintegral_mul_right_eq_self MeasureTheory.lintegral_mul_right_eq_self
-#align measure_theory.lintegral_add_right_eq_self MeasureTheory.lintegral_add_right_eq_self
-
-@[to_additive] -- Porting note: was `@[simp]`
-theorem lintegral_div_right_eq_self [IsMulRightInvariant μ] (f : G → ℝ≥0∞) (g : G) :
- (∫⁻ x, f (x / g) ∂μ) = ∫⁻ x, f x ∂μ := by
- simp_rw [div_eq_mul_inv]
- -- Porting note: was `simp_rw`
- rw [lintegral_mul_right_eq_self f g⁻¹]
-#align measure_theory.lintegral_div_right_eq_self MeasureTheory.lintegral_div_right_eq_self
-#align measure_theory.lintegral_sub_right_eq_self MeasureTheory.lintegral_sub_right_eq_self
-
/-- Translating a function by left-multiplication does not change its integral with respect to a
left-invariant measure. -/
@[to_additive
@@ -206,23 +172,3 @@ theorem integral_smul_eq_self {μ : Measure α} [SMulInvariantMeasure G α μ] (
#align measure_theory.integral_vadd_eq_self MeasureTheory.integral_vadd_eq_self
end SMul
-
-section TopologicalGroup
-
-variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [IsMulLeftInvariant μ]
-
-/-- For nonzero regular left invariant measures, the integral of a continuous nonnegative function
- `f` is 0 iff `f` is 0. -/
-@[to_additive
- "For nonzero regular left invariant measures, the integral of a continuous nonnegative
- function `f` is 0 iff `f` is 0."]
-theorem lintegral_eq_zero_of_isMulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f : G → ℝ≥0∞}
- (hf : Continuous f) : ∫⁻ x, f x ∂μ = 0 ↔ f = 0 := by
- haveI := isOpenPosMeasure_of_mulLeftInvariant_of_regular hμ
- rw [lintegral_eq_zero_iff hf.measurable, hf.ae_eq_iff_eq μ continuous_zero]
-#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_isMulLeftInvariant
-#align measure_theory.lintegral_eq_zero_of_is_add_left_invariant MeasureTheory.lintegral_eq_zero_of_isAddLeftInvariant
-
-end TopologicalGroup
-
-end MeasureTheory
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -22,7 +22,7 @@ open Measure TopologicalSpace
open scoped ENNReal
-variable {𝕜 M α G E F : Type _} [MeasurableSpace G]
+variable {𝕜 M α G E F : Type*} [MeasurableSpace G]
variable [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] [NormedAddCommGroup F]
@@ -5,7 +5,6 @@ Authors: Floris van Doorn
-/
import Mathlib.MeasureTheory.Integral.Bochner
import Mathlib.MeasureTheory.Group.Measure
-import Mathlib.MeasureTheory.Group.Action
#align_import measure_theory.group.integration from "leanprover-community/mathlib"@"ec247d43814751ffceb33b758e8820df2372bf6f"
@@ -2,16 +2,13 @@
Copyright (c) 2022 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-
-! This file was ported from Lean 3 source module measure_theory.group.integration
-! leanprover-community/mathlib commit ec247d43814751ffceb33b758e8820df2372bf6f
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.MeasureTheory.Integral.Bochner
import Mathlib.MeasureTheory.Group.Measure
import Mathlib.MeasureTheory.Group.Action
+#align_import measure_theory.group.integration from "leanprover-community/mathlib"@"ec247d43814751ffceb33b758e8820df2372bf6f"
+
/-!
# Integration on Groups
@@ -45,7 +45,7 @@ theorem Integrable.comp_inv [IsInvInvariant μ] {f : G → F} (hf : Integrable f
@[to_additive]
theorem integral_inv_eq_self (f : G → E) (μ : Measure G) [IsInvInvariant μ] :
- (∫ x, f x⁻¹ ∂μ) = ∫ x, f x ∂μ := by
+ ∫ x, f x⁻¹ ∂μ = ∫ x, f x ∂μ := by
have h : MeasurableEmbedding fun x : G => x⁻¹ := (MeasurableEquiv.inv G).measurableEmbedding
rw [← h.integral_map, map_inv_eq_self]
#align measure_theory.integral_inv_eq_self MeasureTheory.integral_inv_eq_self
@@ -130,7 +130,7 @@ to a left-invariant measure is 0. -/
"If some left-translate of a function negates it, then the integral of the function with
respect to a left-invariant measure is 0."]
theorem integral_eq_zero_of_mul_left_eq_neg [IsMulLeftInvariant μ] (hf' : ∀ x, f (g * x) = -f x) :
- (∫ x, f x ∂μ) = 0 := by
+ ∫ x, f x ∂μ = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_left_eq_self]
#align measure_theory.integral_eq_zero_of_mul_left_eq_neg MeasureTheory.integral_eq_zero_of_mul_left_eq_neg
#align measure_theory.integral_eq_zero_of_add_left_eq_neg MeasureTheory.integral_eq_zero_of_add_left_eq_neg
@@ -141,7 +141,7 @@ to a right-invariant measure is 0. -/
"If some right-translate of a function negates it, then the integral of the function with
respect to a right-invariant measure is 0."]
theorem integral_eq_zero_of_mul_right_eq_neg [IsMulRightInvariant μ] (hf' : ∀ x, f (x * g) = -f x) :
- (∫ x, f x ∂μ) = 0 := by
+ ∫ x, f x ∂μ = 0 := by
simp_rw [← self_eq_neg ℝ E, ← integral_neg, ← hf', integral_mul_right_eq_self]
#align measure_theory.integral_eq_zero_of_mul_right_eq_neg MeasureTheory.integral_eq_zero_of_mul_right_eq_neg
#align measure_theory.integral_eq_zero_of_add_right_eq_neg MeasureTheory.integral_eq_zero_of_add_right_eq_neg
@@ -221,7 +221,7 @@ variable [TopologicalSpace G] [Group G] [TopologicalGroup G] [BorelSpace G] [IsM
"For nonzero regular left invariant measures, the integral of a continuous nonnegative
function `f` is 0 iff `f` is 0."]
theorem lintegral_eq_zero_of_isMulLeftInvariant [Regular μ] (hμ : μ ≠ 0) {f : G → ℝ≥0∞}
- (hf : Continuous f) : (∫⁻ x, f x ∂μ) = 0 ↔ f = 0 := by
+ (hf : Continuous f) : ∫⁻ x, f x ∂μ = 0 ↔ f = 0 := by
haveI := isOpenPosMeasure_of_mulLeftInvariant_of_regular hμ
rw [lintegral_eq_zero_iff hf.measurable, hf.ae_eq_iff_eq μ continuous_zero]
#align measure_theory.lintegral_eq_zero_of_is_mul_left_invariant MeasureTheory.lintegral_eq_zero_of_isMulLeftInvariant
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file