measure_theory.integral.integrable_onMathlib.MeasureTheory.Integral.IntegrableOn

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -447,7 +447,7 @@ theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (x «expr ∉ » s) -/
 #print MeasureTheory.IntegrableOn.integrable_of_forall_not_mem_eq_zero /-
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
 then it is integrable. -/
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov
 -/
-import Mathbin.MeasureTheory.Function.L1Space
-import Mathbin.Analysis.NormedSpace.IndicatorFunction
+import MeasureTheory.Function.L1Space
+import Analysis.NormedSpace.IndicatorFunction
 
 #align_import measure_theory.integral.integrable_on from "leanprover-community/mathlib"@"599fffe78f0e11eb6a034e834ec51882167b9688"
 
@@ -447,7 +447,7 @@ theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ∉ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » s) -/
 #print MeasureTheory.IntegrableOn.integrable_of_forall_not_mem_eq_zero /-
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
 then it is integrable. -/
Diff
@@ -558,7 +558,7 @@ theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
 #align measure_theory.integrable_at_filter.inf_ae_iff MeasureTheory.IntegrableAtFilter.inf_ae_iff
 -/
 
-alias integrable_at_filter.inf_ae_iff ↔ integrable_at_filter.of_inf_ae _
+alias ⟨integrable_at_filter.of_inf_ae, _⟩ := integrable_at_filter.inf_ae_iff
 #align measure_theory.integrable_at_filter.of_inf_ae MeasureTheory.IntegrableAtFilter.of_inf_ae
 
 #print MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter /-
@@ -588,8 +588,8 @@ theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae {l : Filter α}
 #align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto_ae MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae
 -/
 
-alias measure.finite_at_filter.integrable_at_filter_of_tendsto_ae ←
-  _root_.filter.tendsto.integrable_at_filter_ae
+alias _root_.filter.tendsto.integrable_at_filter_ae :=
+  measure.finite_at_filter.integrable_at_filter_of_tendsto_ae
 #align filter.tendsto.integrable_at_filter_ae Filter.Tendsto.integrableAtFilter_ae
 
 #print MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto /-
@@ -600,8 +600,8 @@ theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto {l : Filter α}
 #align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto
 -/
 
-alias measure.finite_at_filter.integrable_at_filter_of_tendsto ←
-  _root_.filter.tendsto.integrable_at_filter
+alias _root_.filter.tendsto.integrable_at_filter :=
+  measure.finite_at_filter.integrable_at_filter_of_tendsto
 #align filter.tendsto.integrable_at_filter Filter.Tendsto.integrableAtFilter
 
 #print MeasureTheory.integrable_add_of_disjoint /-
Diff
@@ -55,7 +55,7 @@ theorem stronglyMeasurableAt_bot {f : α → β} : StronglyMeasurableAtFilter f
 #print StronglyMeasurableAtFilter.eventually /-
 protected theorem StronglyMeasurableAtFilter.eventually (h : StronglyMeasurableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, AEStronglyMeasurable f (μ.restrict s) :=
-  (eventually_small_sets' fun s t => AEStronglyMeasurable.mono_set).2 h
+  (eventually_smallSets' fun s t => AEStronglyMeasurable.mono_set).2 h
 #align strongly_measurable_at_filter.eventually StronglyMeasurableAtFilter.eventually
 -/
 
@@ -517,7 +517,7 @@ theorem Integrable.integrableAtFilter (h : Integrable f μ) (l : Filter α) :
 #print MeasureTheory.IntegrableAtFilter.eventually /-
 protected theorem IntegrableAtFilter.eventually (h : IntegrableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, IntegrableOn f s μ :=
-  Iff.mpr (eventually_small_sets' fun s t hst ht => ht.mono_set hst) h
+  Iff.mpr (eventually_smallSets' fun s t hst ht => ht.mono_set hst) h
 #align measure_theory.integrable_at_filter.eventually MeasureTheory.IntegrableAtFilter.eventually
 -/
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.integral.integrable_on
-! leanprover-community/mathlib commit 599fffe78f0e11eb6a034e834ec51882167b9688
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Function.L1Space
 import Mathbin.Analysis.NormedSpace.IndicatorFunction
 
+#align_import measure_theory.integral.integrable_on from "leanprover-community/mathlib"@"599fffe78f0e11eb6a034e834ec51882167b9688"
+
 /-! # Functions integrable on a set and at a filter
 
 > THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
@@ -450,7 +447,7 @@ theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x «expr ∉ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ∉ » s) -/
 #print MeasureTheory.IntegrableOn.integrable_of_forall_not_mem_eq_zero /-
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
 then it is integrable. -/
Diff
@@ -48,36 +48,48 @@ def StronglyMeasurableAtFilter (f : α → β) (l : Filter α)
 #align strongly_measurable_at_filter StronglyMeasurableAtFilter
 -/
 
+#print stronglyMeasurableAt_bot /-
 @[simp]
 theorem stronglyMeasurableAt_bot {f : α → β} : StronglyMeasurableAtFilter f ⊥ μ :=
   ⟨∅, mem_bot, by simp⟩
 #align strongly_measurable_at_bot stronglyMeasurableAt_bot
+-/
 
+#print StronglyMeasurableAtFilter.eventually /-
 protected theorem StronglyMeasurableAtFilter.eventually (h : StronglyMeasurableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, AEStronglyMeasurable f (μ.restrict s) :=
   (eventually_small_sets' fun s t => AEStronglyMeasurable.mono_set).2 h
 #align strongly_measurable_at_filter.eventually StronglyMeasurableAtFilter.eventually
+-/
 
+#print StronglyMeasurableAtFilter.filter_mono /-
 protected theorem StronglyMeasurableAtFilter.filter_mono (h : StronglyMeasurableAtFilter f l μ)
     (h' : l' ≤ l) : StronglyMeasurableAtFilter f l' μ :=
   let ⟨s, hsl, hs⟩ := h
   ⟨s, h' hsl, hs⟩
 #align strongly_measurable_at_filter.filter_mono StronglyMeasurableAtFilter.filter_mono
+-/
 
+#print MeasureTheory.AEStronglyMeasurable.stronglyMeasurableAtFilter /-
 protected theorem MeasureTheory.AEStronglyMeasurable.stronglyMeasurableAtFilter
     (h : AEStronglyMeasurable f μ) : StronglyMeasurableAtFilter f l μ :=
   ⟨univ, univ_mem, by rwa [measure.restrict_univ]⟩
 #align measure_theory.ae_strongly_measurable.strongly_measurable_at_filter MeasureTheory.AEStronglyMeasurable.stronglyMeasurableAtFilter
+-/
 
+#print AeStronglyMeasurable.stronglyMeasurableAtFilter_of_mem /-
 theorem AeStronglyMeasurable.stronglyMeasurableAtFilter_of_mem {s}
     (h : AEStronglyMeasurable f (μ.restrict s)) (hl : s ∈ l) : StronglyMeasurableAtFilter f l μ :=
   ⟨s, hl, h⟩
 #align ae_strongly_measurable.strongly_measurable_at_filter_of_mem AeStronglyMeasurable.stronglyMeasurableAtFilter_of_mem
+-/
 
+#print MeasureTheory.StronglyMeasurable.stronglyMeasurableAtFilter /-
 protected theorem MeasureTheory.StronglyMeasurable.stronglyMeasurableAtFilter
     (h : StronglyMeasurable f) : StronglyMeasurableAtFilter f l μ :=
   h.AEStronglyMeasurable.StronglyMeasurableAtFilter
 #align measure_theory.strongly_measurable.strongly_measurable_at_filter MeasureTheory.StronglyMeasurable.stronglyMeasurableAtFilter
+-/
 
 end
 
@@ -85,12 +97,14 @@ namespace MeasureTheory
 
 section NormedAddCommGroup
 
+#print MeasureTheory.hasFiniteIntegral_restrict_of_bounded /-
 theorem hasFiniteIntegral_restrict_of_bounded [NormedAddCommGroup E] {f : α → E} {s : Set α}
     {μ : Measure α} {C} (hs : μ s < ∞) (hf : ∀ᵐ x ∂μ.restrict s, ‖f x‖ ≤ C) :
     HasFiniteIntegral f (μ.restrict s) :=
   haveI : is_finite_measure (μ.restrict s) := ⟨by rwa [measure.restrict_apply_univ]⟩
   has_finite_integral_of_bounded hf
 #align measure_theory.has_finite_integral_restrict_of_bounded MeasureTheory.hasFiniteIntegral_restrict_of_bounded
+-/
 
 variable [NormedAddCommGroup E] {f g : α → E} {s t : Set α} {μ ν : Measure α}
 
@@ -103,67 +117,95 @@ def IntegrableOn (f : α → E) (s : Set α)
 #align measure_theory.integrable_on MeasureTheory.IntegrableOn
 -/
 
+#print MeasureTheory.IntegrableOn.integrable /-
 theorem IntegrableOn.integrable (h : IntegrableOn f s μ) : Integrable f (μ.restrict s) :=
   h
 #align measure_theory.integrable_on.integrable MeasureTheory.IntegrableOn.integrable
+-/
 
+#print MeasureTheory.integrableOn_empty /-
 @[simp]
 theorem integrableOn_empty : IntegrableOn f ∅ μ := by simp [integrable_on, integrable_zero_measure]
 #align measure_theory.integrable_on_empty MeasureTheory.integrableOn_empty
+-/
 
+#print MeasureTheory.integrableOn_univ /-
 @[simp]
 theorem integrableOn_univ : IntegrableOn f univ μ ↔ Integrable f μ := by
   rw [integrable_on, measure.restrict_univ]
 #align measure_theory.integrable_on_univ MeasureTheory.integrableOn_univ
+-/
 
+#print MeasureTheory.integrableOn_zero /-
 theorem integrableOn_zero : IntegrableOn (fun _ => (0 : E)) s μ :=
   integrable_zero _ _ _
 #align measure_theory.integrable_on_zero MeasureTheory.integrableOn_zero
+-/
 
+#print MeasureTheory.integrableOn_const /-
 @[simp]
 theorem integrableOn_const {C : E} : IntegrableOn (fun _ => C) s μ ↔ C = 0 ∨ μ s < ∞ :=
   integrable_const_iff.trans <| by rw [measure.restrict_apply_univ]
 #align measure_theory.integrable_on_const MeasureTheory.integrableOn_const
+-/
 
+#print MeasureTheory.IntegrableOn.mono /-
 theorem IntegrableOn.mono (h : IntegrableOn f t ν) (hs : s ⊆ t) (hμ : μ ≤ ν) : IntegrableOn f s μ :=
   h.mono_measure <| Measure.restrict_mono hs hμ
 #align measure_theory.integrable_on.mono MeasureTheory.IntegrableOn.mono
+-/
 
+#print MeasureTheory.IntegrableOn.mono_set /-
 theorem IntegrableOn.mono_set (h : IntegrableOn f t μ) (hst : s ⊆ t) : IntegrableOn f s μ :=
   h.mono hst le_rfl
 #align measure_theory.integrable_on.mono_set MeasureTheory.IntegrableOn.mono_set
+-/
 
+#print MeasureTheory.IntegrableOn.mono_measure /-
 theorem IntegrableOn.mono_measure (h : IntegrableOn f s ν) (hμ : μ ≤ ν) : IntegrableOn f s μ :=
   h.mono (Subset.refl _) hμ
 #align measure_theory.integrable_on.mono_measure MeasureTheory.IntegrableOn.mono_measure
+-/
 
+#print MeasureTheory.IntegrableOn.mono_set_ae /-
 theorem IntegrableOn.mono_set_ae (h : IntegrableOn f t μ) (hst : s ≤ᵐ[μ] t) : IntegrableOn f s μ :=
   h.Integrable.mono_measure <| Measure.restrict_mono_ae hst
 #align measure_theory.integrable_on.mono_set_ae MeasureTheory.IntegrableOn.mono_set_ae
+-/
 
+#print MeasureTheory.IntegrableOn.congr_set_ae /-
 theorem IntegrableOn.congr_set_ae (h : IntegrableOn f t μ) (hst : s =ᵐ[μ] t) : IntegrableOn f s μ :=
   h.mono_set_ae hst.le
 #align measure_theory.integrable_on.congr_set_ae MeasureTheory.IntegrableOn.congr_set_ae
+-/
 
+#print MeasureTheory.IntegrableOn.congr_fun_ae /-
 theorem IntegrableOn.congr_fun_ae (h : IntegrableOn f s μ) (hst : f =ᵐ[μ.restrict s] g) :
     IntegrableOn g s μ :=
   Integrable.congr h hst
 #align measure_theory.integrable_on.congr_fun_ae MeasureTheory.IntegrableOn.congr_fun_ae
+-/
 
+#print MeasureTheory.integrableOn_congr_fun_ae /-
 theorem integrableOn_congr_fun_ae (hst : f =ᵐ[μ.restrict s] g) :
     IntegrableOn f s μ ↔ IntegrableOn g s μ :=
   ⟨fun h => h.congr_fun_ae hst, fun h => h.congr_fun_ae hst.symm⟩
 #align measure_theory.integrable_on_congr_fun_ae MeasureTheory.integrableOn_congr_fun_ae
+-/
 
+#print MeasureTheory.IntegrableOn.congr_fun /-
 theorem IntegrableOn.congr_fun (h : IntegrableOn f s μ) (hst : EqOn f g s) (hs : MeasurableSet s) :
     IntegrableOn g s μ :=
   h.congr_fun_ae ((ae_restrict_iff' hs).2 (eventually_of_forall hst))
 #align measure_theory.integrable_on.congr_fun MeasureTheory.IntegrableOn.congr_fun
+-/
 
+#print MeasureTheory.integrableOn_congr_fun /-
 theorem integrableOn_congr_fun (hst : EqOn f g s) (hs : MeasurableSet s) :
     IntegrableOn f s μ ↔ IntegrableOn g s μ :=
   ⟨fun h => h.congr_fun hst hs, fun h => h.congr_fun hst.symm hs⟩
 #align measure_theory.integrable_on_congr_fun MeasureTheory.integrableOn_congr_fun
+-/
 
 #print MeasureTheory.Integrable.integrableOn /-
 theorem Integrable.integrableOn (h : Integrable f μ) : IntegrableOn f s μ :=
@@ -171,29 +213,40 @@ theorem Integrable.integrableOn (h : Integrable f μ) : IntegrableOn f s μ :=
 #align measure_theory.integrable.integrable_on MeasureTheory.Integrable.integrableOn
 -/
 
+#print MeasureTheory.IntegrableOn.restrict /-
 theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
     IntegrableOn f s (μ.restrict t) := by rw [integrable_on, measure.restrict_restrict hs];
   exact h.mono_set (inter_subset_left _ _)
 #align measure_theory.integrable_on.restrict MeasureTheory.IntegrableOn.restrict
+-/
 
+#print MeasureTheory.IntegrableOn.left_of_union /-
 theorem IntegrableOn.left_of_union (h : IntegrableOn f (s ∪ t) μ) : IntegrableOn f s μ :=
   h.mono_set <| subset_union_left _ _
 #align measure_theory.integrable_on.left_of_union MeasureTheory.IntegrableOn.left_of_union
+-/
 
+#print MeasureTheory.IntegrableOn.right_of_union /-
 theorem IntegrableOn.right_of_union (h : IntegrableOn f (s ∪ t) μ) : IntegrableOn f t μ :=
   h.mono_set <| subset_union_right _ _
 #align measure_theory.integrable_on.right_of_union MeasureTheory.IntegrableOn.right_of_union
+-/
 
+#print MeasureTheory.IntegrableOn.union /-
 theorem IntegrableOn.union (hs : IntegrableOn f s μ) (ht : IntegrableOn f t μ) :
     IntegrableOn f (s ∪ t) μ :=
   (hs.add_measure ht).mono_measure <| Measure.restrict_union_le _ _
 #align measure_theory.integrable_on.union MeasureTheory.IntegrableOn.union
+-/
 
+#print MeasureTheory.integrableOn_union /-
 @[simp]
 theorem integrableOn_union : IntegrableOn f (s ∪ t) μ ↔ IntegrableOn f s μ ∧ IntegrableOn f t μ :=
   ⟨fun h => ⟨h.left_of_union, h.right_of_union⟩, fun h => h.1.union h.2⟩
 #align measure_theory.integrable_on_union MeasureTheory.integrableOn_union
+-/
 
+#print MeasureTheory.integrableOn_singleton_iff /-
 @[simp]
 theorem integrableOn_singleton_iff {x : α} [MeasurableSingletonClass α] :
     IntegrableOn f {x} μ ↔ f x = 0 ∨ μ {x} < ∞ :=
@@ -205,7 +258,9 @@ theorem integrableOn_singleton_iff {x : α} [MeasurableSingletonClass α] :
   rw [integrable_on, integrable_congr this, integrable_const_iff]
   simp
 #align measure_theory.integrable_on_singleton_iff MeasureTheory.integrableOn_singleton_iff
+-/
 
+#print MeasureTheory.integrableOn_finite_biUnion /-
 @[simp]
 theorem integrableOn_finite_biUnion {s : Set β} (hs : s.Finite) {t : β → Set α} :
     IntegrableOn f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, IntegrableOn f (t i) μ :=
@@ -214,13 +269,17 @@ theorem integrableOn_finite_biUnion {s : Set β} (hs : s.Finite) {t : β → Set
   · simp
   · intro a s ha hs hf; simp [hf, or_imp, forall_and]
 #align measure_theory.integrable_on_finite_bUnion MeasureTheory.integrableOn_finite_biUnion
+-/
 
+#print MeasureTheory.integrableOn_finset_iUnion /-
 @[simp]
 theorem integrableOn_finset_iUnion {s : Finset β} {t : β → Set α} :
     IntegrableOn f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, IntegrableOn f (t i) μ :=
   integrableOn_finite_biUnion s.finite_toSet
 #align measure_theory.integrable_on_finset_Union MeasureTheory.integrableOn_finset_iUnion
+-/
 
+#print MeasureTheory.integrableOn_finite_iUnion /-
 @[simp]
 theorem integrableOn_finite_iUnion [Finite β] {t : β → Set α} :
     IntegrableOn f (⋃ i, t i) μ ↔ ∀ i, IntegrableOn f (t i) μ :=
@@ -228,12 +287,16 @@ theorem integrableOn_finite_iUnion [Finite β] {t : β → Set α} :
   cases nonempty_fintype β
   simpa using @integrable_on_finset_Union _ _ _ _ _ f μ Finset.univ t
 #align measure_theory.integrable_on_finite_Union MeasureTheory.integrableOn_finite_iUnion
+-/
 
+#print MeasureTheory.IntegrableOn.add_measure /-
 theorem IntegrableOn.add_measure (hμ : IntegrableOn f s μ) (hν : IntegrableOn f s ν) :
     IntegrableOn f s (μ + ν) := by delta integrable_on; rw [measure.restrict_add];
   exact hμ.integrable.add_measure hν
 #align measure_theory.integrable_on.add_measure MeasureTheory.IntegrableOn.add_measure
+-/
 
+#print MeasureTheory.integrableOn_add_measure /-
 @[simp]
 theorem integrableOn_add_measure :
     IntegrableOn f s (μ + ν) ↔ IntegrableOn f s μ ∧ IntegrableOn f s ν :=
@@ -241,51 +304,69 @@ theorem integrableOn_add_measure :
     ⟨h.mono_measure (Measure.le_add_right le_rfl), h.mono_measure (Measure.le_add_left le_rfl)⟩,
     fun h => h.1.add_measure h.2⟩
 #align measure_theory.integrable_on_add_measure MeasureTheory.integrableOn_add_measure
+-/
 
+#print MeasurableEmbedding.integrableOn_map_iff /-
 theorem MeasurableEmbedding.integrableOn_map_iff [MeasurableSpace β] {e : α → β}
     (he : MeasurableEmbedding e) {f : β → E} {μ : Measure α} {s : Set β} :
     IntegrableOn f s (Measure.map e μ) ↔ IntegrableOn (f ∘ e) (e ⁻¹' s) μ := by
   simp only [integrable_on, he.restrict_map, he.integrable_map_iff]
 #align measurable_embedding.integrable_on_map_iff MeasurableEmbedding.integrableOn_map_iff
+-/
 
+#print MeasureTheory.integrableOn_map_equiv /-
 theorem integrableOn_map_equiv [MeasurableSpace β] (e : α ≃ᵐ β) {f : β → E} {μ : Measure α}
     {s : Set β} : IntegrableOn f s (Measure.map e μ) ↔ IntegrableOn (f ∘ e) (e ⁻¹' s) μ := by
   simp only [integrable_on, e.restrict_map, integrable_map_equiv e]
 #align measure_theory.integrable_on_map_equiv MeasureTheory.integrableOn_map_equiv
+-/
 
+#print MeasureTheory.MeasurePreserving.integrableOn_comp_preimage /-
 theorem MeasurePreserving.integrableOn_comp_preimage [MeasurableSpace β] {e : α → β} {ν}
     (h₁ : MeasurePreserving e μ ν) (h₂ : MeasurableEmbedding e) {f : β → E} {s : Set β} :
     IntegrableOn (f ∘ e) (e ⁻¹' s) μ ↔ IntegrableOn f s ν :=
   (h₁.restrict_preimage_emb h₂ s).integrable_comp_emb h₂
 #align measure_theory.measure_preserving.integrable_on_comp_preimage MeasureTheory.MeasurePreserving.integrableOn_comp_preimage
+-/
 
+#print MeasureTheory.MeasurePreserving.integrableOn_image /-
 theorem MeasurePreserving.integrableOn_image [MeasurableSpace β] {e : α → β} {ν}
     (h₁ : MeasurePreserving e μ ν) (h₂ : MeasurableEmbedding e) {f : β → E} {s : Set α} :
     IntegrableOn f (e '' s) ν ↔ IntegrableOn (f ∘ e) s μ :=
   ((h₁.restrict_image_emb h₂ s).integrable_comp_emb h₂).symm
 #align measure_theory.measure_preserving.integrable_on_image MeasureTheory.MeasurePreserving.integrableOn_image
+-/
 
+#print MeasureTheory.integrable_indicator_iff /-
 theorem integrable_indicator_iff (hs : MeasurableSet s) :
     Integrable (indicator s f) μ ↔ IntegrableOn f s μ := by
   simp [integrable_on, integrable, has_finite_integral, nnnorm_indicator_eq_indicator_nnnorm,
     ENNReal.coe_indicator, lintegral_indicator _ hs, aestronglyMeasurable_indicator_iff hs]
 #align measure_theory.integrable_indicator_iff MeasureTheory.integrable_indicator_iff
+-/
 
+#print MeasureTheory.IntegrableOn.integrable_indicator /-
 theorem IntegrableOn.integrable_indicator (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
     Integrable (indicator s f) μ :=
   (integrable_indicator_iff hs).2 h
 #align measure_theory.integrable_on.integrable_indicator MeasureTheory.IntegrableOn.integrable_indicator
+-/
 
