measure_theory.integral.lebesgueMathlib.MeasureTheory.Integral.Lebesgue

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(measure_theory/integral/average): Lebesgue average (#19199)

Define the Lebesgue integral version of the average of a measurable function and prove the corresponding first moment method.

Diff
@@ -83,7 +83,7 @@ section lintegral
 
 open simple_func
 
-variables {m : measurable_space α} {μ ν : measure α}
+variables {m : measurable_space α} {μ ν : measure α} {f : α → ℝ≥0∞} {s : set α}
 
 /-- The **lower Lebesgue integral** of a function `f` with respect to a measure `μ`. -/
 @[irreducible] def lintegral {m : measurable_space α} (μ : measure α) (f : α → ℝ≥0∞) : ℝ≥0∞ :=
@@ -758,6 +758,9 @@ begin
   exact hf (measurable_set_singleton r)
 end
 
+@[simp] lemma lintegral_indicator_one (hs : measurable_set s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
+(lintegral_indicator_const hs _).trans $ one_mul _
+
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 lemma lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
@@ -792,12 +795,25 @@ lemma mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : measurable f) (ε :
   ε * μ {x | ε ≤ f x} ≤ ∫⁻ a, f a ∂μ :=
 mul_meas_ge_le_lintegral₀ hf.ae_measurable ε
 
-lemma lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : ae_measurable f μ)
-  (hμf : 0 < μ {x | f x = ∞}) : ∫⁻ x, f x ∂μ = ∞ :=
+lemma lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf : ae_measurable f μ)
+  (hμf : μ {x | f x = ∞} ≠ 0) : ∫⁻ x, f x ∂μ = ∞ :=
 eq_top_iff.mpr $
-calc ∞ = ∞ * μ {x | ∞ ≤ f x} : by simp [mul_eq_top, hμf.ne.symm]
+calc ∞ = ∞ * μ {x | ∞ ≤ f x} : by simp [mul_eq_top, hμf]
    ... ≤ ∫⁻ x, f x ∂μ : mul_meas_ge_le_lintegral₀ hf ∞
 
+lemma set_lintegral_eq_top_of_measure_eq_top_ne_zero (hf : ae_measurable f (μ.restrict s))
+  (hμf : μ {x ∈ s | f x = ∞} ≠ 0) : ∫⁻ x in s, f x ∂μ = ∞ :=
+lintegral_eq_top_of_measure_eq_top_ne_zero hf $
+  mt (eq_bot_mono $ by { rw ←set_of_inter_eq_sep, exact measure.le_restrict_apply _ _ }) hμf
+
+lemma measure_eq_top_of_lintegral_ne_top (hf : ae_measurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
+  μ {x | f x = ∞} = 0 :=
+of_not_not $ λ h, hμf $ lintegral_eq_top_of_measure_eq_top_ne_zero hf h
+
+lemma measure_eq_top_of_set_lintegral_ne_top (hf : ae_measurable f (μ.restrict s))
+  (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) : μ {x ∈ s | f x = ∞} = 0 :=
+of_not_not $ λ h, hμf $ set_lintegral_eq_top_of_measure_eq_top_ne_zero hf h
+
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 lemma meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : ae_measurable f μ) {ε : ℝ≥0∞}
   (hε : ε ≠ 0) (hε' : ε ≠ ∞) :

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -2068,7 +2068,7 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
     simp only [Pi.zero_apply, mem_set_of_eq, Filter.mem_mk] at A
     convert A
     ext x
-    simp only [and_comm', exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, mem_compl_iff,
+    simp only [and_comm, exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, mem_compl_iff,
       Classical.not_forall]
   · intro hs
     let t := to_measurable μ ({x | f x ≠ 0} ∩ s)
Diff
@@ -279,7 +279,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
     obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞}); exact exists_nat_mul_gt h_meas (ne_of_lt hb)
     use(const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
     simp only [lt_iSup_iff, exists_prop, coe_restrict, φ.measurable_set_preimage, coe_const,
-      ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_nat,
+      ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_natCast,
       restrict_const_lintegral]
     refine' ⟨indicator_le fun x hx => le_trans _ (hφ _), hn⟩
     simp only [mem_preimage, mem_singleton_iff] at hx
@@ -1041,7 +1041,7 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     have : ∫⁻ x, f x ∂μ + (↑n)⁻¹ * μ {x : α | f x + n⁻¹ ≤ g x} ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
     rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
-    exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
+    exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.natCast_ne_top _))
   refine' hfg.mp ((ae_all_iff.2 this).mono fun x hlt hle => hle.antisymm _)
   suffices : tendsto (fun n : ℕ => f x + n⁻¹) at_top (𝓝 (f x))
   exact ge_of_tendsto' this fun i => (hlt i).le
Diff
@@ -1356,7 +1356,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
 #align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurable
 -/
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:354:22: unsupported: parse error @ arg 0: next failed, no more args -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:355:22: unsupported: parse error @ arg 0: next failed, no more args -/
 #print MeasureTheory.lintegral_iSup_directed /-
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
@@ -1367,7 +1367,7 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x :=
     by
     trace
-      "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], [\"with\", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:354:22: unsupported: parse error @ arg 0: next failed, no more args"
+      "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], [\"with\", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:355:22: unsupported: parse error @ arg 0: next failed, no more args"
     obtain ⟨z, hz₁, hz₂⟩ := h_directed i j
     exact ⟨z, hz₁ x, hz₂ x⟩
   have h_ae_seq_directed : Directed LE.le (aeSeq hf p) :=
Diff
@@ -282,7 +282,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
       ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_nat,
       restrict_const_lintegral]
     refine' ⟨indicator_le fun x hx => le_trans _ (hφ _), hn⟩
-    simp only [mem_preimage, mem_singleton_iff] at hx 
+    simp only [mem_preimage, mem_singleton_iff] at hx
     simp only [hx, le_top]
 #align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnreal
 -/
@@ -294,10 +294,10 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
       (∀ x, ↑(φ x) ≤ f x) ∧
         ∀ ψ : α →ₛ ℝ≥0, (∀ x, ↑(ψ x) ≤ f x) → (map coe (ψ - φ)).lintegral μ < ε :=
   by
-  rw [lintegral_eq_nnreal] at h 
+  rw [lintegral_eq_nnreal] at h
   have := ENNReal.lt_add_right h hε
-  erw [ENNReal.biSup_add] at this  <;> [skip; exact ⟨0, fun x => zero_le _⟩]
-  simp_rw [lt_iSup_iff, iSup_lt_iff, iSup_le_iff] at this 
+  erw [ENNReal.biSup_add] at this <;> [skip; exact ⟨0, fun x => zero_le _⟩]
+  simp_rw [lt_iSup_iff, iSup_lt_iff, iSup_le_iff] at this
   rcases this with ⟨φ, hle : ∀ x, ↑(φ x) ≤ f x, b, hbφ, hb⟩
   refine' ⟨φ, hle, fun ψ hψ => _⟩
   have : (map coe φ).lintegral μ ≠ ∞ := ne_top_of_le_ne_top h (le_iSup₂ φ hle)
@@ -448,7 +448,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     rw [← inter_Union, ← inter_univ (map c rs ⁻¹' {p})]
     refine' Set.ext fun x => and_congr_right fun hx => (true_iff_iff _).2 _
     by_cases p_eq : p = 0; · simp [p_eq]
-    simp at hx ; subst hx
+    simp at hx; subst hx
     have : r * s x ≠ 0 := by rwa [(· ≠ ·), ← ENNReal.coe_eq_zero]
     have : s x ≠ 0 := by refine' mt _ this; intro h; rw [h, MulZeroClass.mul_zero]
     have : (rs.map c) x < ⨆ n : ℕ, f n x :=
@@ -490,7 +490,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       refine' iSup_mono fun n => _
       rw [← simple_func.lintegral_eq_lintegral]
       refine' lintegral_mono fun a => _
-      simp only [map_apply] at h_meas 
+      simp only [map_apply] at h_meas
       simp only [coe_map, restrict_apply _ (h_meas _), (· ∘ ·)]
       exact indicator_apply_le id
 #align measure_theory.lintegral_supr MeasureTheory.lintegral_iSup
@@ -776,7 +776,7 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
   induction' s using Finset.induction_on with a s has ih
   · simp
   · simp only [Finset.sum_insert has]
-    rw [Finset.forall_mem_insert] at hf 
+    rw [Finset.forall_mem_insert] at hf
     rw [lintegral_add_left' hf.1, ih hf.2]
 #align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'
 -/
@@ -841,7 +841,7 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   have rinv : r * r⁻¹ = 1 := ENNReal.mul_inv_cancel h hr
   have rinv' : r⁻¹ * r = 1 := by rw [mul_comm]; exact rinv
   have := lintegral_const_mul_le r⁻¹ fun x => r * f x
-  simp [(mul_assoc _ _ _).symm, rinv'] at this 
+  simp [(mul_assoc _ _ _).symm, rinv'] at this
   simpa [(mul_assoc _ _ _).symm, rinv] using mul_le_mul_left' this r
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
 -/
@@ -1040,7 +1040,7 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     simp only [ae_iff, not_lt]
     have : ∫⁻ x, f x ∂μ + (↑n)⁻¹ * μ {x : α | f x + n⁻¹ ≤ g x} ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
-    rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this 
+    rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
     exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
   refine' hfg.mp ((ae_all_iff.2 this).mono fun x hlt hle => hle.antisymm _)
   suffices : tendsto (fun n : ℕ => f x + n⁻¹) at_top (𝓝 (f x))
@@ -1092,8 +1092,8 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
         (monotone_nat_of_le_succ fun n a =>
           by_cases (fun h : a ∈ s => by simp [g, if_pos h]) fun h : a ∉ s =>
             by
-            simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this ; have := mt (this a) h
-            simp only [Classical.not_not, mem_set_of_eq] at this ; exact this n))
+            simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this; have := mt (this a) h
+            simp only [Classical.not_not, mem_set_of_eq] at this; exact this n))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun a ha => ha _)]
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 -/
@@ -1158,7 +1158,7 @@ theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
     (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
   by
-  rw [Ne.def, ← measure.measure_univ_eq_zero] at hμ 
+  rw [Ne.def, ← measure.measure_univ_eq_zero] at hμ
   refine' lintegral_strict_mono_of_ae_le_of_ae_lt_on hg hfi (ae_le_of_ae_lt h) hμ _
   simpa using h
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
@@ -1294,7 +1294,7 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
     exact H'
   · intro n
     filter_upwards [h_bound n, (hF_meas n).ae_eq_mk] with a H H'
-    rwa [H'] at H 
+    rwa [H'] at H
 #align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'
 -/
 
@@ -1308,7 +1308,7 @@ theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
   by
   rw [tendsto_iff_seq_tendsto]
   intro x xl
-  have hxl := by rw [tendsto_at_top'] at xl ; exact xl
+  have hxl := by rw [tendsto_at_top'] at xl; exact xl
   have h := inter_mem hF_meas h_bound
   replace h := hxl _ h
   rcases h with ⟨k, h⟩
@@ -1716,7 +1716,7 @@ theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a :
     (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
     (ε_ne_top : ε ≠ ∞) : Measure.count {i : α | ε ≤ a i} ≤ c / ε :=
   by
-  rw [← lintegral_count] at tsum_le_c 
+  rw [← lintegral_count] at tsum_le_c
   apply (MeasureTheory.meas_ge_le_lintegral_div a_mble.ae_measurable ε_ne_zero ε_ne_top).trans
   exact ENNReal.div_le_div tsum_le_c rfl.le
 #align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_le
@@ -1840,7 +1840,7 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
     (hf : Measurable f) (hbdd : BddAbove (f '' s)) : ∫⁻ x in s, f x ∂μ < ∞ :=
   by
   obtain ⟨M, hM⟩ := hbdd
-  rw [mem_upperBounds] at hM 
+  rw [mem_upperBounds] at hM
   refine'
     lt_of_le_of_lt (set_lintegral_mono hf.coe_nnreal_ennreal (@measurable_const _ _ _ _ ↑M) _) _
   · simpa using hM
@@ -2063,9 +2063,9 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
     apply measure_mono_null (inter_subset_inter_right _ (subset_to_measurable (μ.with_density f) s))
     have A : μ.with_density f t = 0 := by rw [measure_to_measurable, hs]
     rw [with_density_apply f (measurable_set_to_measurable _ s), lintegral_eq_zero_iff hf,
-      eventually_eq, ae_restrict_iff, ae_iff] at A 
+      eventually_eq, ae_restrict_iff, ae_iff] at A
     swap; · exact hf (measurable_set_singleton 0)
-    simp only [Pi.zero_apply, mem_set_of_eq, Filter.mem_mk] at A 
+    simp only [Pi.zero_apply, mem_set_of_eq, Filter.mem_mk] at A
     convert A
     ext x
     simp only [and_comm', exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, mem_compl_iff,
@@ -2120,7 +2120,7 @@ theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
     have A : MeasurableSet {x : α | f x ≠ 0} := (hf (measurable_set_singleton 0)).compl
     refine' ⟨fun x => f x * g' x, hf.coe_nnreal_ennreal.smul g'meas, _⟩
     apply ae_of_ae_restrict_of_ae_restrict_compl {x | f x ≠ 0}
-    · rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal] at hg' 
+    · rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal] at hg'
       rw [ae_restrict_iff' A]
       filter_upwards [hg']
       intro a ha h'a
@@ -2128,7 +2128,7 @@ theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
       rw [ha this]
     · filter_upwards [ae_restrict_mem A.compl]
       intro x hx
-      simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx 
+      simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx
       simp [hx]
   · rintro ⟨g', g'meas, hg'⟩
     refine' ⟨fun x => (f x)⁻¹ * g' x, hf.coe_nnreal_ennreal.inv.smul g'meas, _⟩
@@ -2199,7 +2199,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
       apply lintegral_congr_ae
       apply ae_of_ae_restrict_of_ae_restrict_compl {x | f' x ≠ 0}
       · have Z := hg.ae_eq_mk
-        rw [eventually_eq, ae_with_density_iff_ae_restrict hf.measurable_mk] at Z 
+        rw [eventually_eq, ae_with_density_iff_ae_restrict hf.measurable_mk] at Z
         filter_upwards [Z]
         intro x hx
         simp only [hx, Pi.mul_apply]
@@ -2207,7 +2207,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
           (hf.measurable_mk (measurable_set_singleton 0).compl).compl
         filter_upwards [ae_restrict_mem M]
         intro x hx
-        simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx 
+        simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx
         simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply]
     _ = ∫⁻ a : α, (f * g) a ∂μ := by
       apply lintegral_congr_ae
@@ -2258,7 +2258,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
   intro x h'x
   rcases eq_or_ne (f x) 0 with (hx | hx)
   · have := hi x
-    simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this 
+    simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this
     simp [this]
   · apply le_of_eq _
     dsimp
@@ -2354,7 +2354,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
   · intro f g hfg hf hg hf_prop hg_prop
     have h_m := lintegral_add_left hf g
     have h_m0 := lintegral_add_left (Measurable.mono hf hm le_rfl) g
-    rwa [hf_prop, hg_prop, ← h_m0] at h_m 
+    rwa [hf_prop, hg_prop, ← h_m0] at h_m
   · intro f hf hf_mono hf_prop
     rw [lintegral_supr hf hf_mono]
     rw [lintegral_supr (fun n => Measurable.mono (hf n) hm le_rfl) hf_mono]
@@ -2420,8 +2420,8 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
       · simp only [hxn, le_refl, if_true]
       · by_cases hxi : x ∈ S i <;> simp [hxi]
     · simp only [hx_mem, if_false]
-      rw [mem_Union] at hx_mem 
-      push_neg at hx_mem 
+      rw [mem_Union] at hx_mem
+      push_neg at hx_mem
       refine' le_antisymm (zero_le _) (iSup_le fun n => _)
       simp only [hx_mem n, if_false, nonpos_iff_eq_zero]
   · exact fun n => hf_meas.indicator (hm _ (hS_meas n))
@@ -2475,7 +2475,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
   induction' f using MeasureTheory.SimpleFunc.induction with c s hs f₁ f₂ H h₁ h₂ generalizing L
   · simp only [hs, const_zero, coe_piecewise, coe_const, simple_func.coe_zero, univ_inter,
       piecewise_eq_indicator, lintegral_indicator, lintegral_const, measure.restrict_apply',
-      coe_indicator, Function.const_apply] at hL 
+      coe_indicator, Function.const_apply] at hL
     have c_ne_zero : c ≠ 0 := by intro hc;
       simpa only [hc, ENNReal.coe_zero, MulZeroClass.zero_mul, not_lt_zero] using hL
     have : L / c < μ s := by
@@ -2500,12 +2500,12 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
   · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ
     · rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
     by_cases hf₁ : ∫⁻ x, f₁ x ∂μ = 0
-    · simp only [hf₁, zero_add] at hL 
+    · simp only [hf₁, zero_add] at hL
       rcases h₂ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
       simp only [simple_func.coe_add, Pi.add_apply, le_add_iff_nonneg_left, zero_le']
     by_cases hf₂ : ∫⁻ x, f₂ x ∂μ = 0
-    · simp only [hf₂, add_zero] at hL 
+    · simp only [hf₂, add_zero] at hL
       rcases h₁ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
       simp only [simple_func.coe_add, Pi.add_apply, le_add_iff_nonneg_right, zero_le']
@@ -2529,7 +2529,7 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ ∫⁻ x, g x ∂μ < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
   by
-  simp_rw [lintegral_eq_nnreal, lt_iSup_iff] at hL 
+  simp_rw [lintegral_eq_nnreal, lt_iSup_iff] at hL
   rcases hL with ⟨g₀, hg₀, g₀L⟩
   have h'L : L < ∫⁻ x, g₀ x ∂μ := by
     convert g₀L
Diff
@@ -2124,7 +2124,7 @@ theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
       rw [ae_restrict_iff' A]
       filter_upwards [hg']
       intro a ha h'a
-      have : (f a : ℝ≥0∞) ≠ 0 := by simpa only [Ne.def, coe_eq_zero] using h'a
+      have : (f a : ℝ≥0∞) ≠ 0 := by simpa only [Ne.def, NNReal.coe_eq_zero] using h'a
       rw [ha this]
     · filter_upwards [ae_restrict_mem A.compl]
       intro x hx
@@ -2480,7 +2480,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       simpa only [hc, ENNReal.coe_zero, MulZeroClass.zero_mul, not_lt_zero] using hL
     have : L / c < μ s := by
       rwa [ENNReal.div_lt_iff, mul_comm]
-      · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
+      · simp only [c_ne_zero, Ne.def, NNReal.coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
     obtain ⟨t, ht, ts, mut, t_top⟩ :
       ∃ t : Set α, MeasurableSet t ∧ t ⊆ s ∧ L / ↑c < μ t ∧ μ t < ∞ :=
@@ -2495,7 +2495,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
         piecewise_eq_indicator, coe_indicator, Function.const_apply, lintegral_indicator,
         lintegral_const, measure.restrict_apply', univ_inter]
       rwa [mul_comm, ← ENNReal.div_lt_iff]
-      · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
+      · simp only [c_ne_zero, Ne.def, NNReal.coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
   · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ
     · rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
Diff
@@ -55,6 +55,14 @@ theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
   by
   ext1 t ht
   classical
+  simp only [measure.restrict_apply ht, measure.dirac_apply' _ (ht.inter hs), Set.indicator_apply,
+    Set.mem_inter_iff, Pi.one_apply]
+  by_cases has : a ∈ s
+  · simp only [has, and_true_iff, if_true]
+    split_ifs with hat
+    · rw [measure.dirac_apply_of_mem hat]
+    · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
+  · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac' MeasureTheory.restrict_dirac'
 -/
 
@@ -65,6 +73,14 @@ theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
   by
   ext1 t ht
   classical
+  simp only [measure.restrict_apply ht, measure.dirac_apply _, Set.indicator_apply,
+    Set.mem_inter_iff, Pi.one_apply]
+  by_cases has : a ∈ s
+  · simp only [has, and_true_iff, if_true]
+    split_ifs with hat
+    · rw [measure.dirac_apply_of_mem hat]
+    · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
+  · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac MeasureTheory.restrict_dirac
 -/
 
Diff
@@ -55,14 +55,6 @@ theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
   by
   ext1 t ht
   classical
-  simp only [measure.restrict_apply ht, measure.dirac_apply' _ (ht.inter hs), Set.indicator_apply,
-    Set.mem_inter_iff, Pi.one_apply]
-  by_cases has : a ∈ s
-  · simp only [has, and_true_iff, if_true]
-    split_ifs with hat
-    · rw [measure.dirac_apply_of_mem hat]
-    · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
-  · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac' MeasureTheory.restrict_dirac'
 -/
 
@@ -73,14 +65,6 @@ theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
   by
   ext1 t ht
   classical
-  simp only [measure.restrict_apply ht, measure.dirac_apply _, Set.indicator_apply,
-    Set.mem_inter_iff, Pi.one_apply]
-  by_cases has : a ∈ s
-  · simp only [has, and_true_iff, if_true]
-    split_ifs with hat
-    · rw [measure.dirac_apply_of_mem hat]
-    · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
-  · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac MeasureTheory.restrict_dirac
 -/
 
Diff
@@ -1642,12 +1642,10 @@ theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν :
 
 section DiracAndCount
 
-#print MeasurableSpace.Top.measurableSingletonClass /-
 instance (priority := 10) MeasurableSpace.Top.measurableSingletonClass {α : Type _} :
     @MeasurableSingletonClass α (⊤ : MeasurableSpace α)
     where measurableSet_singleton i := MeasurableSpace.measurableSet_top
 #align measurable_space.top.measurable_singleton_class MeasurableSpace.Top.measurableSingletonClass
--/
 
 variable [MeasurableSpace α]
 
Diff
@@ -472,7 +472,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       simp only [(Eq _).symm]
     _ = ∑ r in (rs.map c).range, ⨆ n, r * μ (rs.map c ⁻¹' {r} ∩ {a | r ≤ f n a}) :=
       (Finset.sum_congr rfl fun x hx => by
-        rw [measure_Union_eq_supr (directed_of_sup <| mono x), ENNReal.mul_iSup])
+        rw [measure_Union_eq_supr (directed_of_isDirected_le <| mono x), ENNReal.mul_iSup])
     _ = ⨆ n, ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r} ∩ {a | r ≤ f n a}) :=
       by
       rw [ENNReal.finset_sum_iSup_nat]
Diff
@@ -2071,7 +2071,7 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
     convert A
     ext x
     simp only [and_comm', exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, mem_compl_iff,
-      not_forall]
+      Classical.not_forall]
   · intro hs
     let t := to_measurable μ ({x | f x ≠ 0} ∩ s)
     have A : s ⊆ t ∪ {x | f x = 0} := by
@@ -2098,7 +2098,7 @@ theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measu
   rw [ae_iff, ae_iff, with_density_apply_eq_zero hf]
   congr
   ext x
-  simp only [exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, not_forall]
+  simp only [exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, Classical.not_forall]
 #align measure_theory.ae_with_density_iff MeasureTheory.ae_withDensity_iff
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 -/
-import Mathbin.Dynamics.Ergodic.MeasurePreserving
-import Mathbin.MeasureTheory.Function.SimpleFunc
-import Mathbin.MeasureTheory.Measure.MutuallySingular
+import Dynamics.Ergodic.MeasurePreserving
+import MeasureTheory.Function.SimpleFunc
+import MeasureTheory.Measure.MutuallySingular
 
 #align_import measure_theory.integral.lebesgue from "leanprover-community/mathlib"@"c14c8fcde993801fca8946b0d80131a1a81d1520"
 
@@ -423,7 +423,7 @@ theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
 -/
 
-/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([1]) } -/
+/- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:133:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([1]) } -/
 #print MeasureTheory.lintegral_iSup /-
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
 
@@ -1356,7 +1356,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
 #align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurable
 -/
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:354:22: unsupported: parse error @ arg 0: next failed, no more args -/
 #print MeasureTheory.lintegral_iSup_directed /-
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
@@ -1367,7 +1367,7 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x :=
     by
     trace
-      "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], [\"with\", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args"
+      "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], [\"with\", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:354:22: unsupported: parse error @ arg 0: next failed, no more args"
     obtain ⟨z, hz₁, hz₂⟩ := h_directed i j
     exact ⟨z, hz₁ x, hz₂ x⟩
   have h_ae_seq_directed : Directed LE.le (aeSeq hf p) :=
Diff
@@ -1859,15 +1859,15 @@ theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurable
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 -/
 
-#print IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal /-
-theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
+#print IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal /-
+theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal {α : Type _} [MeasurableSpace α]
     (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
     ∫⁻ x, f x ∂μ < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
   rw [lintegral_const]
   exact ENNReal.mul_lt_top ennreal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
-#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal
+#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal
 -/
 
 #print MeasureTheory.Measure.withDensity /-
Diff
@@ -277,7 +277,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
   · have h_meas : μ (φ ⁻¹' {∞}) ≠ 0 := mt measure_zero_iff_ae_nmem.1 h
     refine' le_trans le_top (ge_of_eq <| (iSup_eq_top _).2 fun b hb => _)
     obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞}); exact exists_nat_mul_gt h_meas (ne_of_lt hb)
-    use (const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
+    use(const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
     simp only [lt_iSup_iff, exists_prop, coe_restrict, φ.measurable_set_preimage, coe_const,
       ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_nat,
       restrict_const_lintegral]
@@ -565,7 +565,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : 
   rcases exists_between hε₂0 with ⟨ε₁, hε₁0, hε₁₂⟩
   rcases exists_simple_func_forall_lintegral_sub_lt_of_pos h hε₁0.ne' with ⟨φ, hle, hφ⟩
   rcases φ.exists_forall_le with ⟨C, hC⟩
-  use (ε₂ - ε₁) / C, ENNReal.div_pos_iff.2 ⟨(tsub_pos_iff_lt.2 hε₁₂).ne', ENNReal.coe_ne_top⟩
+  use(ε₂ - ε₁) / C, ENNReal.div_pos_iff.2 ⟨(tsub_pos_iff_lt.2 hε₁₂).ne', ENNReal.coe_ne_top⟩
   refine' fun s hs => lt_of_le_of_lt _ hε₂ε
   simp only [lintegral_eq_nnreal, iSup_le_iff]
   intro ψ hψ
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
-
-! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit c14c8fcde993801fca8946b0d80131a1a81d1520
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Dynamics.Ergodic.MeasurePreserving
 import Mathbin.MeasureTheory.Function.SimpleFunc
 import Mathbin.MeasureTheory.Measure.MutuallySingular
 