+#print MeasureTheory.Integrable.indicator /-
 theorem Integrable.indicator (h : Integrable f μ) (hs : MeasurableSet s) :
     Integrable (indicator s f) μ :=
   h.IntegrableOn.integrable_indicator hs
 #align measure_theory.integrable.indicator MeasureTheory.Integrable.indicator
+-/
 
+#print MeasureTheory.IntegrableOn.indicator /-
 theorem IntegrableOn.indicator (h : IntegrableOn f s μ) (ht : MeasurableSet t) :
     IntegrableOn (indicator t f) s μ :=
   Integrable.indicator h ht
 #align measure_theory.integrable_on.indicator MeasureTheory.IntegrableOn.indicator
+-/
 
+#print MeasureTheory.integrable_indicatorConstLp /-
 theorem integrable_indicatorConstLp {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
     (hs : MeasurableSet s) (hμs : μ s ≠ ∞) (c : E) : Integrable (indicatorConstLp p hs hμs c) μ :=
   by
@@ -294,7 +375,9 @@ theorem integrable_indicatorConstLp {E} [NormedAddCommGroup E] {p : ℝ≥0∞}
   right
   simpa only [Set.univ_inter, MeasurableSet.univ, measure.restrict_apply] using hμs
 #align measure_theory.integrable_indicator_const_Lp MeasureTheory.integrable_indicatorConstLp
+-/
 
+#print MeasureTheory.IntegrableOn.restrict_toMeasurable /-
 /-- If a function is integrable on a set `s` and nonzero there, then the measurable hull of `s` is
 well behaved: the restriction of the measure to `to_measurable μ s` coincides with its restriction
 to `s`. -/
@@ -315,7 +398,9 @@ theorem IntegrableOn.restrict_toMeasurable (hf : IntegrableOn f s μ) (h's : ∀
   refine' mem_Union.2 ⟨n, _⟩
   exact subset_to_measurable _ _ hn.le
 #align measure_theory.integrable_on.restrict_to_measurable MeasureTheory.IntegrableOn.restrict_toMeasurable
+-/
 
+#print MeasureTheory.IntegrableOn.of_ae_diff_eq_zero /-
 /-- If a function is integrable on a set `s`, and vanishes on `t \ s`, then it is integrable on `t`
 if `t` is null-measurable. -/
 theorem IntegrableOn.of_ae_diff_eq_zero (hf : IntegrableOn f s μ) (ht : NullMeasurableSet t μ)
@@ -342,14 +427,18 @@ theorem IntegrableOn.of_ae_diff_eq_zero (hf : IntegrableOn f s μ) (ht : NullMea
   rw [union_diff_self]
   exact subset_union_right _ _
 #align measure_theory.integrable_on.of_ae_diff_eq_zero MeasureTheory.IntegrableOn.of_ae_diff_eq_zero
+-/
 
+#print MeasureTheory.IntegrableOn.of_forall_diff_eq_zero /-
 /-- If a function is integrable on a set `s`, and vanishes on `t \ s`, then it is integrable on `t`
 if `t` is measurable. -/
 theorem IntegrableOn.of_forall_diff_eq_zero (hf : IntegrableOn f s μ) (ht : MeasurableSet t)
     (h't : ∀ x ∈ t \ s, f x = 0) : IntegrableOn f t μ :=
   hf.of_ae_diff_eq_zero ht.NullMeasurableSet (eventually_of_forall h't)
 #align measure_theory.integrable_on.of_forall_diff_eq_zero MeasureTheory.IntegrableOn.of_forall_diff_eq_zero
+-/
 
+#print MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero /-
 /-- If a function is integrable on a set `s` and vanishes almost everywhere on its complement,
 then it is integrable. -/
 theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
@@ -359,15 +448,19 @@ theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
   apply hf.of_ae_diff_eq_zero null_measurable_set_univ
   filter_upwards [h't] with x hx h'x using hx h'x.2
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x «expr ∉ » s) -/
+#print MeasureTheory.IntegrableOn.integrable_of_forall_not_mem_eq_zero /-
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
 then it is integrable. -/
 theorem IntegrableOn.integrable_of_forall_not_mem_eq_zero (hf : IntegrableOn f s μ)
     (h't : ∀ (x) (_ : x ∉ s), f x = 0) : Integrable f μ :=
   hf.integrable_of_ae_not_mem_eq_zero (eventually_of_forall fun x hx => h't x hx)
 #align measure_theory.integrable_on.integrable_of_forall_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_forall_not_mem_eq_zero
+-/
 
+#print MeasureTheory.integrableOn_iff_integrable_of_support_subset /-
 theorem integrableOn_iff_integrable_of_support_subset (h1s : support f ⊆ s) :
     IntegrableOn f s μ ↔ Integrable f μ :=
   by
@@ -376,7 +469,9 @@ theorem integrableOn_iff_integrable_of_support_subset (h1s : support f ⊆ s) :
   contrapose! hx
   exact h1s (mem_support.2 hx)
 #align measure_theory.integrable_on_iff_integrable_of_support_subset MeasureTheory.integrableOn_iff_integrable_of_support_subset
+-/
 
+#print MeasureTheory.integrableOn_Lp_of_measure_ne_top /-
 theorem integrableOn_Lp_of_measure_ne_top {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
     (f : Lp E p μ) (hp : 1 ≤ p) (hμs : μ s ≠ ∞) : IntegrableOn f s μ :=
   by
@@ -386,18 +481,23 @@ theorem integrableOn_Lp_of_measure_ne_top {E} [NormedAddCommGroup E] {p : ℝ≥
   haveI hμ_finite : is_finite_measure (μ.restrict s) := ⟨hμ_restrict_univ⟩
   exact ((Lp.mem_ℒp _).restrict s).memℒp_of_exponent_le hp
 #align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOn_Lp_of_measure_ne_top
+-/
 
+#print MeasureTheory.Integrable.lintegral_lt_top /-
 theorem Integrable.lintegral_lt_top {f : α → ℝ} (hf : Integrable f μ) :
     ∫⁻ x, ENNReal.ofReal (f x) ∂μ < ∞ :=
   calc
     ∫⁻ x, ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ x, ↑‖f x‖₊ ∂μ := lintegral_ofReal_le_lintegral_nnnorm f
     _ < ∞ := hf.2
 #align measure_theory.integrable.lintegral_lt_top MeasureTheory.Integrable.lintegral_lt_top
+-/
 
+#print MeasureTheory.IntegrableOn.set_lintegral_lt_top /-
 theorem IntegrableOn.set_lintegral_lt_top {f : α → ℝ} {s : Set α} (hf : IntegrableOn f s μ) :
     ∫⁻ x in s, ENNReal.ofReal (f x) ∂μ < ∞ :=
   Integrable.lintegral_lt_top hf
 #align measure_theory.integrable_on.set_lintegral_lt_top MeasureTheory.IntegrableOn.set_lintegral_lt_top
+-/
 
 #print MeasureTheory.IntegrableAtFilter /-
 /-- We say that a function `f` is *integrable at filter* `l` if it is integrable on some
@@ -417,27 +517,36 @@ theorem Integrable.integrableAtFilter (h : Integrable f μ) (l : Filter α) :
 #align measure_theory.integrable.integrable_at_filter MeasureTheory.Integrable.integrableAtFilter
 -/
 
+#print MeasureTheory.IntegrableAtFilter.eventually /-
 protected theorem IntegrableAtFilter.eventually (h : IntegrableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, IntegrableOn f s μ :=
   Iff.mpr (eventually_small_sets' fun s t hst ht => ht.mono_set hst) h
 #align measure_theory.integrable_at_filter.eventually MeasureTheory.IntegrableAtFilter.eventually
+-/
 
+#print MeasureTheory.IntegrableAtFilter.filter_mono /-
 theorem IntegrableAtFilter.filter_mono (hl : l ≤ l') (hl' : IntegrableAtFilter f l' μ) :
     IntegrableAtFilter f l μ :=
   let ⟨s, hs, hsf⟩ := hl'
   ⟨s, hl hs, hsf⟩
 #align measure_theory.integrable_at_filter.filter_mono MeasureTheory.IntegrableAtFilter.filter_mono
+-/
 
+#print MeasureTheory.IntegrableAtFilter.inf_of_left /-
 theorem IntegrableAtFilter.inf_of_left (hl : IntegrableAtFilter f l μ) :
     IntegrableAtFilter f (l ⊓ l') μ :=
   hl.filter_mono inf_le_left
 #align measure_theory.integrable_at_filter.inf_of_left MeasureTheory.IntegrableAtFilter.inf_of_left
+-/
 
+#print MeasureTheory.IntegrableAtFilter.inf_of_right /-
 theorem IntegrableAtFilter.inf_of_right (hl : IntegrableAtFilter f l μ) :
     IntegrableAtFilter f (l' ⊓ l) μ :=
   hl.filter_mono inf_le_right
 #align measure_theory.integrable_at_filter.inf_of_right MeasureTheory.IntegrableAtFilter.inf_of_right
+-/
 
+#print MeasureTheory.IntegrableAtFilter.inf_ae_iff /-
 @[simp]
 theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
     IntegrableAtFilter f (l ⊓ μ.ae) μ ↔ IntegrableAtFilter f l μ :=
@@ -450,10 +559,12 @@ theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
   refine' measure_mono_ae (mem_of_superset hu fun x hx => _)
   exact fun ⟨hv, ht⟩ => ⟨hv, ⟨ht, hx⟩⟩
 #align measure_theory.integrable_at_filter.inf_ae_iff MeasureTheory.IntegrableAtFilter.inf_ae_iff
+-/
 
 alias integrable_at_filter.inf_ae_iff ↔ integrable_at_filter.of_inf_ae _
 #align measure_theory.integrable_at_filter.of_inf_ae MeasureTheory.IntegrableAtFilter.of_inf_ae
 
+#print MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter /-
 /-- If `μ` is a measure finite at filter `l` and `f` is a function such that its norm is bounded
 above at `l`, then `f` is integrable at `l`. -/
 theorem Measure.FiniteAtFilter.integrableAtFilter {l : Filter α} [IsMeasurablyGenerated l]
@@ -469,28 +580,34 @@ theorem Measure.FiniteAtFilter.integrableAtFilter {l : Filter α} [IsMeasurablyG
   rw [ae_restrict_eq hsm, eventually_inf_principal]
   exact eventually_of_forall hC
 #align measure_theory.measure.finite_at_filter.integrable_at_filter MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter
+-/
 
+#print MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae /-
 theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae {l : Filter α}
     [IsMeasurablyGenerated l] (hfm : StronglyMeasurableAtFilter f l μ) (hμ : μ.FiniteAtFilter l) {b}
     (hf : Tendsto f (l ⊓ μ.ae) (𝓝 b)) : IntegrableAtFilter f l μ :=
   (hμ.inf_of_left.IntegrableAtFilter (hfm.filter_mono inf_le_left)
       hf.norm.isBoundedUnder_le).of_inf_ae
 #align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto_ae MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae
+-/
 
 alias measure.finite_at_filter.integrable_at_filter_of_tendsto_ae ←
   _root_.filter.tendsto.integrable_at_filter_ae
 #align filter.tendsto.integrable_at_filter_ae Filter.Tendsto.integrableAtFilter_ae
 
+#print MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto /-
 theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto {l : Filter α}
     [IsMeasurablyGenerated l] (hfm : StronglyMeasurableAtFilter f l μ) (hμ : μ.FiniteAtFilter l) {b}
     (hf : Tendsto f l (𝓝 b)) : IntegrableAtFilter f l μ :=
   hμ.IntegrableAtFilter hfm hf.norm.isBoundedUnder_le
 #align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto
+-/
 
 alias measure.finite_at_filter.integrable_at_filter_of_tendsto ←
   _root_.filter.tendsto.integrable_at_filter
 #align filter.tendsto.integrable_at_filter Filter.Tendsto.integrableAtFilter
 
+#print MeasureTheory.integrable_add_of_disjoint /-
 theorem integrable_add_of_disjoint {f g : α → E} (h : Disjoint (support f) (support g))
     (hf : StronglyMeasurable f) (hg : StronglyMeasurable g) :
     Integrable (f + g) μ ↔ Integrable f μ ∧ Integrable g μ :=
@@ -499,6 +616,7 @@ theorem integrable_add_of_disjoint {f g : α → E} (h : Disjoint (support f) (s
   · rw [← indicator_add_eq_left h]; exact hfg.indicator hf.measurable_set_support
   · rw [← indicator_add_eq_right h]; exact hfg.indicator hg.measurable_set_support
 #align measure_theory.integrable_add_of_disjoint MeasureTheory.integrable_add_of_disjoint
+-/
 
 end NormedAddCommGroup
 
@@ -508,6 +626,7 @@ open MeasureTheory
 
 variable [NormedAddCommGroup E]
 
+#print ContinuousOn.aemeasurable /-
 /-- A function which is continuous on a set `s` is almost everywhere measurable with respect to
 `μ.restrict s`. -/
 theorem ContinuousOn.aemeasurable [TopologicalSpace α] [OpensMeasurableSpace α] [MeasurableSpace β]
@@ -524,7 +643,9 @@ theorem ContinuousOn.aemeasurable [TopologicalSpace α] [OpensMeasurableSpace α
   rw [piecewise_preimage, Set.ite, hu]
   exact (u_open.measurable_set.inter hs).union ((measurable_const ht.measurable_set).diffₓ hs)
 #align continuous_on.ae_measurable ContinuousOn.aemeasurable
+-/
 
+#print ContinuousOn.aestronglyMeasurable_of_isSeparable /-
 /-- A function which is continuous on a separable set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
 theorem ContinuousOn.aestronglyMeasurable_of_isSeparable [TopologicalSpace α]
@@ -539,7 +660,9 @@ theorem ContinuousOn.aestronglyMeasurable_of_isSeparable [TopologicalSpace α]
   refine' ⟨hf.ae_measurable hs, f '' s, hf.is_separable_image h's, _⟩
   exact mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)
 #align continuous_on.ae_strongly_measurable_of_is_separable ContinuousOn.aestronglyMeasurable_of_isSeparable
+-/
 
+#print ContinuousOn.aestronglyMeasurable /-
 /-- A function which is continuous on a set `s` is almost everywhere strongly measurable with
 respect to `μ.restrict s` when either the source space or the target space is second-countable. -/
 theorem ContinuousOn.aestronglyMeasurable [TopologicalSpace α] [TopologicalSpace β]
@@ -561,7 +684,9 @@ theorem ContinuousOn.aestronglyMeasurable [TopologicalSpace α] [TopologicalSpac
     simp
   · exact is_separable_of_separable_space _
 #align continuous_on.ae_strongly_measurable ContinuousOn.aestronglyMeasurable
+-/
 
+#print ContinuousOn.aestronglyMeasurable_of_isCompact /-
 /-- A function which is continuous on a compact set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
 theorem ContinuousOn.aestronglyMeasurable_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α]
@@ -576,7 +701,9 @@ theorem ContinuousOn.aestronglyMeasurable_of_isCompact [TopologicalSpace α] [Op
   · exact (hs.image_of_continuous_on hf).IsSeparable
   · exact mem_of_superset (self_mem_ae_restrict h's) (subset_preimage_image _ _)
 #align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aestronglyMeasurable_of_isCompact
+-/
 
+#print ContinuousOn.integrableAt_nhdsWithin_of_isSeparable /-
 theorem ContinuousOn.integrableAt_nhdsWithin_of_isSeparable [TopologicalSpace α]
     [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ]
     {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t) (ht : MeasurableSet t)
@@ -586,7 +713,9 @@ theorem ContinuousOn.integrableAt_nhdsWithin_of_isSeparable [TopologicalSpace α
     ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable_of_is_separable ht h't⟩
     (μ.finite_at_nhds_within _ _)
 #align continuous_on.integrable_at_nhds_within_of_is_separable ContinuousOn.integrableAt_nhdsWithin_of_isSeparable
+-/
 
+#print ContinuousOn.integrableAt_nhdsWithin /-
 theorem ContinuousOn.integrableAt_nhdsWithin [TopologicalSpace α]
     [SecondCountableTopologyEither α E] [OpensMeasurableSpace α] {μ : Measure α}
     [IsLocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
@@ -595,7 +724,9 @@ theorem ContinuousOn.integrableAt_nhdsWithin [TopologicalSpace α]
   (hft a ha).IntegrableAtFilter ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable ht⟩
     (μ.finite_at_nhds_within _ _)
 #align continuous_on.integrable_at_nhds_within ContinuousOn.integrableAt_nhdsWithin
+-/
 
+#print Continuous.integrableAt_nhds /-
 theorem Continuous.integrableAt_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
     [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ] {f : α → E}
     (hf : Continuous f) (a : α) : IntegrableAtFilter f (𝓝 a) μ :=
@@ -603,7 +734,9 @@ theorem Continuous.integrableAt_nhds [TopologicalSpace α] [SecondCountableTopol
   rw [← nhdsWithin_univ]
   exact hf.continuous_on.integrable_at_nhds_within MeasurableSet.univ (mem_univ a)
 #align continuous.integrable_at_nhds Continuous.integrableAt_nhds
+-/
 
+#print ContinuousOn.stronglyMeasurableAtFilter /-
 /-- If a function is continuous on an open set `s`, then it is strongly measurable at the filter
 `𝓝 x` for all `x ∈ s` if either the source space or the target space is second-countable. -/
 theorem ContinuousOn.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeasurableSpace α]
@@ -612,19 +745,25 @@ theorem ContinuousOn.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeas
     ∀ x ∈ s, StronglyMeasurableAtFilter f (𝓝 x) μ := fun x hx =>
   ⟨s, IsOpen.mem_nhds hs hx, hf.AEStronglyMeasurable hs.MeasurableSet⟩
 #align continuous_on.strongly_measurable_at_filter ContinuousOn.stronglyMeasurableAtFilter
+-/
 
+#print ContinuousAt.stronglyMeasurableAtFilter /-
 theorem ContinuousAt.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeasurableSpace α]
     [SecondCountableTopologyEither α E] {f : α → E} {s : Set α} {μ : Measure α} (hs : IsOpen s)
     (hf : ∀ x ∈ s, ContinuousAt f x) : ∀ x ∈ s, StronglyMeasurableAtFilter f (𝓝 x) μ :=
   ContinuousOn.stronglyMeasurableAtFilter hs <| ContinuousAt.continuousOn hf
 #align continuous_at.strongly_measurable_at_filter ContinuousAt.stronglyMeasurableAtFilter
+-/
 
+#print Continuous.stronglyMeasurableAtFilter /-
 theorem Continuous.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeasurableSpace α]
     [TopologicalSpace β] [PseudoMetrizableSpace β] [SecondCountableTopologyEither α β] {f : α → β}
     (hf : Continuous f) (μ : Measure α) (l : Filter α) : StronglyMeasurableAtFilter f l μ :=
   hf.StronglyMeasurable.StronglyMeasurableAtFilter
 #align continuous.strongly_measurable_at_filter Continuous.stronglyMeasurableAtFilter
+-/
 
+#print ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin /-
 /-- If a function is continuous on a measurable set `s`, then it is measurable at the filter
   `𝓝[s] x` for all `x`. -/
 theorem ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin {α β : Type _} [MeasurableSpace α]
@@ -634,6 +773,7 @@ theorem ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin {α β : Type _} [Mea
     StronglyMeasurableAtFilter f (𝓝[s] x) μ :=
   ⟨s, self_mem_nhdsWithin, hf.AEStronglyMeasurable hs⟩
 #align continuous_on.strongly_measurable_at_filter_nhds_within ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin
+-/
 
 /-! ### Lemmas about adding and removing interval boundaries
 
@@ -646,6 +786,7 @@ section PartialOrder
 
 variable [PartialOrder α] [MeasurableSingletonClass α] {f : α → E} {μ : Measure α} {a b : α}
 
+#print integrableOn_Icc_iff_integrableOn_Ioc' /-
 theorem integrableOn_Icc_iff_integrableOn_Ioc' (ha : μ {a} ≠ ∞) :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioc a b) μ :=
   by
@@ -657,7 +798,9 @@ theorem integrableOn_Icc_iff_integrableOn_Ioc' (ha : μ {a} ≠ ∞) :
     contrapose! hab
     exact hab.le
 #align integrable_on_Icc_iff_integrable_on_Ioc' integrableOn_Icc_iff_integrableOn_Ioc'
+-/
 
+#print integrableOn_Icc_iff_integrableOn_Ico' /-
 theorem integrableOn_Icc_iff_integrableOn_Ico' (hb : μ {b} ≠ ∞) :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ico a b) μ :=
   by
@@ -669,7 +812,9 @@ theorem integrableOn_Icc_iff_integrableOn_Ico' (hb : μ {b} ≠ ∞) :
     contrapose! hab
     exact hab.le
 #align integrable_on_Icc_iff_integrable_on_Ico' integrableOn_Icc_iff_integrableOn_Ico'
+-/
 
+#print integrableOn_Ico_iff_integrableOn_Ioo' /-
 theorem integrableOn_Ico_iff_integrableOn_Ioo' (ha : μ {a} ≠ ∞) :
     IntegrableOn f (Ico a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
   by
@@ -679,7 +824,9 @@ theorem integrableOn_Ico_iff_integrableOn_Ioo' (ha : μ {a} ≠ ∞) :
       eq_true (integrable_on_singleton_iff.mpr <| Or.inr ha.lt_top), and_true_iff]
   · rw [Ioo_eq_empty hab, Ico_eq_empty hab]
 #align integrable_on_Ico_iff_integrable_on_Ioo' integrableOn_Ico_iff_integrableOn_Ioo'
+-/
 
+#print integrableOn_Ioc_iff_integrableOn_Ioo' /-
 theorem integrableOn_Ioc_iff_integrableOn_Ioo' (hb : μ {b} ≠ ∞) :
     IntegrableOn f (Ioc a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
   by
@@ -689,60 +836,81 @@ theorem integrableOn_Ioc_iff_integrableOn_Ioo' (hb : μ {b} ≠ ∞) :
       eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
   · rw [Ioo_eq_empty hab, Ioc_eq_empty hab]
 #align integrable_on_Ioc_iff_integrable_on_Ioo' integrableOn_Ioc_iff_integrableOn_Ioo'
+-/
 
+#print integrableOn_Icc_iff_integrableOn_Ioo' /-
 theorem integrableOn_Icc_iff_integrableOn_Ioo' (ha : μ {a} ≠ ∞) (hb : μ {b} ≠ ∞) :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioo a b) μ := by
   rw [integrableOn_Icc_iff_integrableOn_Ioc' ha, integrableOn_Ioc_iff_integrableOn_Ioo' hb]
 #align integrable_on_Icc_iff_integrable_on_Ioo' integrableOn_Icc_iff_integrableOn_Ioo'
+-/
 
+#print integrableOn_Ici_iff_integrableOn_Ioi' /-
 theorem integrableOn_Ici_iff_integrableOn_Ioi' (hb : μ {b} ≠ ∞) :
     IntegrableOn f (Ici b) μ ↔ IntegrableOn f (Ioi b) μ := by
   rw [← Ioi_union_left, integrable_on_union,
     eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
 #align integrable_on_Ici_iff_integrable_on_Ioi' integrableOn_Ici_iff_integrableOn_Ioi'
+-/
 