+#align_import measure_theory.integral.lebesgue from "leanprover-community/mathlib"@"c14c8fcde993801fca8946b0d80131a1a81d1520"
+
 /-!
 # Lower Lebesgue integral for `ℝ≥0∞`-valued functions
 
Diff
@@ -945,10 +945,12 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 -/
 
+#print MeasureTheory.lintegral_indicator_one /-
 @[simp]
 theorem lintegral_indicator_one (hs : MeasurableSet s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
   (lintegral_indicator_const hs _).trans <| one_mul _
 #align measure_theory.lintegral_indicator_one MeasureTheory.lintegral_indicator_one
+-/
 
 #print MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral /-
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
@@ -991,6 +993,7 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 -/
 
+#print MeasureTheory.lintegral_eq_top_of_measure_eq_top_ne_zero /-
 theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hμf : μ {x | f x = ∞} ≠ 0) : ∫⁻ x, f x ∂μ = ∞ :=
   eq_top_iff.mpr <|
@@ -998,22 +1001,29 @@ theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf :
       ∞ = ∞ * μ {x | ∞ ≤ f x} := by simp [mul_eq_top, hμf]
       _ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
 #align measure_theory.lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.lintegral_eq_top_of_measure_eq_top_ne_zero
+-/
 
-theorem set_lintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
+#print MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero /-
+theorem setLintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
     (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0) : ∫⁻ x in s, f x ∂μ = ∞ :=
   lintegral_eq_top_of_measure_eq_top_ne_zero hf <|
     mt (eq_bot_mono <| by rw [← set_of_inter_eq_sep]; exact measure.le_restrict_apply _ _) hμf
-#align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.set_lintegral_eq_top_of_measure_eq_top_ne_zero
+#align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero
+-/
 
+#print MeasureTheory.measure_eq_top_of_lintegral_ne_top /-
 theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
     μ {x | f x = ∞} = 0 :=
   of_not_not fun h => hμf <| lintegral_eq_top_of_measure_eq_top_ne_zero hf h
 #align measure_theory.measure_eq_top_of_lintegral_ne_top MeasureTheory.measure_eq_top_of_lintegral_ne_top
+-/
 
-theorem measure_eq_top_of_set_lintegral_ne_top (hf : AEMeasurable f (μ.restrict s))
+#print MeasureTheory.measure_eq_top_of_setLintegral_ne_top /-
+theorem measure_eq_top_of_setLintegral_ne_top (hf : AEMeasurable f (μ.restrict s))
     (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) : μ ({x ∈ s | f x = ∞}) = 0 :=
-  of_not_not fun h => hμf <| set_lintegral_eq_top_of_measure_eq_top_ne_zero hf h
-#align measure_theory.measure_eq_top_of_set_lintegral_ne_top MeasureTheory.measure_eq_top_of_set_lintegral_ne_top
+  of_not_not fun h => hμf <| setLintegral_eq_top_of_measure_eq_top_ne_zero hf h
+#align measure_theory.measure_eq_top_of_set_lintegral_ne_top MeasureTheory.measure_eq_top_of_setLintegral_ne_top
+-/
 
 #print MeasureTheory.meas_ge_le_lintegral_div /-
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
+! leanprover-community/mathlib commit c14c8fcde993801fca8946b0d80131a1a81d1520
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -97,7 +97,7 @@ section Lintegral
 
 open SimpleFunc
 
-variable {m : MeasurableSpace α} {μ ν : Measure α}
+variable {m : MeasurableSpace α} {μ ν : Measure α} {f : α → ℝ≥0∞} {s : Set α}
 
 #print MeasureTheory.lintegral /-
 /-- The **lower Lebesgue integral** of a function `f` with respect to a measure `μ`. -/
@@ -945,6 +945,11 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 -/
 
+@[simp]
+theorem lintegral_indicator_one (hs : MeasurableSet s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
+  (lintegral_indicator_const hs _).trans <| one_mul _
+#align measure_theory.lintegral_indicator_one MeasureTheory.lintegral_indicator_one
+
 #print MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral /-
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
@@ -986,15 +991,29 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 -/
 
-#print MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos /-
-theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
-    (hμf : 0 < μ {x | f x = ∞}) : ∫⁻ x, f x ∂μ = ∞ :=
+theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
+    (hμf : μ {x | f x = ∞} ≠ 0) : ∫⁻ x, f x ∂μ = ∞ :=
   eq_top_iff.mpr <|
     calc
-      ∞ = ∞ * μ {x | ∞ ≤ f x} := by simp [mul_eq_top, hμf.ne.symm]
+      ∞ = ∞ * μ {x | ∞ ≤ f x} := by simp [mul_eq_top, hμf]
       _ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
-#align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
--/
+#align measure_theory.lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.lintegral_eq_top_of_measure_eq_top_ne_zero
+
+theorem set_lintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
+    (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0) : ∫⁻ x in s, f x ∂μ = ∞ :=
+  lintegral_eq_top_of_measure_eq_top_ne_zero hf <|
+    mt (eq_bot_mono <| by rw [← set_of_inter_eq_sep]; exact measure.le_restrict_apply _ _) hμf
+#align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.set_lintegral_eq_top_of_measure_eq_top_ne_zero
+
+theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
+    μ {x | f x = ∞} = 0 :=
+  of_not_not fun h => hμf <| lintegral_eq_top_of_measure_eq_top_ne_zero hf h
+#align measure_theory.measure_eq_top_of_lintegral_ne_top MeasureTheory.measure_eq_top_of_lintegral_ne_top
+
+theorem measure_eq_top_of_set_lintegral_ne_top (hf : AEMeasurable f (μ.restrict s))
+    (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) : μ ({x ∈ s | f x = ∞}) = 0 :=
+  of_not_not fun h => hμf <| set_lintegral_eq_top_of_measure_eq_top_ne_zero hf h
+#align measure_theory.measure_eq_top_of_set_lintegral_ne_top MeasureTheory.measure_eq_top_of_set_lintegral_ne_top
 
 #print MeasureTheory.meas_ge_le_lintegral_div /-
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
Diff
@@ -51,8 +51,6 @@ section MoveThis
 
 variable {α : Type _} {mα : MeasurableSpace α} {a : α} {s : Set α}
 
-include mα
-
 #print MeasureTheory.restrict_dirac' /-
 -- todo after the port: move to measure_theory/measure/measure_space
 theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
@@ -91,7 +89,6 @@ theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
 
 end MoveThis
 
--- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
 variable {α β γ δ : Type _}
@@ -114,16 +111,12 @@ irreducible_def lintegral {m : MeasurableSpace α} (μ : Measure α) (f : α →
   `∫⁻ x, f x = 0` will be parsed incorrectly. -/
 
 
--- mathport name: «expr∫⁻ , ∂ »
 notation3"∫⁻ "(...)", "r:60:(scoped f => f)" ∂"μ:70 => lintegral μ r
 
--- mathport name: «expr∫⁻ , »
 notation3"∫⁻ "(...)", "r:60:(scoped f => lintegral volume f) => r
 
--- mathport name: «expr∫⁻ in , ∂ »
 notation3"∫⁻ "(...)" in "s", "r:60:(scoped f => f)" ∂"μ:70 => lintegral (Measure.restrict μ s) r
 
--- mathport name: «expr∫⁻ in , »
 notation3"∫⁻ "(...)" in "s", "r:60:(scoped f => lintegral Measure.restrict volume s f) => r
 
 #print MeasureTheory.SimpleFunc.lintegral_eq_lintegral /-
@@ -135,6 +128,7 @@ theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →
 #align measure_theory.simple_func.lintegral_eq_lintegral MeasureTheory.SimpleFunc.lintegral_eq_lintegral
 -/
 
+#print MeasureTheory.lintegral_mono' /-
 @[mono]
 theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν : μ ≤ ν) ⦃f g : α → ℝ≥0∞⦄
     (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂ν :=
@@ -142,15 +136,21 @@ theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν
   rw [lintegral, lintegral]
   exact iSup_mono fun φ => iSup_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
 #align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'
+-/
 
+#print MeasureTheory.lintegral_mono /-
 theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono' (le_refl μ) hfg
 #align measure_theory.lintegral_mono MeasureTheory.lintegral_mono
+-/
 
+#print MeasureTheory.lintegral_mono_nnreal /-
 theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
+-/
 
+#print MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral /-
 theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
     (⨆ (g : α → ℝ≥0∞) (g_meas : Measurable g) (hg : g ≤ f), ∫⁻ a, g a ∂μ) = ∫⁻ a, f a ∂μ :=
   by
@@ -160,32 +160,45 @@ theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
     refine' iSup₂_le fun i hi => le_iSup₂_of_le i i.Measurable <| le_iSup_of_le hi _
     exact le_of_eq (i.lintegral_eq_lintegral _).symm
 #align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral
+-/
 
+#print MeasureTheory.lintegral_mono_set /-
 theorem lintegral_mono_set {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
     (hst : s ⊆ t) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set MeasureTheory.lintegral_mono_set
+-/
 
+#print MeasureTheory.lintegral_mono_set' /-
 theorem lintegral_mono_set' {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
     (hst : s ≤ᵐ[μ] t) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono' hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set' MeasureTheory.lintegral_mono_set'
+-/
 
+#print MeasureTheory.monotone_lintegral /-
 theorem monotone_lintegral {m : MeasurableSpace α} (μ : Measure α) : Monotone (lintegral μ) :=
   lintegral_mono
 #align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegral
+-/
 
+#print MeasureTheory.lintegral_const /-
 @[simp]
 theorem lintegral_const (c : ℝ≥0∞) : ∫⁻ a, c ∂μ = c * μ univ := by
   rw [← simple_func.const_lintegral, ← simple_func.lintegral_eq_lintegral, simple_func.coe_const]
 #align measure_theory.lintegral_const MeasureTheory.lintegral_const
+-/
 
+#print MeasureTheory.lintegral_zero /-
 theorem lintegral_zero : ∫⁻ a : α, 0 ∂μ = 0 := by simp
 #align measure_theory.lintegral_zero MeasureTheory.lintegral_zero
+-/
 
+#print MeasureTheory.lintegral_zero_fun /-
 theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
   lintegral_zero
 #align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_fun
+-/
 
 #print MeasureTheory.lintegral_one /-
 @[simp]
@@ -193,29 +206,36 @@ theorem lintegral_one : ∫⁻ a, (1 : ℝ≥0∞) ∂μ = μ univ := by rw [lin
 #align measure_theory.lintegral_one MeasureTheory.lintegral_one
 -/
 
+#print MeasureTheory.set_lintegral_const /-
 theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : ∫⁻ a in s, c ∂μ = c * μ s := by
   rw [lintegral_const, measure.restrict_apply_univ]
 #align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_const
+-/
 
 #print MeasureTheory.set_lintegral_one /-
 theorem set_lintegral_one (s) : ∫⁻ a in s, 1 ∂μ = μ s := by rw [set_lintegral_const, one_mul]
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 -/
 
+#print MeasureTheory.set_lintegral_const_lt_top /-
 theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
     ∫⁻ a in s, c ∂μ < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
+-/
 
+#print MeasureTheory.lintegral_const_lt_top /-
 theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : ∫⁻ a, c ∂μ < ∞ := by
   simpa only [measure.restrict_univ] using set_lintegral_const_lt_top univ hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
+-/
 
 section
 
 variable (μ)
 
+#print MeasureTheory.exists_measurable_le_lintegral_eq /-
 /-- For any function `f : α → ℝ≥0∞`, there exists a measurable function `g ≤ f` with the same
 integral. -/
 theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
@@ -236,9 +256,11 @@ theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
     exact le_iSup (fun n => g n x) n
   · exact lintegral_mono fun x => iSup_le fun n => hgf n x
 #align measure_theory.exists_measurable_le_lintegral_eq MeasureTheory.exists_measurable_le_lintegral_eq
+-/
 
 end
 
+#print MeasureTheory.lintegral_eq_nnreal /-
 /-- `∫⁻ a in s, f a ∂μ` is defined as the supremum of integrals of simple functions
 `φ : α →ₛ ℝ≥0∞` such that `φ ≤ f`. This lemma says that it suffices to take
 functions `φ : α →ₛ ℝ≥0`. -/
@@ -266,7 +288,9 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
     simp only [mem_preimage, mem_singleton_iff] at hx 
     simp only [hx, le_top]
 #align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnreal
+-/
 
+#print MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos /-
 theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞)
     {ε : ℝ≥0∞} (hε : ε ≠ 0) :
     ∃ φ : α →ₛ ℝ≥0,
@@ -285,31 +309,41 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
   norm_cast
   simp only [add_apply, sub_apply, add_tsub_eq_max]
 #align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos
+-/
 
+#print MeasureTheory.iSup_lintegral_le /-
 theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     (⨆ i, ∫⁻ a, f i a ∂μ) ≤ ∫⁻ a, ⨆ i, f i a ∂μ :=
   by
   simp only [← iSup_apply]
   exact (monotone_lintegral μ).le_map_iSup
 #align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_le
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print MeasureTheory.iSup₂_lintegral_le /-
 theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ := by
   convert (monotone_lintegral μ).le_map_iSup₂ f; ext1 a; simp only [iSup_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
+-/
 
+#print MeasureTheory.le_iInf_lintegral /-
 theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     ∫⁻ a, ⨅ i, f i a ∂μ ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by simp only [← iInf_apply];
   exact (monotone_lintegral μ).map_iInf_le
 #align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
+-/
 
+#print MeasureTheory.le_iInf₂_lintegral /-
 theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     ∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
   convert (monotone_lintegral μ).map_iInf₂_le f; ext1 a; simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
+-/
 
+#print MeasureTheory.lintegral_mono_ae /-
 theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   by
   rcases exists_measurable_superset_of_null h with ⟨t, hts, ht, ht0⟩
@@ -323,16 +357,21 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
     by_cases hat : a ∈ t <;> simp [hat, ht.compl]
     exact (hnt hat).elim
 #align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_ae
+-/
 
+#print MeasureTheory.set_lintegral_mono_ae /-
 theorem set_lintegral_mono_ae {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
     (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
   lintegral_mono_ae <| (ae_restrict_iff <| measurableSet_le hf hg).2 hfg
 #align measure_theory.set_lintegral_mono_ae MeasureTheory.set_lintegral_mono_ae
+-/
 
+#print MeasureTheory.set_lintegral_mono /-
 theorem set_lintegral_mono {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
     (hfg : ∀ x ∈ s, f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
   set_lintegral_mono_ae hf hg (ae_of_all _ hfg)
 #align measure_theory.set_lintegral_mono MeasureTheory.set_lintegral_mono
+-/
 
 #print MeasureTheory.lintegral_congr_ae /-
 theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ :=
@@ -359,6 +398,7 @@ theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : Mea
 #align measure_theory.set_lintegral_congr_fun MeasureTheory.set_lintegral_congr_fun
 -/
 
+#print MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm /-
 theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
     ∫⁻ x, ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ x, ‖f x‖₊ ∂μ :=
   by
@@ -367,7 +407,9 @@ theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
   rw [Real.norm_eq_abs]
   exact le_abs_self (f x)
 #align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm
+-/
 
+#print MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg /-
 theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
     ∫⁻ x, ‖f x‖₊ ∂μ = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   by
@@ -375,13 +417,17 @@ theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[
   filter_upwards [h_nonneg] with x hx
   rw [Real.nnnorm_of_nonneg hx, ENNReal.ofReal_eq_coe_nnreal hx]
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
+-/
 
+#print MeasureTheory.lintegral_nnnorm_eq_of_nonneg /-
 theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
     ∫⁻ x, ‖f x‖₊ ∂μ = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   lintegral_nnnorm_eq_of_ae_nonneg (Filter.eventually_of_forall h_nonneg)
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([1]) } -/
+#print MeasureTheory.lintegral_iSup /-
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
 
 See `lintegral_supr_directed` for a more general form. -/
@@ -451,7 +497,9 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       simp only [coe_map, restrict_apply _ (h_meas _), (· ∘ ·)]
       exact indicator_apply_le id
 #align measure_theory.lintegral_supr MeasureTheory.lintegral_iSup
+-/
 
+#print MeasureTheory.lintegral_iSup' /-
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
 ae_measurable functions. -/
 theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
@@ -473,7 +521,9 @@ theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurabl
   congr
   exact funext fun n => lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae hf hp n)
 #align measure_theory.lintegral_supr' MeasureTheory.lintegral_iSup'
+-/
 
+#print MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone /-
 /-- Monotone convergence theorem expressed with limits -/
 theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞}
     (hf : ∀ n, AEMeasurable (f n) μ) (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x)
@@ -490,7 +540,9 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
   filter_upwards [h_mono, h_tendsto] with _ hx_mono hx_tendsto using
     tendsto_nhds_unique hx_tendsto (tendsto_atTop_iSup hx_mono)
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
+-/
 
+#print MeasureTheory.lintegral_eq_iSup_eapprox_lintegral /-
 theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
     ∫⁻ a, f a ∂μ = ⨆ n, (eapprox f n).lintegral μ :=
   calc
@@ -504,7 +556,9 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
     _ = ⨆ n, (eapprox f n).lintegral μ := by
       congr <;> ext n <;> rw [(eapprox f n).lintegral_eq_lintegral]
 #align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_iSup_eapprox_lintegral
+-/
 
+#print MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt /-
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. This lemma states states this fact in terms of `ε` and `δ`. -/
 theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞) {ε : ℝ≥0∞}
@@ -539,7 +593,9 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : 
     _ ≤ ε₂ - ε₁ + ε₁ := (add_le_add mul_div_le le_rfl)
     _ = ε₂ := tsub_add_cancel_of_le hε₁₂.le
 #align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt
+-/
 
+#print MeasureTheory.tendsto_set_lintegral_zero /-
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. -/
 theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞) {l : Filter ι}
@@ -551,7 +607,9 @@ theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : ∫⁻ x, f
   rcases exists_pos_set_lintegral_lt_of_measure_lt h ε0.ne' with ⟨δ, δ0, hδ⟩
   exact (hl δ δ0).mono fun i => hδ _
 #align measure_theory.tendsto_set_lintegral_zero MeasureTheory.tendsto_set_lintegral_zero
+-/
 
+#print MeasureTheory.le_lintegral_add /-
 /-- The sum of the lower Lebesgue integrals of two functions is less than or equal to the integral
 of their sum. The other inequality needs one of these functions to be (a.e.-)measurable. -/
 theorem le_lintegral_add (f g : α → ℝ≥0∞) : ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ ≤ ∫⁻ a, f a + g a ∂μ :=
@@ -560,7 +618,9 @@ theorem le_lintegral_add (f g : α → ℝ≥0∞) : ∫⁻ a, f a ∂μ + ∫
   refine' ENNReal.biSup_add_biSup_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
   exact le_iSup₂_of_le (f' + g') (add_le_add hf' hg') (add_lintegral _ _).ge
 #align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_add
+-/
 
+#print MeasureTheory.lintegral_add_aux /-
 -- Use stronger lemmas `lintegral_add_left`/`lintegral_add_right` instead
 theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
@@ -588,7 +648,9 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
     _ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
       rw [lintegral_eq_supr_eapprox_lintegral hf, lintegral_eq_supr_eapprox_lintegral hg]
 #align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_aux
+-/
 
+#print MeasureTheory.lintegral_add_left /-
 /-- If `f g : α → ℝ≥0∞` are two functions and one of them is (a.e.) measurable, then the Lebesgue
 integral of `f + g` equals the sum of integrals. This lemma assumes that `f` is integrable, see also
 `measure_theory.lintegral_add_right` and primed versions of these lemmas. -/
@@ -605,18 +667,24 @@ theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α 
     _ ≤ ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
       add_le_add_left (lintegral_mono fun a => tsub_le_iff_left.2 <| hφ_le a) _
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
+-/
 
+#print MeasureTheory.lintegral_add_left' /-
 theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (g : α → ℝ≥0∞) :
     ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
   rw [lintegral_congr_ae hf.ae_eq_mk, ← lintegral_add_left hf.measurable_mk,
     lintegral_congr_ae (hf.ae_eq_mk.add (ae_eq_refl g))]
 #align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'
+-/
 
+#print MeasureTheory.lintegral_add_right' /-
 theorem lintegral_add_right' (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
   simpa only [add_comm] using lintegral_add_left' hg f
 #align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'
+-/
 
+#print MeasureTheory.lintegral_add_right /-
 /-- If `f g : α → ℝ≥0∞` are two functions and one of them is (a.e.) measurable, then the Lebesgue
 integral of `f + g` equals the sum of integrals. This lemma assumes that `g` is integrable, see also
 `measure_theory.lintegral_add_left` and primed versions of these lemmas. -/
@@ -625,12 +693,16 @@ theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg
     ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
   lintegral_add_right' f hg.AEMeasurable
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
+-/
 
+#print MeasureTheory.lintegral_smul_measure /-
 @[simp]
 theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : ∫⁻ a, f a ∂c • μ = c * ∫⁻ a, f a ∂μ := by
   simp only [lintegral, iSup_subtype', simple_func.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
+-/
 
+#print MeasureTheory.lintegral_sum_measure /-
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     ∫⁻ a, f a ∂Measure.sum μ = ∑' i, ∫⁻ a, f a ∂μ i :=
@@ -647,33 +719,44 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
       add_le_add (simple_func.lintegral_mono le_sup_left le_rfl)
         (Finset.sum_le_sum fun j hj => simple_func.lintegral_mono le_sup_right le_rfl)⟩
 #align measure_theory.lintegral_sum_measure MeasureTheory.lintegral_sum_measure
+-/
 
+#print MeasureTheory.hasSum_lintegral_measure /-
 theorem hasSum_lintegral_measure {ι} {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     HasSum (fun i => ∫⁻ a, f a ∂μ i) (∫⁻ a, f a ∂Measure.sum μ) :=
   (lintegral_sum_measure f μ).symm ▸ ENNReal.summable.HasSum
 #align measure_theory.has_sum_lintegral_measure MeasureTheory.hasSum_lintegral_measure
+-/
 
+#print MeasureTheory.lintegral_add_measure /-
 @[simp]
 theorem lintegral_add_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ ν : Measure α) :
     ∫⁻ a, f a ∂(μ + ν) = ∫⁻ a, f a ∂μ + ∫⁻ a, f a ∂ν := by
   simpa [tsum_fintype] using lintegral_sum_measure f fun b => cond b μ ν
 #align measure_theory.lintegral_add_measure MeasureTheory.lintegral_add_measure
+-/
 
+#print MeasureTheory.lintegral_finset_sum_measure /-
 @[simp]
 theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset ι) (f : α → ℝ≥0∞)
     (μ : ι → Measure α) : ∫⁻ a, f a ∂∑ i in s, μ i = ∑ i in s, ∫⁻ a, f a ∂μ i := by
   rw [← measure.sum_coe_finset, lintegral_sum_measure, ← Finset.tsum_subtype']; rfl
 #align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measure
+-/
 
+#print MeasureTheory.lintegral_zero_measure /-
 @[simp]
 theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) :
     ∫⁻ a, f a ∂(0 : Measure α) = 0 :=
   bot_unique <| by simp [lintegral]
 #align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measure
+-/
 
+#print MeasureTheory.set_lintegral_empty /-
 theorem set_lintegral_empty (f : α → ℝ≥0∞) : ∫⁻ x in ∅, f x ∂μ = 0 := by
   rw [measure.restrict_empty, lintegral_zero_measure]
 #align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_empty
+-/
 
 #print MeasureTheory.set_lintegral_univ /-
 theorem set_lintegral_univ (f : α → ℝ≥0∞) : ∫⁻ x in univ, f x ∂μ = ∫⁻ x, f x ∂μ := by
@@ -681,12 +764,15 @@ theorem set_lintegral_univ (f : α → ℝ≥0∞) : ∫⁻ x in univ, f x ∂μ
 #align measure_theory.set_lintegral_univ MeasureTheory.set_lintegral_univ
 -/
 
+#print MeasureTheory.set_lintegral_measure_zero /-
 theorem set_lintegral_measure_zero (s : Set α) (f : α → ℝ≥0∞) (hs' : μ s = 0) :
     ∫⁻ x in s, f x ∂μ = 0 := by
   convert lintegral_zero_measure _
   exact measure.restrict_eq_zero.2 hs'
 #align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zero
+-/
 
+#print MeasureTheory.lintegral_finset_sum' /-
 theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
     (hf : ∀ b ∈ s, AEMeasurable (f b) μ) : ∫⁻ a, ∑ b in s, f b a ∂μ = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   by
@@ -696,12 +782,16 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
     rw [Finset.forall_mem_insert] at hf 
     rw [lintegral_add_left' hf.1, ih hf.2]
 #align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'
+-/
 
+#print MeasureTheory.lintegral_finset_sum /-
 theorem lintegral_finset_sum (s : Finset β) {f : β → α → ℝ≥0∞} (hf : ∀ b ∈ s, Measurable (f b)) :
     ∫⁻ a, ∑ b in s, f b a ∂μ = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   lintegral_finset_sum' s fun b hb => (hf b hb).AEMeasurable
 #align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sum
+-/
 
+#print MeasureTheory.lintegral_const_mul /-
 @[simp]
 theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ :=
@@ -717,7 +807,9 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
       · intro i j h a; exact mul_le_mul_left' (monotone_eapprox _ h _) _
     _ = r * ∫⁻ a, f a ∂μ := by rw [← ENNReal.mul_iSup, lintegral_eq_supr_eapprox_lintegral hf]
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
+-/
 
+#print MeasureTheory.lintegral_const_mul'' /-
 theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ :=
   by
@@ -726,7 +818,9 @@ theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEM
     lintegral_congr_ae (eventually_eq.fun_comp hf.ae_eq_mk _)
   rw [A, B, lintegral_const_mul _ hf.measurable_mk]
 #align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''
+-/
 
+#print MeasureTheory.lintegral_const_mul_le /-
 theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : r * ∫⁻ a, f a ∂μ ≤ ∫⁻ a, r * f a ∂μ :=
   by
   rw [lintegral, ENNReal.mul_iSup]
@@ -738,7 +832,9 @@ theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : r * 
   refine' le_iSup_of_le (const α r * s) (le_iSup_of_le (fun x => _) le_rfl)
   exact mul_le_mul_left' (hs x) _
 #align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_le
+-/
 
+#print MeasureTheory.lintegral_const_mul' /-
 theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ :=
   by
@@ -751,23 +847,33 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   simp [(mul_assoc _ _ _).symm, rinv'] at this 
   simpa [(mul_assoc _ _ _).symm, rinv] using mul_le_mul_left' this r
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
+-/
 
+#print MeasureTheory.lintegral_mul_const /-
 theorem lintegral_mul_const (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
 #align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_const
+-/
 
+#print MeasureTheory.lintegral_mul_const'' /-
 theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
 #align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''
+-/
 
+#print MeasureTheory.lintegral_mul_const_le /-
 theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂μ) * r ≤ ∫⁻ a, f a * r ∂μ :=
   by simp_rw [mul_comm, lintegral_const_mul_le r f]
 #align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_le
+-/
 
+#print MeasureTheory.lintegral_mul_const' /-
 theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul' r f hr]
 #align measure_theory.lintegral_mul_const' MeasureTheory.lintegral_mul_const'
+-/
 
+#print MeasureTheory.lintegral_lintegral_mul /-
 /- A double integral of a product where each factor contains only one variable
   is a product of integrals -/
 theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f : α → ℝ≥0∞}
@@ -775,19 +881,25 @@ theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f :
     ∫⁻ x, ∫⁻ y, f x * g y ∂ν ∂μ = (∫⁻ x, f x ∂μ) * ∫⁻ y, g y ∂ν := by
   simp [lintegral_const_mul'' _ hg, lintegral_mul_const'' _ hf]
 #align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mul
+-/
 
+#print MeasureTheory.lintegral_rw₁ /-
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₁ {f f' : α → β} (h : f =ᵐ[μ] f') (g : β → ℝ≥0∞) :
     ∫⁻ a, g (f a) ∂μ = ∫⁻ a, g (f' a) ∂μ :=
   lintegral_congr_ae <| h.mono fun a h => by rw [h]
 #align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁
+-/
 
+#print MeasureTheory.lintegral_rw₂ /-
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁ : f₁ =ᵐ[μ] f₁') (h₂ : f₂ =ᵐ[μ] f₂')
     (g : β → γ → ℝ≥0∞) : ∫⁻ a, g (f₁ a) (f₂ a) ∂μ = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
   lintegral_congr_ae <| h₁.mp <| h₂.mono fun _ h₂ h₁ => by rw [h₁, h₂]
 #align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂
+-/
 
+#print MeasureTheory.lintegral_indicator /-
 @[simp]
 theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
     ∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ :=
@@ -803,19 +915,25 @@ theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : Measurabl
   · refine' ⟨⟨φ.restrict s, fun x => _⟩, le_rfl⟩
     simp [hφ x, hs, indicator_le_indicator]
 #align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicator
+-/
 
+#print MeasureTheory.lintegral_indicator₀ /-
 theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMeasurableSet s μ) :
     ∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ := by
   rw [← lintegral_congr_ae (indicator_ae_eq_of_ae_eq_set hs.to_measurable_ae_eq),
     lintegral_indicator _ (measurable_set_to_measurable _ _),
     measure.restrict_congr_set hs.to_measurable_ae_eq]
 #align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀
+-/
 
+#print MeasureTheory.lintegral_indicator_const /-
 theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ≥0∞) :
     ∫⁻ a, s.indicator (fun _ => c) a ∂μ = c * μ s := by
   rw [lintegral_indicator _ hs, set_lintegral_const]
 #align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_const
+-/
 
+#print MeasureTheory.set_lintegral_eq_const /-
 theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r : ℝ≥0∞) :
     ∫⁻ x in {x | f x = r}, f x ∂μ = r * μ {x | f x = r} :=
   by
@@ -825,7 +943,9 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
   rw [lintegral_const, measure.restrict_apply MeasurableSet.univ, Set.univ_inter]
   exact hf (measurable_set_singleton r)
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
+-/
 
+#print MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral /-
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
@@ -846,21 +966,27 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
   simp only [indicator_apply]; split_ifs with hx₂
   exacts [hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]
 #align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral
+-/
 
+#print MeasureTheory.mul_meas_ge_le_lintegral₀ /-
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (ε : ℝ≥0∞) :
     ε * μ {x | ε ≤ f x} ≤ ∫⁻ a, f a ∂μ := by
   simpa only [lintegral_zero, zero_add] using
     lintegral_add_mul_meas_add_le_le_lintegral (ae_of_all _ fun x => zero_le (f x)) hf ε
 #align measure_theory.mul_meas_ge_le_lintegral₀ MeasureTheory.mul_meas_ge_le_lintegral₀
+-/
 
+#print MeasureTheory.mul_meas_ge_le_lintegral /-
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. For a version assuming
 `ae_measurable`, see `mul_meas_ge_le_lintegral₀`. -/
 theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε : ℝ≥0∞) :
     ε * μ {x | ε ≤ f x} ≤ ∫⁻ a, f a ∂μ :=
   mul_meas_ge_le_lintegral₀ hf.AEMeasurable ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
+-/
 
+#print MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos /-
 theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hμf : 0 < μ {x | f x = ∞}) : ∫⁻ x, f x ∂μ = ∞ :=
   eq_top_iff.mpr <|
@@ -868,14 +994,18 @@ theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEM
       ∞ = ∞ * μ {x | ∞ ≤ f x} := by simp [mul_eq_top, hμf.ne.symm]
       _ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
 #align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
+-/
 
+#print MeasureTheory.meas_ge_le_lintegral_div /-
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
     (hε' : ε ≠ ∞) : μ {x | ε ≤ f x} ≤ (∫⁻ a, f a ∂μ) / ε :=
   (ENNReal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <| by rw [mul_comm];
     exact mul_meas_ge_le_lintegral₀ hf ε
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
+-/
 
+#print MeasureTheory.ae_eq_of_ae_le_of_lintegral_le /-
 theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : ∫⁻ x, f x ∂μ ≠ ∞)
     (hg : AEMeasurable g μ) (hgf : ∫⁻ x, g x ∂μ ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g :=
   by
@@ -892,7 +1022,9 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
   simpa only [inv_top, add_zero] using
     tendsto_const_nhds.add (ENNReal.tendsto_inv_iff.2 ENNReal.tendsto_nat_nhds_top)
 #align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_le
+-/
 
+#print MeasureTheory.lintegral_eq_zero_iff' /-
 @[simp]
 theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     ∫⁻ a, f a ∂μ = 0 ↔ f =ᵐ[μ] 0 :=
@@ -902,17 +1034,23 @@ theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
         (h.trans lintegral_zero.symm).le).symm,
     fun h => (lintegral_congr_ae h).trans lintegral_zero⟩
 #align measure_theory.lintegral_eq_zero_iff' MeasureTheory.lintegral_eq_zero_iff'
+-/
 
+#print MeasureTheory.lintegral_eq_zero_iff /-
 @[simp]
 theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂μ = 0 ↔ f =ᵐ[μ] 0 :=
   lintegral_eq_zero_iff' hf.AEMeasurable
 #align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iff
+-/
 
+#print MeasureTheory.lintegral_pos_iff_support /-
 theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
     0 < ∫⁻ a, f a ∂μ ↔ 0 < μ (Function.support f) := by
   simp [pos_iff_ne_zero, hf, Filter.EventuallyEq, ae_iff, Function.support]
 #align measure_theory.lintegral_pos_iff_support MeasureTheory.lintegral_pos_iff_support
+-/
 
+#print MeasureTheory.lintegral_iSup_ae /-
 /-- Weaker version of the monotone convergence theorem-/
 theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
     (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ :=
@@ -932,7 +1070,9 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
             simp only [Classical.not_not, mem_set_of_eq] at this ; exact this n))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun a ha => ha _)]
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
+-/
 
+#print MeasureTheory.lintegral_sub' /-
 theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : ∫⁻ a, g a ∂μ ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : ∫⁻ a, f a - g a ∂μ = ∫⁻ a, f a ∂μ - ∫⁻ a, g a ∂μ :=
   by
@@ -940,12 +1080,16 @@ theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fi
   rw [← lintegral_add_right' _ hg]
   exact lintegral_congr_ae (h_le.mono fun x hx => tsub_add_cancel_of_le hx)
 #align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'
+-/
 
+#print MeasureTheory.lintegral_sub /-
 theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : ∫⁻ a, g a ∂μ ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : ∫⁻ a, f a - g a ∂μ = ∫⁻ a, f a ∂μ - ∫⁻ a, g a ∂μ :=
   lintegral_sub' hg.AEMeasurable hg_fin h_le
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
+-/
 
+#print MeasureTheory.lintegral_sub_le' /-
 theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
     ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ :=
   by
@@ -956,12 +1100,16 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
   · rw [← lintegral_add_right' _ hf]
     exact lintegral_mono fun x => le_tsub_add
 #align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
+-/
 
+#print MeasureTheory.lintegral_sub_le /-
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
     ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ :=
   lintegral_sub_le' f g hf.AEMeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
+-/
 
+#print MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt /-
 theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
     ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ := by
@@ -969,14 +1117,18 @@ theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0
   simp only [not_frequently, Ne.def, Classical.not_not]
   exact ae_eq_of_ae_le_of_lintegral_le h_le hfi hg h
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
+-/
 
+#print MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on /-
 theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
   lintegral_strict_mono_of_ae_le_of_frequently_ae_lt hg hfi h_le <|
     ((frequently_ae_mem_iff.2 hμs).and_eventually h).mono fun x hx => (hx.2 hx.1).Ne
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on
+-/
 
+#print MeasureTheory.lintegral_strict_mono /-
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
     (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
   by
@@ -984,13 +1136,17 @@ theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : A
   refine' lintegral_strict_mono_of_ae_le_of_ae_lt_on hg hfi (ae_le_of_ae_lt h) hμ _
   simpa using h
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
+-/
 
+#print MeasureTheory.set_lintegral_strict_mono /-
 theorem set_lintegral_strict_mono {f g : α → ℝ≥0∞} {s : Set α} (hsm : MeasurableSet s)
     (hs : μ s ≠ 0) (hg : Measurable g) (hfi : ∫⁻ x in s, f x ∂μ ≠ ∞)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : ∫⁻ x in s, f x ∂μ < ∫⁻ x in s, g x ∂μ :=
   lintegral_strict_mono (by simp [hs]) hg.AEMeasurable hfi ((ae_restrict_iff' hsm).mpr h)
 #align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_mono
+-/
 
+#print MeasureTheory.lintegral_iInf_ae /-
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n))
     (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : ∫⁻ a, f 0 a ∂μ ≠ ∞) :
@@ -1021,13 +1177,17 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
                 (h_mono n))
         _ = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_iInf.symm
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_ae
+-/
 
+#print MeasureTheory.lintegral_iInf /-
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) (h_anti : Antitone f)
     (h_fin : ∫⁻ a, f 0 a ∂μ ≠ ∞) : ∫⁻ a, ⨅ n, f n a ∂μ = ⨅ n, ∫⁻ a, f n a ∂μ :=
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
+-/
 
+#print MeasureTheory.lintegral_liminf_le' /-
 /-- Known as Fatou's lemma, version with `ae_measurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
     ∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
@@ -1040,13 +1200,17 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
     _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_iInf₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
+-/
 
+#print MeasureTheory.lintegral_liminf_le /-
 /-- Known as Fatou's lemma -/
 theorem lintegral_liminf_le {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) :
     ∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   lintegral_liminf_le' fun n => (h_meas n).AEMeasurable
 #align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_le
+-/
 
+#print MeasureTheory.limsup_lintegral_le /-
 theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0∞} (hf_meas : ∀ n, Measurable (f n))
     (h_bound : ∀ n, f n ≤ᵐ[μ] g) (h_fin : ∫⁻ a, g a ∂μ ≠ ∞) :
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop ≤ ∫⁻ a, limsup (fun n => f n a) atTop ∂μ :=
@@ -1064,7 +1228,9 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
         exact iSup_le fun i => iSup_le fun hi => hn i
     _ = ∫⁻ a, limsup (fun n => f n a) atTop ∂μ := by simp only [limsup_eq_infi_supr_of_nat]
 #align measure_theory.limsup_lintegral_le MeasureTheory.limsup_lintegral_le
+-/
 
+#print MeasureTheory.tendsto_lintegral_of_dominated_convergence /-
 /-- Dominated convergence theorem for nonnegative functions -/
 theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
     (bound : α → ℝ≥0∞) (hF_meas : ∀ n, Measurable (F n)) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
@@ -1080,7 +1246,9 @@ theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0
         limsup_lintegral_le hF_meas h_bound h_fin
       _ = ∫⁻ a, f a ∂μ := lintegral_congr_ae <| h_lim.mono fun a h => h.limsup_eq)
 #align measure_theory.tendsto_lintegral_of_dominated_convergence MeasureTheory.tendsto_lintegral_of_dominated_convergence
+-/
 
+#print MeasureTheory.tendsto_lintegral_of_dominated_convergence' /-
 /-- Dominated convergence theorem for nonnegative functions which are just almost everywhere
 measurable. -/
 theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
@@ -1102,7 +1270,9 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
     filter_upwards [h_bound n, (hF_meas n).ae_eq_mk] with a H H'
     rwa [H'] at H 
 #align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'
+-/
 
+#print MeasureTheory.tendsto_lintegral_filter_of_dominated_convergence /-
 /-- Dominated convergence theorem for filters with a countable basis -/
 theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
     [l.IsCountablyGenerated] {F : ι → α → ℝ≥0∞} {f : α → ℝ≥0∞} (bound : α → ℝ≥0∞)
@@ -1128,11 +1298,13 @@ theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
     rw [tendsto_add_at_top_iff_nat]
     assumption
 #align measure_theory.tendsto_lintegral_filter_of_dominated_convergence MeasureTheory.tendsto_lintegral_filter_of_dominated_convergence
+-/
 
 section
 
 open Encodable
 
+#print MeasureTheory.lintegral_iSup_directed_of_measurable /-
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type -/
 theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α → ℝ≥0∞}
     (hf : ∀ b, Measurable (f b)) (h_directed : Directed (· ≤ ·) f) :
@@ -1156,8 +1328,10 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
       · exact le_iSup (fun b => ∫⁻ a, f b a ∂μ) _
       · exact le_iSup_of_le (encode b + 1) (lintegral_mono <| h_directed.le_sequence b)
 #align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurable
+-/
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
+#print MeasureTheory.lintegral_iSup_directed /-
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
     (h_directed : Directed (· ≤ ·) f) : ∫⁻ a, ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ a, f b a ∂μ :=
@@ -1190,9 +1364,11 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
     symm
     refine' aeSeq.aeSeq_n_eq_fun_n_ae hf hp _
 #align measure_theory.lintegral_supr_directed MeasureTheory.lintegral_iSup_directed
+-/
 
 end
 
+#print MeasureTheory.lintegral_tsum /-
 theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) :
     ∫⁻ a, ∑' i, f i a ∂μ = ∑' i, ∫⁻ a, f i a ∂μ :=
   by
@@ -1206,21 +1382,27 @@ theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i
     · exact fun a => Finset.sum_le_sum_of_subset (Finset.subset_union_left _ _)
     · exact fun a => Finset.sum_le_sum_of_subset (Finset.subset_union_right _ _)
 #align measure_theory.lintegral_tsum MeasureTheory.lintegral_tsum
+-/
 
 open Measure
 
+#print MeasureTheory.lintegral_iUnion₀ /-
 theorem lintegral_iUnion₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullMeasurableSet (s i) μ)
     (hd : Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     ∫⁻ a in ⋃ i, s i, f a ∂μ = ∑' i, ∫⁻ a in s i, f a ∂μ := by
   simp only [measure.restrict_Union_ae hd hm, lintegral_sum_measure]
 #align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_iUnion₀
+-/
 
+#print MeasureTheory.lintegral_iUnion /-
 theorem lintegral_iUnion [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
     (hd : Pairwise (Disjoint on s)) (f : α → ℝ≥0∞) :
     ∫⁻ a in ⋃ i, s i, f a ∂μ = ∑' i, ∫⁻ a in s i, f a ∂μ :=
   lintegral_iUnion₀ (fun i => (hm i).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnion
+-/
 
+#print MeasureTheory.lintegral_biUnion₀ /-
 theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     ∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
@@ -1228,47 +1410,63 @@ theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
   haveI := ht.to_encodable
   rw [bUnion_eq_Union, lintegral_Union₀ (SetCoe.forall'.1 hm) (hd.subtype _ _)]
 #align measure_theory.lintegral_bUnion₀ MeasureTheory.lintegral_biUnion₀
+-/
 
+#print MeasureTheory.lintegral_biUnion /-
 theorem lintegral_biUnion {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, MeasurableSet (s i)) (hd : t.PairwiseDisjoint s) (f : α → ℝ≥0∞) :
     ∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
   lintegral_biUnion₀ ht (fun i hi => (hm i hi).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_bUnion MeasureTheory.lintegral_biUnion
+-/
 
+#print MeasureTheory.lintegral_biUnion_finset₀ /-
 theorem lintegral_biUnion_finset₀ {s : Finset β} {t : β → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on t)) (hm : ∀ b ∈ s, NullMeasurableSet (t b) μ)
     (f : α → ℝ≥0∞) : ∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
   simp only [← Finset.mem_coe, lintegral_bUnion₀ s.countable_to_set hm hd, ← s.tsum_subtype']
 #align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_biUnion_finset₀
+-/
 
+#print MeasureTheory.lintegral_biUnion_finset /-
 theorem lintegral_biUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.PairwiseDisjoint (↑s) t)
     (hm : ∀ b ∈ s, MeasurableSet (t b)) (f : α → ℝ≥0∞) :
     ∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
   lintegral_biUnion_finset₀ hd.AEDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
 #align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_biUnion_finset
+-/
 
+#print MeasureTheory.lintegral_iUnion_le /-
 theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
     ∫⁻ a in ⋃ i, s i, f a ∂μ ≤ ∑' i, ∫⁻ a in s i, f a ∂μ :=
   by
   rw [← lintegral_sum_measure]
   exact lintegral_mono' restrict_Union_le le_rfl
 #align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_le
+-/
 
+#print MeasureTheory.lintegral_union /-
 theorem lintegral_union {f : α → ℝ≥0∞} {A B : Set α} (hB : MeasurableSet B) (hAB : Disjoint A B) :
     ∫⁻ a in A ∪ B, f a ∂μ = ∫⁻ a in A, f a ∂μ + ∫⁻ a in B, f a ∂μ := by
   rw [restrict_union hAB hB, lintegral_add_measure]
 #align measure_theory.lintegral_union MeasureTheory.lintegral_union
+-/
 
+#print MeasureTheory.lintegral_inter_add_diff /-
 theorem lintegral_inter_add_diff {B : Set α} (f : α → ℝ≥0∞) (A : Set α) (hB : MeasurableSet B) :
     ∫⁻ x in A ∩ B, f x ∂μ + ∫⁻ x in A \ B, f x ∂μ = ∫⁻ x in A, f x ∂μ := by
   rw [← lintegral_add_measure, restrict_inter_add_diff _ hB]
 #align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diff
+-/
 
+#print MeasureTheory.lintegral_add_compl /-
 theorem lintegral_add_compl (f : α → ℝ≥0∞) {A : Set α} (hA : MeasurableSet A) :
     ∫⁻ x in A, f x ∂μ + ∫⁻ x in Aᶜ, f x ∂μ = ∫⁻ x, f x ∂μ := by
   rw [← lintegral_add_measure, measure.restrict_add_restrict_compl hA]
 #align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_compl
+-/
 
+#print MeasureTheory.lintegral_max /-
 theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     ∫⁻ x, max (f x) (g x) ∂μ = ∫⁻ x in {x | f x ≤ g x}, g x ∂μ + ∫⁻ x in {x | g x < f x}, f x ∂μ :=
   by
@@ -1278,7 +1476,9 @@ theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measur
   refine' congr_arg₂ (· + ·) (set_lintegral_congr_fun hm _) (set_lintegral_congr_fun hm.compl _)
   exacts [ae_of_all _ fun x => max_eq_right, ae_of_all _ fun x hx => max_eq_left (not_le.1 hx).le]
 #align measure_theory.lintegral_max MeasureTheory.lintegral_max
+-/
 
+#print MeasureTheory.set_lintegral_max /-
 theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) (s : Set α) :
     ∫⁻ x in s, max (f x) (g x) ∂μ =
       ∫⁻ x in s ∩ {x | f x ≤ g x}, g x ∂μ + ∫⁻ x in s ∩ {x | g x < f x}, f x ∂μ :=
@@ -1286,6 +1486,7 @@ theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
   rw [lintegral_max hf hg, restrict_restrict, restrict_restrict, inter_comm s, inter_comm s]
   exacts [measurableSet_lt hg hf, measurableSet_le hf hg]
 #align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_max
+-/
 
 #print MeasureTheory.lintegral_map /-
 theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
@@ -1311,6 +1512,7 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
 #align measure_theory.lintegral_map' MeasureTheory.lintegral_map'
 -/
 
+#print MeasureTheory.lintegral_map_le /-
 theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g : α → β} (hg : Measurable g) :
     ∫⁻ a, f a ∂Measure.map g μ ≤ ∫⁻ a, f (g a) ∂μ :=
   by
@@ -1319,6 +1521,7 @@ theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g :
   refine' le_iSup₂_of_le (i ∘ g) (hi.comp hg) _
   exact le_iSup_of_le (fun x => h'i (g x)) (le_of_eq (lintegral_map hi hg))
 #align measure_theory.lintegral_map_le MeasureTheory.lintegral_map_le
+-/
 
 #print MeasureTheory.lintegral_comp /-
 theorem lintegral_comp [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
@@ -1335,12 +1538,14 @@ theorem set_lintegral_map [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α 
 #align measure_theory.set_lintegral_map MeasureTheory.set_lintegral_map
 -/
 
+#print MeasureTheory.lintegral_indicator_const_comp /-
 theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β} {s : Set β}
     (hf : Measurable f) (hs : MeasurableSet s) (c : ℝ≥0∞) :
     ∫⁻ a, s.indicator (fun _ => c) (f a) ∂μ = c * μ (f ⁻¹' s) := by
   rw [lintegral_comp (measurable_const.indicator hs) hf, lintegral_indicator_const hs,
     measure.map_apply hf hs]
 #align measure_theory.lintegral_indicator_const_comp MeasureTheory.lintegral_indicator_const_comp
+-/
 
 #print MeasurableEmbedding.lintegral_map /-
 /-- If `g : α → β` is a measurable embedding and `f : β → ℝ≥0∞` is any function (not necessarily
@@ -1411,10 +1616,12 @@ theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν :
 
 section DiracAndCount
 
+#print MeasurableSpace.Top.measurableSingletonClass /-
 instance (priority := 10) MeasurableSpace.Top.measurableSingletonClass {α : Type _} :
     @MeasurableSingletonClass α (⊤ : MeasurableSpace α)
     where measurableSet_singleton i := MeasurableSpace.measurableSet_top
 #align measurable_space.top.measurable_singleton_class MeasurableSpace.Top.measurableSingletonClass
+-/
 
 variable [MeasurableSpace α]
 
@@ -1430,6 +1637,7 @@ theorem lintegral_dirac [MeasurableSingletonClass α] (a : α) (f : α → ℝ
 #align measure_theory.lintegral_dirac MeasureTheory.lintegral_dirac
 -/
 
+#print MeasureTheory.set_lintegral_dirac' /-
 theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f) {s : Set α}
     (hs : MeasurableSet s) [Decidable (a ∈ s)] :
     ∫⁻ x in s, f x ∂Measure.dirac a = if a ∈ s then f a else 0 :=
@@ -1440,7 +1648,9 @@ theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f
   · exact lintegral_dirac' _ hf
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'
+-/
 
+#print MeasureTheory.set_lintegral_dirac /-
 theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [MeasurableSingletonClass α]
     [Decidable (a ∈ s)] : ∫⁻ x in s, f x ∂Measure.dirac a = if a ∈ s then f a else 0 :=
   by
@@ -1449,14 +1659,18 @@ theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [Measu
   · exact lintegral_dirac _ _
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_dirac
+-/
 
+#print MeasureTheory.lintegral_count' /-
 theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂count = ∑' a, f a :=
   by
   rw [count, lintegral_sum_measure]
   congr
   exact funext fun a => lintegral_dirac' a hf
 #align measure_theory.lintegral_count' MeasureTheory.lintegral_count'
+-/
 
+#print MeasureTheory.lintegral_count /-
 theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
     ∫⁻ a, f a ∂count = ∑' a, f a :=
   by
@@ -1464,11 +1678,15 @@ theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
   congr
   exact funext fun a => lintegral_dirac a f
 #align measure_theory.lintegral_count MeasureTheory.lintegral_count
+-/
 
+#print ENNReal.tsum_const_eq /-
 theorem ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
     ∑' i : α, c = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
 #align ennreal.tsum_const_eq ENNReal.tsum_const_eq
+-/
 
+#print ENNReal.count_const_le_le_of_tsum_le /-
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
 theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
     (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
@@ -1478,7 +1696,9 @@ theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a :
   apply (MeasureTheory.meas_ge_le_lintegral_div a_mble.ae_measurable ε_ne_zero ε_ne_top).trans
   exact ENNReal.div_le_div tsum_le_c rfl.le
 #align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_le
+-/
 
+#print NNReal.count_const_le_le_of_tsum_le /-
 /-- Markov's inequality for counting measure with hypothesis using `tsum` in `ℝ≥0`. -/
 theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0}
     (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : ∑' i, a i ≤ c)
@@ -1492,6 +1712,7 @@ theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : 
   convert ennreal.coe_le_coe.mpr tsum_le_c
   rw [ENNReal.tsum_coe_eq a_summable.has_sum]
 #align nnreal.count_const_le_le_of_tsum_le NNReal.count_const_le_le_of_tsum_le
+-/
 
 end DiracAndCount
 
@@ -1502,6 +1723,7 @@ section Countable
 -/
 
 
+#print MeasureTheory.lintegral_countable' /-
 theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
     ∫⁻ a, f a ∂μ = ∑' a, f a * μ {a} :=
   by
@@ -1509,17 +1731,23 @@ theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : 
   congr 1 with a : 1
   rw [lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_countable' MeasureTheory.lintegral_countable'
+-/
 
+#print MeasureTheory.lintegral_singleton' /-
 theorem lintegral_singleton' {f : α → ℝ≥0∞} (hf : Measurable f) (a : α) :
     ∫⁻ x in {a}, f x ∂μ = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac' _ hf, mul_comm]
 #align measure_theory.lintegral_singleton' MeasureTheory.lintegral_singleton'
+-/
 
+#print MeasureTheory.lintegral_singleton /-
 theorem lintegral_singleton [MeasurableSingletonClass α] (f : α → ℝ≥0∞) (a : α) :
     ∫⁻ x in {a}, f x ∂μ = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_singleton MeasureTheory.lintegral_singleton
+-/
 
+#print MeasureTheory.lintegral_countable /-
 theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞) {s : Set α}
     (hs : s.Countable) : ∫⁻ a in s, f a ∂μ = ∑' a : s, f a * μ {(a : α)} :=
   calc
@@ -1528,7 +1756,9 @@ theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞
       (lintegral_biUnion hs (fun _ _ => measurableSet_singleton _) (pairwise_disjoint_fiber id s) _)
     _ = ∑' a : s, f a * μ {(a : α)} := by simp only [lintegral_singleton]
 #align measure_theory.lintegral_countable MeasureTheory.lintegral_countable
+-/
 