+#print integrableOn_Iic_iff_integrableOn_Iio' /-
 theorem integrableOn_Iic_iff_integrableOn_Iio' (hb : μ {b} ≠ ∞) :
     IntegrableOn f (Iic b) μ ↔ IntegrableOn f (Iio b) μ := by
   rw [← Iio_union_right, integrable_on_union,
     eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
 #align integrable_on_Iic_iff_integrable_on_Iio' integrableOn_Iic_iff_integrableOn_Iio'
+-/
 
 variable [NoAtoms μ]
 
+#print integrableOn_Icc_iff_integrableOn_Ioc /-
 theorem integrableOn_Icc_iff_integrableOn_Ioc :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioc a b) μ :=
   integrableOn_Icc_iff_integrableOn_Ioc' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Icc_iff_integrable_on_Ioc integrableOn_Icc_iff_integrableOn_Ioc
+-/
 
+#print integrableOn_Icc_iff_integrableOn_Ico /-
 theorem integrableOn_Icc_iff_integrableOn_Ico :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ico a b) μ :=
   integrableOn_Icc_iff_integrableOn_Ico' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Icc_iff_integrable_on_Ico integrableOn_Icc_iff_integrableOn_Ico
+-/
 
+#print integrableOn_Ico_iff_integrableOn_Ioo /-
 theorem integrableOn_Ico_iff_integrableOn_Ioo :
     IntegrableOn f (Ico a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
   integrableOn_Ico_iff_integrableOn_Ioo' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Ico_iff_integrable_on_Ioo integrableOn_Ico_iff_integrableOn_Ioo
+-/
 
+#print integrableOn_Ioc_iff_integrableOn_Ioo /-
 theorem integrableOn_Ioc_iff_integrableOn_Ioo :
     IntegrableOn f (Ioc a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
   integrableOn_Ioc_iff_integrableOn_Ioo' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Ioc_iff_integrable_on_Ioo integrableOn_Ioc_iff_integrableOn_Ioo
+-/
 
+#print integrableOn_Icc_iff_integrableOn_Ioo /-
 theorem integrableOn_Icc_iff_integrableOn_Ioo :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioo a b) μ := by
   rw [integrableOn_Icc_iff_integrableOn_Ioc, integrableOn_Ioc_iff_integrableOn_Ioo]
 #align integrable_on_Icc_iff_integrable_on_Ioo integrableOn_Icc_iff_integrableOn_Ioo
+-/
 
+#print integrableOn_Ici_iff_integrableOn_Ioi /-
 theorem integrableOn_Ici_iff_integrableOn_Ioi :
     IntegrableOn f (Ici b) μ ↔ IntegrableOn f (Ioi b) μ :=
   integrableOn_Ici_iff_integrableOn_Ioi' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Ici_iff_integrable_on_Ioi integrableOn_Ici_iff_integrableOn_Ioi
+-/
 
+#print integrableOn_Iic_iff_integrableOn_Iio /-
 theorem integrableOn_Iic_iff_integrableOn_Iio :
     IntegrableOn f (Iic b) μ ↔ IntegrableOn f (Iio b) μ :=
   integrableOn_Iic_iff_integrableOn_Iio' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Iic_iff_integrable_on_Iio integrableOn_Iic_iff_integrableOn_Iio
+-/
 
 end PartialOrder
 
Diff
@@ -388,14 +388,14 @@ theorem integrableOn_Lp_of_measure_ne_top {E} [NormedAddCommGroup E] {p : ℝ≥
 #align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOn_Lp_of_measure_ne_top
 
 theorem Integrable.lintegral_lt_top {f : α → ℝ} (hf : Integrable f μ) :
-    (∫⁻ x, ENNReal.ofReal (f x) ∂μ) < ∞ :=
+    ∫⁻ x, ENNReal.ofReal (f x) ∂μ < ∞ :=
   calc
-    (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ↑‖f x‖₊ ∂μ := lintegral_ofReal_le_lintegral_nnnorm f
+    ∫⁻ x, ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ x, ↑‖f x‖₊ ∂μ := lintegral_ofReal_le_lintegral_nnnorm f
     _ < ∞ := hf.2
 #align measure_theory.integrable.lintegral_lt_top MeasureTheory.Integrable.lintegral_lt_top
 
 theorem IntegrableOn.set_lintegral_lt_top {f : α → ℝ} {s : Set α} (hf : IntegrableOn f s μ) :
-    (∫⁻ x in s, ENNReal.ofReal (f x) ∂μ) < ∞ :=
+    ∫⁻ x in s, ENNReal.ofReal (f x) ∂μ < ∞ :=
   Integrable.lintegral_lt_top hf
 #align measure_theory.integrable_on.set_lintegral_lt_top MeasureTheory.IntegrableOn.set_lintegral_lt_top
 
Diff
@@ -392,7 +392,6 @@ theorem Integrable.lintegral_lt_top {f : α → ℝ} (hf : Integrable f μ) :
   calc
     (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ↑‖f x‖₊ ∂μ := lintegral_ofReal_le_lintegral_nnnorm f
     _ < ∞ := hf.2
-    
 #align measure_theory.integrable.lintegral_lt_top MeasureTheory.Integrable.lintegral_lt_top
 
 theorem IntegrableOn.set_lintegral_lt_top {f : α → ℝ} {s : Set α} (hf : IntegrableOn f s μ) :
Diff
@@ -360,7 +360,7 @@ theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
   filter_upwards [h't] with x hx h'x using hx h'x.2
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ∉ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (x «expr ∉ » s) -/
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
 then it is integrable. -/
 theorem IntegrableOn.integrable_of_forall_not_mem_eq_zero (hf : IntegrableOn f s μ)
Diff
@@ -200,7 +200,7 @@ theorem integrableOn_singleton_iff {x : α} [MeasurableSingletonClass α] :
   by
   have : f =ᵐ[μ.restrict {x}] fun y => f x :=
     by
-    filter_upwards [ae_restrict_mem (measurable_set_singleton x)]with _ ha
+    filter_upwards [ae_restrict_mem (measurable_set_singleton x)] with _ ha
     simp only [mem_singleton_iff.1 ha]
   rw [integrable_on, integrable_congr this, integrable_const_iff]
   simp
@@ -302,7 +302,7 @@ theorem IntegrableOn.restrict_toMeasurable (hf : IntegrableOn f s μ) (h's : ∀
     μ.restrict (toMeasurable μ s) = μ.restrict s :=
   by
   rcases exists_seq_strictAnti_tendsto (0 : ℝ) with ⟨u, u_anti, u_pos, u_lim⟩
-  let v n := to_measurable (μ.restrict s) { x | u n ≤ ‖f x‖ }
+  let v n := to_measurable (μ.restrict s) {x | u n ≤ ‖f x‖}
   have A : ∀ n, μ (s ∩ v n) ≠ ∞ := by
     intro n
     rw [inter_comm, ← measure.restrict_apply (measurable_set_to_measurable _ _),
@@ -321,7 +321,7 @@ if `t` is null-measurable. -/
 theorem IntegrableOn.of_ae_diff_eq_zero (hf : IntegrableOn f s μ) (ht : NullMeasurableSet t μ)
     (h't : ∀ᵐ x ∂μ, x ∈ t \ s → f x = 0) : IntegrableOn f t μ :=
   by
-  let u := { x ∈ s | f x ≠ 0 }
+  let u := {x ∈ s | f x ≠ 0}
   have hu : integrable_on f u μ := hf.mono_set fun x hx => hx.1
   let v := to_measurable μ u
   have A : integrable_on f v μ :=
@@ -333,7 +333,7 @@ theorem IntegrableOn.of_ae_diff_eq_zero (hf : IntegrableOn f s μ) (ht : NullMea
     by
     apply integrable_on_zero.congr
     filter_upwards [ae_restrict_of_ae h't,
-      ae_restrict_mem₀ (ht.diff (measurable_set_to_measurable μ u).NullMeasurableSet)]with x hxt hx
+      ae_restrict_mem₀ (ht.diff (measurable_set_to_measurable μ u).NullMeasurableSet)] with x hxt hx
     by_cases h'x : x ∈ s
     · by_contra H
       exact hx.2 (subset_to_measurable μ u ⟨h'x, Ne.symm H⟩)
@@ -357,7 +357,7 @@ theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
   by
   rw [← integrable_on_univ]
   apply hf.of_ae_diff_eq_zero null_measurable_set_univ
-  filter_upwards [h't]with x hx h'x using hx h'x.2
+  filter_upwards [h't] with x hx h'x using hx h'x.2
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ∉ » s) -/
@@ -579,7 +579,7 @@ theorem ContinuousOn.aestronglyMeasurable_of_isCompact [TopologicalSpace α] [Op
 #align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aestronglyMeasurable_of_isCompact
 
 theorem ContinuousOn.integrableAt_nhdsWithin_of_isSeparable [TopologicalSpace α]
-    [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ]
+    [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ]
     {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t) (ht : MeasurableSet t)
     (h't : TopologicalSpace.IsSeparable t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhds_within_is_measurably_generated _
@@ -590,7 +590,7 @@ theorem ContinuousOn.integrableAt_nhdsWithin_of_isSeparable [TopologicalSpace α
 
 theorem ContinuousOn.integrableAt_nhdsWithin [TopologicalSpace α]
     [SecondCountableTopologyEither α E] [OpensMeasurableSpace α] {μ : Measure α}
-    [LocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
+    [IsLocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
     (ht : MeasurableSet t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhds_within_is_measurably_generated _
   (hft a ha).IntegrableAtFilter ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable ht⟩
@@ -598,7 +598,7 @@ theorem ContinuousOn.integrableAt_nhdsWithin [TopologicalSpace α]
 #align continuous_on.integrable_at_nhds_within ContinuousOn.integrableAt_nhdsWithin
 
 theorem Continuous.integrableAt_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
-    [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ] {f : α → E}
+    [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ] {f : α → E}
     (hf : Continuous f) (a : α) : IntegrableAtFilter f (𝓝 a) μ :=
   by
   rw [← nhdsWithin_univ]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.integral.integrable_on
-! leanprover-community/mathlib commit 8b8ba04e2f326f3f7cf24ad129beda58531ada61
+! leanprover-community/mathlib commit 599fffe78f0e11eb6a034e834ec51882167b9688
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.Analysis.NormedSpace.IndicatorFunction
 
 /-! # Functions integrable on a set and at a filter
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We define `integrable_on f s μ := integrable f (μ.restrict s)` and prove theorems like
 `integrable_on_union : integrable_on f (s ∪ t) μ ↔ integrable_on f s μ ∧ integrable_on f t μ`.
 
Diff
@@ -36,17 +36,19 @@ section
 
 variable [TopologicalSpace β] {l l' : Filter α} {f g : α → β} {μ ν : Measure α}
 
+#print StronglyMeasurableAtFilter /-
 /-- A function `f` is strongly measurable at a filter `l` w.r.t. a measure `μ` if it is
 ae strongly measurable w.r.t. `μ.restrict s` for some `s ∈ l`. -/
 def StronglyMeasurableAtFilter (f : α → β) (l : Filter α)
     (μ : Measure α := by exact MeasureTheory.MeasureSpace.volume) :=
   ∃ s ∈ l, AEStronglyMeasurable f (μ.restrict s)
 #align strongly_measurable_at_filter StronglyMeasurableAtFilter
+-/
 
 @[simp]
-theorem strongly_measurable_at_bot {f : α → β} : StronglyMeasurableAtFilter f ⊥ μ :=
+theorem stronglyMeasurableAt_bot {f : α → β} : StronglyMeasurableAtFilter f ⊥ μ :=
   ⟨∅, mem_bot, by simp⟩
-#align strongly_measurable_at_bot strongly_measurable_at_bot
+#align strongly_measurable_at_bot stronglyMeasurableAt_bot
 
 protected theorem StronglyMeasurableAtFilter.eventually (h : StronglyMeasurableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, AEStronglyMeasurable f (μ.restrict s) :=
@@ -89,12 +91,14 @@ theorem hasFiniteIntegral_restrict_of_bounded [NormedAddCommGroup E] {f : α →
 
 variable [NormedAddCommGroup E] {f g : α → E} {s t : Set α} {μ ν : Measure α}
 
+#print MeasureTheory.IntegrableOn /-
 /-- A function is `integrable_on` a set `s` if it is almost everywhere strongly measurable on `s`
 and if the integral of its pointwise norm over `s` is less than infinity. -/
 def IntegrableOn (f : α → E) (s : Set α)
     (μ : Measure α := by exact MeasureTheory.MeasureSpace.volume) : Prop :=
   Integrable f (μ.restrict s)
 #align measure_theory.integrable_on MeasureTheory.IntegrableOn
+-/
 
 theorem IntegrableOn.integrable (h : IntegrableOn f s μ) : Integrable f (μ.restrict s) :=
   h
@@ -158,9 +162,11 @@ theorem integrableOn_congr_fun (hst : EqOn f g s) (hs : MeasurableSet s) :
   ⟨fun h => h.congr_fun hst hs, fun h => h.congr_fun hst.symm hs⟩
 #align measure_theory.integrable_on_congr_fun MeasureTheory.integrableOn_congr_fun
 
+#print MeasureTheory.Integrable.integrableOn /-
 theorem Integrable.integrableOn (h : Integrable f μ) : IntegrableOn f s μ :=
   h.mono_measure <| Measure.restrict_le_self
 #align measure_theory.integrable.integrable_on MeasureTheory.Integrable.integrableOn
+-/
 
 theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
     IntegrableOn f s (μ.restrict t) := by rw [integrable_on, measure.restrict_restrict hs];
@@ -198,18 +204,18 @@ theorem integrableOn_singleton_iff {x : α} [MeasurableSingletonClass α] :
 #align measure_theory.integrable_on_singleton_iff MeasureTheory.integrableOn_singleton_iff
 
 @[simp]
-theorem integrableOn_finite_bUnion {s : Set β} (hs : s.Finite) {t : β → Set α} :
+theorem integrableOn_finite_biUnion {s : Set β} (hs : s.Finite) {t : β → Set α} :
     IntegrableOn f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, IntegrableOn f (t i) μ :=
   by
   apply hs.induction_on
   · simp
   · intro a s ha hs hf; simp [hf, or_imp, forall_and]
-#align measure_theory.integrable_on_finite_bUnion MeasureTheory.integrableOn_finite_bUnion
+#align measure_theory.integrable_on_finite_bUnion MeasureTheory.integrableOn_finite_biUnion
 
 @[simp]
 theorem integrableOn_finset_iUnion {s : Finset β} {t : β → Set α} :
     IntegrableOn f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, IntegrableOn f (t i) μ :=
-  integrableOn_finite_bUnion s.finite_toSet
+  integrableOn_finite_biUnion s.finite_toSet
 #align measure_theory.integrable_on_finset_Union MeasureTheory.integrableOn_finset_iUnion
 
 @[simp]
@@ -368,15 +374,15 @@ theorem integrableOn_iff_integrable_of_support_subset (h1s : support f ⊆ s) :
   exact h1s (mem_support.2 hx)
 #align measure_theory.integrable_on_iff_integrable_of_support_subset MeasureTheory.integrableOn_iff_integrable_of_support_subset
 
-theorem integrableOn_lp_of_measure_ne_top {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
-    (f : lp E p μ) (hp : 1 ≤ p) (hμs : μ s ≠ ∞) : IntegrableOn f s μ :=
+theorem integrableOn_Lp_of_measure_ne_top {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
+    (f : Lp E p μ) (hp : 1 ≤ p) (hμs : μ s ≠ ∞) : IntegrableOn f s μ :=
   by
   refine' mem_ℒp_one_iff_integrable.mp _
   have hμ_restrict_univ : (μ.restrict s) Set.univ < ∞ := by
     simpa only [Set.univ_inter, MeasurableSet.univ, measure.restrict_apply, lt_top_iff_ne_top]
   haveI hμ_finite : is_finite_measure (μ.restrict s) := ⟨hμ_restrict_univ⟩
   exact ((Lp.mem_ℒp _).restrict s).memℒp_of_exponent_le hp
-#align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOn_lp_of_measure_ne_top
+#align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOn_Lp_of_measure_ne_top
 
 theorem Integrable.lintegral_lt_top {f : α → ℝ} (hf : Integrable f μ) :
     (∫⁻ x, ENNReal.ofReal (f x) ∂μ) < ∞ :=
@@ -391,19 +397,23 @@ theorem IntegrableOn.set_lintegral_lt_top {f : α → ℝ} {s : Set α} (hf : In
   Integrable.lintegral_lt_top hf
 #align measure_theory.integrable_on.set_lintegral_lt_top MeasureTheory.IntegrableOn.set_lintegral_lt_top
 
+#print MeasureTheory.IntegrableAtFilter /-
 /-- We say that a function `f` is *integrable at filter* `l` if it is integrable on some
 set `s ∈ l`. Equivalently, it is eventually integrable on `s` in `l.small_sets`. -/
 def IntegrableAtFilter (f : α → E) (l : Filter α)
     (μ : Measure α := by exact MeasureTheory.MeasureSpace.volume) :=
   ∃ s ∈ l, IntegrableOn f s μ
 #align measure_theory.integrable_at_filter MeasureTheory.IntegrableAtFilter
+-/
 
 variable {l l' : Filter α}
 
+#print MeasureTheory.Integrable.integrableAtFilter /-
 theorem Integrable.integrableAtFilter (h : Integrable f μ) (l : Filter α) :
     IntegrableAtFilter f l μ :=
   ⟨univ, Filter.univ_mem, integrableOn_univ.2 h⟩
 #align measure_theory.integrable.integrable_at_filter MeasureTheory.Integrable.integrableAtFilter
+-/
 
 protected theorem IntegrableAtFilter.eventually (h : IntegrableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, IntegrableOn f s μ :=
@@ -498,7 +508,7 @@ variable [NormedAddCommGroup E]
 
 /-- A function which is continuous on a set `s` is almost everywhere measurable with respect to
 `μ.restrict s`. -/
-theorem ContinuousOn.aEMeasurable [TopologicalSpace α] [OpensMeasurableSpace α] [MeasurableSpace β]
+theorem ContinuousOn.aemeasurable [TopologicalSpace α] [OpensMeasurableSpace α] [MeasurableSpace β]
     [TopologicalSpace β] [BorelSpace β] {f : α → β} {s : Set α} {μ : Measure α}
     (hf : ContinuousOn f s) (hs : MeasurableSet s) : AEMeasurable f (μ.restrict s) :=
   by
@@ -511,11 +521,11 @@ theorem ContinuousOn.aEMeasurable [TopologicalSpace α] [OpensMeasurableSpace α
     _root_.continuous_on_iff'.1 hf t ht
   rw [piecewise_preimage, Set.ite, hu]
   exact (u_open.measurable_set.inter hs).union ((measurable_const ht.measurable_set).diffₓ hs)
-#align continuous_on.ae_measurable ContinuousOn.aEMeasurable
+#align continuous_on.ae_measurable ContinuousOn.aemeasurable
 
 /-- A function which is continuous on a separable set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
-theorem ContinuousOn.aEStronglyMeasurable_of_isSeparable [TopologicalSpace α]
+theorem ContinuousOn.aestronglyMeasurable_of_isSeparable [TopologicalSpace α]
     [PseudoMetrizableSpace α] [OpensMeasurableSpace α] [TopologicalSpace β]
     [PseudoMetrizableSpace β] {f : α → β} {s : Set α} {μ : Measure α} (hf : ContinuousOn f s)
     (hs : MeasurableSet s) (h's : TopologicalSpace.IsSeparable s) :
@@ -526,11 +536,11 @@ theorem ContinuousOn.aEStronglyMeasurable_of_isSeparable [TopologicalSpace α]
   rw [aestronglyMeasurable_iff_aemeasurable_separable]
   refine' ⟨hf.ae_measurable hs, f '' s, hf.is_separable_image h's, _⟩
   exact mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)
-#align continuous_on.ae_strongly_measurable_of_is_separable ContinuousOn.aEStronglyMeasurable_of_isSeparable
+#align continuous_on.ae_strongly_measurable_of_is_separable ContinuousOn.aestronglyMeasurable_of_isSeparable
 
 /-- A function which is continuous on a set `s` is almost everywhere strongly measurable with
 respect to `μ.restrict s` when either the source space or the target space is second-countable. -/
-theorem ContinuousOn.aEStronglyMeasurable [TopologicalSpace α] [TopologicalSpace β]
+theorem ContinuousOn.aestronglyMeasurable [TopologicalSpace α] [TopologicalSpace β]
     [h : SecondCountableTopologyEither α β] [OpensMeasurableSpace α] [PseudoMetrizableSpace β]
     {f : α → β} {s : Set α} {μ : Measure α} (hf : ContinuousOn f s) (hs : MeasurableSet s) :
     AEStronglyMeasurable f (μ.restrict s) :=
@@ -548,11 +558,11 @@ theorem ContinuousOn.aEStronglyMeasurable [TopologicalSpace α] [TopologicalSpac
     ext x
     simp
   · exact is_separable_of_separable_space _
-#align continuous_on.ae_strongly_measurable ContinuousOn.aEStronglyMeasurable
+#align continuous_on.ae_strongly_measurable ContinuousOn.aestronglyMeasurable
 
 /-- A function which is continuous on a compact set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
-theorem ContinuousOn.aEStronglyMeasurable_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α]
+theorem ContinuousOn.aestronglyMeasurable_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α]
     [TopologicalSpace β] [PseudoMetrizableSpace β] {f : α → β} {s : Set α} {μ : Measure α}
     (hf : ContinuousOn f s) (hs : IsCompact s) (h's : MeasurableSet s) :
     AEStronglyMeasurable f (μ.restrict s) :=
@@ -563,9 +573,9 @@ theorem ContinuousOn.aEStronglyMeasurable_of_isCompact [TopologicalSpace α] [Op
   refine' ⟨hf.ae_measurable h's, f '' s, _, _⟩
   · exact (hs.image_of_continuous_on hf).IsSeparable
   · exact mem_of_superset (self_mem_ae_restrict h's) (subset_preimage_image _ _)
-#align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aEStronglyMeasurable_of_isCompact
+#align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aestronglyMeasurable_of_isCompact
 
-theorem ContinuousOn.integrable_at_nhdsWithin_of_isSeparable [TopologicalSpace α]
+theorem ContinuousOn.integrableAt_nhdsWithin_of_isSeparable [TopologicalSpace α]
     [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ]
     {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t) (ht : MeasurableSet t)
     (h't : TopologicalSpace.IsSeparable t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
@@ -573,24 +583,24 @@ theorem ContinuousOn.integrable_at_nhdsWithin_of_isSeparable [TopologicalSpace 
   (hft a ha).IntegrableAtFilter
     ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable_of_is_separable ht h't⟩
     (μ.finite_at_nhds_within _ _)
-#align continuous_on.integrable_at_nhds_within_of_is_separable ContinuousOn.integrable_at_nhdsWithin_of_isSeparable
+#align continuous_on.integrable_at_nhds_within_of_is_separable ContinuousOn.integrableAt_nhdsWithin_of_isSeparable
 