+#print MeasureTheory.lintegral_insert /-
 theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h : a ∉ s)
     (f : α → ℝ≥0∞) : ∫⁻ x in insert a s, f x ∂μ = f a * μ {a} + ∫⁻ x in s, f x ∂μ :=
   by
@@ -1536,25 +1766,33 @@ theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h
     add_comm]
   rwa [disjoint_singleton_right]
 #align measure_theory.lintegral_insert MeasureTheory.lintegral_insert
+-/
 
+#print MeasureTheory.lintegral_finset /-
 theorem lintegral_finset [MeasurableSingletonClass α] (s : Finset α) (f : α → ℝ≥0∞) :
     ∫⁻ x in s, f x ∂μ = ∑ x in s, f x * μ {x} := by
   simp only [lintegral_countable _ s.countable_to_set, ← s.tsum_subtype']
 #align measure_theory.lintegral_finset MeasureTheory.lintegral_finset
+-/
 
+#print MeasureTheory.lintegral_fintype /-
 theorem lintegral_fintype [MeasurableSingletonClass α] [Fintype α] (f : α → ℝ≥0∞) :
     ∫⁻ x, f x ∂μ = ∑ x, f x * μ {x} := by
   rw [← lintegral_finset, Finset.coe_univ, measure.restrict_univ]
 #align measure_theory.lintegral_fintype MeasureTheory.lintegral_fintype
+-/
 
+#print MeasureTheory.lintegral_unique /-
 theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : ∫⁻ x, f x ∂μ = f default * μ univ :=
   calc
     ∫⁻ x, f x ∂μ = ∫⁻ x, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
     _ = f default * μ univ := lintegral_const _
 #align measure_theory.lintegral_unique MeasureTheory.lintegral_unique
+-/
 
 end Countable
 
+#print MeasureTheory.ae_lt_top /-
 theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : ∫⁻ x, f x ∂μ ≠ ∞) : ∀ᵐ x ∂μ, f x < ∞ :=
   by
   simp_rw [ae_iff, ENNReal.not_lt_top]; by_contra h; apply h2f.lt_top.not_le
@@ -1563,13 +1801,17 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : ∫⁻ x, f
   convert lintegral_mono this
   rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]; simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
+-/
 
+#print MeasureTheory.ae_lt_top' /-
 theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : ∫⁻ x, f x ∂μ ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ :=
   haveI h2f_meas : ∫⁻ x, hf.mk f x ∂μ ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
   (ae_lt_top hf.measurable_mk h2f_meas).mp (hf.ae_eq_mk.mono fun x hx h => by rwa [hx])
 #align measure_theory.ae_lt_top' MeasureTheory.ae_lt_top'
+-/
 
+#print MeasureTheory.set_lintegral_lt_top_of_bddAbove /-
 theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : α → ℝ≥0}
     (hf : Measurable f) (hbdd : BddAbove (f '' s)) : ∫⁻ x in s, f x ∂μ < ∞ :=
   by
@@ -1582,12 +1824,16 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
     refine' ENNReal.mul_lt_top ennreal.coe_lt_top.ne _
     simp [hs]
 #align measure_theory.set_lintegral_lt_top_of_bdd_above MeasureTheory.set_lintegral_lt_top_of_bddAbove
+-/
 
+#print MeasureTheory.set_lintegral_lt_top_of_isCompact /-
 theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α] {s : Set α}
     (hs : μ s ≠ ∞) (hsc : IsCompact s) {f : α → ℝ≥0} (hf : Continuous f) : ∫⁻ x in s, f x ∂μ < ∞ :=
   set_lintegral_lt_top_of_bddAbove hs hf.Measurable (hsc.image hf).BddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
+-/
 
+#print IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal /-
 theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
     (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
     ∫⁻ x, f x ∂μ < ∞ := by
@@ -1596,6 +1842,7 @@ theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [Me
   rw [lintegral_const]
   exact ENNReal.mul_lt_top ennreal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
 #align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal
+-/
 
 #print MeasureTheory.Measure.withDensity /-
 /-- Given a measure `μ : measure α` and a function `f : α → ℝ≥0∞`, `μ.with_density f` is the
@@ -1670,6 +1917,7 @@ theorem withDensity_smul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurab
 #align measure_theory.with_density_smul MeasureTheory.withDensity_smul
 -/
 
+#print MeasureTheory.withDensity_smul' /-
 theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     μ.withDensity (r • f) = r • μ.withDensity f :=
   by
@@ -1678,13 +1926,16 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
     smul_eq_mul, ← lintegral_const_mul' r f hr]
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
+-/
 
+#print MeasureTheory.isFiniteMeasure_withDensity /-
 theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : ∫⁻ a, f a ∂μ ≠ ∞) :
     IsFiniteMeasure (μ.withDensity f) :=
   {
     measure_univ_lt_top := by
       rwa [with_density_apply _ MeasurableSet.univ, measure.restrict_univ, lt_top_iff_ne_top] }
 #align measure_theory.is_finite_measure_with_density MeasureTheory.isFiniteMeasure_withDensity
+-/
 
 #print MeasureTheory.withDensity_absolutelyContinuous /-
 theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
@@ -1770,12 +2021,15 @@ theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ
 #align measure_theory.restrict_with_density MeasureTheory.restrict_withDensity
 -/
 
+#print MeasureTheory.withDensity_eq_zero /-
 theorem withDensity_eq_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h : μ.withDensity f = 0) :
     f =ᵐ[μ] 0 := by
   rw [← lintegral_eq_zero_iff' hf, ← set_lintegral_univ, ← with_density_apply _ MeasurableSet.univ,
     h, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.with_density_eq_zero MeasureTheory.withDensity_eq_zero
+-/
 
+#print MeasureTheory.withDensity_apply_eq_zero /-
 theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Measurable f) :
     μ.withDensity f s = 0 ↔ μ ({x | f x ≠ 0} ∩ s) = 0 :=
   by
@@ -1809,7 +2063,9 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
       filter_upwards [ae_restrict_mem M]
       simp only [imp_self, Pi.zero_apply, imp_true_iff]
 #align measure_theory.with_density_apply_eq_zero MeasureTheory.withDensity_apply_eq_zero
+-/
 
+#print MeasureTheory.ae_withDensity_iff /-
 theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ, f x ≠ 0 → p x :=
   by
@@ -1818,6 +2074,7 @@ theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measu
   ext x
   simp only [exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, not_forall]
 #align measure_theory.ae_with_density_iff MeasureTheory.ae_withDensity_iff
+-/
 
 #print MeasureTheory.ae_withDensity_iff_ae_restrict /-
 theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
@@ -1829,6 +2086,7 @@ theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞}
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
 -/
 
+#print MeasureTheory.aemeasurable_withDensity_ennreal_iff /-
 theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
     AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
       AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
@@ -1855,6 +2113,7 @@ theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
     intro x hx h'x
     rw [← hx, ← mul_assoc, ENNReal.inv_mul_cancel h'x ENNReal.coe_ne_top, one_mul]
 #align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aemeasurable_withDensity_ennreal_iff
+-/
 
 end Lintegral
 
@@ -1862,8 +2121,7 @@ open MeasureTheory.SimpleFunc
 
 variable {m m0 : MeasurableSpace α}
 
-include m
-
+#print MeasureTheory.lintegral_withDensity_eq_lintegral_mul /-
 /-- This is Exercise 1.2.1 from [tao2010]. It allows you to express integration of a measurable
 function with respect to `(μ.with_density f)` as an integral with respect to `μ`, called the base
 measure. `μ` is often the Lebesgue measure, and in this circumstance `f` is the probability density
@@ -1886,13 +2144,17 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
     have : Monotone fun n a => f a * g n a := fun m n hmn x => mul_le_mul_left' (h_mono_g hmn x) _
     simp [lintegral_supr, ENNReal.mul_iSup, h_mf.mul (h_mea_g _), *]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mul
+-/
 
+#print MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul /-
 theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : Measurable f) (hg : Measurable g) {s : Set α} (hs : MeasurableSet s) :
     ∫⁻ x in s, g x ∂μ.withDensity f = ∫⁻ x in s, (f * g) x ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul _ hf hg]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul
+-/
 
+#print MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀' /-
 /-- The Lebesgue integral of `g` with respect to the measure `μ.with_density f` coincides with
 the integral of `f * g`. This version assumes that `g` is almost everywhere measurable. For a
 version without conditions on `g` but requiring that `f` is almost everywhere finite, see
@@ -1929,13 +2191,17 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
       intro x hx
       simp only [hx, Pi.mul_apply]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'
+-/
 
+#print MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀ /-
 theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
   lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensity_absolutelyContinuous μ f))
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀
+-/
 
+#print MeasureTheory.lintegral_withDensity_le_lintegral_mul /-
 theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (g : α → ℝ≥0∞) : ∫⁻ a, g a ∂μ.withDensity f ≤ ∫⁻ a, (f * g) a ∂μ :=
   by
@@ -1945,7 +2211,9 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
   refine' le_iSup₂_of_le (f * i) (f_meas.mul i_meas) _
   exact le_iSup_of_le A (le_of_eq (lintegral_with_density_eq_lintegral_mul _ f_meas i_meas))
 #align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mul
+-/
 
+#print MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable /-
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (hf : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
     ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
@@ -1972,6 +2240,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
     dsimp
     rw [← mul_assoc, ENNReal.mul_inv_cancel hx h'x.ne, one_mul]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable
+-/
 
 #print MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable /-
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
@@ -1982,6 +2251,7 @@ theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Meas
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable
 -/
 
+#print MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀ /-
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure α) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
     ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
@@ -2002,6 +2272,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure 
       intro x hx
       simp only [hx, Pi.mul_apply]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀
+-/
 
 #print MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ /-
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ (μ : Measure α)
@@ -2022,6 +2293,7 @@ theorem withDensity_mul (μ : Measure α) {f g : α → ℝ≥0∞} (hf : Measur
 #align measure_theory.with_density_mul MeasureTheory.withDensity_mul
 -/
 
+#print MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite /-
 /-- In a sigma-finite measure space, there exists an integrable function which is
 positive everywhere (and with an arbitrarily small integral). -/
 theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ] {ε : ℝ≥0∞}
@@ -2042,6 +2314,7 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
   simpa [lintegral_comp measurable_from_nat.coe_nnreal_ennreal hN_meas, hNs, lintegral_countable',
     measurable_spanning_sets_index, mul_comm] using δsum
 #align measure_theory.exists_pos_lintegral_lt_of_sigma_finite MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite
+-/
 
 #print MeasureTheory.lintegral_trim /-
 theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : measurable[m] f) :
@@ -2078,6 +2351,7 @@ section SigmaFinite
 
 variable {E : Type _} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E]
 
+#print MeasureTheory.univ_le_of_forall_fin_meas_le /-
 theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFinite (μ.trim hm)]
     (C : ℝ≥0∞) {f : Set α → ℝ≥0∞} (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → f s ≤ C)
     (h_F_lim :
@@ -2091,7 +2365,9 @@ theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFi
   refine' iSup_le fun n => hf (S n) (hS_meas n) _
   exact ((le_trim hm).trans_lt (@measure_spanning_sets_lt_top _ m (μ.trim hm) _ n)).Ne
 #align measure_theory.univ_le_of_forall_fin_meas_le MeasureTheory.univ_le_of_forall_fin_meas_le
+-/
 
+#print MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurable /-
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra, then the integral
 over the whole space is bounded by that same constant. Version for a measurable function.
@@ -2133,7 +2409,9 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
     · exact zero_le _
     · exact le_rfl
 #align measure_theory.lintegral_le_of_forall_fin_meas_le_of_measurable MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurable
+-/
 
+#print MeasureTheory.lintegral_le_of_forall_fin_meas_le' /-
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra, then the integral
 over the whole space is bounded by that same constant. -/
@@ -2150,9 +2428,9 @@ theorem lintegral_le_of_forall_fin_meas_le' {μ : Measure α} (hm : m ≤ m0) [S
   rw [lintegral_congr_ae hf_meas.ae_eq_mk]
   exact lintegral_le_of_forall_fin_meas_le_of_measurable hm C hf_meas.measurable_mk hf'
 #align measure_theory.lintegral_le_of_forall_fin_meas_le' MeasureTheory.lintegral_le_of_forall_fin_meas_le'
+-/
 
-omit m
-
+#print MeasureTheory.lintegral_le_of_forall_fin_meas_le /-
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure and the measure is σ-finite, then the integral over the whole space is bounded by that same
 constant. -/
@@ -2161,10 +2439,11 @@ theorem lintegral_le_of_forall_fin_meas_le [MeasurableSpace α] {μ : Measure α
     (hf : ∀ s, MeasurableSet s → μ s ≠ ∞ → ∫⁻ x in s, f x ∂μ ≤ C) : ∫⁻ x, f x ∂μ ≤ C :=
   @lintegral_le_of_forall_fin_meas_le' _ _ _ _ _ (by rwa [trim_eq_self]) C _ hf_meas hf
 #align measure_theory.lintegral_le_of_forall_fin_meas_le MeasureTheory.lintegral_le_of_forall_fin_meas_le
+-/
 
--- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
+#print MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral /-
 theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     {μ : Measure α} [SigmaFinite μ] {f : α →ₛ ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ ∫⁻ x, g x ∂μ < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
@@ -2219,7 +2498,9 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       rw [← lintegral_add_left g₁.measurable.coe_nnreal_ennreal]
       exact le_rfl
 #align measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral
+-/
 
+#print MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral /-
 theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α} {μ : Measure α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ ∫⁻ x, g x ∂μ < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
@@ -2233,6 +2514,7 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
   rcases simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral h'L with ⟨g, hg, gL, gtop⟩
   exact ⟨g, fun x => (hg x).trans (coe_le_coe.1 (hg₀ x)), gL, gtop⟩
 #align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral
+-/
 
 #print MeasureTheory.exists_absolutelyContinuous_isFiniteMeasure /-
 /-- A sigma-finite measure is absolutely continuous with respect to some finite measure. -/
Diff
@@ -115,20 +115,20 @@ irreducible_def lintegral {m : MeasurableSpace α} (μ : Measure α) (f : α →
 
 
 -- mathport name: «expr∫⁻ , ∂ »
-notation3"∫⁻ "(...)", "r:(scoped f => f)" ∂"μ => lintegral μ r
+notation3"∫⁻ "(...)", "r:60:(scoped f => f)" ∂"μ:70 => lintegral μ r
 
 -- mathport name: «expr∫⁻ , »
-notation3"∫⁻ "(...)", "r:(scoped f => lintegral volume f) => r
+notation3"∫⁻ "(...)", "r:60:(scoped f => lintegral volume f) => r
 
 -- mathport name: «expr∫⁻ in , ∂ »
-notation3"∫⁻ "(...)" in "s", "r:(scoped f => f)" ∂"μ => lintegral (Measure.restrict μ s) r
+notation3"∫⁻ "(...)" in "s", "r:60:(scoped f => f)" ∂"μ:70 => lintegral (Measure.restrict μ s) r
 
 -- mathport name: «expr∫⁻ in , »
-notation3"∫⁻ "(...)" in "s", "r:(scoped f => lintegral Measure.restrict volume s f) => r
+notation3"∫⁻ "(...)" in "s", "r:60:(scoped f => lintegral Measure.restrict volume s f) => r
 
 #print MeasureTheory.SimpleFunc.lintegral_eq_lintegral /-
 theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →ₛ ℝ≥0∞) (μ : Measure α) :
-    (∫⁻ a, f a ∂μ) = f.lintegral μ := by
+    ∫⁻ a, f a ∂μ = f.lintegral μ := by
   rw [lintegral]
   exact
     le_antisymm (iSup₂_le fun g hg => lintegral_mono hg <| le_rfl) (le_iSup₂_of_le f le_rfl le_rfl)
@@ -137,17 +137,17 @@ theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →
 
 @[mono]
 theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν : μ ≤ ν) ⦃f g : α → ℝ≥0∞⦄
-    (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂ν :=
+    (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂ν :=
   by
   rw [lintegral, lintegral]
   exact iSup_mono fun φ => iSup_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
 #align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'
 
-theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
+theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono' (le_refl μ) hfg
 #align measure_theory.lintegral_mono MeasureTheory.lintegral_mono
 
-theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
+theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
 
@@ -162,12 +162,12 @@ theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
 #align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral
 
 theorem lintegral_mono_set {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
-    (hst : s ⊆ t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
+    (hst : s ⊆ t) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set MeasureTheory.lintegral_mono_set
 
 theorem lintegral_mono_set' {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
-    (hst : s ≤ᵐ[μ] t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
+    (hst : s ≤ᵐ[μ] t) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono' hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set' MeasureTheory.lintegral_mono_set'
 
@@ -176,11 +176,11 @@ theorem monotone_lintegral {m : MeasurableSpace α} (μ : Measure α) : Monotone
 #align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegral
 
 @[simp]
-theorem lintegral_const (c : ℝ≥0∞) : (∫⁻ a, c ∂μ) = c * μ univ := by
+theorem lintegral_const (c : ℝ≥0∞) : ∫⁻ a, c ∂μ = c * μ univ := by
   rw [← simple_func.const_lintegral, ← simple_func.lintegral_eq_lintegral, simple_func.coe_const]
 #align measure_theory.lintegral_const MeasureTheory.lintegral_const
 
-theorem lintegral_zero : (∫⁻ a : α, 0 ∂μ) = 0 := by simp
+theorem lintegral_zero : ∫⁻ a : α, 0 ∂μ = 0 := by simp
 #align measure_theory.lintegral_zero MeasureTheory.lintegral_zero
 
 theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
@@ -189,26 +189,26 @@ theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
 
 #print MeasureTheory.lintegral_one /-
 @[simp]
-theorem lintegral_one : (∫⁻ a, (1 : ℝ≥0∞) ∂μ) = μ univ := by rw [lintegral_const, one_mul]
+theorem lintegral_one : ∫⁻ a, (1 : ℝ≥0∞) ∂μ = μ univ := by rw [lintegral_const, one_mul]
 #align measure_theory.lintegral_one MeasureTheory.lintegral_one
 -/
 
-theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ a in s, c ∂μ) = c * μ s := by
+theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : ∫⁻ a in s, c ∂μ = c * μ s := by
   rw [lintegral_const, measure.restrict_apply_univ]
 #align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_const
 
 #print MeasureTheory.set_lintegral_one /-
-theorem set_lintegral_one (s) : (∫⁻ a in s, 1 ∂μ) = μ s := by rw [set_lintegral_const, one_mul]
+theorem set_lintegral_one (s) : ∫⁻ a in s, 1 ∂μ = μ s := by rw [set_lintegral_const, one_mul]
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 -/
 
 theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
-    (∫⁻ a in s, c ∂μ) < ∞ := by
+    ∫⁻ a in s, c ∂μ < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
-theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
+theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : ∫⁻ a, c ∂μ < ∞ := by
   simpa only [measure.restrict_univ] using set_lintegral_const_lt_top univ hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
 
@@ -219,7 +219,7 @@ variable (μ)
 /-- For any function `f : α → ℝ≥0∞`, there exists a measurable function `g ≤ f` with the same
 integral. -/
 theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
-    ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ :=
+    ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ :=
   by
   cases' eq_or_ne (∫⁻ a, f a ∂μ) 0 with h₀ h₀
   · exact ⟨0, measurable_zero, zero_le f, h₀.trans lintegral_zero.symm⟩
@@ -243,7 +243,7 @@ end
 `φ : α →ₛ ℝ≥0∞` such that `φ ≤ f`. This lemma says that it suffices to take
 functions `φ : α →ₛ ℝ≥0`. -/
 theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : Measure α) :
-    (∫⁻ a, f a ∂μ) =
+    ∫⁻ a, f a ∂μ =
       ⨆ (φ : α →ₛ ℝ≥0) (hf : ∀ x, ↑(φ x) ≤ f x), (φ.map (coe : ℝ≥0 → ℝ≥0∞)).lintegral μ :=
   by
   rw [lintegral]
@@ -267,7 +267,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
     simp only [hx, le_top]
 #align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnreal
 
-theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞)
+theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞)
     {ε : ℝ≥0∞} (hε : ε ≠ 0) :
     ∃ φ : α →ₛ ℝ≥0,
       (∀ x, ↑(φ x) ≤ f x) ∧
@@ -301,17 +301,16 @@ theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι'
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
 
 theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
-    (∫⁻ a, ⨅ i, f i a ∂μ) ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by simp only [← iInf_apply];
+    ∫⁻ a, ⨅ i, f i a ∂μ ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by simp only [← iInf_apply];
   exact (monotone_lintegral μ).map_iInf_le
 #align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
 
 theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
-    (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
+    ∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
   convert (monotone_lintegral μ).map_iInf₂_le f; ext1 a; simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
 
-theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) :
-    (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
+theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   by
   rcases exists_measurable_superset_of_null h with ⟨t, hts, ht, ht0⟩
   have : ∀ᵐ x ∂μ, x ∉ t := measure_zero_iff_ae_nmem.1 ht0
@@ -326,42 +325,42 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
 #align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_ae
 
 theorem set_lintegral_mono_ae {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
-    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
+    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
   lintegral_mono_ae <| (ae_restrict_iff <| measurableSet_le hf hg).2 hfg
 #align measure_theory.set_lintegral_mono_ae MeasureTheory.set_lintegral_mono_ae
 
 theorem set_lintegral_mono {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
-    (hfg : ∀ x ∈ s, f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
+    (hfg : ∀ x ∈ s, f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
   set_lintegral_mono_ae hf hg (ae_of_all _ hfg)
 #align measure_theory.set_lintegral_mono MeasureTheory.set_lintegral_mono
 
 #print MeasureTheory.lintegral_congr_ae /-
-theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ :=
+theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ :=
   le_antisymm (lintegral_mono_ae <| h.le) (lintegral_mono_ae <| h.symm.le)
 #align measure_theory.lintegral_congr_ae MeasureTheory.lintegral_congr_ae
 -/
 
 #print MeasureTheory.lintegral_congr /-
-theorem lintegral_congr {f g : α → ℝ≥0∞} (h : ∀ a, f a = g a) : (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ := by
+theorem lintegral_congr {f g : α → ℝ≥0∞} (h : ∀ a, f a = g a) : ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ := by
   simp only [h]
 #align measure_theory.lintegral_congr MeasureTheory.lintegral_congr
 -/
 
 #print MeasureTheory.set_lintegral_congr /-
 theorem set_lintegral_congr {f : α → ℝ≥0∞} {s t : Set α} (h : s =ᵐ[μ] t) :
-    (∫⁻ x in s, f x ∂μ) = ∫⁻ x in t, f x ∂μ := by rw [measure.restrict_congr_set h]
+    ∫⁻ x in s, f x ∂μ = ∫⁻ x in t, f x ∂μ := by rw [measure.restrict_congr_set h]
 #align measure_theory.set_lintegral_congr MeasureTheory.set_lintegral_congr
 -/
 
 #print MeasureTheory.set_lintegral_congr_fun /-
 theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : MeasurableSet s)
-    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : (∫⁻ x in s, f x ∂μ) = ∫⁻ x in s, g x ∂μ := by
+    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ := by
   rw [lintegral_congr_ae]; rw [eventually_eq]; rwa [ae_restrict_iff' hs]
 #align measure_theory.set_lintegral_congr_fun MeasureTheory.set_lintegral_congr_fun
 -/
 
 theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
-    (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ‖f x‖₊ ∂μ :=
+    ∫⁻ x, ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ x, ‖f x‖₊ ∂μ :=
   by
   simp_rw [← ofReal_norm_eq_coe_nnnorm]
   refine' lintegral_mono fun x => ENNReal.ofReal_le_ofReal _
@@ -370,7 +369,7 @@ theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
 #align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm
 
 theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
-    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
+    ∫⁻ x, ‖f x‖₊ ∂μ = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   by
   apply lintegral_congr_ae
   filter_upwards [h_nonneg] with x hx
@@ -378,7 +377,7 @@ theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
 
 theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
-    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
+    ∫⁻ x, ‖f x‖₊ ∂μ = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   lintegral_nnnorm_eq_of_ae_nonneg (Filter.eventually_of_forall h_nonneg)
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
 
@@ -387,7 +386,7 @@ theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
 
 See `lintegral_supr_directed` for a more general form. -/
 theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n)) (h_mono : Monotone f) :
-    (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
+    ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ :=
   by
   set c : ℝ≥0 → ℝ≥0∞ := coe
   set F := fun a : α => ⨆ n, f n a
@@ -456,7 +455,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
 ae_measurable functions. -/
 theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
-    (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
+    (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ :=
   by
   simp_rw [← iSup_apply]
   let p : α → (ℕ → ℝ≥0∞) → Prop := fun x f' => Monotone f'
@@ -483,7 +482,7 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
   by
   have : Monotone fun n => ∫⁻ x, f n x ∂μ := fun i j hij =>
     lintegral_mono_ae (h_mono.mono fun x hx => hx hij)
-  suffices key : (∫⁻ x, F x ∂μ) = ⨆ n, ∫⁻ x, f n x ∂μ
+  suffices key : ∫⁻ x, F x ∂μ = ⨆ n, ∫⁻ x, f n x ∂μ
   · rw [key]
     exact tendsto_atTop_iSup this
   rw [← lintegral_supr' hf h_mono]
@@ -493,9 +492,9 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
 
 theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, f a ∂μ) = ⨆ n, (eapprox f n).lintegral μ :=
+    ∫⁻ a, f a ∂μ = ⨆ n, (eapprox f n).lintegral μ :=
   calc
-    (∫⁻ a, f a ∂μ) = ∫⁻ a, ⨆ n, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
+    ∫⁻ a, f a ∂μ = ∫⁻ a, ⨆ n, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
       congr <;> ext a <;> rw [supr_eapprox_apply f hf]
     _ = ⨆ n, ∫⁻ a, (eapprox f n : α → ℝ≥0∞) a ∂μ :=
       by
@@ -508,8 +507,8 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
 
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. This lemma states states this fact in terms of `ε` and `δ`. -/
-theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {ε : ℝ≥0∞}
-    (hε : ε ≠ 0) : ∃ δ > 0, ∀ s, μ s < δ → (∫⁻ x in s, f x ∂μ) < ε :=
+theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞) {ε : ℝ≥0∞}
+    (hε : ε ≠ 0) : ∃ δ > 0, ∀ s, μ s < δ → ∫⁻ x in s, f x ∂μ < ε :=
   by
   rcases exists_between hε.bot_lt with ⟨ε₂, hε₂0 : 0 < ε₂, hε₂ε⟩
   rcases exists_between hε₂0 with ⟨ε₁, hε₁0, hε₁₂⟩
@@ -543,7 +542,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
 
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. -/
-theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {l : Filter ι}
+theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞) {l : Filter ι}
     {s : ι → Set α} (hl : Tendsto (μ ∘ s) l (𝓝 0)) :
     Tendsto (fun i => ∫⁻ x in s i, f x ∂μ) l (𝓝 0) :=
   by
@@ -555,7 +554,7 @@ theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x,
 
 /-- The sum of the lower Lebesgue integrals of two functions is less than or equal to the integral
 of their sum. The other inequality needs one of these functions to be (a.e.-)measurable. -/
-theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ) ≤ ∫⁻ a, f a + g a ∂μ :=
+theorem le_lintegral_add (f g : α → ℝ≥0∞) : ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ ≤ ∫⁻ a, f a + g a ∂μ :=
   by
   dsimp only [lintegral]
   refine' ENNReal.biSup_add_biSup_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
@@ -564,9 +563,9 @@ theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + 
 
 -- Use stronger lemmas `lintegral_add_left`/`lintegral_add_right` instead
 theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
   calc
-    (∫⁻ a, f a + g a ∂μ) =
+    ∫⁻ a, f a + g a ∂μ =
         ∫⁻ a, (⨆ n, (eapprox f n : α → ℝ≥0∞) a) + ⨆ n, (eapprox g n : α → ℝ≥0∞) a ∂μ :=
       by simp only [supr_eapprox_apply, hf, hg]
     _ = ∫⁻ a, ⨆ n, (eapprox f n + eapprox g n : α → ℝ≥0∞) a ∂μ :=
@@ -586,7 +585,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
     _ = (⨆ n, (eapprox f n).lintegral μ) + ⨆ n, (eapprox g n).lintegral μ := by
       refine' (ENNReal.iSup_add_iSup_of_monotone _ _).symm <;>
         · intro i j h; exact simple_func.lintegral_mono (monotone_eapprox _ h) (le_refl μ)
-    _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
+    _ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
       rw [lintegral_eq_supr_eapprox_lintegral hf, lintegral_eq_supr_eapprox_lintegral hg]
 #align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_aux
 
@@ -595,26 +594,26 @@ integral of `f + g` equals the sum of integrals. This lemma assumes that `f` is
 `measure_theory.lintegral_add_right` and primed versions of these lemmas. -/
 @[simp]
 theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α → ℝ≥0∞) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
   by
   refine' le_antisymm _ (le_lintegral_add _ _)
   rcases exists_measurable_le_lintegral_eq μ fun a => f a + g a with ⟨φ, hφm, hφ_le, hφ_eq⟩
   calc
-    (∫⁻ a, f a + g a ∂μ) = ∫⁻ a, φ a ∂μ := hφ_eq
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, φ a ∂μ := hφ_eq
     _ ≤ ∫⁻ a, f a + (φ a - f a) ∂μ := (lintegral_mono fun a => le_add_tsub)
-    _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, φ a - f a ∂μ := (lintegral_add_aux hf (hφm.sub hf))
-    _ ≤ (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
+    _ = ∫⁻ a, f a ∂μ + ∫⁻ a, φ a - f a ∂μ := (lintegral_add_aux hf (hφm.sub hf))
+    _ ≤ ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
       add_le_add_left (lintegral_mono fun a => tsub_le_iff_left.2 <| hφ_le a) _
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
 
 theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (g : α → ℝ≥0∞) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
   rw [lintegral_congr_ae hf.ae_eq_mk, ← lintegral_add_left hf.measurable_mk,
     lintegral_congr_ae (hf.ae_eq_mk.add (ae_eq_refl g))]
 #align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'
 
 theorem lintegral_add_right' (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
   simpa only [add_comm] using lintegral_add_left' hg f
 #align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'
 
@@ -623,18 +622,18 @@ integral of `f + g` equals the sum of integrals. This lemma assumes that `g` is
 `measure_theory.lintegral_add_left` and primed versions of these lemmas. -/
 @[simp]
 theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : Measurable g) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
   lintegral_add_right' f hg.AEMeasurable
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
 
 @[simp]
-theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂c • μ) = c * ∫⁻ a, f a ∂μ :=
-  by simp only [lintegral, iSup_subtype', simple_func.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
+theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : ∫⁻ a, f a ∂c • μ = c * ∫⁻ a, f a ∂μ := by
+  simp only [lintegral, iSup_subtype', simple_func.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
-    (∫⁻ a, f a ∂Measure.sum μ) = ∑' i, ∫⁻ a, f a ∂μ i :=
+    ∫⁻ a, f a ∂Measure.sum μ = ∑' i, ∫⁻ a, f a ∂μ i :=
   by
   simp only [lintegral, iSup_subtype', simple_func.lintegral_sum, ENNReal.tsum_eq_iSup_sum]
   rw [iSup_comm]
@@ -656,40 +655,40 @@ theorem hasSum_lintegral_measure {ι} {m : MeasurableSpace α} (f : α → ℝ
 
 @[simp]
 theorem lintegral_add_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ ν : Measure α) :
-    (∫⁻ a, f a ∂μ + ν) = (∫⁻ a, f a ∂μ) + ∫⁻ a, f a ∂ν := by
+    ∫⁻ a, f a ∂(μ + ν) = ∫⁻ a, f a ∂μ + ∫⁻ a, f a ∂ν := by
   simpa [tsum_fintype] using lintegral_sum_measure f fun b => cond b μ ν
 #align measure_theory.lintegral_add_measure MeasureTheory.lintegral_add_measure
 
 @[simp]
 theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset ι) (f : α → ℝ≥0∞)
-    (μ : ι → Measure α) : (∫⁻ a, f a ∂∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i := by
+    (μ : ι → Measure α) : ∫⁻ a, f a ∂∑ i in s, μ i = ∑ i in s, ∫⁻ a, f a ∂μ i := by
   rw [← measure.sum_coe_finset, lintegral_sum_measure, ← Finset.tsum_subtype']; rfl
 #align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measure
 
 @[simp]
 theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂(0 : Measure α)) = 0 :=
+    ∫⁻ a, f a ∂(0 : Measure α) = 0 :=
   bot_unique <| by simp [lintegral]
 #align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measure
 
-theorem set_lintegral_empty (f : α → ℝ≥0∞) : (∫⁻ x in ∅, f x ∂μ) = 0 := by
+theorem set_lintegral_empty (f : α → ℝ≥0∞) : ∫⁻ x in ∅, f x ∂μ = 0 := by
   rw [measure.restrict_empty, lintegral_zero_measure]
 #align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_empty
 
 #print MeasureTheory.set_lintegral_univ /-
-theorem set_lintegral_univ (f : α → ℝ≥0∞) : (∫⁻ x in univ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
+theorem set_lintegral_univ (f : α → ℝ≥0∞) : ∫⁻ x in univ, f x ∂μ = ∫⁻ x, f x ∂μ := by
   rw [measure.restrict_univ]
 #align measure_theory.set_lintegral_univ MeasureTheory.set_lintegral_univ
 -/
 
 theorem set_lintegral_measure_zero (s : Set α) (f : α → ℝ≥0∞) (hs' : μ s = 0) :
-    (∫⁻ x in s, f x ∂μ) = 0 := by
+    ∫⁻ x in s, f x ∂μ = 0 := by
   convert lintegral_zero_measure _
   exact measure.restrict_eq_zero.2 hs'
 #align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zero
 
 theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
-    (hf : ∀ b ∈ s, AEMeasurable (f b) μ) : (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
+    (hf : ∀ b ∈ s, AEMeasurable (f b) μ) : ∫⁻ a, ∑ b in s, f b a ∂μ = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   by
   induction' s using Finset.induction_on with a s has ih
   · simp
@@ -699,15 +698,15 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
 #align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'
 
 theorem lintegral_finset_sum (s : Finset β) {f : β → α → ℝ≥0∞} (hf : ∀ b ∈ s, Measurable (f b)) :
-    (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
+    ∫⁻ a, ∑ b in s, f b a ∂μ = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   lintegral_finset_sum' s fun b hb => (hf b hb).AEMeasurable
 #align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sum
 
 @[simp]
 theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
+    ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ :=
   calc
-    (∫⁻ a, r * f a ∂μ) = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ := by congr; funext a;
+    ∫⁻ a, r * f a ∂μ = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ := by congr; funext a;
       rw [← supr_eapprox_apply f hf, ENNReal.mul_iSup]; rfl
     _ = ⨆ n, r * (eapprox f n).lintegral μ :=
       by
@@ -720,15 +719,15 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
 theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
-    (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
+    ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ :=
   by
-  have A : (∫⁻ a, f a ∂μ) = ∫⁻ a, hf.mk f a ∂μ := lintegral_congr_ae hf.ae_eq_mk
-  have B : (∫⁻ a, r * f a ∂μ) = ∫⁻ a, r * hf.mk f a ∂μ :=
+  have A : ∫⁻ a, f a ∂μ = ∫⁻ a, hf.mk f a ∂μ := lintegral_congr_ae hf.ae_eq_mk
+  have B : ∫⁻ a, r * f a ∂μ = ∫⁻ a, r * hf.mk f a ∂μ :=
     lintegral_congr_ae (eventually_eq.fun_comp hf.ae_eq_mk _)
   rw [A, B, lintegral_const_mul _ hf.measurable_mk]
 #align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''
 
-theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * ∫⁻ a, f a ∂μ) ≤ ∫⁻ a, r * f a ∂μ :=
+theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : r * ∫⁻ a, f a ∂μ ≤ ∫⁻ a, r * f a ∂μ :=
   by
   rw [lintegral, ENNReal.mul_iSup]
   refine' iSup_le fun s => _
@@ -741,7 +740,7 @@ theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * 
 #align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_le
 
 theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
-    (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
+    ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ :=
   by
   by_cases h : r = 0
   · simp [h]
@@ -754,11 +753,11 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
 
 theorem lintegral_mul_const (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
+    ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
 #align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_const
 
 theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
-    (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
+    ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
 #align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''
 
 theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂μ) * r ≤ ∫⁻ a, f a * r ∂μ :=
@@ -766,32 +765,32 @@ theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫
 #align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_le
 
 theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
-    (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul' r f hr]
+    ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul' r f hr]
 #align measure_theory.lintegral_mul_const' MeasureTheory.lintegral_mul_const'
 
 /- A double integral of a product where each factor contains only one variable
   is a product of integrals -/
 theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f : α → ℝ≥0∞}
     {g : β → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g ν) :
-    (∫⁻ x, ∫⁻ y, f x * g y ∂ν ∂μ) = (∫⁻ x, f x ∂μ) * ∫⁻ y, g y ∂ν := by
+    ∫⁻ x, ∫⁻ y, f x * g y ∂ν ∂μ = (∫⁻ x, f x ∂μ) * ∫⁻ y, g y ∂ν := by
   simp [lintegral_const_mul'' _ hg, lintegral_mul_const'' _ hf]
 #align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mul
 
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₁ {f f' : α → β} (h : f =ᵐ[μ] f') (g : β → ℝ≥0∞) :
-    (∫⁻ a, g (f a) ∂μ) = ∫⁻ a, g (f' a) ∂μ :=
+    ∫⁻ a, g (f a) ∂μ = ∫⁻ a, g (f' a) ∂μ :=
   lintegral_congr_ae <| h.mono fun a h => by rw [h]
 #align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁
 
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁ : f₁ =ᵐ[μ] f₁') (h₂ : f₂ =ᵐ[μ] f₂')
-    (g : β → γ → ℝ≥0∞) : (∫⁻ a, g (f₁ a) (f₂ a) ∂μ) = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
+    (g : β → γ → ℝ≥0∞) : ∫⁻ a, g (f₁ a) (f₂ a) ∂μ = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
   lintegral_congr_ae <| h₁.mp <| h₂.mono fun _ h₂ h₁ => by rw [h₁, h₂]
 #align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂
 
 @[simp]
 theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
-    (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ :=
+    ∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ :=
   by
   simp only [lintegral, ← restrict_lintegral_eq_lintegral_restrict _ hs, iSup_subtype']
   apply le_antisymm <;> refine' iSup_mono' (Subtype.forall.2 fun φ hφ => _)
@@ -806,19 +805,19 @@ theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : Measurabl
 #align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicator
 
 theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMeasurableSet s μ) :
-    (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ := by
+    ∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ := by
   rw [← lintegral_congr_ae (indicator_ae_eq_of_ae_eq_set hs.to_measurable_ae_eq),
     lintegral_indicator _ (measurable_set_to_measurable _ _),
     measure.restrict_congr_set hs.to_measurable_ae_eq]
 #align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀
 
 theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ≥0∞) :
-    (∫⁻ a, s.indicator (fun _ => c) a ∂μ) = c * μ s := by
+    ∫⁻ a, s.indicator (fun _ => c) a ∂μ = c * μ s := by
   rw [lintegral_indicator _ hs, set_lintegral_const]
 #align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_const
 
 theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r : ℝ≥0∞) :
-    (∫⁻ x in {x | f x = r}, f x ∂μ) = r * μ {x | f x = r} :=
+    ∫⁻ x in {x | f x = r}, f x ∂μ = r * μ {x | f x = r} :=
   by
   have : ∀ᵐ x ∂μ, x ∈ {x | f x = r} → f x = r := ae_of_all μ fun _ hx => hx
   rw [set_lintegral_congr_fun _ this]
@@ -830,14 +829,13 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
-    (hg : AEMeasurable g μ) (ε : ℝ≥0∞) :
-    (∫⁻ a, f a ∂μ) + ε * μ {x | f x + ε ≤ g x} ≤ ∫⁻ a, g a ∂μ :=
+    (hg : AEMeasurable g μ) (ε : ℝ≥0∞) : ∫⁻ a, f a ∂μ + ε * μ {x | f x + ε ≤ g x} ≤ ∫⁻ a, g a ∂μ :=
   by
   rcases exists_measurable_le_lintegral_eq μ f with ⟨φ, hφm, hφ_le, hφ_eq⟩
   calc
-    (∫⁻ x, f x ∂μ) + ε * μ {x | f x + ε ≤ g x} = (∫⁻ x, φ x ∂μ) + ε * μ {x | f x + ε ≤ g x} := by
+    ∫⁻ x, f x ∂μ + ε * μ {x | f x + ε ≤ g x} = ∫⁻ x, φ x ∂μ + ε * μ {x | f x + ε ≤ g x} := by
       rw [hφ_eq]
-    _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ {x | φ x + ε ≤ g x} :=
+    _ ≤ ∫⁻ x, φ x ∂μ + ε * μ {x | φ x + ε ≤ g x} :=
       (add_le_add_left
         (mul_le_mul_left' (measure_mono fun x => (add_le_add_right (hφ_le _) _).trans) _) _)
     _ = ∫⁻ x, φ x + indicator {x | φ x + ε ≤ g x} (fun _ => ε) x ∂μ :=
@@ -864,7 +862,7 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
 theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
-    (hμf : 0 < μ {x | f x = ∞}) : (∫⁻ x, f x ∂μ) = ∞ :=
+    (hμf : 0 < μ {x | f x = ∞}) : ∫⁻ x, f x ∂μ = ∞ :=
   eq_top_iff.mpr <|
     calc
       ∞ = ∞ * μ {x | ∞ ≤ f x} := by simp [mul_eq_top, hμf.ne.symm]
@@ -878,13 +876,13 @@ theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ
     exact mul_meas_ge_le_lintegral₀ hf ε
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
 
-theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : (∫⁻ x, f x ∂μ) ≠ ∞)
-    (hg : AEMeasurable g μ) (hgf : (∫⁻ x, g x ∂μ) ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g :=
+theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : ∫⁻ x, f x ∂μ ≠ ∞)
+    (hg : AEMeasurable g μ) (hgf : ∫⁻ x, g x ∂μ ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g :=
   by
   have : ∀ n : ℕ, ∀ᵐ x ∂μ, g x < f x + n⁻¹ := by
     intro n
     simp only [ae_iff, not_lt]
-    have : (∫⁻ x, f x ∂μ) + (↑n)⁻¹ * μ {x : α | f x + n⁻¹ ≤ g x} ≤ ∫⁻ x, f x ∂μ :=
+    have : ∫⁻ x, f x ∂μ + (↑n)⁻¹ * μ {x : α | f x + n⁻¹ ≤ g x} ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
     rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this 
     exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
@@ -897,8 +895,8 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
 
 @[simp]
 theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
-    (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
-  have : (∫⁻ a : α, 0 ∂μ) ≠ ∞ := by simpa only [lintegral_zero] using zero_ne_top
+    ∫⁻ a, f a ∂μ = 0 ↔ f =ᵐ[μ] 0 :=
+  have : ∫⁻ a : α, 0 ∂μ ≠ ∞ := by simpa only [lintegral_zero] using zero_ne_top
   ⟨fun h =>
     (ae_eq_of_ae_le_of_lintegral_le (ae_of_all _ <| zero_le f) this hf
         (h.trans lintegral_zero.symm).le).symm,
@@ -906,24 +904,24 @@ theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
 #align measure_theory.lintegral_eq_zero_iff' MeasureTheory.lintegral_eq_zero_iff'
 
 @[simp]
-theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
+theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂μ = 0 ↔ f =ᵐ[μ] 0 :=
   lintegral_eq_zero_iff' hf.AEMeasurable
 #align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iff
 
 theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (0 < ∫⁻ a, f a ∂μ) ↔ 0 < μ (Function.support f) := by
+    0 < ∫⁻ a, f a ∂μ ↔ 0 < μ (Function.support f) := by
   simp [pos_iff_ne_zero, hf, Filter.EventuallyEq, ae_iff, Function.support]
 #align measure_theory.lintegral_pos_iff_support MeasureTheory.lintegral_pos_iff_support
 
 /-- Weaker version of the monotone convergence theorem-/
 theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
-    (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
+    (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ :=
   let ⟨s, hs⟩ := exists_measurable_superset_of_null (ae_iff.1 (ae_all_iff.2 h_mono))
   let g n a := if a ∈ s then 0 else f n a
   have g_eq_f : ∀ᵐ a ∂μ, ∀ n, g n a = f n a :=
     (measure_zero_iff_ae_nmem.1 hs.2.2).mono fun a ha n => if_neg ha
   calc
-    (∫⁻ a, ⨆ n, f n a ∂μ) = ∫⁻ a, ⨆ n, g n a ∂μ :=
+    ∫⁻ a, ⨆ n, f n a ∂μ = ∫⁻ a, ⨆ n, g n a ∂μ :=
       lintegral_congr_ae <| g_eq_f.mono fun a ha => by simp only [ha]
     _ = ⨆ n, ∫⁻ a, g n a ∂μ :=
       (lintegral_iSup (fun n => measurable_const.piecewise hs.2.1 (hf n))
@@ -935,24 +933,24 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun a ha => ha _)]
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 
-theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
-    (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
+theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : ∫⁻ a, g a ∂μ ≠ ∞)
+    (h_le : g ≤ᵐ[μ] f) : ∫⁻ a, f a - g a ∂μ = ∫⁻ a, f a ∂μ - ∫⁻ a, g a ∂μ :=
   by
   refine' ENNReal.eq_sub_of_add_eq hg_fin _
   rw [← lintegral_add_right' _ hg]
   exact lintegral_congr_ae (h_le.mono fun x hx => tsub_add_cancel_of_le hx)
 #align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'
 
-theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
-    (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
+theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : ∫⁻ a, g a ∂μ ≠ ∞)
+    (h_le : g ≤ᵐ[μ] f) : ∫⁻ a, f a - g a ∂μ = ∫⁻ a, f a ∂μ - ∫⁻ a, g a ∂μ :=
   lintegral_sub' hg.AEMeasurable hg_fin h_le
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
 
 theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
-    ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
+    ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ :=
   by
   rw [tsub_le_iff_right]
-  by_cases hfi : (∫⁻ x, f x ∂μ) = ∞
+  by_cases hfi : ∫⁻ x, f x ∂μ = ∞
   · rw [hfi, add_top]
     exact le_top
   · rw [← lintegral_add_right' _ hf]
@@ -960,27 +958,27 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
 #align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
 
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
-    ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
+    ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ :=
   lintegral_sub_le' f g hf.AEMeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
 
 theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
-    (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
-    (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ := by
+    (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
+    ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ := by
   contrapose! h
   simp only [not_frequently, Ne.def, Classical.not_not]
   exact ae_eq_of_ae_le_of_lintegral_le h_le hfi hg h
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
 
 theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
-    (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
-    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
+    (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
+    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
   lintegral_strict_mono_of_ae_le_of_frequently_ae_lt hg hfi h_le <|
     ((frequently_ae_mem_iff.2 hμs).and_eventually h).mono fun x hx => (hx.2 hx.1).Ne
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on
 
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
-    (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
+    (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
   by
   rw [Ne.def, ← measure.measure_univ_eq_zero] at hμ 
   refine' lintegral_strict_mono_of_ae_le_of_ae_lt_on hg hfi (ae_le_of_ae_lt h) hμ _
@@ -988,22 +986,22 @@ theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : A
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
 
 theorem set_lintegral_strict_mono {f g : α → ℝ≥0∞} {s : Set α} (hsm : MeasurableSet s)
-    (hs : μ s ≠ 0) (hg : Measurable g) (hfi : (∫⁻ x in s, f x ∂μ) ≠ ∞)
-    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x in s, f x ∂μ) < ∫⁻ x in s, g x ∂μ :=
+    (hs : μ s ≠ 0) (hg : Measurable g) (hfi : ∫⁻ x in s, f x ∂μ ≠ ∞)
+    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : ∫⁻ x in s, f x ∂μ < ∫⁻ x in s, g x ∂μ :=
   lintegral_strict_mono (by simp [hs]) hg.AEMeasurable hfi ((ae_restrict_iff' hsm).mpr h)
 #align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_mono
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n))
-    (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) :
-    (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
-  have fn_le_f0 : (∫⁻ a, ⨅ n, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ :=
+    (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : ∫⁻ a, f 0 a ∂μ ≠ ∞) :
+    ∫⁻ a, ⨅ n, f n a ∂μ = ⨅ n, ∫⁻ a, f n a ∂μ :=
+  have fn_le_f0 : ∫⁻ a, ⨅ n, f n a ∂μ ≤ ∫⁻ a, f 0 a ∂μ :=
     lintegral_mono fun a => iInf_le_of_le 0 le_rfl
   have fn_le_f0' : (⨅ n, ∫⁻ a, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ := iInf_le_of_le 0 le_rfl
   (ENNReal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 <|
-    show ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ from
+    show ∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ from
       calc
-        ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
+        ∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
           (lintegral_sub (measurable_iInf h_meas)
               (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => iInf_le _ _)
               (ae_of_all _ fun a => iInf_le _ _)).symm
@@ -1011,7 +1009,7 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
         _ = ⨆ n, ∫⁻ a, f 0 a - f n a ∂μ :=
           (lintegral_iSup_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
             (h_mono n).mono fun a ha => tsub_le_tsub le_rfl ha)
-        _ = ⨆ n, (∫⁻ a, f 0 a ∂μ) - ∫⁻ a, f n a ∂μ :=
+        _ = ⨆ n, ∫⁻ a, f 0 a ∂μ - ∫⁻ a, f n a ∂μ :=
           (have h_mono : ∀ᵐ a ∂μ, ∀ n : ℕ, f n.succ a ≤ f n a := ae_all_iff.2 h_mono
           have h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f 0 a := fun n =>
             h_mono.mono fun a h => by
@@ -1021,20 +1019,20 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
             funext fun n =>
               lintegral_sub (h_meas _) (ne_top_of_le_ne_top h_fin <| lintegral_mono_ae <| h_mono n)
                 (h_mono n))
-        _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_iInf.symm
+        _ = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_iInf.symm
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_ae
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) (h_anti : Antitone f)
-    (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) : (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
+    (h_fin : ∫⁻ a, f 0 a ∂μ ≠ ∞) : ∫⁻ a, ⨅ n, f n a ∂μ = ⨅ n, ∫⁻ a, f n a ∂μ :=
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
 /-- Known as Fatou's lemma, version with `ae_measurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
-    (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
+    ∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   calc
-    (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
+    ∫⁻ a, liminf (fun n => f n a) atTop ∂μ = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
       simp only [liminf_eq_supr_infi_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
       (lintegral_iSup' (fun n => aemeasurable_biInf _ (to_countable _) h_meas)
@@ -1045,12 +1043,12 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
 