-theorem ContinuousOn.integrable_at_nhdsWithin [TopologicalSpace α]
+theorem ContinuousOn.integrableAt_nhdsWithin [TopologicalSpace α]
     [SecondCountableTopologyEither α E] [OpensMeasurableSpace α] {μ : Measure α}
     [LocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
     (ht : MeasurableSet t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhds_within_is_measurably_generated _
   (hft a ha).IntegrableAtFilter ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable ht⟩
     (μ.finite_at_nhds_within _ _)
-#align continuous_on.integrable_at_nhds_within ContinuousOn.integrable_at_nhdsWithin
+#align continuous_on.integrable_at_nhds_within ContinuousOn.integrableAt_nhdsWithin
 
-theorem Continuous.integrable_at_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
+theorem Continuous.integrableAt_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
     [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ] {f : α → E}
     (hf : Continuous f) (a : α) : IntegrableAtFilter f (𝓝 a) μ :=
   by
   rw [← nhdsWithin_univ]
   exact hf.continuous_on.integrable_at_nhds_within MeasurableSet.univ (mem_univ a)
-#align continuous.integrable_at_nhds Continuous.integrable_at_nhds
+#align continuous.integrable_at_nhds Continuous.integrableAt_nhds
 
 /-- If a function is continuous on an open set `s`, then it is strongly measurable at the filter
 `𝓝 x` for all `x ∈ s` if either the source space or the target space is second-countable. -/
Diff
@@ -28,7 +28,7 @@ noncomputable section
 
 open Set Filter TopologicalSpace MeasureTheory Function
 
-open Classical Topology Interval BigOperators Filter ENNReal MeasureTheory
+open scoped Classical Topology Interval BigOperators Filter ENNReal MeasureTheory
 
 variable {α β E F : Type _} [MeasurableSpace α]
 
Diff
@@ -163,9 +163,7 @@ theorem Integrable.integrableOn (h : Integrable f μ) : IntegrableOn f s μ :=
 #align measure_theory.integrable.integrable_on MeasureTheory.Integrable.integrableOn
 
 theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
-    IntegrableOn f s (μ.restrict t) :=
-  by
-  rw [integrable_on, measure.restrict_restrict hs]
+    IntegrableOn f s (μ.restrict t) := by rw [integrable_on, measure.restrict_restrict hs];
   exact h.mono_set (inter_subset_left _ _)
 #align measure_theory.integrable_on.restrict MeasureTheory.IntegrableOn.restrict
 
@@ -205,8 +203,7 @@ theorem integrableOn_finite_bUnion {s : Set β} (hs : s.Finite) {t : β → Set
   by
   apply hs.induction_on
   · simp
-  · intro a s ha hs hf
-    simp [hf, or_imp, forall_and]
+  · intro a s ha hs hf; simp [hf, or_imp, forall_and]
 #align measure_theory.integrable_on_finite_bUnion MeasureTheory.integrableOn_finite_bUnion
 
 @[simp]
@@ -224,9 +221,7 @@ theorem integrableOn_finite_iUnion [Finite β] {t : β → Set α} :
 #align measure_theory.integrable_on_finite_Union MeasureTheory.integrableOn_finite_iUnion
 
 theorem IntegrableOn.add_measure (hμ : IntegrableOn f s μ) (hν : IntegrableOn f s ν) :
-    IntegrableOn f s (μ + ν) := by
-  delta integrable_on
-  rw [measure.restrict_add]
+    IntegrableOn f s (μ + ν) := by delta integrable_on; rw [measure.restrict_add];
   exact hμ.integrable.add_measure hν
 #align measure_theory.integrable_on.add_measure MeasureTheory.IntegrableOn.add_measure
 
@@ -307,8 +302,7 @@ theorem IntegrableOn.restrict_toMeasurable (hf : IntegrableOn f s μ) (h's : ∀
   apply measure.restrict_to_measurable_of_cover _ A
   intro x hx
   have : 0 < ‖f x‖ := by simp only [h's x hx, norm_pos_iff, Ne.def, not_false_iff]
-  obtain ⟨n, hn⟩ : ∃ n, u n < ‖f x‖
-  exact ((tendsto_order.1 u_lim).2 _ this).exists
+  obtain ⟨n, hn⟩ : ∃ n, u n < ‖f x‖; exact ((tendsto_order.1 u_lim).2 _ this).exists
   refine' mem_Union.2 ⟨n, _⟩
   exact subset_to_measurable _ _ hn.le
 #align measure_theory.integrable_on.restrict_to_measurable MeasureTheory.IntegrableOn.restrict_toMeasurable
@@ -325,8 +319,7 @@ theorem IntegrableOn.of_ae_diff_eq_zero (hf : IntegrableOn f s μ) (ht : NullMea
     by
     rw [integrable_on, hu.restrict_to_measurable]
     · exact hu
-    · intro x hx
-      exact hx.2
+    · intro x hx; exact hx.2
   have B : integrable_on f (t \ v) μ :=
     by
     apply integrable_on_zero.congr
@@ -491,10 +484,8 @@ theorem integrable_add_of_disjoint {f g : α → E} (h : Disjoint (support f) (s
     Integrable (f + g) μ ↔ Integrable f μ ∧ Integrable g μ :=
   by
   refine' ⟨fun hfg => ⟨_, _⟩, fun h => h.1.add h.2⟩
-  · rw [← indicator_add_eq_left h]
-    exact hfg.indicator hf.measurable_set_support
-  · rw [← indicator_add_eq_right h]
-    exact hfg.indicator hg.measurable_set_support
+  · rw [← indicator_add_eq_left h]; exact hfg.indicator hf.measurable_set_support
+  · rw [← indicator_add_eq_right h]; exact hfg.indicator hg.measurable_set_support
 #align measure_theory.integrable_add_of_disjoint MeasureTheory.integrable_add_of_disjoint
 
 end NormedAddCommGroup
@@ -708,34 +699,22 @@ variable [NoAtoms μ]
 
 theorem integrableOn_Icc_iff_integrableOn_Ioc :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioc a b) μ :=
-  integrableOn_Icc_iff_integrableOn_Ioc'
-    (by
-      rw [measure_singleton]
-      exact ENNReal.zero_ne_top)
+  integrableOn_Icc_iff_integrableOn_Ioc' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Icc_iff_integrable_on_Ioc integrableOn_Icc_iff_integrableOn_Ioc
 
 theorem integrableOn_Icc_iff_integrableOn_Ico :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ico a b) μ :=
-  integrableOn_Icc_iff_integrableOn_Ico'
-    (by
-      rw [measure_singleton]
-      exact ENNReal.zero_ne_top)
+  integrableOn_Icc_iff_integrableOn_Ico' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Icc_iff_integrable_on_Ico integrableOn_Icc_iff_integrableOn_Ico
 
 theorem integrableOn_Ico_iff_integrableOn_Ioo :
     IntegrableOn f (Ico a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
-  integrableOn_Ico_iff_integrableOn_Ioo'
-    (by
-      rw [measure_singleton]
-      exact ENNReal.zero_ne_top)
+  integrableOn_Ico_iff_integrableOn_Ioo' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Ico_iff_integrable_on_Ioo integrableOn_Ico_iff_integrableOn_Ioo
 
 theorem integrableOn_Ioc_iff_integrableOn_Ioo :
     IntegrableOn f (Ioc a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
-  integrableOn_Ioc_iff_integrableOn_Ioo'
-    (by
-      rw [measure_singleton]
-      exact ENNReal.zero_ne_top)
+  integrableOn_Ioc_iff_integrableOn_Ioo' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Ioc_iff_integrable_on_Ioo integrableOn_Ioc_iff_integrableOn_Ioo
 
 theorem integrableOn_Icc_iff_integrableOn_Ioo :
@@ -745,18 +724,12 @@ theorem integrableOn_Icc_iff_integrableOn_Ioo :
 
 theorem integrableOn_Ici_iff_integrableOn_Ioi :
     IntegrableOn f (Ici b) μ ↔ IntegrableOn f (Ioi b) μ :=
-  integrableOn_Ici_iff_integrableOn_Ioi'
-    (by
-      rw [measure_singleton]
-      exact ENNReal.zero_ne_top)
+  integrableOn_Ici_iff_integrableOn_Ioi' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Ici_iff_integrable_on_Ioi integrableOn_Ici_iff_integrableOn_Ioi
 
 theorem integrableOn_Iic_iff_integrableOn_Iio :
     IntegrableOn f (Iic b) μ ↔ IntegrableOn f (Iio b) μ :=
-  integrableOn_Iic_iff_integrableOn_Iio'
-    (by
-      rw [measure_singleton]
-      exact ENNReal.zero_ne_top)
+  integrableOn_Iic_iff_integrableOn_Iio' (by rw [measure_singleton]; exact ENNReal.zero_ne_top)
 #align integrable_on_Iic_iff_integrable_on_Iio integrableOn_Iic_iff_integrableOn_Iio
 
 end PartialOrder
Diff
@@ -40,7 +40,7 @@ variable [TopologicalSpace β] {l l' : Filter α} {f g : α → β} {μ ν : Mea
 ae strongly measurable w.r.t. `μ.restrict s` for some `s ∈ l`. -/
 def StronglyMeasurableAtFilter (f : α → β) (l : Filter α)
     (μ : Measure α := by exact MeasureTheory.MeasureSpace.volume) :=
-  ∃ s ∈ l, AeStronglyMeasurable f (μ.restrict s)
+  ∃ s ∈ l, AEStronglyMeasurable f (μ.restrict s)
 #align strongly_measurable_at_filter StronglyMeasurableAtFilter
 
 @[simp]
@@ -49,8 +49,8 @@ theorem strongly_measurable_at_bot {f : α → β} : StronglyMeasurableAtFilter
 #align strongly_measurable_at_bot strongly_measurable_at_bot
 
 protected theorem StronglyMeasurableAtFilter.eventually (h : StronglyMeasurableAtFilter f l μ) :
-    ∀ᶠ s in l.smallSets, AeStronglyMeasurable f (μ.restrict s) :=
-  (eventually_small_sets' fun s t => AeStronglyMeasurable.mono_set).2 h
+    ∀ᶠ s in l.smallSets, AEStronglyMeasurable f (μ.restrict s) :=
+  (eventually_small_sets' fun s t => AEStronglyMeasurable.mono_set).2 h
 #align strongly_measurable_at_filter.eventually StronglyMeasurableAtFilter.eventually
 
 protected theorem StronglyMeasurableAtFilter.filter_mono (h : StronglyMeasurableAtFilter f l μ)
@@ -59,19 +59,19 @@ protected theorem StronglyMeasurableAtFilter.filter_mono (h : StronglyMeasurable
   ⟨s, h' hsl, hs⟩
 #align strongly_measurable_at_filter.filter_mono StronglyMeasurableAtFilter.filter_mono
 
-protected theorem MeasureTheory.AeStronglyMeasurable.stronglyMeasurableAtFilter
-    (h : AeStronglyMeasurable f μ) : StronglyMeasurableAtFilter f l μ :=
+protected theorem MeasureTheory.AEStronglyMeasurable.stronglyMeasurableAtFilter
+    (h : AEStronglyMeasurable f μ) : StronglyMeasurableAtFilter f l μ :=
   ⟨univ, univ_mem, by rwa [measure.restrict_univ]⟩
-#align measure_theory.ae_strongly_measurable.strongly_measurable_at_filter MeasureTheory.AeStronglyMeasurable.stronglyMeasurableAtFilter
+#align measure_theory.ae_strongly_measurable.strongly_measurable_at_filter MeasureTheory.AEStronglyMeasurable.stronglyMeasurableAtFilter
 
 theorem AeStronglyMeasurable.stronglyMeasurableAtFilter_of_mem {s}
-    (h : AeStronglyMeasurable f (μ.restrict s)) (hl : s ∈ l) : StronglyMeasurableAtFilter f l μ :=
+    (h : AEStronglyMeasurable f (μ.restrict s)) (hl : s ∈ l) : StronglyMeasurableAtFilter f l μ :=
   ⟨s, hl, h⟩
 #align ae_strongly_measurable.strongly_measurable_at_filter_of_mem AeStronglyMeasurable.stronglyMeasurableAtFilter_of_mem
 
 protected theorem MeasureTheory.StronglyMeasurable.stronglyMeasurableAtFilter
     (h : StronglyMeasurable f) : StronglyMeasurableAtFilter f l μ :=
-  h.AeStronglyMeasurable.StronglyMeasurableAtFilter
+  h.AEStronglyMeasurable.StronglyMeasurableAtFilter
 #align measure_theory.strongly_measurable.strongly_measurable_at_filter MeasureTheory.StronglyMeasurable.stronglyMeasurableAtFilter
 
 end
@@ -264,7 +264,7 @@ theorem MeasurePreserving.integrableOn_image [MeasurableSpace β] {e : α → β
 theorem integrable_indicator_iff (hs : MeasurableSet s) :
     Integrable (indicator s f) μ ↔ IntegrableOn f s μ := by
   simp [integrable_on, integrable, has_finite_integral, nnnorm_indicator_eq_indicator_nnnorm,
-    ENNReal.coe_indicator, lintegral_indicator _ hs, aeStronglyMeasurable_indicator_iff hs]
+    ENNReal.coe_indicator, lintegral_indicator _ hs, aestronglyMeasurable_indicator_iff hs]
 #align measure_theory.integrable_indicator_iff MeasureTheory.integrable_indicator_iff
 
 theorem IntegrableOn.integrable_indicator (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
@@ -524,29 +524,29 @@ theorem ContinuousOn.aEMeasurable [TopologicalSpace α] [OpensMeasurableSpace α
 
 /-- A function which is continuous on a separable set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
-theorem ContinuousOn.aeStronglyMeasurable_of_isSeparable [TopologicalSpace α]
+theorem ContinuousOn.aEStronglyMeasurable_of_isSeparable [TopologicalSpace α]
     [PseudoMetrizableSpace α] [OpensMeasurableSpace α] [TopologicalSpace β]
     [PseudoMetrizableSpace β] {f : α → β} {s : Set α} {μ : Measure α} (hf : ContinuousOn f s)
     (hs : MeasurableSet s) (h's : TopologicalSpace.IsSeparable s) :
-    AeStronglyMeasurable f (μ.restrict s) :=
+    AEStronglyMeasurable f (μ.restrict s) :=
   by
   letI := pseudo_metrizable_space_pseudo_metric α
   borelize β
-  rw [aeStronglyMeasurable_iff_aEMeasurable_separable]
+  rw [aestronglyMeasurable_iff_aemeasurable_separable]
   refine' ⟨hf.ae_measurable hs, f '' s, hf.is_separable_image h's, _⟩
   exact mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)
-#align continuous_on.ae_strongly_measurable_of_is_separable ContinuousOn.aeStronglyMeasurable_of_isSeparable
+#align continuous_on.ae_strongly_measurable_of_is_separable ContinuousOn.aEStronglyMeasurable_of_isSeparable
 
 /-- A function which is continuous on a set `s` is almost everywhere strongly measurable with
 respect to `μ.restrict s` when either the source space or the target space is second-countable. -/
-theorem ContinuousOn.aeStronglyMeasurable [TopologicalSpace α] [TopologicalSpace β]
+theorem ContinuousOn.aEStronglyMeasurable [TopologicalSpace α] [TopologicalSpace β]
     [h : SecondCountableTopologyEither α β] [OpensMeasurableSpace α] [PseudoMetrizableSpace β]
     {f : α → β} {s : Set α} {μ : Measure α} (hf : ContinuousOn f s) (hs : MeasurableSet s) :
-    AeStronglyMeasurable f (μ.restrict s) :=
+    AEStronglyMeasurable f (μ.restrict s) :=
   by
   borelize β
   refine'
-    aeStronglyMeasurable_iff_aEMeasurable_separable.2
+    aestronglyMeasurable_iff_aemeasurable_separable.2
       ⟨hf.ae_measurable hs, f '' s, _,
         mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)⟩
   cases h.out
@@ -557,22 +557,22 @@ theorem ContinuousOn.aeStronglyMeasurable [TopologicalSpace α] [TopologicalSpac
     ext x
     simp
   · exact is_separable_of_separable_space _
-#align continuous_on.ae_strongly_measurable ContinuousOn.aeStronglyMeasurable
+#align continuous_on.ae_strongly_measurable ContinuousOn.aEStronglyMeasurable
 
 /-- A function which is continuous on a compact set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
-theorem ContinuousOn.aeStronglyMeasurable_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α]
+theorem ContinuousOn.aEStronglyMeasurable_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α]
     [TopologicalSpace β] [PseudoMetrizableSpace β] {f : α → β} {s : Set α} {μ : Measure α}
     (hf : ContinuousOn f s) (hs : IsCompact s) (h's : MeasurableSet s) :
-    AeStronglyMeasurable f (μ.restrict s) :=
+    AEStronglyMeasurable f (μ.restrict s) :=
   by
   letI := pseudo_metrizable_space_pseudo_metric β
   borelize β
-  rw [aeStronglyMeasurable_iff_aEMeasurable_separable]
+  rw [aestronglyMeasurable_iff_aemeasurable_separable]
   refine' ⟨hf.ae_measurable h's, f '' s, _, _⟩
   · exact (hs.image_of_continuous_on hf).IsSeparable
   · exact mem_of_superset (self_mem_ae_restrict h's) (subset_preimage_image _ _)
-#align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aeStronglyMeasurable_of_isCompact
+#align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aEStronglyMeasurable_of_isCompact
 
 theorem ContinuousOn.integrable_at_nhdsWithin_of_isSeparable [TopologicalSpace α]
     [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ]
@@ -607,7 +607,7 @@ theorem ContinuousOn.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeas
     [TopologicalSpace β] [PseudoMetrizableSpace β] [SecondCountableTopologyEither α β] {f : α → β}
     {s : Set α} {μ : Measure α} (hs : IsOpen s) (hf : ContinuousOn f s) :
     ∀ x ∈ s, StronglyMeasurableAtFilter f (𝓝 x) μ := fun x hx =>
-  ⟨s, IsOpen.mem_nhds hs hx, hf.AeStronglyMeasurable hs.MeasurableSet⟩
+  ⟨s, IsOpen.mem_nhds hs hx, hf.AEStronglyMeasurable hs.MeasurableSet⟩
 #align continuous_on.strongly_measurable_at_filter ContinuousOn.stronglyMeasurableAtFilter
 
 theorem ContinuousAt.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeasurableSpace α]
@@ -629,7 +629,7 @@ theorem ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin {α β : Type _} [Mea
     [SecondCountableTopologyEither α β] {f : α → β} {s : Set α} {μ : Measure α}
     (hf : ContinuousOn f s) (hs : MeasurableSet s) (x : α) :
     StronglyMeasurableAtFilter f (𝓝[s] x) μ :=
-  ⟨s, self_mem_nhdsWithin, hf.AeStronglyMeasurable hs⟩
+  ⟨s, self_mem_nhdsWithin, hf.AEStronglyMeasurable hs⟩
 #align continuous_on.strongly_measurable_at_filter_nhds_within ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin
 
 /-! ### Lemmas about adding and removing interval boundaries
Diff
@@ -552,7 +552,7 @@ theorem ContinuousOn.aeStronglyMeasurable [TopologicalSpace α] [TopologicalSpac
   cases h.out
   · let f' : s → β := s.restrict f
     have A : Continuous f' := continuousOn_iff_continuous_restrict.1 hf
-    have B : is_separable (univ : Set s) := is_separable_of_separable_space _
+    have B : IsSeparable (univ : Set s) := is_separable_of_separable_space _
     convert is_separable.image B A using 1
     ext x
     simp
Diff
@@ -210,18 +210,18 @@ theorem integrableOn_finite_bUnion {s : Set β} (hs : s.Finite) {t : β → Set
 #align measure_theory.integrable_on_finite_bUnion MeasureTheory.integrableOn_finite_bUnion
 
 @[simp]
-theorem integrableOn_finset_unionᵢ {s : Finset β} {t : β → Set α} :
+theorem integrableOn_finset_iUnion {s : Finset β} {t : β → Set α} :
     IntegrableOn f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, IntegrableOn f (t i) μ :=
   integrableOn_finite_bUnion s.finite_toSet
-#align measure_theory.integrable_on_finset_Union MeasureTheory.integrableOn_finset_unionᵢ
+#align measure_theory.integrable_on_finset_Union MeasureTheory.integrableOn_finset_iUnion
 
 @[simp]
-theorem integrableOn_finite_unionᵢ [Finite β] {t : β → Set α} :
+theorem integrableOn_finite_iUnion [Finite β] {t : β → Set α} :
     IntegrableOn f (⋃ i, t i) μ ↔ ∀ i, IntegrableOn f (t i) μ :=
   by
   cases nonempty_fintype β
   simpa using @integrable_on_finset_Union _ _ _ _ _ f μ Finset.univ t
-#align measure_theory.integrable_on_finite_Union MeasureTheory.integrableOn_finite_unionᵢ
+#align measure_theory.integrable_on_finite_Union MeasureTheory.integrableOn_finite_iUnion
 
 theorem IntegrableOn.add_measure (hμ : IntegrableOn f s μ) (hν : IntegrableOn f s ν) :
     IntegrableOn f s (μ + ν) := by
Diff
@@ -575,7 +575,7 @@ theorem ContinuousOn.aeStronglyMeasurable_of_isCompact [TopologicalSpace α] [Op
 #align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aeStronglyMeasurable_of_isCompact
 
 theorem ContinuousOn.integrable_at_nhdsWithin_of_isSeparable [TopologicalSpace α]
-    [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ]
+    [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ]
     {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t) (ht : MeasurableSet t)
     (h't : TopologicalSpace.IsSeparable t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhds_within_is_measurably_generated _
@@ -586,7 +586,7 @@ theorem ContinuousOn.integrable_at_nhdsWithin_of_isSeparable [TopologicalSpace 
 
 theorem ContinuousOn.integrable_at_nhdsWithin [TopologicalSpace α]
     [SecondCountableTopologyEither α E] [OpensMeasurableSpace α] {μ : Measure α}
-    [IsLocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
+    [LocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
     (ht : MeasurableSet t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhds_within_is_measurably_generated _
   (hft a ha).IntegrableAtFilter ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable ht⟩
@@ -594,7 +594,7 @@ theorem ContinuousOn.integrable_at_nhdsWithin [TopologicalSpace α]
 #align continuous_on.integrable_at_nhds_within ContinuousOn.integrable_at_nhdsWithin
 
 theorem Continuous.integrable_at_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
-    [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ] {f : α → E}
+    [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ] {f : α → E}
     (hf : Continuous f) (a : α) : IntegrableAtFilter f (𝓝 a) μ :=
   by
   rw [← nhdsWithin_univ]
@@ -704,7 +704,7 @@ theorem integrableOn_Iic_iff_integrableOn_Iio' (hb : μ {b} ≠ ∞) :
     eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
 #align integrable_on_Iic_iff_integrable_on_Iio' integrableOn_Iic_iff_integrableOn_Iio'
 