 /-- Known as Fatou's lemma -/
 theorem lintegral_liminf_le {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) :
-    (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
+    ∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   lintegral_liminf_le' fun n => (h_meas n).AEMeasurable
 #align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_le
 
 theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0∞} (hf_meas : ∀ n, Measurable (f n))
-    (h_bound : ∀ n, f n ≤ᵐ[μ] g) (h_fin : (∫⁻ a, g a ∂μ) ≠ ∞) :
+    (h_bound : ∀ n, f n ≤ᵐ[μ] g) (h_fin : ∫⁻ a, g a ∂μ ≠ ∞) :
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop ≤ ∫⁻ a, limsup (fun n => f n a) atTop ∂μ :=
   calc
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop = ⨅ n : ℕ, ⨆ i ≥ n, ∫⁻ a, f i a ∂μ :=
@@ -1070,11 +1068,11 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
 /-- Dominated convergence theorem for nonnegative functions -/
 theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
     (bound : α → ℝ≥0∞) (hF_meas : ∀ n, Measurable (F n)) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
-    (h_fin : (∫⁻ a, bound a ∂μ) ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
+    (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
     Tendsto (fun n => ∫⁻ a, F n a ∂μ) atTop (𝓝 (∫⁻ a, f a ∂μ)) :=
   tendsto_of_le_liminf_of_limsup_le
     (calc
-      (∫⁻ a, f a ∂μ) = ∫⁻ a, liminf (fun n : ℕ => F n a) atTop ∂μ :=
+      ∫⁻ a, f a ∂μ = ∫⁻ a, liminf (fun n : ℕ => F n a) atTop ∂μ :=
         lintegral_congr_ae <| h_lim.mono fun a h => h.liminf_eq.symm
       _ ≤ liminf (fun n => ∫⁻ a, F n a ∂μ) atTop := lintegral_liminf_le hF_meas)
     (calc
@@ -1087,10 +1085,10 @@ theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0
 measurable. -/
 theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
     (bound : α → ℝ≥0∞) (hF_meas : ∀ n, AEMeasurable (F n) μ) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
-    (h_fin : (∫⁻ a, bound a ∂μ) ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
+    (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
     Tendsto (fun n => ∫⁻ a, F n a ∂μ) atTop (𝓝 (∫⁻ a, f a ∂μ)) :=
   by
-  have : ∀ n, (∫⁻ a, F n a ∂μ) = ∫⁻ a, (hF_meas n).mk (F n) a ∂μ := fun n =>
+  have : ∀ n, ∫⁻ a, F n a ∂μ = ∫⁻ a, (hF_meas n).mk (F n) a ∂μ := fun n =>
     lintegral_congr_ae (hF_meas n).ae_eq_mk
   simp_rw [this]
   apply
@@ -1109,7 +1107,7 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
 theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
     [l.IsCountablyGenerated] {F : ι → α → ℝ≥0∞} {f : α → ℝ≥0∞} (bound : α → ℝ≥0∞)
     (hF_meas : ∀ᶠ n in l, Measurable (F n)) (h_bound : ∀ᶠ n in l, ∀ᵐ a ∂μ, F n a ≤ bound a)
-    (h_fin : (∫⁻ a, bound a ∂μ) ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a))) :
+    (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a))) :
     Tendsto (fun n => ∫⁻ a, F n a ∂μ) l (𝓝 <| ∫⁻ a, f a ∂μ) :=
   by
   rw [tendsto_iff_seq_tendsto]
@@ -1138,7 +1136,7 @@ open Encodable
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type -/
 theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α → ℝ≥0∞}
     (hf : ∀ b, Measurable (f b)) (h_directed : Directed (· ≤ ·) f) :
-    (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
+    ∫⁻ a, ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ a, f b a ∂μ :=
   by
   cases nonempty_encodable β
   cases isEmpty_or_nonempty β; · simp [iSup_of_empty]
@@ -1149,7 +1147,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
     refine' le_antisymm (iSup_le fun b => _) (iSup_le fun n => le_iSup (fun n => f n a) _)
     exact le_iSup_of_le (encode b + 1) (h_directed.le_sequence b a)
   calc
-    (∫⁻ a, ⨆ b, f b a ∂μ) = ∫⁻ a, ⨆ n, f (h_directed.sequence f n) a ∂μ := by simp only [this]
+    ∫⁻ a, ⨆ b, f b a ∂μ = ∫⁻ a, ⨆ n, f (h_directed.sequence f n) a ∂μ := by simp only [this]
     _ = ⨆ n, ∫⁻ a, f (h_directed.sequence f n) a ∂μ :=
       (lintegral_supr (fun n => hf _) h_directed.sequence_mono)
     _ = ⨆ b, ∫⁻ a, f b a ∂μ :=
@@ -1162,7 +1160,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
-    (h_directed : Directed (· ≤ ·) f) : (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
+    (h_directed : Directed (· ≤ ·) f) : ∫⁻ a, ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ a, f b a ∂μ :=
   by
   simp_rw [← iSup_apply]
   let p : α → (β → ENNReal) → Prop := fun x f' => Directed LE.le f'
@@ -1196,7 +1194,7 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
 end
 
 theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) :
-    (∫⁻ a, ∑' i, f i a ∂μ) = ∑' i, ∫⁻ a, f i a ∂μ :=
+    ∫⁻ a, ∑' i, f i a ∂μ = ∑' i, ∫⁻ a, f i a ∂μ :=
   by
   simp only [ENNReal.tsum_eq_iSup_sum]
   rw [lintegral_supr_directed]
@@ -1213,19 +1211,19 @@ open Measure
 
 theorem lintegral_iUnion₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullMeasurableSet (s i) μ)
     (hd : Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ := by
+    ∫⁻ a in ⋃ i, s i, f a ∂μ = ∑' i, ∫⁻ a in s i, f a ∂μ := by
   simp only [measure.restrict_Union_ae hd hm, lintegral_sum_measure]
 #align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_iUnion₀
 
 theorem lintegral_iUnion [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
     (hd : Pairwise (Disjoint on s)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ :=
+    ∫⁻ a in ⋃ i, s i, f a ∂μ = ∑' i, ∫⁻ a in s i, f a ∂μ :=
   lintegral_iUnion₀ (fun i => (hm i).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnion
 
 theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
+    ∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
   by
   haveI := ht.to_encodable
   rw [bUnion_eq_Union, lintegral_Union₀ (SetCoe.forall'.1 hm) (hd.subtype _ _)]
@@ -1233,47 +1231,46 @@ theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
 
 theorem lintegral_biUnion {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, MeasurableSet (s i)) (hd : t.PairwiseDisjoint s) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
+    ∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
   lintegral_biUnion₀ ht (fun i hi => (hm i hi).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_bUnion MeasureTheory.lintegral_biUnion
 
 theorem lintegral_biUnion_finset₀ {s : Finset β} {t : β → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on t)) (hm : ∀ b ∈ s, NullMeasurableSet (t b) μ)
-    (f : α → ℝ≥0∞) : (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
+    (f : α → ℝ≥0∞) : ∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
   simp only [← Finset.mem_coe, lintegral_bUnion₀ s.countable_to_set hm hd, ← s.tsum_subtype']
 #align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_biUnion_finset₀
 
 theorem lintegral_biUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.PairwiseDisjoint (↑s) t)
     (hm : ∀ b ∈ s, MeasurableSet (t b)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
+    ∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
   lintegral_biUnion_finset₀ hd.AEDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
 #align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_biUnion_finset
 
 theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i, s i, f a ∂μ) ≤ ∑' i, ∫⁻ a in s i, f a ∂μ :=
+    ∫⁻ a in ⋃ i, s i, f a ∂μ ≤ ∑' i, ∫⁻ a in s i, f a ∂μ :=
   by
   rw [← lintegral_sum_measure]
   exact lintegral_mono' restrict_Union_le le_rfl
 #align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_le
 
 theorem lintegral_union {f : α → ℝ≥0∞} {A B : Set α} (hB : MeasurableSet B) (hAB : Disjoint A B) :
-    (∫⁻ a in A ∪ B, f a ∂μ) = (∫⁻ a in A, f a ∂μ) + ∫⁻ a in B, f a ∂μ := by
+    ∫⁻ a in A ∪ B, f a ∂μ = ∫⁻ a in A, f a ∂μ + ∫⁻ a in B, f a ∂μ := by
   rw [restrict_union hAB hB, lintegral_add_measure]
 #align measure_theory.lintegral_union MeasureTheory.lintegral_union
 
 theorem lintegral_inter_add_diff {B : Set α} (f : α → ℝ≥0∞) (A : Set α) (hB : MeasurableSet B) :
-    ((∫⁻ x in A ∩ B, f x ∂μ) + ∫⁻ x in A \ B, f x ∂μ) = ∫⁻ x in A, f x ∂μ := by
+    ∫⁻ x in A ∩ B, f x ∂μ + ∫⁻ x in A \ B, f x ∂μ = ∫⁻ x in A, f x ∂μ := by
   rw [← lintegral_add_measure, restrict_inter_add_diff _ hB]
 #align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diff
 
 theorem lintegral_add_compl (f : α → ℝ≥0∞) {A : Set α} (hA : MeasurableSet A) :
-    ((∫⁻ x in A, f x ∂μ) + ∫⁻ x in Aᶜ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
+    ∫⁻ x in A, f x ∂μ + ∫⁻ x in Aᶜ, f x ∂μ = ∫⁻ x, f x ∂μ := by
   rw [← lintegral_add_measure, measure.restrict_add_restrict_compl hA]
 #align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_compl
 
 theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
-    (∫⁻ x, max (f x) (g x) ∂μ) =
-      (∫⁻ x in {x | f x ≤ g x}, g x ∂μ) + ∫⁻ x in {x | g x < f x}, f x ∂μ :=
+    ∫⁻ x, max (f x) (g x) ∂μ = ∫⁻ x in {x | f x ≤ g x}, g x ∂μ + ∫⁻ x in {x | g x < f x}, f x ∂μ :=
   by
   have hm : MeasurableSet {x | f x ≤ g x} := measurableSet_le hf hg
   rw [← lintegral_add_compl (fun x => max (f x) (g x)) hm]
@@ -1283,8 +1280,8 @@ theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measur
 #align measure_theory.lintegral_max MeasureTheory.lintegral_max
 
 theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) (s : Set α) :
-    (∫⁻ x in s, max (f x) (g x) ∂μ) =
-      (∫⁻ x in s ∩ {x | f x ≤ g x}, g x ∂μ) + ∫⁻ x in s ∩ {x | g x < f x}, f x ∂μ :=
+    ∫⁻ x in s, max (f x) (g x) ∂μ =
+      ∫⁻ x in s ∩ {x | f x ≤ g x}, g x ∂μ + ∫⁻ x in s ∩ {x | g x < f x}, f x ∂μ :=
   by
   rw [lintegral_max hf hg, restrict_restrict, restrict_restrict, inter_comm s, inter_comm s]
   exacts [measurableSet_lt hg hf, measurableSet_le hf hg]
@@ -1292,7 +1289,7 @@ theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
 
 #print MeasureTheory.lintegral_map /-
 theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
-    (hg : Measurable g) : (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ :=
+    (hg : Measurable g) : ∫⁻ a, f a ∂map g μ = ∫⁻ a, f (g a) ∂μ :=
   by
   simp only [lintegral_eq_supr_eapprox_lintegral, hf, hf.comp hg]
   congr with n : 1
@@ -1304,10 +1301,9 @@ theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α
 #print MeasureTheory.lintegral_map' /-
 theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β}
     (hf : AEMeasurable f (Measure.map g μ)) (hg : AEMeasurable g μ) :
-    (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, f (g a) ∂μ :=
+    ∫⁻ a, f a ∂Measure.map g μ = ∫⁻ a, f (g a) ∂μ :=
   calc
-    (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, hf.mk f a ∂Measure.map g μ :=
-      lintegral_congr_ae hf.ae_eq_mk
+    ∫⁻ a, f a ∂Measure.map g μ = ∫⁻ a, hf.mk f a ∂Measure.map g μ := lintegral_congr_ae hf.ae_eq_mk
     _ = ∫⁻ a, hf.mk f a ∂Measure.map (hg.mk g) μ := by congr 1; exact measure.map_congr hg.ae_eq_mk
     _ = ∫⁻ a, hf.mk f (hg.mk g a) ∂μ := (lintegral_map hf.measurable_mk hg.measurable_mk)
     _ = ∫⁻ a, hf.mk f (g a) ∂μ := (lintegral_congr_ae <| hg.ae_eq_mk.symm.fun_comp _)
@@ -1316,7 +1312,7 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
 -/
 
 theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g : α → β} (hg : Measurable g) :
-    (∫⁻ a, f a ∂Measure.map g μ) ≤ ∫⁻ a, f (g a) ∂μ :=
+    ∫⁻ a, f a ∂Measure.map g μ ≤ ∫⁻ a, f (g a) ∂μ :=
   by
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
   refine' iSup₂_le fun i hi => iSup_le fun h'i => _
@@ -1334,14 +1330,14 @@ theorem lintegral_comp [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α →
 #print MeasureTheory.set_lintegral_map /-
 theorem set_lintegral_map [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α → β} {s : Set β}
     (hs : MeasurableSet s) (hf : Measurable f) (hg : Measurable g) :
-    (∫⁻ y in s, f y ∂map g μ) = ∫⁻ x in g ⁻¹' s, f (g x) ∂μ := by
+    ∫⁻ y in s, f y ∂map g μ = ∫⁻ x in g ⁻¹' s, f (g x) ∂μ := by
   rw [restrict_map hg hs, lintegral_map hf hg]
 #align measure_theory.set_lintegral_map MeasureTheory.set_lintegral_map
 -/
 
 theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β} {s : Set β}
     (hf : Measurable f) (hs : MeasurableSet s) (c : ℝ≥0∞) :
-    (∫⁻ a, s.indicator (fun _ => c) (f a) ∂μ) = c * μ (f ⁻¹' s) := by
+    ∫⁻ a, s.indicator (fun _ => c) (f a) ∂μ = c * μ (f ⁻¹' s) := by
   rw [lintegral_comp (measurable_const.indicator hs) hf, lintegral_indicator_const hs,
     measure.map_apply hf hs]
 #align measure_theory.lintegral_indicator_const_comp MeasureTheory.lintegral_indicator_const_comp
@@ -1351,7 +1347,7 @@ theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β
 measurable), then `∫⁻ a, f a ∂(map g μ) = ∫⁻ a, f (g a) ∂μ`. Compare with `lintegral_map` wich
 applies to any measurable `g : α → β` but requires that `f` is measurable as well. -/
 theorem MeasurableEmbedding.lintegral_map [MeasurableSpace β] {g : α → β}
-    (hg : MeasurableEmbedding g) (f : β → ℝ≥0∞) : (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ :=
+    (hg : MeasurableEmbedding g) (f : β → ℝ≥0∞) : ∫⁻ a, f a ∂map g μ = ∫⁻ a, f (g a) ∂μ :=
   by
   rw [lintegral, lintegral]
   refine' le_antisymm (iSup₂_le fun f₀ hf₀ => _) (iSup₂_le fun f₀ hf₀ => _)
@@ -1370,7 +1366,7 @@ theorem MeasurableEmbedding.lintegral_map [MeasurableSpace β] {g : α → β}
 (Compare `lintegral_map`, which applies to a wider class of functions `g : α → β`, but requires
 measurability of the function being integrated.) -/
 theorem lintegral_map_equiv [MeasurableSpace β] (f : β → ℝ≥0∞) (g : α ≃ᵐ β) :
-    (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ :=
+    ∫⁻ a, f a ∂map g μ = ∫⁻ a, f (g a) ∂μ :=
   g.MeasurableEmbedding.lintegral_map f
 #align measure_theory.lintegral_map_equiv MeasureTheory.lintegral_map_equiv
 -/
@@ -1378,21 +1374,21 @@ theorem lintegral_map_equiv [MeasurableSpace β] (f : β → ℝ≥0∞) (g : α
 #print MeasureTheory.MeasurePreserving.lintegral_comp /-
 theorem MeasurePreserving.lintegral_comp {mb : MeasurableSpace β} {ν : Measure β} {g : α → β}
     (hg : MeasurePreserving g μ ν) {f : β → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, f (g a) ∂μ) = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, lintegral_map hf hg.measurable]
+    ∫⁻ a, f (g a) ∂μ = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, lintegral_map hf hg.measurable]
 #align measure_theory.measure_preserving.lintegral_comp MeasureTheory.MeasurePreserving.lintegral_comp
 -/
 
 #print MeasureTheory.MeasurePreserving.lintegral_comp_emb /-
 theorem MeasurePreserving.lintegral_comp_emb {mb : MeasurableSpace β} {ν : Measure β} {g : α → β}
     (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞) :
-    (∫⁻ a, f (g a) ∂μ) = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, hge.lintegral_map]
+    ∫⁻ a, f (g a) ∂μ = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, hge.lintegral_map]
 #align measure_theory.measure_preserving.lintegral_comp_emb MeasureTheory.MeasurePreserving.lintegral_comp_emb
 -/
 
 #print MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage /-
 theorem MeasurePreserving.set_lintegral_comp_preimage {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) {s : Set β} (hs : MeasurableSet s) {f : β → ℝ≥0∞}
-    (hf : Measurable f) : (∫⁻ a in g ⁻¹' s, f (g a) ∂μ) = ∫⁻ b in s, f b ∂ν := by
+    (hf : Measurable f) : ∫⁻ a in g ⁻¹' s, f (g a) ∂μ = ∫⁻ b in s, f b ∂ν := by
   rw [← hg.map_eq, set_lintegral_map hs hf hg.measurable]
 #align measure_theory.measure_preserving.set_lintegral_comp_preimage MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage
 -/
@@ -1400,7 +1396,7 @@ theorem MeasurePreserving.set_lintegral_comp_preimage {mb : MeasurableSpace β}
 #print MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage_emb /-
 theorem MeasurePreserving.set_lintegral_comp_preimage_emb {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞)
-    (s : Set β) : (∫⁻ a in g ⁻¹' s, f (g a) ∂μ) = ∫⁻ b in s, f b ∂ν := by
+    (s : Set β) : ∫⁻ a in g ⁻¹' s, f (g a) ∂μ = ∫⁻ b in s, f b ∂ν := by
   rw [← hg.map_eq, hge.restrict_map, hge.lintegral_map]
 #align measure_theory.measure_preserving.set_lintegral_comp_preimage_emb MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage_emb
 -/
@@ -1408,7 +1404,7 @@ theorem MeasurePreserving.set_lintegral_comp_preimage_emb {mb : MeasurableSpace
 #print MeasureTheory.MeasurePreserving.set_lintegral_comp_emb /-
 theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞)
-    (s : Set α) : (∫⁻ a in s, f (g a) ∂μ) = ∫⁻ b in g '' s, f b ∂ν := by
+    (s : Set α) : ∫⁻ a in s, f (g a) ∂μ = ∫⁻ b in g '' s, f b ∂ν := by
   rw [← hg.set_lintegral_comp_preimage_emb hge, preimage_image_eq _ hge.injective]
 #align measure_theory.measure_preserving.set_lintegral_comp_emb MeasureTheory.MeasurePreserving.set_lintegral_comp_emb
 -/
@@ -1423,20 +1419,20 @@ instance (priority := 10) MeasurableSpace.Top.measurableSingletonClass {α : Typ
 variable [MeasurableSpace α]
 
 #print MeasureTheory.lintegral_dirac' /-
-theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂dirac a) = f a :=
-  by simp [lintegral_congr_ae (ae_eq_dirac' hf)]
+theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂dirac a = f a := by
+  simp [lintegral_congr_ae (ae_eq_dirac' hf)]
 #align measure_theory.lintegral_dirac' MeasureTheory.lintegral_dirac'
 -/
 
 #print MeasureTheory.lintegral_dirac /-
 theorem lintegral_dirac [MeasurableSingletonClass α] (a : α) (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂dirac a) = f a := by simp [lintegral_congr_ae (ae_eq_dirac f)]
+    ∫⁻ a, f a ∂dirac a = f a := by simp [lintegral_congr_ae (ae_eq_dirac f)]
 #align measure_theory.lintegral_dirac MeasureTheory.lintegral_dirac
 -/
 
 theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f) {s : Set α}
     (hs : MeasurableSet s) [Decidable (a ∈ s)] :
-    (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
+    ∫⁻ x in s, f x ∂Measure.dirac a = if a ∈ s then f a else 0 :=
   by
   rw [restrict_dirac' hs]
   swap; · infer_instance
@@ -1446,7 +1442,7 @@ theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f
 #align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'
 
 theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [MeasurableSingletonClass α]
-    [Decidable (a ∈ s)] : (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
+    [Decidable (a ∈ s)] : ∫⁻ x in s, f x ∂Measure.dirac a = if a ∈ s then f a else 0 :=
   by
   rw [restrict_dirac]
   split_ifs
@@ -1454,7 +1450,7 @@ theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [Measu
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_dirac
 
-theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂count) = ∑' a, f a :=
+theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂count = ∑' a, f a :=
   by
   rw [count, lintegral_sum_measure]
   congr
@@ -1462,7 +1458,7 @@ theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a
 #align measure_theory.lintegral_count' MeasureTheory.lintegral_count'
 
 theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂count) = ∑' a, f a :=
+    ∫⁻ a, f a ∂count = ∑' a, f a :=
   by
   rw [count, lintegral_sum_measure]
   congr
@@ -1470,12 +1466,12 @@ theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
 #align measure_theory.lintegral_count MeasureTheory.lintegral_count
 
 theorem ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
-    (∑' i : α, c) = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
+    ∑' i : α, c = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
 #align ennreal.tsum_const_eq ENNReal.tsum_const_eq
 
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
 theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
-    (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
+    (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
     (ε_ne_top : ε ≠ ∞) : Measure.count {i : α | ε ≤ a i} ≤ c / ε :=
   by
   rw [← lintegral_count] at tsum_le_c 
@@ -1485,7 +1481,7 @@ theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a :
 
 /-- Markov's inequality for counting measure with hypothesis using `tsum` in `ℝ≥0`. -/
 theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0}
-    (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : (∑' i, a i) ≤ c)
+    (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : ∑' i, a i ≤ c)
     {ε : ℝ≥0} (ε_ne_zero : ε ≠ 0) : Measure.count {i : α | ε ≤ a i} ≤ c / ε :=
   by
   rw [show (fun i => ε ≤ a i) = fun i => (ε : ℝ≥0∞) ≤ (coe ∘ a) i by funext i;
@@ -1507,7 +1503,7 @@ section Countable
 
 
 theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂μ) = ∑' a, f a * μ {a} :=
+    ∫⁻ a, f a ∂μ = ∑' a, f a * μ {a} :=
   by
   conv_lhs => rw [← sum_smul_dirac μ, lintegral_sum_measure]
   congr 1 with a : 1
@@ -1515,26 +1511,26 @@ theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : 
 #align measure_theory.lintegral_countable' MeasureTheory.lintegral_countable'
 
 theorem lintegral_singleton' {f : α → ℝ≥0∞} (hf : Measurable f) (a : α) :
-    (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
+    ∫⁻ x in {a}, f x ∂μ = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac' _ hf, mul_comm]
 #align measure_theory.lintegral_singleton' MeasureTheory.lintegral_singleton'
 
 theorem lintegral_singleton [MeasurableSingletonClass α] (f : α → ℝ≥0∞) (a : α) :
-    (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
+    ∫⁻ x in {a}, f x ∂μ = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_singleton MeasureTheory.lintegral_singleton
 
 theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞) {s : Set α}
-    (hs : s.Countable) : (∫⁻ a in s, f a ∂μ) = ∑' a : s, f a * μ {(a : α)} :=
+    (hs : s.Countable) : ∫⁻ a in s, f a ∂μ = ∑' a : s, f a * μ {(a : α)} :=
   calc
-    (∫⁻ a in s, f a ∂μ) = ∫⁻ a in ⋃ x ∈ s, {x}, f a ∂μ := by rw [bUnion_of_singleton]
+    ∫⁻ a in s, f a ∂μ = ∫⁻ a in ⋃ x ∈ s, {x}, f a ∂μ := by rw [bUnion_of_singleton]
     _ = ∑' a : s, ∫⁻ x in {a}, f x ∂μ :=
       (lintegral_biUnion hs (fun _ _ => measurableSet_singleton _) (pairwise_disjoint_fiber id s) _)
     _ = ∑' a : s, f a * μ {(a : α)} := by simp only [lintegral_singleton]
 #align measure_theory.lintegral_countable MeasureTheory.lintegral_countable
 
 theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h : a ∉ s)
-    (f : α → ℝ≥0∞) : (∫⁻ x in insert a s, f x ∂μ) = f a * μ {a} + ∫⁻ x in s, f x ∂μ :=
+    (f : α → ℝ≥0∞) : ∫⁻ x in insert a s, f x ∂μ = f a * μ {a} + ∫⁻ x in s, f x ∂μ :=
   by
   rw [← union_singleton, lintegral_union (measurable_set_singleton a), lintegral_singleton,
     add_comm]
@@ -1542,25 +1538,25 @@ theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h
 #align measure_theory.lintegral_insert MeasureTheory.lintegral_insert
 
 theorem lintegral_finset [MeasurableSingletonClass α] (s : Finset α) (f : α → ℝ≥0∞) :
-    (∫⁻ x in s, f x ∂μ) = ∑ x in s, f x * μ {x} := by
+    ∫⁻ x in s, f x ∂μ = ∑ x in s, f x * μ {x} := by
   simp only [lintegral_countable _ s.countable_to_set, ← s.tsum_subtype']
 #align measure_theory.lintegral_finset MeasureTheory.lintegral_finset
 
 theorem lintegral_fintype [MeasurableSingletonClass α] [Fintype α] (f : α → ℝ≥0∞) :
-    (∫⁻ x, f x ∂μ) = ∑ x, f x * μ {x} := by
+    ∫⁻ x, f x ∂μ = ∑ x, f x * μ {x} := by
   rw [← lintegral_finset, Finset.coe_univ, measure.restrict_univ]
 #align measure_theory.lintegral_fintype MeasureTheory.lintegral_fintype
 
-theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x ∂μ) = f default * μ univ :=
+theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : ∫⁻ x, f x ∂μ = f default * μ univ :=
   calc
-    (∫⁻ x, f x ∂μ) = ∫⁻ x, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
+    ∫⁻ x, f x ∂μ = ∫⁻ x, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
     _ = f default * μ univ := lintegral_const _
 #align measure_theory.lintegral_unique MeasureTheory.lintegral_unique
 
 end Countable
 
-theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
-    ∀ᵐ x ∂μ, f x < ∞ := by
+theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : ∫⁻ x, f x ∂μ ≠ ∞) : ∀ᵐ x ∂μ, f x < ∞ :=
+  by
   simp_rw [ae_iff, ENNReal.not_lt_top]; by_contra h; apply h2f.lt_top.not_le
   have : (f ⁻¹' {∞}).indicator ⊤ ≤ f := by intro x;
     by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [hx]; simp [hx]]
@@ -1568,14 +1564,14 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
   rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]; simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
 
-theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
+theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : ∫⁻ x, f x ∂μ ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ :=
-  haveI h2f_meas : (∫⁻ x, hf.mk f x ∂μ) ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
+  haveI h2f_meas : ∫⁻ x, hf.mk f x ∂μ ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
   (ae_lt_top hf.measurable_mk h2f_meas).mp (hf.ae_eq_mk.mono fun x hx h => by rwa [hx])
 #align measure_theory.ae_lt_top' MeasureTheory.ae_lt_top'
 
 theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : α → ℝ≥0}
-    (hf : Measurable f) (hbdd : BddAbove (f '' s)) : (∫⁻ x in s, f x ∂μ) < ∞ :=
+    (hf : Measurable f) (hbdd : BddAbove (f '' s)) : ∫⁻ x in s, f x ∂μ < ∞ :=
   by
   obtain ⟨M, hM⟩ := hbdd
   rw [mem_upperBounds] at hM 
@@ -1588,14 +1584,13 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
 #align measure_theory.set_lintegral_lt_top_of_bdd_above MeasureTheory.set_lintegral_lt_top_of_bddAbove
 
 theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α] {s : Set α}
-    (hs : μ s ≠ ∞) (hsc : IsCompact s) {f : α → ℝ≥0} (hf : Continuous f) :
-    (∫⁻ x in s, f x ∂μ) < ∞ :=
+    (hs : μ s ≠ ∞) (hsc : IsCompact s) {f : α → ℝ≥0} (hf : Continuous f) : ∫⁻ x in s, f x ∂μ < ∞ :=
   set_lintegral_lt_top_of_bddAbove hs hf.Measurable (hsc.image hf).BddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
 theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
     (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
-    (∫⁻ x, f x ∂μ) < ∞ := by
+    ∫⁻ x, f x ∂μ < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
   rw [lintegral_const]
@@ -1684,7 +1679,7 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
-theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
+theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : ∫⁻ a, f a ∂μ ≠ ∞) :
     IsFiniteMeasure (μ.withDensity f) :=
   {
     measure_univ_lt_top := by
@@ -1725,7 +1720,7 @@ theorem withDensity_tsum {f : ℕ → α → ℝ≥0∞} (h : ∀ i, Measurable
   by
   ext1 s hs
   simp_rw [sum_apply _ hs, with_density_apply _ hs]
-  change (∫⁻ x in s, (∑' n, f n) x ∂μ) = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s
+  change ∫⁻ x in s, (∑' n, f n) x ∂μ = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s
   rw [← lintegral_tsum fun i => (h i).AEMeasurable]
   refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)
 #align measure_theory.with_density_tsum MeasureTheory.withDensity_tsum
@@ -1880,7 +1875,7 @@ and other moments as a function of the probability density function.
  -/
 theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
     (h_mf : Measurable f) :
-    ∀ {g : α → ℝ≥0∞}, Measurable g → (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
+    ∀ {g : α → ℝ≥0∞}, Measurable g → ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
   by
   apply Measurable.ennreal_induction
   · intro c s h_ms
@@ -1894,7 +1889,7 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : Measurable f) (hg : Measurable g) {s : Set α} (hs : MeasurableSet s) :
-    (∫⁻ x in s, g x ∂μ.withDensity f) = ∫⁻ x in s, (f * g) x ∂μ := by
+    ∫⁻ x in s, g x ∂μ.withDensity f = ∫⁻ x in s, (f * g) x ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul _ hf hg]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul
 
@@ -1904,14 +1899,14 @@ version without conditions on `g` but requiring that `f` is almost everywhere fi
 `lintegral_with_density_eq_lintegral_mul_non_measurable` -/
 theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g (μ.withDensity f)) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
   by
   let f' := hf.mk f
   have : μ.with_density f = μ.with_density f' := with_density_congr_ae hf.ae_eq_mk
   rw [this] at hg ⊢
   let g' := hg.mk g
   calc
-    (∫⁻ a, g a ∂μ.with_density f') = ∫⁻ a, g' a ∂μ.with_density f' := lintegral_congr_ae hg.ae_eq_mk
+    ∫⁻ a, g a ∂μ.with_density f' = ∫⁻ a, g' a ∂μ.with_density f' := lintegral_congr_ae hg.ae_eq_mk
     _ = ∫⁻ a, (f' * g') a ∂μ :=
       (lintegral_with_density_eq_lintegral_mul _ hf.measurable_mk hg.measurable_mk)
     _ = ∫⁻ a, (f' * g) a ∂μ := by
@@ -1937,12 +1932,12 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
 
 theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
   lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensity_absolutelyContinuous μ f))
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀
 
 theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
-    (f_meas : Measurable f) (g : α → ℝ≥0∞) : (∫⁻ a, g a ∂μ.withDensity f) ≤ ∫⁻ a, (f * g) a ∂μ :=
+    (f_meas : Measurable f) (g : α → ℝ≥0∞) : ∫⁻ a, g a ∂μ.withDensity f ≤ ∫⁻ a, (f * g) a ∂μ :=
   by
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
   refine' iSup₂_le fun i i_meas => iSup_le fun hi => _
@@ -1953,7 +1948,7 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
 
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (hf : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
   by
   refine' le_antisymm (lintegral_with_density_le_lintegral_mul μ f_meas g) _
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
@@ -1982,18 +1977,18 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (g : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s)
     (hf : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
-    (∫⁻ a in s, g a ∂μ.withDensity f) = ∫⁻ a in s, (f * g) a ∂μ := by
+    ∫⁻ a in s, g a ∂μ.withDensity f = ∫⁻ a in s, (f * g) a ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul_non_measurable _ f_meas hf]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable
 -/
 
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure α) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
   by
   let f' := hf.mk f
   calc
-    (∫⁻ a, g a ∂μ.with_density f) = ∫⁻ a, g a ∂μ.with_density f' := by
+    ∫⁻ a, g a ∂μ.with_density f = ∫⁻ a, g a ∂μ.with_density f' := by
       rw [with_density_congr_ae hf.ae_eq_mk]
     _ = ∫⁻ a, (f' * g) a ∂μ :=
       by
@@ -2012,7 +2007,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ (μ : Measure α)
     {f : α → ℝ≥0∞} {s : Set α} (hf : AEMeasurable f (μ.restrict s)) (g : α → ℝ≥0∞)
     (hs : MeasurableSet s) (h'f : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
-    (∫⁻ a in s, g a ∂μ.withDensity f) = ∫⁻ a in s, (f * g) a ∂μ := by
+    ∫⁻ a in s, g a ∂μ.withDensity f = ∫⁻ a in s, (f * g) a ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul_non_measurable₀ _ hf h'f]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable₀ MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀
 -/
@@ -2030,7 +2025,7 @@ theorem withDensity_mul (μ : Measure α) {f g : α → ℝ≥0∞} (hf : Measur
 /-- In a sigma-finite measure space, there exists an integrable function which is
 positive everywhere (and with an arbitrarily small integral). -/
 theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ] {ε : ℝ≥0∞}
-    (ε0 : ε ≠ 0) : ∃ g : α → ℝ≥0, (∀ x, 0 < g x) ∧ Measurable g ∧ (∫⁻ x, g x ∂μ) < ε :=
+    (ε0 : ε ≠ 0) : ∃ g : α → ℝ≥0, (∀ x, 0 < g x) ∧ Measurable g ∧ ∫⁻ x, g x ∂μ < ε :=
   by
   /- Let `s` be a covering of `α` by pairwise disjoint measurable sets of finite measure. Let
     `δ : ℕ → ℝ≥0` be a positive function such that `∑' i, μ (s i) * δ i < ε`. Then the function that
@@ -2038,7 +2033,7 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
   set s : ℕ → Set α := disjointed (spanning_sets μ)
   have : ∀ n, μ (s n) < ∞ := fun n =>
     (measure_mono <| disjointed_subset _ _).trans_lt (measure_spanning_sets_lt_top μ n)
-  obtain ⟨δ, δpos, δsum⟩ : ∃ δ : ℕ → ℝ≥0, (∀ i, 0 < δ i) ∧ (∑' i, μ (s i) * δ i) < ε
+  obtain ⟨δ, δpos, δsum⟩ : ∃ δ : ℕ → ℝ≥0, (∀ i, 0 < δ i) ∧ ∑' i, μ (s i) * δ i < ε
   exact ENNReal.exists_pos_tsum_mul_lt_of_countable ε0 _ fun n => (this n).Ne
   set N : α → ℕ := spanning_sets_index μ
   have hN_meas : Measurable N := measurable_spanning_sets_index μ
@@ -2050,10 +2045,10 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
 
 #print MeasureTheory.lintegral_trim /-
 theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : measurable[m] f) :
-    (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ :=
+    ∫⁻ a, f a ∂μ.trim hm = ∫⁻ a, f a ∂μ :=
   by
   refine'
-    @Measurable.ennreal_induction α m (fun f => (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ) _ _ _ f hf
+    @Measurable.ennreal_induction α m (fun f => ∫⁻ a, f a ∂μ.trim hm = ∫⁻ a, f a ∂μ) _ _ _ f hf
   · intro c s hs
     rw [lintegral_indicator _ hs, lintegral_indicator _ (hm s hs), set_lintegral_const,
       set_lintegral_const]
@@ -2073,7 +2068,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
 
 #print MeasureTheory.lintegral_trim_ae /-
 theorem lintegral_trim_ae {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
-    (hf : AEMeasurable f (μ.trim hm)) : (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ := by
+    (hf : AEMeasurable f (μ.trim hm)) : ∫⁻ a, f a ∂μ.trim hm = ∫⁻ a, f a ∂μ := by
   rw [lintegral_congr_ae (ae_eq_of_ae_eq_trim hf.ae_eq_mk), lintegral_congr_ae hf.ae_eq_mk,
     lintegral_trim hm hf.measurable_mk]
 #align measure_theory.lintegral_trim_ae MeasureTheory.lintegral_trim_ae
@@ -2103,9 +2098,9 @@ over the whole space is bounded by that same constant. Version for a measurable
 See `lintegral_le_of_forall_fin_meas_le'` for the more general `ae_measurable` version. -/
 theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm : m ≤ m0)
     [SigmaFinite (μ.trim hm)] (C : ℝ≥0∞) {f : α → ℝ≥0∞} (hf_meas : Measurable f)
-    (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C :=
+    (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → ∫⁻ x in s, f x ∂μ ≤ C) : ∫⁻ x, f x ∂μ ≤ C :=
   by
-  have : (∫⁻ x in univ, f x ∂μ) = ∫⁻ x, f x ∂μ := by simp only [measure.restrict_univ]
+  have : ∫⁻ x in univ, f x ∂μ = ∫⁻ x, f x ∂μ := by simp only [measure.restrict_univ]
   rw [← this]
   refine' univ_le_of_forall_fin_meas_le hm C hf fun S hS_meas hS_mono => _
   rw [← lintegral_indicator]
@@ -2144,10 +2139,10 @@ measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra,
 over the whole space is bounded by that same constant. -/
 theorem lintegral_le_of_forall_fin_meas_le' {μ : Measure α} (hm : m ≤ m0) [SigmaFinite (μ.trim hm)]
     (C : ℝ≥0∞) {f : _ → ℝ≥0∞} (hf_meas : AEMeasurable f μ)
-    (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C :=
+    (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → ∫⁻ x in s, f x ∂μ ≤ C) : ∫⁻ x, f x ∂μ ≤ C :=
   by
   let f' := hf_meas.mk f
-  have hf' : ∀ s, measurable_set[m] s → μ s ≠ ∞ → (∫⁻ x in s, f' x ∂μ) ≤ C :=
+  have hf' : ∀ s, measurable_set[m] s → μ s ≠ ∞ → ∫⁻ x in s, f' x ∂μ ≤ C :=
     by
     refine' fun s hs hμs => (le_of_eq _).trans (hf s hs hμs)
     refine' lintegral_congr_ae (ae_restrict_of_ae (hf_meas.ae_eq_mk.mono fun x hx => _))
@@ -2163,7 +2158,7 @@ measure and the measure is σ-finite, then the integral over the whole space is
 constant. -/
 theorem lintegral_le_of_forall_fin_meas_le [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ]
     (C : ℝ≥0∞) {f : α → ℝ≥0∞} (hf_meas : AEMeasurable f μ)
-    (hf : ∀ s, MeasurableSet s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C :=
+    (hf : ∀ s, MeasurableSet s → μ s ≠ ∞ → ∫⁻ x in s, f x ∂μ ≤ C) : ∫⁻ x, f x ∂μ ≤ C :=
   @lintegral_le_of_forall_fin_meas_le' _ _ _ _ _ (by rwa [trim_eq_self]) C _ hf_meas hf
 #align measure_theory.lintegral_le_of_forall_fin_meas_le MeasureTheory.lintegral_le_of_forall_fin_meas_le
 
@@ -2172,7 +2167,7 @@ local infixr:25 " →ₛ " => SimpleFunc
 
 theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     {μ : Measure α} [SigmaFinite μ] {f : α →ₛ ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
-    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
+    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ ∫⁻ x, g x ∂μ < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
   by
   induction' f using MeasureTheory.SimpleFunc.induction with c s hs f₁ f₂ H h₁ h₂ generalizing L
   · simp only [hs, const_zero, coe_piecewise, coe_const, simple_func.coe_zero, univ_inter,
@@ -2199,20 +2194,20 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       rwa [mul_comm, ← ENNReal.div_lt_iff]
       · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
-  · replace hL : L < (∫⁻ x, f₁ x ∂μ) + ∫⁻ x, f₂ x ∂μ
+  · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ
     · rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
-    by_cases hf₁ : (∫⁻ x, f₁ x ∂μ) = 0
+    by_cases hf₁ : ∫⁻ x, f₁ x ∂μ = 0
     · simp only [hf₁, zero_add] at hL 
       rcases h₂ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
       simp only [simple_func.coe_add, Pi.add_apply, le_add_iff_nonneg_left, zero_le']
-    by_cases hf₂ : (∫⁻ x, f₂ x ∂μ) = 0
+    by_cases hf₂ : ∫⁻ x, f₂ x ∂μ = 0
     · simp only [hf₂, add_zero] at hL 
       rcases h₁ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
       simp only [simple_func.coe_add, Pi.add_apply, le_add_iff_nonneg_right, zero_le']
     obtain ⟨L₁, L₂, hL₁, hL₂, hL⟩ :
-      ∃ L₁ L₂ : ℝ≥0∞, (L₁ < ∫⁻ x, f₁ x ∂μ) ∧ (L₂ < ∫⁻ x, f₂ x ∂μ) ∧ L < L₁ + L₂ :=
+      ∃ L₁ L₂ : ℝ≥0∞, L₁ < ∫⁻ x, f₁ x ∂μ ∧ L₂ < ∫⁻ x, f₂ x ∂μ ∧ L < L₁ + L₂ :=
       ENNReal.exists_lt_add_of_lt_add hL hf₁ hf₂
     rcases h₁ hL₁ with ⟨g₁, g₁_le, g₁_top, hg₁⟩
     rcases h₂ hL₂ with ⟨g₂, g₂_le, g₂_top, hg₂⟩
@@ -2227,7 +2222,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
 
 theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α} {μ : Measure α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
-    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
+    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ ∫⁻ x, g x ∂μ < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
   by
   simp_rw [lintegral_eq_nnreal, lt_iSup_iff] at hL 
   rcases hL with ⟨g₀, hg₀, g₀L⟩
@@ -2245,7 +2240,7 @@ theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ
     [SigmaFinite μ] : ∃ ν : Measure α, IsFiniteMeasure ν ∧ μ ≪ ν :=
   by
   obtain ⟨g, gpos, gmeas, hg⟩ :
-    ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ (∫⁻ x : α, ↑(g x) ∂μ) < 1 :=
+    ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ ∫⁻ x : α, ↑(g x) ∂μ < 1 :=
     exists_pos_lintegral_lt_of_sigma_finite μ one_ne_zero
   refine' ⟨μ.with_density fun x => g x, is_finite_measure_with_density hg.ne_top, _⟩
   have : μ = (μ.with_density fun x => g x).withDensity fun x => (g x)⁻¹ :=
Diff
@@ -451,7 +451,6 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       simp only [map_apply] at h_meas 
       simp only [coe_map, restrict_apply _ (h_meas _), (· ∘ ·)]
       exact indicator_apply_le id
-    
 #align measure_theory.lintegral_supr MeasureTheory.lintegral_iSup
 
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
@@ -505,7 +504,6 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
       · intro i j h; exact monotone_eapprox f h
     _ = ⨆ n, (eapprox f n).lintegral μ := by
       congr <;> ext n <;> rw [(eapprox f n).lintegral_eq_lintegral]
-    
 #align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_iSup_eapprox_lintegral
 
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
@@ -541,7 +539,6 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
     _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := (add_le_add_right (mul_le_mul_left' hs.le _) _)
     _ ≤ ε₂ - ε₁ + ε₁ := (add_le_add mul_div_le le_rfl)
     _ = ε₂ := tsub_add_cancel_of_le hε₁₂.le
-    
 #align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt
 
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
@@ -591,7 +588,6 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
         · intro i j h; exact simple_func.lintegral_mono (monotone_eapprox _ h) (le_refl μ)
     _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
       rw [lintegral_eq_supr_eapprox_lintegral hf, lintegral_eq_supr_eapprox_lintegral hg]
-    
 #align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_aux
 
 /-- If `f g : α → ℝ≥0∞` are two functions and one of them is (a.e.) measurable, then the Lebesgue
@@ -609,7 +605,6 @@ theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α 
     _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, φ a - f a ∂μ := (lintegral_add_aux hf (hφm.sub hf))
     _ ≤ (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
       add_le_add_left (lintegral_mono fun a => tsub_le_iff_left.2 <| hφ_le a) _
-    
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
 
 theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (g : α → ℝ≥0∞) :
@@ -722,7 +717,6 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
       · intro n; exact simple_func.measurable _
       · intro i j h a; exact mul_le_mul_left' (monotone_eapprox _ h _) _
     _ = r * ∫⁻ a, f a ∂μ := by rw [← ENNReal.mul_iSup, lintegral_eq_supr_eapprox_lintegral hf]
-    
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
 theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
@@ -851,7 +845,6 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
       rw [lintegral_add_left hφm, lintegral_indicator₀, set_lintegral_const]
       exact measurableSet_le (hφm.null_measurable.measurable'.add_const _) hg.null_measurable
     _ ≤ ∫⁻ x, g x ∂μ := lintegral_mono_ae (hle.mono fun x hx₁ => _)
-    
   simp only [indicator_apply]; split_ifs with hx₂
   exacts [hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]
 #align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral
@@ -876,7 +869,6 @@ theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEM
     calc
       ∞ = ∞ * μ {x | ∞ ≤ f x} := by simp [mul_eq_top, hμf.ne.symm]
       _ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
-      
 #align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
@@ -941,7 +933,6 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
             simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this ; have := mt (this a) h
             simp only [Classical.not_not, mem_set_of_eq] at this ; exact this n))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun a ha => ha _)]
-    
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 
 theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
@@ -1031,7 +1022,6 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
               lintegral_sub (h_meas _) (ne_top_of_le_ne_top h_fin <| lintegral_mono_ae <| h_mono n)
                 (h_mono n))
         _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_iInf.symm
-        
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_ae
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
@@ -1051,7 +1041,6 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
         (ae_of_all μ fun a n m hnm => iInf_le_iInf_of_subset fun i hi => le_trans hnm hi))
     _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_iInf₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
-    
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
 
 /-- Known as Fatou's lemma -/
@@ -1076,7 +1065,6 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
         refine' (ae_all_iff.2 h_bound).mono fun n hn => _
         exact iSup_le fun i => iSup_le fun hi => hn i
     _ = ∫⁻ a, limsup (fun n => f n a) atTop ∂μ := by simp only [limsup_eq_infi_supr_of_nat]
-    
 #align measure_theory.limsup_lintegral_le MeasureTheory.limsup_lintegral_le
 
 /-- Dominated convergence theorem for nonnegative functions -/
@@ -1088,13 +1076,11 @@ theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0
     (calc
       (∫⁻ a, f a ∂μ) = ∫⁻ a, liminf (fun n : ℕ => F n a) atTop ∂μ :=
         lintegral_congr_ae <| h_lim.mono fun a h => h.liminf_eq.symm
-      _ ≤ liminf (fun n => ∫⁻ a, F n a ∂μ) atTop := lintegral_liminf_le hF_meas
-      )
+      _ ≤ liminf (fun n => ∫⁻ a, F n a ∂μ) atTop := lintegral_liminf_le hF_meas)
     (calc
       limsup (fun n : ℕ => ∫⁻ a, F n a ∂μ) atTop ≤ ∫⁻ a, limsup (fun n => F n a) atTop ∂μ :=
         limsup_lintegral_le hF_meas h_bound h_fin
-      _ = ∫⁻ a, f a ∂μ := lintegral_congr_ae <| h_lim.mono fun a h => h.limsup_eq
-      )
+      _ = ∫⁻ a, f a ∂μ := lintegral_congr_ae <| h_lim.mono fun a h => h.limsup_eq)
 #align measure_theory.tendsto_lintegral_of_dominated_convergence MeasureTheory.tendsto_lintegral_of_dominated_convergence
 
 /-- Dominated convergence theorem for nonnegative functions which are just almost everywhere
@@ -1171,7 +1157,6 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
       refine' le_antisymm (iSup_le fun n => _) (iSup_le fun b => _)
       · exact le_iSup (fun b => ∫⁻ a, f b a ∂μ) _
       · exact le_iSup_of_le (encode b + 1) (lintegral_mono <| h_directed.le_sequence b)
-    
 #align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurable
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
@@ -1327,7 +1312,6 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
     _ = ∫⁻ a, hf.mk f (hg.mk g a) ∂μ := (lintegral_map hf.measurable_mk hg.measurable_mk)
     _ = ∫⁻ a, hf.mk f (g a) ∂μ := (lintegral_congr_ae <| hg.ae_eq_mk.symm.fun_comp _)
     _ = ∫⁻ a, f (g a) ∂μ := lintegral_congr_ae (ae_eq_comp hg hf.ae_eq_mk.symm)
-    
 #align measure_theory.lintegral_map' MeasureTheory.lintegral_map'
 -/
 
@@ -1547,7 +1531,6 @@ theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞
     _ = ∑' a : s, ∫⁻ x in {a}, f x ∂μ :=
       (lintegral_biUnion hs (fun _ _ => measurableSet_singleton _) (pairwise_disjoint_fiber id s) _)
     _ = ∑' a : s, f a * μ {(a : α)} := by simp only [lintegral_singleton]
-    
 #align measure_theory.lintegral_countable MeasureTheory.lintegral_countable
 
 theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h : a ∉ s)
@@ -1572,7 +1555,6 @@ theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x 
   calc
     (∫⁻ x, f x ∂μ) = ∫⁻ x, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
     _ = f default * μ univ := lintegral_const _
-    
 #align measure_theory.lintegral_unique MeasureTheory.lintegral_unique
 
 end Countable
@@ -1951,7 +1933,6 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
       filter_upwards [hf.ae_eq_mk]
       intro x hx
       simp only [hx, Pi.mul_apply]
-    
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'
 
 theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
@@ -2025,7 +2006,6 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure 
       filter_upwards [hf.ae_eq_mk]
       intro x hx
       simp only [hx, Pi.mul_apply]
-    
 #align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀
 
 #print MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ /-
Diff
@@ -60,14 +60,14 @@ theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
   by
   ext1 t ht
   classical
-    simp only [measure.restrict_apply ht, measure.dirac_apply' _ (ht.inter hs), Set.indicator_apply,
-      Set.mem_inter_iff, Pi.one_apply]
-    by_cases has : a ∈ s
-    · simp only [has, and_true_iff, if_true]
-      split_ifs with hat
-      · rw [measure.dirac_apply_of_mem hat]
-      · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
-    · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
+  simp only [measure.restrict_apply ht, measure.dirac_apply' _ (ht.inter hs), Set.indicator_apply,
+    Set.mem_inter_iff, Pi.one_apply]
+  by_cases has : a ∈ s
+  · simp only [has, and_true_iff, if_true]
+    split_ifs with hat
+    · rw [measure.dirac_apply_of_mem hat]
+    · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
+  · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac' MeasureTheory.restrict_dirac'
 -/
 
@@ -78,14 +78,14 @@ theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
   by
   ext1 t ht
   classical
-    simp only [measure.restrict_apply ht, measure.dirac_apply _, Set.indicator_apply,
-      Set.mem_inter_iff, Pi.one_apply]
-    by_cases has : a ∈ s
-    · simp only [has, and_true_iff, if_true]
-      split_ifs with hat
-      · rw [measure.dirac_apply_of_mem hat]
-      · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
-    · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
+  simp only [measure.restrict_apply ht, measure.dirac_apply _, Set.indicator_apply,
+    Set.mem_inter_iff, Pi.one_apply]
+  by_cases has : a ∈ s
+  · simp only [has, and_true_iff, if_true]
+    split_ifs with hat
+    · rw [measure.dirac_apply_of_mem hat]
+    · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
+  · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac MeasureTheory.restrict_dirac
 -/
 
@@ -202,13 +202,13 @@ theorem set_lintegral_one (s) : (∫⁻ a in s, 1 ∂μ) = μ s := by rw [set_li
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 -/
 
-theorem set_lintegral_const_lt_top [FiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
+theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
     (∫⁻ a in s, c ∂μ) < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
-theorem lintegral_const_lt_top [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
+theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
   simpa only [measure.restrict_univ] using set_lintegral_const_lt_top univ hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
 
@@ -297,7 +297,7 @@ theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ := by
-  convert(monotone_lintegral μ).le_map_iSup₂ f; ext1 a; simp only [iSup_apply]
+  convert (monotone_lintegral μ).le_map_iSup₂ f; ext1 a; simp only [iSup_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
 
 theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
@@ -307,7 +307,7 @@ theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
 
 theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
-  convert(monotone_lintegral μ).map_iInf₂_le f; ext1 a; simp only [iInf_apply]
+  convert (monotone_lintegral μ).map_iInf₂_le f; ext1 a; simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
 
 theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) :
@@ -373,7 +373,7 @@ theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[
     (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   by
   apply lintegral_congr_ae
-  filter_upwards [h_nonneg]with x hx
+  filter_upwards [h_nonneg] with x hx
   rw [Real.nnnorm_of_nonneg hx, ENNReal.ofReal_eq_coe_nnreal hx]
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
 