-variable [HasNoAtoms μ]
+variable [NoAtoms μ]
 
 theorem integrableOn_Icc_iff_integrableOn_Ioc :
     IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioc a b) μ :=
Diff
@@ -44,30 +44,30 @@ def StronglyMeasurableAtFilter (f : α → β) (l : Filter α)
 #align strongly_measurable_at_filter StronglyMeasurableAtFilter
 
 @[simp]
-theorem stronglyMeasurableAtBot {f : α → β} : StronglyMeasurableAtFilter f ⊥ μ :=
+theorem strongly_measurable_at_bot {f : α → β} : StronglyMeasurableAtFilter f ⊥ μ :=
   ⟨∅, mem_bot, by simp⟩
-#align strongly_measurable_at_bot stronglyMeasurableAtBot
+#align strongly_measurable_at_bot strongly_measurable_at_bot
 
 protected theorem StronglyMeasurableAtFilter.eventually (h : StronglyMeasurableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, AeStronglyMeasurable f (μ.restrict s) :=
-  (eventually_small_sets' fun s t => AeStronglyMeasurable.monoSet).2 h
+  (eventually_small_sets' fun s t => AeStronglyMeasurable.mono_set).2 h
 #align strongly_measurable_at_filter.eventually StronglyMeasurableAtFilter.eventually
 
-protected theorem StronglyMeasurableAtFilter.filterMono (h : StronglyMeasurableAtFilter f l μ)
+protected theorem StronglyMeasurableAtFilter.filter_mono (h : StronglyMeasurableAtFilter f l μ)
     (h' : l' ≤ l) : StronglyMeasurableAtFilter f l' μ :=
   let ⟨s, hsl, hs⟩ := h
   ⟨s, h' hsl, hs⟩
-#align strongly_measurable_at_filter.filter_mono StronglyMeasurableAtFilter.filterMono
+#align strongly_measurable_at_filter.filter_mono StronglyMeasurableAtFilter.filter_mono
 
 protected theorem MeasureTheory.AeStronglyMeasurable.stronglyMeasurableAtFilter
     (h : AeStronglyMeasurable f μ) : StronglyMeasurableAtFilter f l μ :=
   ⟨univ, univ_mem, by rwa [measure.restrict_univ]⟩
 #align measure_theory.ae_strongly_measurable.strongly_measurable_at_filter MeasureTheory.AeStronglyMeasurable.stronglyMeasurableAtFilter
 
-theorem AeStronglyMeasurable.stronglyMeasurableAtFilterOfMem {s}
+theorem AeStronglyMeasurable.stronglyMeasurableAtFilter_of_mem {s}
     (h : AeStronglyMeasurable f (μ.restrict s)) (hl : s ∈ l) : StronglyMeasurableAtFilter f l μ :=
   ⟨s, hl, h⟩
-#align ae_strongly_measurable.strongly_measurable_at_filter_of_mem AeStronglyMeasurable.stronglyMeasurableAtFilterOfMem
+#align ae_strongly_measurable.strongly_measurable_at_filter_of_mem AeStronglyMeasurable.stronglyMeasurableAtFilter_of_mem
 
 protected theorem MeasureTheory.StronglyMeasurable.stronglyMeasurableAtFilter
     (h : StronglyMeasurable f) : StronglyMeasurableAtFilter f l μ :=
@@ -80,12 +80,12 @@ namespace MeasureTheory
 
 section NormedAddCommGroup
 
-theorem hasFiniteIntegralRestrictOfBounded [NormedAddCommGroup E] {f : α → E} {s : Set α}
+theorem hasFiniteIntegral_restrict_of_bounded [NormedAddCommGroup E] {f : α → E} {s : Set α}
     {μ : Measure α} {C} (hs : μ s < ∞) (hf : ∀ᵐ x ∂μ.restrict s, ‖f x‖ ≤ C) :
     HasFiniteIntegral f (μ.restrict s) :=
   haveI : is_finite_measure (μ.restrict s) := ⟨by rwa [measure.restrict_apply_univ]⟩
   has_finite_integral_of_bounded hf
-#align measure_theory.has_finite_integral_restrict_of_bounded MeasureTheory.hasFiniteIntegralRestrictOfBounded
+#align measure_theory.has_finite_integral_restrict_of_bounded MeasureTheory.hasFiniteIntegral_restrict_of_bounded
 
 variable [NormedAddCommGroup E] {f g : α → E} {s t : Set α} {μ ν : Measure α}
 
@@ -101,17 +101,17 @@ theorem IntegrableOn.integrable (h : IntegrableOn f s μ) : Integrable f (μ.res
 #align measure_theory.integrable_on.integrable MeasureTheory.IntegrableOn.integrable
 
 @[simp]
-theorem integrableOnEmpty : IntegrableOn f ∅ μ := by simp [integrable_on, integrable_zero_measure]
-#align measure_theory.integrable_on_empty MeasureTheory.integrableOnEmpty
+theorem integrableOn_empty : IntegrableOn f ∅ μ := by simp [integrable_on, integrable_zero_measure]
+#align measure_theory.integrable_on_empty MeasureTheory.integrableOn_empty
 
 @[simp]
 theorem integrableOn_univ : IntegrableOn f univ μ ↔ Integrable f μ := by
   rw [integrable_on, measure.restrict_univ]
 #align measure_theory.integrable_on_univ MeasureTheory.integrableOn_univ
 
-theorem integrableOnZero : IntegrableOn (fun _ => (0 : E)) s μ :=
-  integrableZero _ _ _
-#align measure_theory.integrable_on_zero MeasureTheory.integrableOnZero
+theorem integrableOn_zero : IntegrableOn (fun _ => (0 : E)) s μ :=
+  integrable_zero _ _ _
+#align measure_theory.integrable_on_zero MeasureTheory.integrableOn_zero
 
 @[simp]
 theorem integrableOn_const {C : E} : IntegrableOn (fun _ => C) s μ ↔ C = 0 ∨ μ s < ∞ :=
@@ -119,39 +119,39 @@ theorem integrableOn_const {C : E} : IntegrableOn (fun _ => C) s μ ↔ C = 0 
 #align measure_theory.integrable_on_const MeasureTheory.integrableOn_const
 
 theorem IntegrableOn.mono (h : IntegrableOn f t ν) (hs : s ⊆ t) (hμ : μ ≤ ν) : IntegrableOn f s μ :=
-  h.monoMeasure <| Measure.restrict_mono hs hμ
+  h.mono_measure <| Measure.restrict_mono hs hμ
 #align measure_theory.integrable_on.mono MeasureTheory.IntegrableOn.mono
 
-theorem IntegrableOn.monoSet (h : IntegrableOn f t μ) (hst : s ⊆ t) : IntegrableOn f s μ :=
+theorem IntegrableOn.mono_set (h : IntegrableOn f t μ) (hst : s ⊆ t) : IntegrableOn f s μ :=
   h.mono hst le_rfl
-#align measure_theory.integrable_on.mono_set MeasureTheory.IntegrableOn.monoSet
+#align measure_theory.integrable_on.mono_set MeasureTheory.IntegrableOn.mono_set
 
-theorem IntegrableOn.monoMeasure (h : IntegrableOn f s ν) (hμ : μ ≤ ν) : IntegrableOn f s μ :=
+theorem IntegrableOn.mono_measure (h : IntegrableOn f s ν) (hμ : μ ≤ ν) : IntegrableOn f s μ :=
   h.mono (Subset.refl _) hμ
-#align measure_theory.integrable_on.mono_measure MeasureTheory.IntegrableOn.monoMeasure
+#align measure_theory.integrable_on.mono_measure MeasureTheory.IntegrableOn.mono_measure
 
-theorem IntegrableOn.monoSetAe (h : IntegrableOn f t μ) (hst : s ≤ᵐ[μ] t) : IntegrableOn f s μ :=
-  h.Integrable.monoMeasure <| Measure.restrict_mono_ae hst
-#align measure_theory.integrable_on.mono_set_ae MeasureTheory.IntegrableOn.monoSetAe
+theorem IntegrableOn.mono_set_ae (h : IntegrableOn f t μ) (hst : s ≤ᵐ[μ] t) : IntegrableOn f s μ :=
+  h.Integrable.mono_measure <| Measure.restrict_mono_ae hst
+#align measure_theory.integrable_on.mono_set_ae MeasureTheory.IntegrableOn.mono_set_ae
 
-theorem IntegrableOn.congrSetAe (h : IntegrableOn f t μ) (hst : s =ᵐ[μ] t) : IntegrableOn f s μ :=
-  h.monoSetAe hst.le
-#align measure_theory.integrable_on.congr_set_ae MeasureTheory.IntegrableOn.congrSetAe
+theorem IntegrableOn.congr_set_ae (h : IntegrableOn f t μ) (hst : s =ᵐ[μ] t) : IntegrableOn f s μ :=
+  h.mono_set_ae hst.le
+#align measure_theory.integrable_on.congr_set_ae MeasureTheory.IntegrableOn.congr_set_ae
 
-theorem IntegrableOn.congrFunAe (h : IntegrableOn f s μ) (hst : f =ᵐ[μ.restrict s] g) :
+theorem IntegrableOn.congr_fun_ae (h : IntegrableOn f s μ) (hst : f =ᵐ[μ.restrict s] g) :
     IntegrableOn g s μ :=
   Integrable.congr h hst
-#align measure_theory.integrable_on.congr_fun_ae MeasureTheory.IntegrableOn.congrFunAe
+#align measure_theory.integrable_on.congr_fun_ae MeasureTheory.IntegrableOn.congr_fun_ae
 
 theorem integrableOn_congr_fun_ae (hst : f =ᵐ[μ.restrict s] g) :
     IntegrableOn f s μ ↔ IntegrableOn g s μ :=
-  ⟨fun h => h.congrFunAe hst, fun h => h.congrFunAe hst.symm⟩
+  ⟨fun h => h.congr_fun_ae hst, fun h => h.congr_fun_ae hst.symm⟩
 #align measure_theory.integrable_on_congr_fun_ae MeasureTheory.integrableOn_congr_fun_ae
 
-theorem IntegrableOn.congrFun (h : IntegrableOn f s μ) (hst : EqOn f g s) (hs : MeasurableSet s) :
+theorem IntegrableOn.congr_fun (h : IntegrableOn f s μ) (hst : EqOn f g s) (hs : MeasurableSet s) :
     IntegrableOn g s μ :=
-  h.congrFunAe ((ae_restrict_iff' hs).2 (eventually_of_forall hst))
-#align measure_theory.integrable_on.congr_fun MeasureTheory.IntegrableOn.congrFun
+  h.congr_fun_ae ((ae_restrict_iff' hs).2 (eventually_of_forall hst))
+#align measure_theory.integrable_on.congr_fun MeasureTheory.IntegrableOn.congr_fun
 
 theorem integrableOn_congr_fun (hst : EqOn f g s) (hs : MeasurableSet s) :
     IntegrableOn f s μ ↔ IntegrableOn g s μ :=
@@ -159,7 +159,7 @@ theorem integrableOn_congr_fun (hst : EqOn f g s) (hs : MeasurableSet s) :
 #align measure_theory.integrable_on_congr_fun MeasureTheory.integrableOn_congr_fun
 
 theorem Integrable.integrableOn (h : Integrable f μ) : IntegrableOn f s μ :=
-  h.monoMeasure <| Measure.restrict_le_self
+  h.mono_measure <| Measure.restrict_le_self
 #align measure_theory.integrable.integrable_on MeasureTheory.Integrable.integrableOn
 
 theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
@@ -169,22 +169,22 @@ theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
   exact h.mono_set (inter_subset_left _ _)
 #align measure_theory.integrable_on.restrict MeasureTheory.IntegrableOn.restrict
 
-theorem IntegrableOn.leftOfUnion (h : IntegrableOn f (s ∪ t) μ) : IntegrableOn f s μ :=
-  h.monoSet <| subset_union_left _ _
-#align measure_theory.integrable_on.left_of_union MeasureTheory.IntegrableOn.leftOfUnion
+theorem IntegrableOn.left_of_union (h : IntegrableOn f (s ∪ t) μ) : IntegrableOn f s μ :=
+  h.mono_set <| subset_union_left _ _
+#align measure_theory.integrable_on.left_of_union MeasureTheory.IntegrableOn.left_of_union
 
-theorem IntegrableOn.rightOfUnion (h : IntegrableOn f (s ∪ t) μ) : IntegrableOn f t μ :=
-  h.monoSet <| subset_union_right _ _
-#align measure_theory.integrable_on.right_of_union MeasureTheory.IntegrableOn.rightOfUnion
+theorem IntegrableOn.right_of_union (h : IntegrableOn f (s ∪ t) μ) : IntegrableOn f t μ :=
+  h.mono_set <| subset_union_right _ _
+#align measure_theory.integrable_on.right_of_union MeasureTheory.IntegrableOn.right_of_union
 
 theorem IntegrableOn.union (hs : IntegrableOn f s μ) (ht : IntegrableOn f t μ) :
     IntegrableOn f (s ∪ t) μ :=
-  (hs.addMeasure ht).monoMeasure <| Measure.restrict_union_le _ _
+  (hs.add_measure ht).mono_measure <| Measure.restrict_union_le _ _
 #align measure_theory.integrable_on.union MeasureTheory.IntegrableOn.union
 
 @[simp]
 theorem integrableOn_union : IntegrableOn f (s ∪ t) μ ↔ IntegrableOn f s μ ∧ IntegrableOn f t μ :=
-  ⟨fun h => ⟨h.leftOfUnion, h.rightOfUnion⟩, fun h => h.1.union h.2⟩
+  ⟨fun h => ⟨h.left_of_union, h.right_of_union⟩, fun h => h.1.union h.2⟩
 #align measure_theory.integrable_on_union MeasureTheory.integrableOn_union
 
 @[simp]
@@ -223,19 +223,19 @@ theorem integrableOn_finite_unionᵢ [Finite β] {t : β → Set α} :
   simpa using @integrable_on_finset_Union _ _ _ _ _ f μ Finset.univ t
 #align measure_theory.integrable_on_finite_Union MeasureTheory.integrableOn_finite_unionᵢ
 
-theorem IntegrableOn.addMeasure (hμ : IntegrableOn f s μ) (hν : IntegrableOn f s ν) :
+theorem IntegrableOn.add_measure (hμ : IntegrableOn f s μ) (hν : IntegrableOn f s ν) :
     IntegrableOn f s (μ + ν) := by
   delta integrable_on
   rw [measure.restrict_add]
   exact hμ.integrable.add_measure hν
-#align measure_theory.integrable_on.add_measure MeasureTheory.IntegrableOn.addMeasure
+#align measure_theory.integrable_on.add_measure MeasureTheory.IntegrableOn.add_measure
 
 @[simp]
 theorem integrableOn_add_measure :
     IntegrableOn f s (μ + ν) ↔ IntegrableOn f s μ ∧ IntegrableOn f s ν :=
   ⟨fun h =>
-    ⟨h.monoMeasure (Measure.le_add_right le_rfl), h.monoMeasure (Measure.le_add_left le_rfl)⟩,
-    fun h => h.1.addMeasure h.2⟩
+    ⟨h.mono_measure (Measure.le_add_right le_rfl), h.mono_measure (Measure.le_add_left le_rfl)⟩,
+    fun h => h.1.add_measure h.2⟩
 #align measure_theory.integrable_on_add_measure MeasureTheory.integrableOn_add_measure
 
 theorem MeasurableEmbedding.integrableOn_map_iff [MeasurableSpace β] {e : α → β}
@@ -252,13 +252,13 @@ theorem integrableOn_map_equiv [MeasurableSpace β] (e : α ≃ᵐ β) {f : β 
 theorem MeasurePreserving.integrableOn_comp_preimage [MeasurableSpace β] {e : α → β} {ν}
     (h₁ : MeasurePreserving e μ ν) (h₂ : MeasurableEmbedding e) {f : β → E} {s : Set β} :
     IntegrableOn (f ∘ e) (e ⁻¹' s) μ ↔ IntegrableOn f s ν :=
-  (h₁.restrictPreimageEmb h₂ s).integrable_comp_emb h₂
+  (h₁.restrict_preimage_emb h₂ s).integrable_comp_emb h₂
 #align measure_theory.measure_preserving.integrable_on_comp_preimage MeasureTheory.MeasurePreserving.integrableOn_comp_preimage
 
 theorem MeasurePreserving.integrableOn_image [MeasurableSpace β] {e : α → β} {ν}
     (h₁ : MeasurePreserving e μ ν) (h₂ : MeasurableEmbedding e) {f : β → E} {s : Set α} :
     IntegrableOn f (e '' s) ν ↔ IntegrableOn (f ∘ e) s μ :=
-  ((h₁.restrictImageEmb h₂ s).integrable_comp_emb h₂).symm
+  ((h₁.restrict_image_emb h₂ s).integrable_comp_emb h₂).symm
 #align measure_theory.measure_preserving.integrable_on_image MeasureTheory.MeasurePreserving.integrableOn_image
 
 theorem integrable_indicator_iff (hs : MeasurableSet s) :
@@ -267,14 +267,14 @@ theorem integrable_indicator_iff (hs : MeasurableSet s) :
     ENNReal.coe_indicator, lintegral_indicator _ hs, aeStronglyMeasurable_indicator_iff hs]
 #align measure_theory.integrable_indicator_iff MeasureTheory.integrable_indicator_iff
 
-theorem IntegrableOn.integrableIndicator (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
+theorem IntegrableOn.integrable_indicator (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
     Integrable (indicator s f) μ :=
   (integrable_indicator_iff hs).2 h
-#align measure_theory.integrable_on.integrable_indicator MeasureTheory.IntegrableOn.integrableIndicator
+#align measure_theory.integrable_on.integrable_indicator MeasureTheory.IntegrableOn.integrable_indicator
 
 theorem Integrable.indicator (h : Integrable f μ) (hs : MeasurableSet s) :
     Integrable (indicator s f) μ :=
-  h.IntegrableOn.integrableIndicator hs
+  h.IntegrableOn.integrable_indicator hs
 #align measure_theory.integrable.indicator MeasureTheory.Integrable.indicator
 
 theorem IntegrableOn.indicator (h : IntegrableOn f s μ) (ht : MeasurableSet t) :
@@ -282,14 +282,14 @@ theorem IntegrableOn.indicator (h : IntegrableOn f s μ) (ht : MeasurableSet t)
   Integrable.indicator h ht
 #align measure_theory.integrable_on.indicator MeasureTheory.IntegrableOn.indicator
 
-theorem integrableIndicatorConstLp {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
+theorem integrable_indicatorConstLp {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
     (hs : MeasurableSet s) (hμs : μ s ≠ ∞) (c : E) : Integrable (indicatorConstLp p hs hμs c) μ :=
   by
   rw [integrable_congr indicator_const_Lp_coe_fn, integrable_indicator_iff hs, integrable_on,
     integrable_const_iff, lt_top_iff_ne_top]
   right
   simpa only [Set.univ_inter, MeasurableSet.univ, measure.restrict_apply] using hμs
-#align measure_theory.integrable_indicator_const_Lp MeasureTheory.integrableIndicatorConstLp
+#align measure_theory.integrable_indicator_const_Lp MeasureTheory.integrable_indicatorConstLp
 
 /-- If a function is integrable on a set `s` and nonzero there, then the measurable hull of `s` is
 well behaved: the restriction of the measure to `to_measurable μ s` coincides with its restriction
@@ -315,7 +315,7 @@ theorem IntegrableOn.restrict_toMeasurable (hf : IntegrableOn f s μ) (h's : ∀
 
 /-- If a function is integrable on a set `s`, and vanishes on `t \ s`, then it is integrable on `t`
 if `t` is null-measurable. -/
-theorem IntegrableOn.ofAeDiffEqZero (hf : IntegrableOn f s μ) (ht : NullMeasurableSet t μ)
+theorem IntegrableOn.of_ae_diff_eq_zero (hf : IntegrableOn f s μ) (ht : NullMeasurableSet t μ)
     (h't : ∀ᵐ x ∂μ, x ∈ t \ s → f x = 0) : IntegrableOn f t μ :=
   by
   let u := { x ∈ s | f x ≠ 0 }
@@ -336,35 +336,35 @@ theorem IntegrableOn.ofAeDiffEqZero (hf : IntegrableOn f s μ) (ht : NullMeasura
     · by_contra H
       exact hx.2 (subset_to_measurable μ u ⟨h'x, Ne.symm H⟩)
     · exact (hxt ⟨hx.1, h'x⟩).symm
-  apply (A.union B).monoSet _
+  apply (A.union B).mono_set _
   rw [union_diff_self]
   exact subset_union_right _ _
-#align measure_theory.integrable_on.of_ae_diff_eq_zero MeasureTheory.IntegrableOn.ofAeDiffEqZero
+#align measure_theory.integrable_on.of_ae_diff_eq_zero MeasureTheory.IntegrableOn.of_ae_diff_eq_zero
 
 /-- If a function is integrable on a set `s`, and vanishes on `t \ s`, then it is integrable on `t`
 if `t` is measurable. -/
-theorem IntegrableOn.ofForallDiffEqZero (hf : IntegrableOn f s μ) (ht : MeasurableSet t)
+theorem IntegrableOn.of_forall_diff_eq_zero (hf : IntegrableOn f s μ) (ht : MeasurableSet t)
     (h't : ∀ x ∈ t \ s, f x = 0) : IntegrableOn f t μ :=
-  hf.ofAeDiffEqZero ht.NullMeasurableSet (eventually_of_forall h't)
-#align measure_theory.integrable_on.of_forall_diff_eq_zero MeasureTheory.IntegrableOn.ofForallDiffEqZero
+  hf.of_ae_diff_eq_zero ht.NullMeasurableSet (eventually_of_forall h't)
+#align measure_theory.integrable_on.of_forall_diff_eq_zero MeasureTheory.IntegrableOn.of_forall_diff_eq_zero
 
 /-- If a function is integrable on a set `s` and vanishes almost everywhere on its complement,
 then it is integrable. -/
-theorem IntegrableOn.integrableOfAeNotMemEqZero (hf : IntegrableOn f s μ)
+theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
     (h't : ∀ᵐ x ∂μ, x ∉ s → f x = 0) : Integrable f μ :=
   by
   rw [← integrable_on_univ]
   apply hf.of_ae_diff_eq_zero null_measurable_set_univ
   filter_upwards [h't]with x hx h'x using hx h'x.2
-#align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrableOfAeNotMemEqZero
+#align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ∉ » s) -/
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
 then it is integrable. -/
-theorem IntegrableOn.integrableOfForallNotMemEqZero (hf : IntegrableOn f s μ)
+theorem IntegrableOn.integrable_of_forall_not_mem_eq_zero (hf : IntegrableOn f s μ)
     (h't : ∀ (x) (_ : x ∉ s), f x = 0) : Integrable f μ :=
-  hf.integrableOfAeNotMemEqZero (eventually_of_forall fun x hx => h't x hx)
-#align measure_theory.integrable_on.integrable_of_forall_not_mem_eq_zero MeasureTheory.IntegrableOn.integrableOfForallNotMemEqZero
+  hf.integrable_of_ae_not_mem_eq_zero (eventually_of_forall fun x hx => h't x hx)
+#align measure_theory.integrable_on.integrable_of_forall_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_forall_not_mem_eq_zero
 
 theorem integrableOn_iff_integrable_of_support_subset (h1s : support f ⊆ s) :
     IntegrableOn f s μ ↔ Integrable f μ :=
@@ -375,15 +375,15 @@ theorem integrableOn_iff_integrable_of_support_subset (h1s : support f ⊆ s) :
   exact h1s (mem_support.2 hx)
 #align measure_theory.integrable_on_iff_integrable_of_support_subset MeasureTheory.integrableOn_iff_integrable_of_support_subset
 
-theorem integrableOnLpOfMeasureNeTop {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
+theorem integrableOn_lp_of_measure_ne_top {E} [NormedAddCommGroup E] {p : ℝ≥0∞} {s : Set α}
     (f : lp E p μ) (hp : 1 ≤ p) (hμs : μ s ≠ ∞) : IntegrableOn f s μ :=
   by
   refine' mem_ℒp_one_iff_integrable.mp _
   have hμ_restrict_univ : (μ.restrict s) Set.univ < ∞ := by
     simpa only [Set.univ_inter, MeasurableSet.univ, measure.restrict_apply, lt_top_iff_ne_top]
   haveI hμ_finite : is_finite_measure (μ.restrict s) := ⟨hμ_restrict_univ⟩
-  exact ((Lp.mem_ℒp _).restrict s).memℒpOfExponentLe hp
-#align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOnLpOfMeasureNeTop
+  exact ((Lp.mem_ℒp _).restrict s).memℒp_of_exponent_le hp
+#align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOn_lp_of_measure_ne_top
 
 theorem Integrable.lintegral_lt_top {f : α → ℝ} (hf : Integrable f μ) :
     (∫⁻ x, ENNReal.ofReal (f x) ∂μ) < ∞ :=
@@ -414,24 +414,24 @@ theorem Integrable.integrableAtFilter (h : Integrable f μ) (l : Filter α) :
 
 protected theorem IntegrableAtFilter.eventually (h : IntegrableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, IntegrableOn f s μ :=
-  Iff.mpr (eventually_small_sets' fun s t hst ht => ht.monoSet hst) h
+  Iff.mpr (eventually_small_sets' fun s t hst ht => ht.mono_set hst) h
 #align measure_theory.integrable_at_filter.eventually MeasureTheory.IntegrableAtFilter.eventually
 
-theorem IntegrableAtFilter.filterMono (hl : l ≤ l') (hl' : IntegrableAtFilter f l' μ) :
+theorem IntegrableAtFilter.filter_mono (hl : l ≤ l') (hl' : IntegrableAtFilter f l' μ) :
     IntegrableAtFilter f l μ :=
   let ⟨s, hs, hsf⟩ := hl'
   ⟨s, hl hs, hsf⟩
-#align measure_theory.integrable_at_filter.filter_mono MeasureTheory.IntegrableAtFilter.filterMono
+#align measure_theory.integrable_at_filter.filter_mono MeasureTheory.IntegrableAtFilter.filter_mono
 
-theorem IntegrableAtFilter.infOfLeft (hl : IntegrableAtFilter f l μ) :
+theorem IntegrableAtFilter.inf_of_left (hl : IntegrableAtFilter f l μ) :
     IntegrableAtFilter f (l ⊓ l') μ :=
   hl.filter_mono inf_le_left
-#align measure_theory.integrable_at_filter.inf_of_left MeasureTheory.IntegrableAtFilter.infOfLeft
+#align measure_theory.integrable_at_filter.inf_of_left MeasureTheory.IntegrableAtFilter.inf_of_left
 
-theorem IntegrableAtFilter.infOfRight (hl : IntegrableAtFilter f l μ) :
+theorem IntegrableAtFilter.inf_of_right (hl : IntegrableAtFilter f l μ) :
     IntegrableAtFilter f (l' ⊓ l) μ :=
   hl.filter_mono inf_le_right
-#align measure_theory.integrable_at_filter.inf_of_right MeasureTheory.IntegrableAtFilter.infOfRight
+#align measure_theory.integrable_at_filter.inf_of_right MeasureTheory.IntegrableAtFilter.inf_of_right
 
 @[simp]
 theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
@@ -447,7 +447,7 @@ theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
 #align measure_theory.integrable_at_filter.inf_ae_iff MeasureTheory.IntegrableAtFilter.inf_ae_iff
 
 alias integrable_at_filter.inf_ae_iff ↔ integrable_at_filter.of_inf_ae _
-#align measure_theory.integrable_at_filter.of_inf_ae MeasureTheory.IntegrableAtFilter.ofInfAe
+#align measure_theory.integrable_at_filter.of_inf_ae MeasureTheory.IntegrableAtFilter.of_inf_ae
 
 /-- If `μ` is a measure finite at filter `l` and `f` is a function such that its norm is bounded
 above at `l`, then `f` is integrable at `l`. -/
@@ -465,22 +465,22 @@ theorem Measure.FiniteAtFilter.integrableAtFilter {l : Filter α} [IsMeasurablyG
   exact eventually_of_forall hC
 #align measure_theory.measure.finite_at_filter.integrable_at_filter MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter
 
-theorem Measure.FiniteAtFilter.integrableAtFilterOfTendstoAe {l : Filter α}
+theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae {l : Filter α}
     [IsMeasurablyGenerated l] (hfm : StronglyMeasurableAtFilter f l μ) (hμ : μ.FiniteAtFilter l) {b}
     (hf : Tendsto f (l ⊓ μ.ae) (𝓝 b)) : IntegrableAtFilter f l μ :=
   (hμ.inf_of_left.IntegrableAtFilter (hfm.filter_mono inf_le_left)
-      hf.norm.isBoundedUnder_le).ofInfAe
-#align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto_ae MeasureTheory.Measure.FiniteAtFilter.integrableAtFilterOfTendstoAe
+      hf.norm.isBoundedUnder_le).of_inf_ae
+#align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto_ae MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae
 
 alias measure.finite_at_filter.integrable_at_filter_of_tendsto_ae ←
   _root_.filter.tendsto.integrable_at_filter_ae
-#align filter.tendsto.integrable_at_filter_ae Filter.Tendsto.integrableAtFilterAe
+#align filter.tendsto.integrable_at_filter_ae Filter.Tendsto.integrableAtFilter_ae
 
-theorem Measure.FiniteAtFilter.integrableAtFilterOfTendsto {l : Filter α} [IsMeasurablyGenerated l]
-    (hfm : StronglyMeasurableAtFilter f l μ) (hμ : μ.FiniteAtFilter l) {b}
+theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto {l : Filter α}
+    [IsMeasurablyGenerated l] (hfm : StronglyMeasurableAtFilter f l μ) (hμ : μ.FiniteAtFilter l) {b}
     (hf : Tendsto f l (𝓝 b)) : IntegrableAtFilter f l μ :=
   hμ.IntegrableAtFilter hfm hf.norm.isBoundedUnder_le
-#align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto MeasureTheory.Measure.FiniteAtFilter.integrableAtFilterOfTendsto
+#align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto
 
 alias measure.finite_at_filter.integrable_at_filter_of_tendsto ←
   _root_.filter.tendsto.integrable_at_filter
@@ -507,9 +507,9 @@ variable [NormedAddCommGroup E]
 
 /-- A function which is continuous on a set `s` is almost everywhere measurable with respect to
 `μ.restrict s`. -/
-theorem ContinuousOn.aeMeasurable [TopologicalSpace α] [OpensMeasurableSpace α] [MeasurableSpace β]
+theorem ContinuousOn.aEMeasurable [TopologicalSpace α] [OpensMeasurableSpace α] [MeasurableSpace β]
     [TopologicalSpace β] [BorelSpace β] {f : α → β} {s : Set α} {μ : Measure α}
-    (hf : ContinuousOn f s) (hs : MeasurableSet s) : AeMeasurable f (μ.restrict s) :=
+    (hf : ContinuousOn f s) (hs : MeasurableSet s) : AEMeasurable f (μ.restrict s) :=
   by
   nontriviality α; inhabit α
   have : (piecewise s f fun _ => f default) =ᵐ[μ.restrict s] f := piecewise_ae_eq_restrict hs
@@ -520,11 +520,11 @@ theorem ContinuousOn.aeMeasurable [TopologicalSpace α] [OpensMeasurableSpace α
     _root_.continuous_on_iff'.1 hf t ht
   rw [piecewise_preimage, Set.ite, hu]
   exact (u_open.measurable_set.inter hs).union ((measurable_const ht.measurable_set).diffₓ hs)
-#align continuous_on.ae_measurable ContinuousOn.aeMeasurable
+#align continuous_on.ae_measurable ContinuousOn.aEMeasurable
 
 /-- A function which is continuous on a separable set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
-theorem ContinuousOn.aeStronglyMeasurableOfIsSeparable [TopologicalSpace α]
+theorem ContinuousOn.aeStronglyMeasurable_of_isSeparable [TopologicalSpace α]
     [PseudoMetrizableSpace α] [OpensMeasurableSpace α] [TopologicalSpace β]
     [PseudoMetrizableSpace β] {f : α → β} {s : Set α} {μ : Measure α} (hf : ContinuousOn f s)
     (hs : MeasurableSet s) (h's : TopologicalSpace.IsSeparable s) :
@@ -532,10 +532,10 @@ theorem ContinuousOn.aeStronglyMeasurableOfIsSeparable [TopologicalSpace α]
   by
   letI := pseudo_metrizable_space_pseudo_metric α
   borelize β
-  rw [aeStronglyMeasurable_iff_aeMeasurable_separable]
+  rw [aeStronglyMeasurable_iff_aEMeasurable_separable]
   refine' ⟨hf.ae_measurable hs, f '' s, hf.is_separable_image h's, _⟩
   exact mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)
-#align continuous_on.ae_strongly_measurable_of_is_separable ContinuousOn.aeStronglyMeasurableOfIsSeparable
+#align continuous_on.ae_strongly_measurable_of_is_separable ContinuousOn.aeStronglyMeasurable_of_isSeparable
 
 /-- A function which is continuous on a set `s` is almost everywhere strongly measurable with
 respect to `μ.restrict s` when either the source space or the target space is second-countable. -/
@@ -546,7 +546,7 @@ theorem ContinuousOn.aeStronglyMeasurable [TopologicalSpace α] [TopologicalSpac
   by
   borelize β
   refine'
-    aeStronglyMeasurable_iff_aeMeasurable_separable.2
+    aeStronglyMeasurable_iff_aEMeasurable_separable.2
       ⟨hf.ae_measurable hs, f '' s, _,
         mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)⟩
   cases h.out
@@ -561,20 +561,20 @@ theorem ContinuousOn.aeStronglyMeasurable [TopologicalSpace α] [TopologicalSpac
 
 /-- A function which is continuous on a compact set `s` is almost everywhere strongly measurable
 with respect to `μ.restrict s`. -/
-theorem ContinuousOn.aeStronglyMeasurableOfIsCompact [TopologicalSpace α] [OpensMeasurableSpace α]
+theorem ContinuousOn.aeStronglyMeasurable_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α]
     [TopologicalSpace β] [PseudoMetrizableSpace β] {f : α → β} {s : Set α} {μ : Measure α}
     (hf : ContinuousOn f s) (hs : IsCompact s) (h's : MeasurableSet s) :
     AeStronglyMeasurable f (μ.restrict s) :=
   by
   letI := pseudo_metrizable_space_pseudo_metric β
   borelize β
-  rw [aeStronglyMeasurable_iff_aeMeasurable_separable]
+  rw [aeStronglyMeasurable_iff_aEMeasurable_separable]
   refine' ⟨hf.ae_measurable h's, f '' s, _, _⟩
   · exact (hs.image_of_continuous_on hf).IsSeparable
   · exact mem_of_superset (self_mem_ae_restrict h's) (subset_preimage_image _ _)
-#align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aeStronglyMeasurableOfIsCompact
+#align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aeStronglyMeasurable_of_isCompact
 
-theorem ContinuousOn.integrableAtNhdsWithinOfIsSeparable [TopologicalSpace α]
+theorem ContinuousOn.integrable_at_nhdsWithin_of_isSeparable [TopologicalSpace α]
     [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ]
     {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t) (ht : MeasurableSet t)
     (h't : TopologicalSpace.IsSeparable t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
@@ -582,24 +582,24 @@ theorem ContinuousOn.integrableAtNhdsWithinOfIsSeparable [TopologicalSpace α]
   (hft a ha).IntegrableAtFilter
     ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable_of_is_separable ht h't⟩
     (μ.finite_at_nhds_within _ _)
-#align continuous_on.integrable_at_nhds_within_of_is_separable ContinuousOn.integrableAtNhdsWithinOfIsSeparable
+#align continuous_on.integrable_at_nhds_within_of_is_separable ContinuousOn.integrable_at_nhdsWithin_of_isSeparable
 
-theorem ContinuousOn.integrableAtNhdsWithin [TopologicalSpace α] [SecondCountableTopologyEither α E]
-    [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ] {a : α} {t : Set α}
-    {f : α → E} (hft : ContinuousOn f t) (ht : MeasurableSet t) (ha : a ∈ t) :
-    IntegrableAtFilter f (𝓝[t] a) μ :=
+theorem ContinuousOn.integrable_at_nhdsWithin [TopologicalSpace α]
+    [SecondCountableTopologyEither α E] [OpensMeasurableSpace α] {μ : Measure α}
+    [IsLocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
+    (ht : MeasurableSet t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhds_within_is_measurably_generated _
   (hft a ha).IntegrableAtFilter ⟨_, self_mem_nhdsWithin, hft.ae_strongly_measurable ht⟩
     (μ.finite_at_nhds_within _ _)
-#align continuous_on.integrable_at_nhds_within ContinuousOn.integrableAtNhdsWithin
+#align continuous_on.integrable_at_nhds_within ContinuousOn.integrable_at_nhdsWithin
 
-theorem Continuous.integrableAtNhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
+theorem Continuous.integrable_at_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
     [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ] {f : α → E}
     (hf : Continuous f) (a : α) : IntegrableAtFilter f (𝓝 a) μ :=
   by
   rw [← nhdsWithin_univ]
   exact hf.continuous_on.integrable_at_nhds_within MeasurableSet.univ (mem_univ a)
-#align continuous.integrable_at_nhds Continuous.integrableAtNhds
+#align continuous.integrable_at_nhds Continuous.integrable_at_nhds
 
 /-- If a function is continuous on an open set `s`, then it is strongly measurable at the filter
 `𝓝 x` for all `x ∈ s` if either the source space or the target space is second-countable. -/
@@ -624,13 +624,13 @@ theorem Continuous.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeasur
 
 /-- If a function is continuous on a measurable set `s`, then it is measurable at the filter
   `𝓝[s] x` for all `x`. -/
-theorem ContinuousOn.stronglyMeasurableAtFilterNhdsWithin {α β : Type _} [MeasurableSpace α]
+theorem ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin {α β : Type _} [MeasurableSpace α]
     [TopologicalSpace α] [OpensMeasurableSpace α] [TopologicalSpace β] [PseudoMetrizableSpace β]
     [SecondCountableTopologyEither α β] {f : α → β} {s : Set α} {μ : Measure α}
     (hf : ContinuousOn f s) (hs : MeasurableSet s) (x : α) :
     StronglyMeasurableAtFilter f (𝓝[s] x) μ :=
   ⟨s, self_mem_nhdsWithin, hf.AeStronglyMeasurable hs⟩
-#align continuous_on.strongly_measurable_at_filter_nhds_within ContinuousOn.stronglyMeasurableAtFilterNhdsWithin
+#align continuous_on.strongly_measurable_at_filter_nhds_within ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin
 
 /-! ### Lemmas about adding and removing interval boundaries
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.integral.integrable_on
-! leanprover-community/mathlib commit 08a4542bec7242a5c60f179e4e49de8c0d677b1b
+! leanprover-community/mathlib commit 8b8ba04e2f326f3f7cf24ad129beda58531ada61
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -632,3 +632,132 @@ theorem ContinuousOn.stronglyMeasurableAtFilterNhdsWithin {α β : Type _} [Meas
   ⟨s, self_mem_nhdsWithin, hf.AeStronglyMeasurable hs⟩
 #align continuous_on.strongly_measurable_at_filter_nhds_within ContinuousOn.stronglyMeasurableAtFilterNhdsWithin
 
+/-! ### Lemmas about adding and removing interval boundaries
+
+The primed lemmas take explicit arguments about the measure being finite at the endpoint, while
+the unprimed ones use `[has_no_atoms μ]`.
+-/
+
+
+section PartialOrder
+
+variable [PartialOrder α] [MeasurableSingletonClass α] {f : α → E} {μ : Measure α} {a b : α}
+
+theorem integrableOn_Icc_iff_integrableOn_Ioc' (ha : μ {a} ≠ ∞) :
+    IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioc a b) μ :=
+  by
+  by_cases hab : a ≤ b
+  ·
+    rw [← Ioc_union_left hab, integrable_on_union,
+      eq_true (integrable_on_singleton_iff.mpr <| Or.inr ha.lt_top), and_true_iff]
+  · rw [Icc_eq_empty hab, Ioc_eq_empty]
+    contrapose! hab
+    exact hab.le
+#align integrable_on_Icc_iff_integrable_on_Ioc' integrableOn_Icc_iff_integrableOn_Ioc'
+
+theorem integrableOn_Icc_iff_integrableOn_Ico' (hb : μ {b} ≠ ∞) :
+    IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ico a b) μ :=
+  by
+  by_cases hab : a ≤ b
+  ·
+    rw [← Ico_union_right hab, integrable_on_union,
+      eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
+  · rw [Icc_eq_empty hab, Ico_eq_empty]
+    contrapose! hab
+    exact hab.le
+#align integrable_on_Icc_iff_integrable_on_Ico' integrableOn_Icc_iff_integrableOn_Ico'
+
+theorem integrableOn_Ico_iff_integrableOn_Ioo' (ha : μ {a} ≠ ∞) :
+    IntegrableOn f (Ico a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
+  by
+  by_cases hab : a < b
+  ·
+    rw [← Ioo_union_left hab, integrable_on_union,
+      eq_true (integrable_on_singleton_iff.mpr <| Or.inr ha.lt_top), and_true_iff]
+  · rw [Ioo_eq_empty hab, Ico_eq_empty hab]
+#align integrable_on_Ico_iff_integrable_on_Ioo' integrableOn_Ico_iff_integrableOn_Ioo'
+
+theorem integrableOn_Ioc_iff_integrableOn_Ioo' (hb : μ {b} ≠ ∞) :
+    IntegrableOn f (Ioc a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
+  by
+  by_cases hab : a < b
+  ·
+    rw [← Ioo_union_right hab, integrable_on_union,
+      eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
+  · rw [Ioo_eq_empty hab, Ioc_eq_empty hab]
+#align integrable_on_Ioc_iff_integrable_on_Ioo' integrableOn_Ioc_iff_integrableOn_Ioo'
+
+theorem integrableOn_Icc_iff_integrableOn_Ioo' (ha : μ {a} ≠ ∞) (hb : μ {b} ≠ ∞) :
+    IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioo a b) μ := by
+  rw [integrableOn_Icc_iff_integrableOn_Ioc' ha, integrableOn_Ioc_iff_integrableOn_Ioo' hb]
+#align integrable_on_Icc_iff_integrable_on_Ioo' integrableOn_Icc_iff_integrableOn_Ioo'
+
+theorem integrableOn_Ici_iff_integrableOn_Ioi' (hb : μ {b} ≠ ∞) :
+    IntegrableOn f (Ici b) μ ↔ IntegrableOn f (Ioi b) μ := by
+  rw [← Ioi_union_left, integrable_on_union,
+    eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
+#align integrable_on_Ici_iff_integrable_on_Ioi' integrableOn_Ici_iff_integrableOn_Ioi'
+
+theorem integrableOn_Iic_iff_integrableOn_Iio' (hb : μ {b} ≠ ∞) :
+    IntegrableOn f (Iic b) μ ↔ IntegrableOn f (Iio b) μ := by
+  rw [← Iio_union_right, integrable_on_union,
+    eq_true (integrable_on_singleton_iff.mpr <| Or.inr hb.lt_top), and_true_iff]
+#align integrable_on_Iic_iff_integrable_on_Iio' integrableOn_Iic_iff_integrableOn_Iio'
+
+variable [HasNoAtoms μ]
+
+theorem integrableOn_Icc_iff_integrableOn_Ioc :
+    IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioc a b) μ :=
+  integrableOn_Icc_iff_integrableOn_Ioc'
+    (by
+      rw [measure_singleton]
+      exact ENNReal.zero_ne_top)
+#align integrable_on_Icc_iff_integrable_on_Ioc integrableOn_Icc_iff_integrableOn_Ioc
+
+theorem integrableOn_Icc_iff_integrableOn_Ico :
+    IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ico a b) μ :=
+  integrableOn_Icc_iff_integrableOn_Ico'
+    (by
+      rw [measure_singleton]
+      exact ENNReal.zero_ne_top)
+#align integrable_on_Icc_iff_integrable_on_Ico integrableOn_Icc_iff_integrableOn_Ico
+
+theorem integrableOn_Ico_iff_integrableOn_Ioo :
+    IntegrableOn f (Ico a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
+  integrableOn_Ico_iff_integrableOn_Ioo'
+    (by
+      rw [measure_singleton]
+      exact ENNReal.zero_ne_top)
+#align integrable_on_Ico_iff_integrable_on_Ioo integrableOn_Ico_iff_integrableOn_Ioo
+
+theorem integrableOn_Ioc_iff_integrableOn_Ioo :
+    IntegrableOn f (Ioc a b) μ ↔ IntegrableOn f (Ioo a b) μ :=
+  integrableOn_Ioc_iff_integrableOn_Ioo'
+    (by
+      rw [measure_singleton]
+      exact ENNReal.zero_ne_top)
+#align integrable_on_Ioc_iff_integrable_on_Ioo integrableOn_Ioc_iff_integrableOn_Ioo
+
+theorem integrableOn_Icc_iff_integrableOn_Ioo :
+    IntegrableOn f (Icc a b) μ ↔ IntegrableOn f (Ioo a b) μ := by
+  rw [integrableOn_Icc_iff_integrableOn_Ioc, integrableOn_Ioc_iff_integrableOn_Ioo]
+#align integrable_on_Icc_iff_integrable_on_Ioo integrableOn_Icc_iff_integrableOn_Ioo
+
+theorem integrableOn_Ici_iff_integrableOn_Ioi :
+    IntegrableOn f (Ici b) μ ↔ IntegrableOn f (Ioi b) μ :=
+  integrableOn_Ici_iff_integrableOn_Ioi'
+    (by
+      rw [measure_singleton]
+      exact ENNReal.zero_ne_top)
+#align integrable_on_Ici_iff_integrable_on_Ioi integrableOn_Ici_iff_integrableOn_Ioi
+
+theorem integrableOn_Iic_iff_integrableOn_Iio :
+    IntegrableOn f (Iic b) μ ↔ IntegrableOn f (Iio b) μ :=
+  integrableOn_Iic_iff_integrableOn_Iio'
+    (by
+      rw [measure_singleton]
+      exact ENNReal.zero_ne_top)
+#align integrable_on_Iic_iff_integrable_on_Iio integrableOn_Iic_iff_integrableOn_Iio
+
+end PartialOrder
+
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module measure_theory.integral.integrable_on
-! leanprover-community/mathlib commit a75898643b2d774cced9ae7c0b28c21663b99666
+! leanprover-community/mathlib commit 08a4542bec7242a5c60f179e4e49de8c0d677b1b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -138,24 +138,30 @@ theorem IntegrableOn.congrSetAe (h : IntegrableOn f t μ) (hst : s =ᵐ[μ] t) :
   h.monoSetAe hst.le
 #align measure_theory.integrable_on.congr_set_ae MeasureTheory.IntegrableOn.congrSetAe
 
-theorem IntegrableOn.congrFun' (h : IntegrableOn f s μ) (hst : f =ᵐ[μ.restrict s] g) :
+theorem IntegrableOn.congrFunAe (h : IntegrableOn f s μ) (hst : f =ᵐ[μ.restrict s] g) :
     IntegrableOn g s μ :=
   Integrable.congr h hst
-#align measure_theory.integrable_on.congr_fun' MeasureTheory.IntegrableOn.congrFun'
+#align measure_theory.integrable_on.congr_fun_ae MeasureTheory.IntegrableOn.congrFunAe
+
+theorem integrableOn_congr_fun_ae (hst : f =ᵐ[μ.restrict s] g) :
+    IntegrableOn f s μ ↔ IntegrableOn g s μ :=
+  ⟨fun h => h.congrFunAe hst, fun h => h.congrFunAe hst.symm⟩
+#align measure_theory.integrable_on_congr_fun_ae MeasureTheory.integrableOn_congr_fun_ae
 
 theorem IntegrableOn.congrFun (h : IntegrableOn f s μ) (hst : EqOn f g s) (hs : MeasurableSet s) :
     IntegrableOn g s μ :=
-  h.congrFun' ((ae_restrict_iff' hs).2 (eventually_of_forall hst))
+  h.congrFunAe ((ae_restrict_iff' hs).2 (eventually_of_forall hst))
 #align measure_theory.integrable_on.congr_fun MeasureTheory.IntegrableOn.congrFun
 
+theorem integrableOn_congr_fun (hst : EqOn f g s) (hs : MeasurableSet s) :
+    IntegrableOn f s μ ↔ IntegrableOn g s μ :=
+  ⟨fun h => h.congr_fun hst hs, fun h => h.congr_fun hst.symm hs⟩
+#align measure_theory.integrable_on_congr_fun MeasureTheory.integrableOn_congr_fun
+
 theorem Integrable.integrableOn (h : Integrable f μ) : IntegrableOn f s μ :=
   h.monoMeasure <| Measure.restrict_le_self
 #align measure_theory.integrable.integrable_on MeasureTheory.Integrable.integrableOn
 
-theorem Integrable.integrableOn' (h : Integrable f (μ.restrict s)) : IntegrableOn f s μ :=
-  h
-#align measure_theory.integrable.integrable_on' MeasureTheory.Integrable.integrableOn'
-
 theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
     IntegrableOn f s (μ.restrict t) :=
   by
Diff
@@ -352,7 +352,7 @@ theorem IntegrableOn.integrableOfAeNotMemEqZero (hf : IntegrableOn f s μ)
   filter_upwards [h't]with x hx h'x using hx h'x.2
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrableOfAeNotMemEqZero
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (x «expr ∉ » s) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (x «expr ∉ » s) -/
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
 then it is integrable. -/
 theorem IntegrableOn.integrableOfForallNotMemEqZero (hf : IntegrableOn f s μ)
Diff
@@ -28,7 +28,7 @@ noncomputable section
 
 open Set Filter TopologicalSpace MeasureTheory Function
 
-open Classical Topology Interval BigOperators Filter Ennreal MeasureTheory
+open Classical Topology Interval BigOperators Filter ENNReal MeasureTheory
 
 variable {α β E F : Type _} [MeasurableSpace α]
 
@@ -258,7 +258,7 @@ theorem MeasurePreserving.integrableOn_image [MeasurableSpace β] {e : α → β
 theorem integrable_indicator_iff (hs : MeasurableSet s) :
     Integrable (indicator s f) μ ↔ IntegrableOn f s μ := by
   simp [integrable_on, integrable, has_finite_integral, nnnorm_indicator_eq_indicator_nnnorm,
-    Ennreal.coe_indicator, lintegral_indicator _ hs, aeStronglyMeasurable_indicator_iff hs]
+    ENNReal.coe_indicator, lintegral_indicator _ hs, aeStronglyMeasurable_indicator_iff hs]
 #align measure_theory.integrable_indicator_iff MeasureTheory.integrable_indicator_iff
 
 theorem IntegrableOn.integrableIndicator (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
@@ -380,15 +380,15 @@ theorem integrableOnLpOfMeasureNeTop {E} [NormedAddCommGroup E] {p : ℝ≥0∞}
 #align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOnLpOfMeasureNeTop
 
 theorem Integrable.lintegral_lt_top {f : α → ℝ} (hf : Integrable f μ) :
-    (∫⁻ x, Ennreal.ofReal (f x) ∂μ) < ∞ :=
+    (∫⁻ x, ENNReal.ofReal (f x) ∂μ) < ∞ :=
   calc
-    (∫⁻ x, Ennreal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ↑‖f x‖₊ ∂μ := lintegral_ofReal_le_lintegral_nnnorm f
+    (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ↑‖f x‖₊ ∂μ := lintegral_ofReal_le_lintegral_nnnorm f
     _ < ∞ := hf.2
     
 #align measure_theory.integrable.lintegral_lt_top MeasureTheory.Integrable.lintegral_lt_top
 
 theorem IntegrableOn.set_lintegral_lt_top {f : α → ℝ} {s : Set α} (hf : IntegrableOn f s μ) :
-    (∫⁻ x in s, Ennreal.ofReal (f x) ∂μ) < ∞ :=
+    (∫⁻ x in s, ENNReal.ofReal (f x) ∂μ) < ∞ :=
   Integrable.lintegral_lt_top hf
 #align measure_theory.integrable_on.set_lintegral_lt_top MeasureTheory.IntegrableOn.set_lintegral_lt_top
 

Changes in mathlib4

mathlib3
mathlib4
feat: integration by parts on the whole real line, assuming integrability of the product (#11916)

We already have that ∫ (x : ℝ), u x * v' x = b' - a' - ∫ (x : ℝ), u' x * v x if u * v tends to a' and b' at minus infinity and infinity. Assuming morevoer that u * v is integrable, we show that it tends to 0 at minus infinity and infinity, and therefore that ∫ (x : ℝ), u x * v' x = - ∫ (x : ℝ), u' x * v x. We also give versions with a general bilinear form instead of multiplication.

Diff
@@ -543,6 +543,22 @@ theorem integrable_add_of_disjoint {f g : α → E} (h : Disjoint (support f) (s
   · rw [← indicator_add_eq_right h]; exact hfg.indicator hg.measurableSet_support
 #align measure_theory.integrable_add_of_disjoint MeasureTheory.integrable_add_of_disjoint
 
+/-- If a function converges along a filter to a limit `a`, is integrable along this filter, and
+all elements of the filter have infinite measure, then the limit has to vanish. -/
+lemma IntegrableAtFilter.eq_zero_of_tendsto
+    (h : IntegrableAtFilter f l μ) (h' : ∀ s ∈ l, μ s = ∞) {a : E}
+    (hf : Tendsto f l (𝓝 a)) : a = 0 := by
+  by_contra H
+  obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ), 0 < ε ∧ ε < ‖a‖ := exists_between (norm_pos_iff'.mpr H)
+  rcases h with ⟨u, ul, hu⟩
+  let v := u ∩ {b | ε < ‖f b‖}
+  have hv : IntegrableOn f v μ := hu.mono_set (inter_subset_left _ _)
+  have vl : v ∈ l := inter_mem ul ((tendsto_order.1 hf.norm).1 _ hε)
+  have : μ.restrict v v < ∞ := lt_of_le_of_lt (measure_mono (inter_subset_right _ _))
+    (Integrable.measure_gt_lt_top hv.norm εpos)
+  have : μ v ≠ ∞ := ne_of_lt (by simpa only [Measure.restrict_apply_self])
+  exact this (h' v vl)
+
 end NormedAddCommGroup
 
 end MeasureTheory
feat: bounding integrals by asymptotics, part 2: corollaries (#10388)

Shortcuts for linearly ordered domains and/or continuous functions. As an example, I golf the existing integrable_of_isBigO_exp_neg.

Another example usage: https://github.com/AlexKontorovich/PrimeNumberTheoremAnd/blob/1909a40253607bd2df18a738fc504fe81b132974/PrimeNumberTheoremAnd/PerronFormula.lean#L414-L436

Co-authored-by: L Lllvvuu <git@llllvvuu.dev>

Diff
@@ -489,6 +489,12 @@ theorem integrableAtFilter_top : IntegrableAtFilter f ⊤ μ ↔ Integrable f μ
   obtain ⟨s, hsf, hs⟩ := h
   exact (integrableOn_iff_integrable_of_support_subset fun _ _ ↦ hsf _).mp hs
 
+theorem IntegrableAtFilter.sup_iff {l l' : Filter α} :
+    IntegrableAtFilter f (l ⊔ l') μ ↔ IntegrableAtFilter f l μ ∧ IntegrableAtFilter f l' μ := by
+  constructor
+  · exact fun h => ⟨h.filter_mono le_sup_left, h.filter_mono le_sup_right⟩
+  · exact fun ⟨⟨s, hsl, hs⟩, ⟨t, htl, ht⟩⟩ ↦ ⟨s ∪ t, union_mem_sup hsl htl, hs.union ht⟩
+
 /-- If `μ` is a measure finite at filter `l` and `f` is a function such that its norm is bounded
 above at `l`, then `f` is integrable at `l`. -/
 theorem Measure.FiniteAtFilter.integrableAtFilter {l : Filter α} [IsMeasurablyGenerated l]
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -310,7 +310,7 @@ theorem IntegrableOn.restrict_toMeasurable (hf : IntegrableOn f s μ) (h's : ∀
     exact (hf.measure_norm_ge_lt_top (u_pos n)).ne
   apply Measure.restrict_toMeasurable_of_cover _ A
   intro x hx
-  have : 0 < ‖f x‖ := by simp only [h's x hx, norm_pos_iff, Ne.def, not_false_iff]
+  have : 0 < ‖f x‖ := by simp only [h's x hx, norm_pos_iff, Ne, not_false_iff]
   obtain ⟨n, hn⟩ : ∃ n, u n < ‖f x‖ := ((tendsto_order.1 u_lim).2 _ this).exists
   exact mem_iUnion.2 ⟨n, subset_toMeasurable _ _ hn.le⟩
 #align measure_theory.integrable_on.restrict_to_measurable MeasureTheory.IntegrableOn.restrict_toMeasurable
chore: remove unnecessary @[eqns] attributes (#11460)

These attributes are unused in Mathlib.

Many of them were workarounds for the now-resolved leanprover/lean4#2243; this also allows the lemmas themselves (hasFiniteIntegral_def, integrable_def, memℒp_def, and integrableOn_def) to be deleted.

We are currently experiencing problems with the @[eqns] attribute on the Lean nightlies. I'm uncertain yet what the outcome is going to be there, but it seems prudent to reduce our unnecessary exposure to a language feature added in Mathlib.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -91,13 +91,6 @@ def IntegrableOn (f : α → E) (s : Set α) (μ : Measure α := by volume_tac)
   Integrable f (μ.restrict s)
 #align measure_theory.integrable_on MeasureTheory.IntegrableOn
 
--- Porting note (#11215): TODO Delete this when leanprover/lean4#2243 is fixed.
-theorem integrableOn_def (f : α → E) (s : Set α) (μ : Measure α) :
-    IntegrableOn f s μ ↔ Integrable f (μ.restrict s) :=
-  Iff.rfl
-
-attribute [eqns integrableOn_def] IntegrableOn
-
 theorem IntegrableOn.integrable (h : IntegrableOn f s μ) : Integrable f (μ.restrict s) :=
   h
 #align measure_theory.integrable_on.integrable MeasureTheory.IntegrableOn.integrable
feat: Levy-Prokhorov topology is finer than convergence in distribution (#10406)

This PR establishes an easy topology comparison: the topology given by the Lévy-Prokhorov distance is finer than the topology of convergence in distribution.

Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com> Co-authored-by: kkytola <“kalle.kytola@aalto.fi”> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -531,6 +531,11 @@ alias _root_.Filter.Tendsto.integrableAtFilter :=
   Measure.FiniteAtFilter.integrableAtFilter_of_tendsto
 #align filter.tendsto.integrable_at_filter Filter.Tendsto.integrableAtFilter
 
+lemma Measure.integrableOn_of_bounded (s_finite : μ s ≠ ∞) (f_mble : AEStronglyMeasurable f μ)
+    {M : ℝ} (f_bdd : ∀ᵐ a ∂(μ.restrict s), ‖f a‖ ≤ M) :
+    IntegrableOn f s μ :=
+  ⟨f_mble.restrict, hasFiniteIntegral_restrict_of_bounded (C := M) s_finite.lt_top f_bdd⟩
+
 theorem integrable_add_of_disjoint {f g : α → E} (h : Disjoint (support f) (support g))
     (hf : StronglyMeasurable f) (hg : StronglyMeasurable g) :
     Integrable (f + g) μ ↔ Integrable f μ ∧ Integrable g μ := by
chore: classify todo porting notes (#11216)

Classifies by adding issue number #11215 to porting notes claiming "TODO".

Diff
@@ -91,7 +91,7 @@ def IntegrableOn (f : α → E) (s : Set α) (μ : Measure α := by volume_tac)
   Integrable f (μ.restrict s)
 #align measure_theory.integrable_on MeasureTheory.IntegrableOn
 
--- Porting note: TODO Delete this when leanprover/lean4#2243 is fixed.
+-- Porting note (#11215): TODO Delete this when leanprover/lean4#2243 is fixed.
 theorem integrableOn_def (f : α → E) (s : Set α) (μ : Measure α) :
     IntegrableOn f s μ ↔ Integrable f (μ.restrict s) :=
   Iff.rfl
chore: remove stream-of-conciousness syntax for obtain (#11045)

This covers many instances, but is not exhaustive.

Independently of whether that syntax should be avoided (similar to #10534), I think all these changes are small improvements.

Diff
@@ -318,9 +318,8 @@ theorem IntegrableOn.restrict_toMeasurable (hf : IntegrableOn f s μ) (h's : ∀
   apply Measure.restrict_toMeasurable_of_cover _ A
   intro x hx
   have : 0 < ‖f x‖ := by simp only [h's x hx, norm_pos_iff, Ne.def, not_false_iff]
-  obtain ⟨n, hn⟩ : ∃ n, u n < ‖f x‖; exact ((tendsto_order.1 u_lim).2 _ this).exists
-  refine' mem_iUnion.2 ⟨n, _⟩
-  exact subset_toMeasurable _ _ hn.le
+  obtain ⟨n, hn⟩ : ∃ n, u n < ‖f x‖ := ((tendsto_order.1 u_lim).2 _ this).exists
+  exact mem_iUnion.2 ⟨n, subset_toMeasurable _ _ hn.le⟩
 #align measure_theory.integrable_on.restrict_to_measurable MeasureTheory.IntegrableOn.restrict_toMeasurable
 
 /-- If a function is integrable on a set `s`, and vanishes on `t \ s`, then it is integrable on `t`
refactor(MeasureTheory): redefine on measures (#10714)

Redefine on MeasureTheory.Measure so that μ ≤ ν ↔ ∀ s, μ s ≤ ν s by definition instead of ∀ s, MeasurableSet s → μ s ≤ ν s.

Reasons

  • this way it is defeq to on outer measures;
  • if we decide to introduce an order on all DFunLike types and migrate measures to FunLike, then this is unavoidable;
  • the reasoning for the old definition was "it's slightly easier to prove μ ≤ ν this way"; the counter-argument is "it's slightly harder to apply μ ≤ ν this way".

Other changes

  • golf some proofs broken by this change;
  • add @[gcongr] tags to some ENNReal lemmas;
  • fix the name ENNReal.coe_lt_coe_of_le -> ENNReal.ENNReal.coe_lt_coe_of_lt;
  • drop an unneeded MeasurableSet assumption in set_lintegral_pdf_le_map
Diff
@@ -482,13 +482,10 @@ theorem IntegrableAtFilter.inf_of_right (hl : IntegrableAtFilter f l μ) :
 @[simp]
 theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
     IntegrableAtFilter f (l ⊓ μ.ae) μ ↔ IntegrableAtFilter f l μ := by
-  refine' ⟨_, fun h => h.filter_mono inf_le_left⟩
+  refine ⟨?_, fun h ↦ h.filter_mono inf_le_left⟩
   rintro ⟨s, ⟨t, ht, u, hu, rfl⟩, hf⟩
-  refine' ⟨t, ht, _⟩
-  refine' hf.integrable.mono_measure fun v hv => _
-  simp only [Measure.restrict_apply hv]
-  refine' measure_mono_ae (mem_of_superset hu fun x hx => _)
-  exact fun ⟨hv, ht⟩ => ⟨hv, ⟨ht, hx⟩⟩
+  refine ⟨t, ht, hf.congr_set_ae <| eventuallyEq_set.2 ?_⟩
+  filter_upwards [hu] with x hx using (and_iff_left hx).symm
 #align measure_theory.integrable_at_filter.inf_ae_iff MeasureTheory.IntegrableAtFilter.inf_ae_iff
 
 alias ⟨IntegrableAtFilter.of_inf_ae, _⟩ := IntegrableAtFilter.inf_ae_iff
feat: bounding integrals by asymptotics, part 1 (#10248)

part 1: corollaries such as for atTop ℝ yet to come

Co-authored-by: L Lllvvuu <git@llllvvuu.dev> Co-authored-by: L <git@llllvvuu.dev>

Diff
@@ -459,6 +459,10 @@ protected theorem IntegrableAtFilter.smul {𝕜 : Type*} [NormedAddCommGroup 
   rcases hf with ⟨s, sl, hs⟩
   exact ⟨s, sl, hs.smul c⟩
 
+protected theorem IntegrableAtFilter.norm (hf : IntegrableAtFilter f l μ) :
+    IntegrableAtFilter (fun x => ‖f x‖) l μ :=
+  Exists.casesOn hf fun s hs ↦ ⟨s, hs.1, hs.2.norm⟩
+
 theorem IntegrableAtFilter.filter_mono (hl : l ≤ l') (hl' : IntegrableAtFilter f l' μ) :
     IntegrableAtFilter f l μ :=
   let ⟨s, hs, hsf⟩ := hl'
@@ -490,6 +494,12 @@ theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
 alias ⟨IntegrableAtFilter.of_inf_ae, _⟩ := IntegrableAtFilter.inf_ae_iff
 #align measure_theory.integrable_at_filter.of_inf_ae MeasureTheory.IntegrableAtFilter.of_inf_ae
 
+@[simp]
+theorem integrableAtFilter_top : IntegrableAtFilter f ⊤ μ ↔ Integrable f μ := by
+  refine ⟨fun h ↦ ?_, fun h ↦ h.integrableAtFilter ⊤⟩
+  obtain ⟨s, hsf, hs⟩ := h
+  exact (integrableOn_iff_integrable_of_support_subset fun _ _ ↦ hsf _).mp hs
+
 /-- If `μ` is a measure finite at filter `l` and `f` is a function such that its norm is bounded
 above at `l`, then `f` is integrable at `l`. -/
 theorem Measure.FiniteAtFilter.integrableAtFilter {l : Filter α} [IsMeasurablyGenerated l]
feat(Topology/Bases): review IsSeparable API (#10286)
  • upgrade isSeparable_iUnion to an Iff lemma, restore the original version as IsSeparable.iUnion;
  • add isSeparable_union and isSeparable_closure;
  • upgrade isSeparable_pi from [Finite ι] to [Countable ι], add IsSeparable.univ_pi version;
  • add Dense.isSeparable_iff and isSeparable_range;
  • rename isSeparable_of_separableSpace_subtype to IsSeparable.of_subtype;
  • rename isSeparable_of_separableSpace to IsSeparable.of_separableSpace.
Diff
@@ -583,13 +583,9 @@ theorem ContinuousOn.aestronglyMeasurable [TopologicalSpace α] [TopologicalSpac
       ⟨hf.aemeasurable hs, f '' s, _,
         mem_of_superset (self_mem_ae_restrict hs) (subset_preimage_image _ _)⟩
   cases h.out
-  · let f' : s → β := s.restrict f
-    have A : Continuous f' := continuousOn_iff_continuous_restrict.1 hf
-    have B : IsSeparable (univ : Set s) := isSeparable_of_separableSpace _
-    convert IsSeparable.image B A using 1
-    ext x
-    simp
-  · exact isSeparable_of_separableSpace _
+  · rw [image_eq_range]
+    exact isSeparable_range <| continuousOn_iff_continuous_restrict.1 hf
+  · exact .of_separableSpace _
 #align continuous_on.ae_strongly_measurable ContinuousOn.aestronglyMeasurable
 
 /-- A function which is continuous on a compact set `s` is almost everywhere strongly measurable
feat: a function with vanishing integral against smooth functions supported in U is ae zero in U (#8805)

A stronger version of #8800, the differences are:

  • assume either IsSigmaCompact U or SigmaCompactSpace M;

  • only need test functions satisfying tsupport g ⊆ U rather than support g ⊆ U;

  • requires LocallyIntegrableOn U rather than LocallyIntegrable on the whole space.

Also fills in some missing APIs around the manifold and measure theory libraries.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -169,6 +169,11 @@ theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
   rw [IntegrableOn, Measure.restrict_restrict hs]; exact h.mono_set (inter_subset_left _ _)
 #align measure_theory.integrable_on.restrict MeasureTheory.IntegrableOn.restrict
 
+theorem IntegrableOn.inter_of_restrict (h : IntegrableOn f s (μ.restrict t)) :
+    IntegrableOn f (s ∩ t) μ := by
+  have := h.mono_set (inter_subset_left s t)
+  rwa [IntegrableOn, μ.restrict_restrict_of_subset (inter_subset_right s t)] at this
+
 lemma Integrable.piecewise [DecidablePred (· ∈ s)]
     (hs : MeasurableSet s) (hf : IntegrableOn f s μ) (hg : IntegrableOn g sᶜ μ) :
     Integrable (s.piecewise f g) μ := by
@@ -240,12 +245,18 @@ theorem integrableOn_add_measure :
 
 theorem _root_.MeasurableEmbedding.integrableOn_map_iff [MeasurableSpace β] {e : α → β}
     (he : MeasurableEmbedding e) {f : β → E} {μ : Measure α} {s : Set β} :
-    IntegrableOn f s (Measure.map e μ) ↔ IntegrableOn (f ∘ e) (e ⁻¹' s) μ := by
-  simp only [IntegrableOn, he.restrict_map, he.integrable_map_iff]
+    IntegrableOn f s (μ.map e) ↔ IntegrableOn (f ∘ e) (e ⁻¹' s) μ := by
+  simp_rw [IntegrableOn, he.restrict_map, he.integrable_map_iff]
 #align measurable_embedding.integrable_on_map_iff MeasurableEmbedding.integrableOn_map_iff
 
+theorem _root_.MeasurableEmbedding.integrableOn_iff_comap [MeasurableSpace β] {e : α → β}
+    (he : MeasurableEmbedding e) {f : β → E} {μ : Measure β} {s : Set β} (hs : s ⊆ range e) :
+    IntegrableOn f s μ ↔ IntegrableOn (f ∘ e) (e ⁻¹' s) (μ.comap e) := by
+  simp_rw [← he.integrableOn_map_iff, he.map_comap, IntegrableOn,
+    Measure.restrict_restrict_of_subset hs]
+
 theorem integrableOn_map_equiv [MeasurableSpace β] (e : α ≃ᵐ β) {f : β → E} {μ : Measure α}
-    {s : Set β} : IntegrableOn f s (Measure.map e μ) ↔ IntegrableOn (f ∘ e) (e ⁻¹' s) μ := by
+    {s : Set β} : IntegrableOn f s (μ.map e) ↔ IntegrableOn (f ∘ e) (e ⁻¹' s) μ := by
   simp only [IntegrableOn, e.restrict_map, integrable_map_equiv e]
 #align measure_theory.integrable_on_map_equiv MeasureTheory.integrableOn_map_equiv
 
@@ -397,6 +408,22 @@ def IntegrableAtFilter (f : α → E) (l : Filter α) (μ : Measure α := by vol
 
 variable {l l' : Filter α}
 
+theorem _root_.MeasurableEmbedding.integrableAtFilter_map_iff [MeasurableSpace β] {e : α → β}
+    (he : MeasurableEmbedding e) {f : β → E} :
+    IntegrableAtFilter f (l.map e) (μ.map e) ↔ IntegrableAtFilter (f ∘ e) l μ := by
+  simp_rw [IntegrableAtFilter, he.integrableOn_map_iff]
+  constructor <;> rintro ⟨s, hs⟩
+  · exact ⟨_, hs⟩
+  · exact ⟨e '' s, by rwa [mem_map, he.injective.preimage_image]⟩
+
+theorem _root_.MeasurableEmbedding.integrableAtFilter_iff_comap [MeasurableSpace β] {e : α → β}
+    (he : MeasurableEmbedding e) {f : β → E} {μ : Measure β} :
+    IntegrableAtFilter f (l.map e) μ ↔ IntegrableAtFilter (f ∘ e) l (μ.comap e) := by
+  simp_rw [← he.integrableAtFilter_map_iff, IntegrableAtFilter, he.map_comap]
+  constructor <;> rintro ⟨s, hs, int⟩
+  · exact ⟨s, hs, int.mono_measure <| μ.restrict_le_self⟩
+  · exact ⟨_, inter_mem hs range_mem_map, int.inter_of_restrict⟩
+
 theorem Integrable.integrableAtFilter (h : Integrable f μ) (l : Filter α) :
     IntegrableAtFilter f l μ :=
   ⟨univ, Filter.univ_mem, integrableOn_univ.2 h⟩
feat: add Integrable.piecewise (#8080)
Diff
@@ -169,6 +169,13 @@ theorem IntegrableOn.restrict (h : IntegrableOn f s μ) (hs : MeasurableSet s) :
   rw [IntegrableOn, Measure.restrict_restrict hs]; exact h.mono_set (inter_subset_left _ _)
 #align measure_theory.integrable_on.restrict MeasureTheory.IntegrableOn.restrict
 
+lemma Integrable.piecewise [DecidablePred (· ∈ s)]
+    (hs : MeasurableSet s) (hf : IntegrableOn f s μ) (hg : IntegrableOn g sᶜ μ) :
+    Integrable (s.piecewise f g) μ := by
+  rw [IntegrableOn] at hf hg
+  rw [← memℒp_one_iff_integrable] at hf hg ⊢
+  exact Memℒp.piecewise hs hf hg
+
 theorem IntegrableOn.left_of_union (h : IntegrableOn f (s ∪ t) μ) : IntegrableOn f s μ :=
   h.mono_set <| subset_union_left _ _
 #align measure_theory.integrable_on.left_of_union MeasureTheory.IntegrableOn.left_of_union
chore: exact, not refine when possible (#8130)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -423,7 +423,7 @@ protected theorem IntegrableAtFilter.smul {𝕜 : Type*} [NormedAddCommGroup 
     [BoundedSMul 𝕜 E] {f : α → E} (hf : IntegrableAtFilter f l μ) (c : 𝕜) :
     IntegrableAtFilter (c • f) l μ := by
   rcases hf with ⟨s, sl, hs⟩
-  refine ⟨s, sl, hs.smul c⟩
+  exact ⟨s, sl, hs.smul c⟩
 
 theorem IntegrableAtFilter.filter_mono (hl : l ≤ l') (hl' : IntegrableAtFilter f l' μ) :
     IntegrableAtFilter f l μ :=
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -191,7 +191,7 @@ theorem integrableOn_union : IntegrableOn f (s ∪ t) μ ↔ IntegrableOn f s μ
 theorem integrableOn_singleton_iff {x : α} [MeasurableSingletonClass α] :
     IntegrableOn f {x} μ ↔ f x = 0 ∨ μ {x} < ∞ := by
   have : f =ᵐ[μ.restrict {x}] fun _ => f x := by
-    filter_upwards [ae_restrict_mem (measurableSet_singleton x)]with _ ha
+    filter_upwards [ae_restrict_mem (measurableSet_singleton x)] with _ ha
     simp only [mem_singleton_iff.1 ha]
   rw [IntegrableOn, integrable_congr this, integrable_const_iff]
   simp
@@ -342,7 +342,7 @@ theorem IntegrableOn.integrable_of_ae_not_mem_eq_zero (hf : IntegrableOn f s μ)
     (h't : ∀ᵐ x ∂μ, x ∉ s → f x = 0) : Integrable f μ := by
   rw [← integrableOn_univ]
   apply hf.of_ae_diff_eq_zero nullMeasurableSet_univ
-  filter_upwards [h't]with x hx h'x using hx h'x.2
+  filter_upwards [h't] with x hx h'x using hx h'x.2
 #align measure_theory.integrable_on.integrable_of_ae_not_mem_eq_zero MeasureTheory.IntegrableOn.integrable_of_ae_not_mem_eq_zero
 
 /-- If a function is integrable on a set `s` and vanishes everywhere on its complement,
feat: Add a basic layercake formula for Bochner integral. (#7167)

Layer cake formulas currently exist for ENNReal-valued functions and Lebesgue integrals. This PR adds the most common version of the layer cake formula for integrable a.e.-nonnegative real-valued functions and Bochner integrals.

Co-authored-by: kkytola <“kalle.kytola@aalto.fi”> Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com>

Diff
@@ -296,7 +296,7 @@ theorem IntegrableOn.restrict_toMeasurable (hf : IntegrableOn f s μ) (h's : ∀
     intro n
     rw [inter_comm, ← Measure.restrict_apply (measurableSet_toMeasurable _ _),
       measure_toMeasurable]
-    exact (hf.measure_ge_lt_top (u_pos n)).ne
+    exact (hf.measure_norm_ge_lt_top (u_pos n)).ne
   apply Measure.restrict_toMeasurable_of_cover _ A
   intro x hx
   have : 0 < ‖f x‖ := by simp only [h's x hx, norm_pos_iff, Ne.def, not_false_iff]
feat: expand API on locally integrable functions (#7006)

Measure theory prerequisites for Rademacher theorem in #7003.

Diff
@@ -419,6 +419,12 @@ protected theorem IntegrableAtFilter.sub {f g : α → E}
   rw [sub_eq_add_neg]
   exact hf.add hg.neg
 
+protected theorem IntegrableAtFilter.smul {𝕜 : Type*} [NormedAddCommGroup 𝕜] [SMulZeroClass 𝕜 E]
+    [BoundedSMul 𝕜 E] {f : α → E} (hf : IntegrableAtFilter f l μ) (c : 𝕜) :
+    IntegrableAtFilter (c • f) l μ := by
+  rcases hf with ⟨s, sl, hs⟩
+  refine ⟨s, sl, hs.smul c⟩
+
 theorem IntegrableAtFilter.filter_mono (hl : l ≤ l') (hl' : IntegrableAtFilter f l' μ) :
     IntegrableAtFilter f l μ :=
   let ⟨s, hs, hsf⟩ := hl'
chore: tidy various files (#6924)
Diff
@@ -455,12 +455,11 @@ above at `l`, then `f` is integrable at `l`. -/
 theorem Measure.FiniteAtFilter.integrableAtFilter {l : Filter α} [IsMeasurablyGenerated l]
     (hfm : StronglyMeasurableAtFilter f l μ) (hμ : μ.FiniteAtFilter l)
     (hf : l.IsBoundedUnder (· ≤ ·) (norm ∘ f)) : IntegrableAtFilter f l μ := by
-  obtain ⟨C, hC⟩ : ∃ C, ∀ᶠ s in l.smallSets, ∀ x ∈ s, ‖f x‖ ≤ C
-  exact hf.imp fun C hC => eventually_smallSets.2 ⟨_, hC, fun t => id⟩
-  rcases(hfm.eventually.and (hμ.eventually.and hC)).exists_measurable_mem_of_smallSets with
+  obtain ⟨C, hC⟩ : ∃ C, ∀ᶠ s in l.smallSets, ∀ x ∈ s, ‖f x‖ ≤ C :=
+    hf.imp fun C hC => eventually_smallSets.2 ⟨_, hC, fun t => id⟩
+  rcases (hfm.eventually.and (hμ.eventually.and hC)).exists_measurable_mem_of_smallSets with
     ⟨s, hsl, hsm, hfm, hμ, hC⟩
-  refine' ⟨s, hsl, ⟨hfm, hasFiniteIntegral_restrict_of_bounded hμ _⟩⟩
-  exact C
+  refine' ⟨s, hsl, ⟨hfm, hasFiniteIntegral_restrict_of_bounded hμ (C := C) _⟩⟩
   rw [ae_restrict_eq hsm, eventually_inf_principal]
   exact eventually_of_forall hC
 #align measure_theory.measure.finite_at_filter.integrable_at_filter MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter
feat: patch for new alias command (#6172)
Diff
@@ -447,7 +447,7 @@ theorem IntegrableAtFilter.inf_ae_iff {l : Filter α} :
   exact fun ⟨hv, ht⟩ => ⟨hv, ⟨ht, hx⟩⟩
 #align measure_theory.integrable_at_filter.inf_ae_iff MeasureTheory.IntegrableAtFilter.inf_ae_iff
 
-alias IntegrableAtFilter.inf_ae_iff ↔ IntegrableAtFilter.of_inf_ae _
+alias ⟨IntegrableAtFilter.of_inf_ae, _⟩ := IntegrableAtFilter.inf_ae_iff
 #align measure_theory.integrable_at_filter.of_inf_ae MeasureTheory.IntegrableAtFilter.of_inf_ae
 
 /-- If `μ` is a measure finite at filter `l` and `f` is a function such that its norm is bounded
@@ -472,8 +472,8 @@ theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae {l : Filter α}
       hf.norm.isBoundedUnder_le).of_inf_ae
 #align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto_ae MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae
 
-alias Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae ←
-  _root_.Filter.Tendsto.integrableAtFilter_ae
+alias _root_.Filter.Tendsto.integrableAtFilter_ae :=
+  Measure.FiniteAtFilter.integrableAtFilter_of_tendsto_ae
 #align filter.tendsto.integrable_at_filter_ae Filter.Tendsto.integrableAtFilter_ae
 
 theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto {l : Filter α}
@@ -482,8 +482,8 @@ theorem Measure.FiniteAtFilter.integrableAtFilter_of_tendsto {l : Filter α}
   hμ.integrableAtFilter hfm hf.norm.isBoundedUnder_le
 #align measure_theory.measure.finite_at_filter.integrable_at_filter_of_tendsto MeasureTheory.Measure.FiniteAtFilter.integrableAtFilter_of_tendsto
 
-alias Measure.FiniteAtFilter.integrableAtFilter_of_tendsto ←
-  _root_.Filter.Tendsto.integrableAtFilter
+alias _root_.Filter.Tendsto.integrableAtFilter :=
+  Measure.FiniteAtFilter.integrableAtFilter_of_tendsto
 #align filter.tendsto.integrable_at_filter Filter.Tendsto.integrableAtFilter
 
 theorem integrable_add_of_disjoint {f g : α → E} (h : Disjoint (support f) (support g))
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -27,7 +27,7 @@ open Set Filter TopologicalSpace MeasureTheory Function
 
 open scoped Classical Topology Interval BigOperators Filter ENNReal MeasureTheory
 
-variable {α β E F : Type _} [MeasurableSpace α]
+variable {α β E F : Type*} [MeasurableSpace α]
 
 section
 
@@ -616,7 +616,7 @@ theorem Continuous.stronglyMeasurableAtFilter [TopologicalSpace α] [OpensMeasur
 
 /-- If a function is continuous on a measurable set `s`, then it is measurable at the filter
   `𝓝[s] x` for all `x`. -/
-theorem ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin {α β : Type _} [MeasurableSpace α]
+theorem ContinuousOn.stronglyMeasurableAtFilter_nhdsWithin {α β : Type*} [MeasurableSpace α]
     [TopologicalSpace α] [OpensMeasurableSpace α] [TopologicalSpace β] [PseudoMetrizableSpace β]
     [SecondCountableTopologyEither α β] {f : α → β} {s : Set α} {μ : Measure α}
     (hf : ContinuousOn f s) (hs : MeasurableSet s) (x : α) :
chore: tidy various files (#6158)
Diff
@@ -46,7 +46,7 @@ theorem stronglyMeasurableAt_bot {f : α → β} : StronglyMeasurableAtFilter f
 
 protected theorem StronglyMeasurableAtFilter.eventually (h : StronglyMeasurableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, AEStronglyMeasurable f (μ.restrict s) :=
-  (eventually_small_sets' fun _ _ => AEStronglyMeasurable.mono_set).2 h
+  (eventually_smallSets' fun _ _ => AEStronglyMeasurable.mono_set).2 h
 #align strongly_measurable_at_filter.eventually StronglyMeasurableAtFilter.eventually
 
 protected theorem StronglyMeasurableAtFilter.filter_mono (h : StronglyMeasurableAtFilter f l μ)
@@ -397,7 +397,7 @@ theorem Integrable.integrableAtFilter (h : Integrable f μ) (l : Filter α) :
 
 protected theorem IntegrableAtFilter.eventually (h : IntegrableAtFilter f l μ) :
     ∀ᶠ s in l.smallSets, IntegrableOn f s μ :=
-  Iff.mpr (eventually_small_sets' fun _s _t hst ht => ht.mono_set hst) h
+  Iff.mpr (eventually_smallSets' fun _s _t hst ht => ht.mono_set hst) h
 #align measure_theory.integrable_at_filter.eventually MeasureTheory.IntegrableAtFilter.eventually
 
 protected theorem IntegrableAtFilter.add {f g : α → E}
feat(MeasureTheory.Function.AEEqOfIntegral): characterize a locally integrable function by its integral on compact sets (#5876)

We show that, if a locally integrable function has zero integral on all compact sets, then it vanishes almost everywhere.

Diff
@@ -400,6 +400,25 @@ protected theorem IntegrableAtFilter.eventually (h : IntegrableAtFilter f l μ)
   Iff.mpr (eventually_small_sets' fun _s _t hst ht => ht.mono_set hst) h
 #align measure_theory.integrable_at_filter.eventually MeasureTheory.IntegrableAtFilter.eventually
 
+protected theorem IntegrableAtFilter.add {f g : α → E}
+    (hf : IntegrableAtFilter f l μ) (hg : IntegrableAtFilter g l μ) :
+    IntegrableAtFilter (f + g) l μ := by
+  rcases hf with ⟨s, sl, hs⟩
+  rcases hg with ⟨t, tl, ht⟩
+  refine ⟨s ∩ t, inter_mem sl tl, ?_⟩
+  exact (hs.mono_set (inter_subset_left _ _)).add (ht.mono_set (inter_subset_right _ _))
+
+protected theorem IntegrableAtFilter.neg {f : α → E} (hf : IntegrableAtFilter f l μ) :
+    IntegrableAtFilter (-f) l μ := by
+  rcases hf with ⟨s, sl, hs⟩
+  exact ⟨s, sl, hs.neg⟩
+
+protected theorem IntegrableAtFilter.sub {f g : α → E}
+    (hf : IntegrableAtFilter f l μ) (hg : IntegrableAtFilter g l μ) :
+    IntegrableAtFilter (f - g) l μ := by
+  rw [sub_eq_add_neg]
+  exact hf.add hg.neg
+
 theorem IntegrableAtFilter.filter_mono (hl : l ≤ l') (hl' : IntegrableAtFilter f l' μ) :
     IntegrableAtFilter f l μ :=
   let ⟨s, hs, hsf⟩ := hl'
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov
-
-! This file was ported from Lean 3 source module measure_theory.integral.integrable_on
-! leanprover-community/mathlib commit 8b8ba04e2f326f3f7cf24ad129beda58531ada61
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Function.L1Space
 import Mathlib.Analysis.NormedSpace.IndicatorFunction
 
+#align_import measure_theory.integral.integrable_on from "leanprover-community/mathlib"@"8b8ba04e2f326f3f7cf24ad129beda58531ada61"
+
 /-! # Functions integrable on a set and at a filter
 
 We define `IntegrableOn f s μ := Integrable f (μ.restrict s)` and prove theorems like
style: recover Is of Foo which is ported from is_foo (#4639)

I have misported is_foo to Foo because I misunderstood the rule for IsLawfulFoo. This PR recover Is of Foo which is ported from is_foo. This PR also renames some misported theorems.

Diff
@@ -82,7 +82,7 @@ section NormedAddCommGroup
 theorem hasFiniteIntegral_restrict_of_bounded [NormedAddCommGroup E] {f : α → E} {s : Set α}
     {μ : Measure α} {C} (hs : μ s < ∞) (hf : ∀ᵐ x ∂μ.restrict s, ‖f x‖ ≤ C) :
     HasFiniteIntegral f (μ.restrict s) :=
-  haveI : FiniteMeasure (μ.restrict s) := ⟨by rwa [Measure.restrict_apply_univ]⟩
+  haveI : IsFiniteMeasure (μ.restrict s) := ⟨by rwa [Measure.restrict_apply_univ]⟩
   hasFiniteIntegral_of_bounded hf
 #align measure_theory.has_finite_integral_restrict_of_bounded MeasureTheory.hasFiniteIntegral_restrict_of_bounded
 
@@ -368,7 +368,7 @@ theorem integrableOn_Lp_of_measure_ne_top {E} [NormedAddCommGroup E] {p : ℝ≥
   refine' memℒp_one_iff_integrable.mp _
   have hμ_restrict_univ : (μ.restrict s) Set.univ < ∞ := by
     simpa only [Set.univ_inter, MeasurableSet.univ, Measure.restrict_apply, lt_top_iff_ne_top]
-  haveI hμ_finite : FiniteMeasure (μ.restrict s) := ⟨hμ_restrict_univ⟩
+  haveI hμ_finite : IsFiniteMeasure (μ.restrict s) := ⟨hμ_restrict_univ⟩
   exact ((Lp.memℒp _).restrict s).memℒp_of_exponent_le hp
 set_option linter.uppercaseLean3 false in
 #align measure_theory.integrable_on_Lp_of_measure_ne_top MeasureTheory.integrableOn_Lp_of_measure_ne_top
@@ -552,7 +552,7 @@ theorem ContinuousOn.aestronglyMeasurable_of_isCompact [TopologicalSpace α] [Op
 #align continuous_on.ae_strongly_measurable_of_is_compact ContinuousOn.aestronglyMeasurable_of_isCompact
 
 theorem ContinuousOn.integrableAt_nhdsWithin_of_isSeparable [TopologicalSpace α]
-    [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ]
+    [PseudoMetrizableSpace α] [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ]
     {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t) (ht : MeasurableSet t)
     (h't : TopologicalSpace.IsSeparable t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhdsWithin_isMeasurablyGenerated _
@@ -563,7 +563,7 @@ theorem ContinuousOn.integrableAt_nhdsWithin_of_isSeparable [TopologicalSpace α
 
 theorem ContinuousOn.integrableAt_nhdsWithin [TopologicalSpace α]
     [SecondCountableTopologyEither α E] [OpensMeasurableSpace α] {μ : Measure α}
-    [LocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
+    [IsLocallyFiniteMeasure μ] {a : α} {t : Set α} {f : α → E} (hft : ContinuousOn f t)
     (ht : MeasurableSet t) (ha : a ∈ t) : IntegrableAtFilter f (𝓝[t] a) μ :=
   haveI : (𝓝[t] a).IsMeasurablyGenerated := ht.nhdsWithin_isMeasurablyGenerated _
   (hft a ha).integrableAtFilter ⟨_, self_mem_nhdsWithin, hft.aestronglyMeasurable ht⟩
@@ -571,7 +571,7 @@ theorem ContinuousOn.integrableAt_nhdsWithin [TopologicalSpace α]
 #align continuous_on.integrable_at_nhds_within ContinuousOn.integrableAt_nhdsWithin
 
 theorem Continuous.integrableAt_nhds [TopologicalSpace α] [SecondCountableTopologyEither α E]
-    [OpensMeasurableSpace α] {μ : Measure α} [LocallyFiniteMeasure μ] {f : α → E}
+    [OpensMeasurableSpace α] {μ : Measure α} [IsLocallyFiniteMeasure μ] {f : α → E}
     (hf : Continuous f) (a : α) : IntegrableAtFilter f (𝓝 a) μ := by
   rw [← nhdsWithin_univ]
   exact hf.continuousOn.integrableAt_nhdsWithin MeasurableSet.univ (mem_univ a)
feat: port MeasureTheory.Integral.IntegrableOn (#4520)

Dependencies 12 + 933

934 files ported (98.7%)
424290 lines ported (98.7%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file