@@ -400,7 +400,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
   have ha : r < 1 := ENNReal.coe_lt_coe.1 ha
   let rs := s.map fun a => r * a
   have eq_rs : (const α r : α →ₛ ℝ≥0∞) * map c s = rs.map c := by ext1 a; exact ennreal.coe_mul.symm
-  have eq : ∀ p, rs.map c ⁻¹' {p} = ⋃ n, rs.map c ⁻¹' {p} ∩ { a | p ≤ f n a } :=
+  have eq : ∀ p, rs.map c ⁻¹' {p} = ⋃ n, rs.map c ⁻¹' {p} ∩ {a | p ≤ f n a} :=
     by
     intro p
     rw [← inter_Union, ← inter_univ (map c rs ⁻¹' {p})]
@@ -416,27 +416,27 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       exact mul_lt_mul_of_pos_right ha (pos_iff_ne_zero.2 this)
     rcases lt_iSup_iff.1 this with ⟨i, hi⟩
     exact mem_Union.2 ⟨i, le_of_lt hi⟩
-  have mono : ∀ r : ℝ≥0∞, Monotone fun n => rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a } :=
+  have mono : ∀ r : ℝ≥0∞, Monotone fun n => rs.map c ⁻¹' {r} ∩ {a | r ≤ f n a} :=
     by
     intro r i j h
     refine' inter_subset_inter (subset.refl _) _
     intro x hx; exact le_trans hx (h_mono h x)
-  have h_meas : ∀ n, MeasurableSet { a : α | (⇑(map c rs)) a ≤ f n a } := fun n =>
+  have h_meas : ∀ n, MeasurableSet {a : α | (⇑(map c rs)) a ≤ f n a} := fun n =>
     measurableSet_le (simple_func.measurable _) (hf n)
   calc
     (r : ℝ≥0∞) * (s.map c).lintegral μ = ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r}) := by
       rw [← const_mul_lintegral, eq_rs, simple_func.lintegral]
-    _ = ∑ r in (rs.map c).range, r * μ (⋃ n, rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) := by
+    _ = ∑ r in (rs.map c).range, r * μ (⋃ n, rs.map c ⁻¹' {r} ∩ {a | r ≤ f n a}) := by
       simp only [(Eq _).symm]
-    _ = ∑ r in (rs.map c).range, ⨆ n, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
+    _ = ∑ r in (rs.map c).range, ⨆ n, r * μ (rs.map c ⁻¹' {r} ∩ {a | r ≤ f n a}) :=
       (Finset.sum_congr rfl fun x hx => by
         rw [measure_Union_eq_supr (directed_of_sup <| mono x), ENNReal.mul_iSup])
-    _ = ⨆ n, ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
+    _ = ⨆ n, ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r} ∩ {a | r ≤ f n a}) :=
       by
       rw [ENNReal.finset_sum_iSup_nat]
       intro p i j h
       exact mul_le_mul_left' (measure_mono <| mono p h) _
-    _ ≤ ⨆ n : ℕ, ((rs.map c).restrict { a | (rs.map c) a ≤ f n a }).lintegral μ :=
+    _ ≤ ⨆ n : ℕ, ((rs.map c).restrict {a | (rs.map c) a ≤ f n a}).lintegral μ :=
       by
       refine' iSup_mono fun n => _
       rw [restrict_lintegral _ (h_meas n)]
@@ -489,9 +489,8 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
     exact tendsto_atTop_iSup this
   rw [← lintegral_supr' hf h_mono]
   refine' lintegral_congr_ae _
-  filter_upwards [h_mono,
-    h_tendsto]with _ hx_mono hx_tendsto using tendsto_nhds_unique hx_tendsto
-      (tendsto_atTop_iSup hx_mono)
+  filter_upwards [h_mono, h_tendsto] with _ hx_mono hx_tendsto using
+    tendsto_nhds_unique hx_tendsto (tendsto_atTop_iSup hx_mono)
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
 
 theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
@@ -825,9 +824,9 @@ theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ
 #align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_const
 
 theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r : ℝ≥0∞) :
-    (∫⁻ x in { x | f x = r }, f x ∂μ) = r * μ { x | f x = r } :=
+    (∫⁻ x in {x | f x = r}, f x ∂μ) = r * μ {x | f x = r} :=
   by
-  have : ∀ᵐ x ∂μ, x ∈ { x | f x = r } → f x = r := ae_of_all μ fun _ hx => hx
+  have : ∀ᵐ x ∂μ, x ∈ {x | f x = r} → f x = r := ae_of_all μ fun _ hx => hx
   rw [set_lintegral_congr_fun _ this]
   dsimp
   rw [lintegral_const, measure.restrict_apply MeasurableSet.univ, Set.univ_inter]
@@ -838,16 +837,16 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
     (hg : AEMeasurable g μ) (ε : ℝ≥0∞) :
-    (∫⁻ a, f a ∂μ) + ε * μ { x | f x + ε ≤ g x } ≤ ∫⁻ a, g a ∂μ :=
+    (∫⁻ a, f a ∂μ) + ε * μ {x | f x + ε ≤ g x} ≤ ∫⁻ a, g a ∂μ :=
   by
   rcases exists_measurable_le_lintegral_eq μ f with ⟨φ, hφm, hφ_le, hφ_eq⟩
   calc
-    (∫⁻ x, f x ∂μ) + ε * μ { x | f x + ε ≤ g x } = (∫⁻ x, φ x ∂μ) + ε * μ { x | f x + ε ≤ g x } :=
-      by rw [hφ_eq]
-    _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ { x | φ x + ε ≤ g x } :=
+    (∫⁻ x, f x ∂μ) + ε * μ {x | f x + ε ≤ g x} = (∫⁻ x, φ x ∂μ) + ε * μ {x | f x + ε ≤ g x} := by
+      rw [hφ_eq]
+    _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ {x | φ x + ε ≤ g x} :=
       (add_le_add_left
         (mul_le_mul_left' (measure_mono fun x => (add_le_add_right (hφ_le _) _).trans) _) _)
-    _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ :=
+    _ = ∫⁻ x, φ x + indicator {x | φ x + ε ≤ g x} (fun _ => ε) x ∂μ :=
       by
       rw [lintegral_add_left hφm, lintegral_indicator₀, set_lintegral_const]
       exact measurableSet_le (hφm.null_measurable.measurable'.add_const _) hg.null_measurable
@@ -859,7 +858,7 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (ε : ℝ≥0∞) :
-    ε * μ { x | ε ≤ f x } ≤ ∫⁻ a, f a ∂μ := by
+    ε * μ {x | ε ≤ f x} ≤ ∫⁻ a, f a ∂μ := by
   simpa only [lintegral_zero, zero_add] using
     lintegral_add_mul_meas_add_le_le_lintegral (ae_of_all _ fun x => zero_le (f x)) hf ε
 #align measure_theory.mul_meas_ge_le_lintegral₀ MeasureTheory.mul_meas_ge_le_lintegral₀
@@ -867,22 +866,22 @@ theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. For a version assuming
 `ae_measurable`, see `mul_meas_ge_le_lintegral₀`. -/
 theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε : ℝ≥0∞) :
-    ε * μ { x | ε ≤ f x } ≤ ∫⁻ a, f a ∂μ :=
+    ε * μ {x | ε ≤ f x} ≤ ∫⁻ a, f a ∂μ :=
   mul_meas_ge_le_lintegral₀ hf.AEMeasurable ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
 theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
-    (hμf : 0 < μ { x | f x = ∞ }) : (∫⁻ x, f x ∂μ) = ∞ :=
+    (hμf : 0 < μ {x | f x = ∞}) : (∫⁻ x, f x ∂μ) = ∞ :=
   eq_top_iff.mpr <|
     calc
-      ∞ = ∞ * μ { x | ∞ ≤ f x } := by simp [mul_eq_top, hμf.ne.symm]
+      ∞ = ∞ * μ {x | ∞ ≤ f x} := by simp [mul_eq_top, hμf.ne.symm]
       _ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
       
 #align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
-    (hε' : ε ≠ ∞) : μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε :=
+    (hε' : ε ≠ ∞) : μ {x | ε ≤ f x} ≤ (∫⁻ a, f a ∂μ) / ε :=
   (ENNReal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <| by rw [mul_comm];
     exact mul_meas_ge_le_lintegral₀ hf ε
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
@@ -893,7 +892,7 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
   have : ∀ n : ℕ, ∀ᵐ x ∂μ, g x < f x + n⁻¹ := by
     intro n
     simp only [ae_iff, not_lt]
-    have : (∫⁻ x, f x ∂μ) + (↑n)⁻¹ * μ { x : α | f x + n⁻¹ ≤ g x } ≤ ∫⁻ x, f x ∂μ :=
+    have : (∫⁻ x, f x ∂μ) + (↑n)⁻¹ * μ {x : α | f x + n⁻¹ ≤ g x} ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
     rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this 
     exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
@@ -1112,11 +1111,11 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
     tendsto_lintegral_of_dominated_convergence bound (fun n => (hF_meas n).measurable_mk) _ h_fin
   · have : ∀ n, ∀ᵐ a ∂μ, (hF_meas n).mk (F n) a = F n a := fun n => (hF_meas n).ae_eq_mk.symm
     have : ∀ᵐ a ∂μ, ∀ n, (hF_meas n).mk (F n) a = F n a := ae_all_iff.mpr this
-    filter_upwards [this, h_lim]with a H H'
+    filter_upwards [this, h_lim] with a H H'
     simp_rw [H]
     exact H'
   · intro n
-    filter_upwards [h_bound n, (hF_meas n).ae_eq_mk]with a H H'
+    filter_upwards [h_bound n, (hF_meas n).ae_eq_mk] with a H H'
     rwa [H'] at H 
 #align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'
 
@@ -1289,9 +1288,9 @@ theorem lintegral_add_compl (f : α → ℝ≥0∞) {A : Set α} (hA : Measurabl
 
 theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     (∫⁻ x, max (f x) (g x) ∂μ) =
-      (∫⁻ x in { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in { x | g x < f x }, f x ∂μ :=
+      (∫⁻ x in {x | f x ≤ g x}, g x ∂μ) + ∫⁻ x in {x | g x < f x}, f x ∂μ :=
   by
-  have hm : MeasurableSet { x | f x ≤ g x } := measurableSet_le hf hg
+  have hm : MeasurableSet {x | f x ≤ g x} := measurableSet_le hf hg
   rw [← lintegral_add_compl (fun x => max (f x) (g x)) hm]
   simp only [← compl_set_of, ← not_le]
   refine' congr_arg₂ (· + ·) (set_lintegral_congr_fun hm _) (set_lintegral_congr_fun hm.compl _)
@@ -1300,7 +1299,7 @@ theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measur
 
 theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) (s : Set α) :
     (∫⁻ x in s, max (f x) (g x) ∂μ) =
-      (∫⁻ x in s ∩ { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in s ∩ { x | g x < f x }, f x ∂μ :=
+      (∫⁻ x in s ∩ {x | f x ≤ g x}, g x ∂μ) + ∫⁻ x in s ∩ {x | g x < f x}, f x ∂μ :=
   by
   rw [lintegral_max hf hg, restrict_restrict, restrict_restrict, inter_comm s, inter_comm s]
   exacts [measurableSet_lt hg hf, measurableSet_le hf hg]
@@ -1493,7 +1492,7 @@ theorem ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
 theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
     (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
-    (ε_ne_top : ε ≠ ∞) : Measure.count { i : α | ε ≤ a i } ≤ c / ε :=
+    (ε_ne_top : ε ≠ ∞) : Measure.count {i : α | ε ≤ a i} ≤ c / ε :=
   by
   rw [← lintegral_count] at tsum_le_c 
   apply (MeasureTheory.meas_ge_le_lintegral_div a_mble.ae_measurable ε_ne_zero ε_ne_top).trans
@@ -1503,7 +1502,7 @@ theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a :
 /-- Markov's inequality for counting measure with hypothesis using `tsum` in `ℝ≥0`. -/
 theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0}
     (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : (∑' i, a i) ≤ c)
-    {ε : ℝ≥0} (ε_ne_zero : ε ≠ 0) : Measure.count { i : α | ε ≤ a i } ≤ c / ε :=
+    {ε : ℝ≥0} (ε_ne_zero : ε ≠ 0) : Measure.count {i : α | ε ≤ a i} ≤ c / ε :=
   by
   rw [show (fun i => ε ≤ a i) = fun i => (ε : ℝ≥0∞) ≤ (coe ∘ a) i by funext i;
       simp only [ENNReal.coe_le_coe]]
@@ -1613,7 +1612,7 @@ theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurable
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
 theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
-    (μ : Measure α) [μ_fin : FiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
+    (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
     (∫⁻ x, f x ∂μ) < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
@@ -1703,12 +1702,12 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
-theorem finiteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
-    FiniteMeasure (μ.withDensity f) :=
+theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
+    IsFiniteMeasure (μ.withDensity f) :=
   {
     measure_univ_lt_top := by
       rwa [with_density_apply _ MeasurableSet.univ, measure.restrict_univ, lt_top_iff_ne_top] }
-#align measure_theory.is_finite_measure_with_density MeasureTheory.finiteMeasure_withDensity
+#align measure_theory.is_finite_measure_with_density MeasureTheory.isFiniteMeasure_withDensity
 
 #print MeasureTheory.withDensity_absolutelyContinuous /-
 theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
@@ -1772,7 +1771,7 @@ theorem withDensity_ofReal_mutuallySingular {f : α → ℝ} (hf : Measurable f)
     (μ.withDensity fun x => ENNReal.ofReal <| f x) ⟂ₘ
       μ.withDensity fun x => ENNReal.ofReal <| -f x :=
   by
-  set S : Set α := { x | f x < 0 } with hSdef
+  set S : Set α := {x | f x < 0} with hSdef
   have hS : MeasurableSet S := measurableSet_lt hf measurable_const
   refine' ⟨S, hS, _, _⟩
   · rw [with_density_apply _ hS, lintegral_eq_zero_iff hf.ennreal_of_real, eventually_eq]
@@ -1801,7 +1800,7 @@ theorem withDensity_eq_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h
 #align measure_theory.with_density_eq_zero MeasureTheory.withDensity_eq_zero
 
 theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Measurable f) :
-    μ.withDensity f s = 0 ↔ μ ({ x | f x ≠ 0 } ∩ s) = 0 :=
+    μ.withDensity f s = 0 ↔ μ ({x | f x ≠ 0} ∩ s) = 0 :=
   by
   constructor
   · intro hs
@@ -1817,8 +1816,8 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
     simp only [and_comm', exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, mem_compl_iff,
       not_forall]
   · intro hs
-    let t := to_measurable μ ({ x | f x ≠ 0 } ∩ s)
-    have A : s ⊆ t ∪ { x | f x = 0 } := by
+    let t := to_measurable μ ({x | f x ≠ 0} ∩ s)
+    have A : s ⊆ t ∪ {x | f x = 0} := by
       intro x hx
       rcases eq_or_ne (f x) 0 with (fx | fx)
       · simp only [fx, mem_union, mem_set_of_eq, eq_self_iff_true, or_true_iff]
@@ -1828,7 +1827,7 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
     apply measure_mono_null A (measure_union_null _ _)
     · apply with_density_absolutely_continuous
       rwa [measure_to_measurable]
-    · have M : MeasurableSet { x : α | f x = 0 } := hf (measurable_set_singleton _)
+    · have M : MeasurableSet {x : α | f x = 0} := hf (measurable_set_singleton _)
       rw [with_density_apply _ M, lintegral_eq_zero_iff hf]
       filter_upwards [ae_restrict_mem M]
       simp only [imp_self, Pi.zero_apply, imp_true_iff]
@@ -1845,7 +1844,7 @@ theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measu
 
 #print MeasureTheory.ae_withDensity_iff_ae_restrict /-
 theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ.restrict { x | f x ≠ 0 }, p x :=
+    (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ.restrict {x | f x ≠ 0}, p x :=
   by
   rw [ae_with_density_iff hf, ae_restrict_iff']
   · rfl
@@ -1859,9 +1858,9 @@ theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
   by
   constructor
   · rintro ⟨g', g'meas, hg'⟩
-    have A : MeasurableSet { x : α | f x ≠ 0 } := (hf (measurable_set_singleton 0)).compl
+    have A : MeasurableSet {x : α | f x ≠ 0} := (hf (measurable_set_singleton 0)).compl
     refine' ⟨fun x => f x * g' x, hf.coe_nnreal_ennreal.smul g'meas, _⟩
-    apply ae_of_ae_restrict_of_ae_restrict_compl { x | f x ≠ 0 }
+    apply ae_of_ae_restrict_of_ae_restrict_compl {x | f x ≠ 0}
     · rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal] at hg' 
       rw [ae_restrict_iff' A]
       filter_upwards [hg']
@@ -1935,13 +1934,13 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
       (lintegral_with_density_eq_lintegral_mul _ hf.measurable_mk hg.measurable_mk)
     _ = ∫⁻ a, (f' * g) a ∂μ := by
       apply lintegral_congr_ae
-      apply ae_of_ae_restrict_of_ae_restrict_compl { x | f' x ≠ 0 }
+      apply ae_of_ae_restrict_of_ae_restrict_compl {x | f' x ≠ 0}
       · have Z := hg.ae_eq_mk
         rw [eventually_eq, ae_with_density_iff_ae_restrict hf.measurable_mk] at Z 
         filter_upwards [Z]
         intro x hx
         simp only [hx, Pi.mul_apply]
-      · have M : MeasurableSet ({ x : α | f' x ≠ 0 }ᶜ) :=
+      · have M : MeasurableSet ({x : α | f' x ≠ 0}ᶜ) :=
           (hf.measurable_mk (measurable_set_singleton 0).compl).compl
         filter_upwards [ae_restrict_mem M]
         intro x hx
@@ -2147,7 +2146,7 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
       · by_cases hxi : x ∈ S i <;> simp [hxi]
     · simp only [hx_mem, if_false]
       rw [mem_Union] at hx_mem 
-      push_neg  at hx_mem 
+      push_neg at hx_mem 
       refine' le_antisymm (zero_le _) (iSup_le fun n => _)
       simp only [hx_mem n, if_false, nonpos_iff_eq_zero]
   · exact fun n => hf_meas.indicator (hm _ (hS_meas n))
@@ -2260,10 +2259,10 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
   exact ⟨g, fun x => (hg x).trans (coe_le_coe.1 (hg₀ x)), gL, gtop⟩
 #align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
-#print MeasureTheory.exists_absolutelyContinuous_finiteMeasure /-
+#print MeasureTheory.exists_absolutelyContinuous_isFiniteMeasure /-
 /-- A sigma-finite measure is absolutely continuous with respect to some finite measure. -/
-theorem exists_absolutelyContinuous_finiteMeasure {m : MeasurableSpace α} (μ : Measure α)
-    [SigmaFinite μ] : ∃ ν : Measure α, FiniteMeasure ν ∧ μ ≪ ν :=
+theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ : Measure α)
+    [SigmaFinite μ] : ∃ ν : Measure α, IsFiniteMeasure ν ∧ μ ≪ ν :=
   by
   obtain ⟨g, gpos, gmeas, hg⟩ :
     ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ (∫⁻ x : α, ↑(g x) ∂μ) < 1 :=
@@ -2279,7 +2278,7 @@ theorem exists_absolutelyContinuous_finiteMeasure {m : MeasurableSpace α} (μ :
       with_density_one]
   conv_lhs => rw [this]
   exact with_density_absolutely_continuous _ _
-#align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_finiteMeasure
+#align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_isFiniteMeasure
 -/
 
 end SigmaFinite
Diff
@@ -263,7 +263,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
       ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_nat,
       restrict_const_lintegral]
     refine' ⟨indicator_le fun x hx => le_trans _ (hφ _), hn⟩
-    simp only [mem_preimage, mem_singleton_iff] at hx
+    simp only [mem_preimage, mem_singleton_iff] at hx 
     simp only [hx, le_top]
 #align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnreal
 
@@ -273,10 +273,10 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
       (∀ x, ↑(φ x) ≤ f x) ∧
         ∀ ψ : α →ₛ ℝ≥0, (∀ x, ↑(ψ x) ≤ f x) → (map coe (ψ - φ)).lintegral μ < ε :=
   by
-  rw [lintegral_eq_nnreal] at h
+  rw [lintegral_eq_nnreal] at h 
   have := ENNReal.lt_add_right h hε
-  erw [ENNReal.biSup_add] at this <;> [skip;exact ⟨0, fun x => zero_le _⟩]
-  simp_rw [lt_iSup_iff, iSup_lt_iff, iSup_le_iff] at this
+  erw [ENNReal.biSup_add] at this  <;> [skip; exact ⟨0, fun x => zero_le _⟩]
+  simp_rw [lt_iSup_iff, iSup_lt_iff, iSup_le_iff] at this 
   rcases this with ⟨φ, hle : ∀ x, ↑(φ x) ≤ f x, b, hbφ, hb⟩
   refine' ⟨φ, hle, fun ψ hψ => _⟩
   have : (map coe φ).lintegral μ ≠ ∞ := ne_top_of_le_ne_top h (le_iSup₂ φ hle)
@@ -406,7 +406,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     rw [← inter_Union, ← inter_univ (map c rs ⁻¹' {p})]
     refine' Set.ext fun x => and_congr_right fun hx => (true_iff_iff _).2 _
     by_cases p_eq : p = 0; · simp [p_eq]
-    simp at hx; subst hx
+    simp at hx ; subst hx
     have : r * s x ≠ 0 := by rwa [(· ≠ ·), ← ENNReal.coe_eq_zero]
     have : s x ≠ 0 := by refine' mt _ this; intro h; rw [h, MulZeroClass.mul_zero]
     have : (rs.map c) x < ⨆ n : ℕ, f n x :=
@@ -448,7 +448,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       refine' iSup_mono fun n => _
       rw [← simple_func.lintegral_eq_lintegral]
       refine' lintegral_mono fun a => _
-      simp only [map_apply] at h_meas
+      simp only [map_apply] at h_meas 
       simp only [coe_map, restrict_apply _ (h_meas _), (· ∘ ·)]
       exact indicator_apply_le id
     
@@ -551,7 +551,7 @@ theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x,
     {s : ι → Set α} (hl : Tendsto (μ ∘ s) l (𝓝 0)) :
     Tendsto (fun i => ∫⁻ x in s i, f x ∂μ) l (𝓝 0) :=
   by
-  simp only [ENNReal.nhds_zero, tendsto_infi, tendsto_principal, mem_Iio, ← pos_iff_ne_zero] at hl⊢
+  simp only [ENNReal.nhds_zero, tendsto_infi, tendsto_principal, mem_Iio, ← pos_iff_ne_zero] at hl ⊢
   intro ε ε0
   rcases exists_pos_set_lintegral_lt_of_measure_lt h ε0.ne' with ⟨δ, δ0, hδ⟩
   exact (hl δ δ0).mono fun i => hδ _
@@ -575,7 +575,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       by simp only [supr_eapprox_apply, hf, hg]
     _ = ∫⁻ a, ⨆ n, (eapprox f n + eapprox g n : α → ℝ≥0∞) a ∂μ :=
       by
-      congr ; funext a
+      congr; funext a
       rw [ENNReal.iSup_add_iSup_of_monotone]; · rfl
       · intro i j h; exact monotone_eapprox _ h a
       · intro i j h; exact monotone_eapprox _ h a
@@ -644,7 +644,7 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
   by
   simp only [lintegral, iSup_subtype', simple_func.lintegral_sum, ENNReal.tsum_eq_iSup_sum]
   rw [iSup_comm]
-  congr ; funext s
+  congr; funext s
   induction' s using Finset.induction_on with i s hi hs; · apply bot_unique; simp
   simp only [Finset.sum_insert hi, ← hs]
   refine' (ENNReal.iSup_add_iSup _).symm
@@ -700,7 +700,7 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
   induction' s using Finset.induction_on with a s has ih
   · simp
   · simp only [Finset.sum_insert has]
-    rw [Finset.forall_mem_insert] at hf
+    rw [Finset.forall_mem_insert] at hf 
     rw [lintegral_add_left' hf.1, ih hf.2]
 #align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'
 
@@ -713,12 +713,12 @@ theorem lintegral_finset_sum (s : Finset β) {f : β → α → ℝ≥0∞} (hf
 theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
   calc
-    (∫⁻ a, r * f a ∂μ) = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ := by congr ; funext a;
+    (∫⁻ a, r * f a ∂μ) = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ := by congr; funext a;
       rw [← supr_eapprox_apply f hf, ENNReal.mul_iSup]; rfl
     _ = ⨆ n, r * (eapprox f n).lintegral μ :=
       by
       rw [lintegral_supr]
-      · congr ; funext n
+      · congr; funext n
         rw [← simple_func.const_mul_lintegral, ← simple_func.lintegral_eq_lintegral]
       · intro n; exact simple_func.measurable _
       · intro i j h a; exact mul_le_mul_left' (monotone_eapprox _ h _) _
@@ -756,7 +756,7 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   have rinv : r * r⁻¹ = 1 := ENNReal.mul_inv_cancel h hr
   have rinv' : r⁻¹ * r = 1 := by rw [mul_comm]; exact rinv
   have := lintegral_const_mul_le r⁻¹ fun x => r * f x
-  simp [(mul_assoc _ _ _).symm, rinv'] at this
+  simp [(mul_assoc _ _ _).symm, rinv'] at this 
   simpa [(mul_assoc _ _ _).symm, rinv] using mul_le_mul_left' this r
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
 
@@ -854,7 +854,7 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
     _ ≤ ∫⁻ x, g x ∂μ := lintegral_mono_ae (hle.mono fun x hx₁ => _)
     
   simp only [indicator_apply]; split_ifs with hx₂
-  exacts[hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]
+  exacts [hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]
 #align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
@@ -895,7 +895,7 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     simp only [ae_iff, not_lt]
     have : (∫⁻ x, f x ∂μ) + (↑n)⁻¹ * μ { x : α | f x + n⁻¹ ≤ g x } ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
-    rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
+    rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this 
     exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
   refine' hfg.mp ((ae_all_iff.2 this).mono fun x hlt hle => hle.antisymm _)
   suffices : tendsto (fun n : ℕ => f x + n⁻¹) at_top (𝓝 (f x))
@@ -939,8 +939,8 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
         (monotone_nat_of_le_succ fun n a =>
           by_cases (fun h : a ∈ s => by simp [g, if_pos h]) fun h : a ∉ s =>
             by
-            simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this; have := mt (this a) h
-            simp only [Classical.not_not, mem_set_of_eq] at this; exact this n))
+            simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this ; have := mt (this a) h
+            simp only [Classical.not_not, mem_set_of_eq] at this ; exact this n))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun a ha => ha _)]
     
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
@@ -992,7 +992,7 @@ theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
   by
-  rw [Ne.def, ← measure.measure_univ_eq_zero] at hμ
+  rw [Ne.def, ← measure.measure_univ_eq_zero] at hμ 
   refine' lintegral_strict_mono_of_ae_le_of_ae_lt_on hg hfi (ae_le_of_ae_lt h) hμ _
   simpa using h
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
@@ -1117,7 +1117,7 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
     exact H'
   · intro n
     filter_upwards [h_bound n, (hF_meas n).ae_eq_mk]with a H H'
-    rwa [H'] at H
+    rwa [H'] at H 
 #align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'
 
 /-- Dominated convergence theorem for filters with a countable basis -/
@@ -1129,15 +1129,15 @@ theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
   by
   rw [tendsto_iff_seq_tendsto]
   intro x xl
-  have hxl := by rw [tendsto_at_top'] at xl; exact xl
+  have hxl := by rw [tendsto_at_top'] at xl ; exact xl
   have h := inter_mem hF_meas h_bound
   replace h := hxl _ h
   rcases h with ⟨k, h⟩
   rw [← tendsto_add_at_top_iff_nat k]
   refine' tendsto_lintegral_of_dominated_convergence _ _ _ _ _
   · exact bound
-  · intro ; refine' (h _ _).1; exact Nat.le_add_left _ _
-  · intro ; refine' (h _ _).2; exact Nat.le_add_left _ _
+  · intro; refine' (h _ _).1; exact Nat.le_add_left _ _
+  · intro; refine' (h _ _).2; exact Nat.le_add_left _ _
   · assumption
   · refine' h_lim.mono fun a h_lim => _
     apply @tendsto.comp _ _ _ (fun n => x (n + k)) fun n => F n a
@@ -1295,7 +1295,7 @@ theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measur
   rw [← lintegral_add_compl (fun x => max (f x) (g x)) hm]
   simp only [← compl_set_of, ← not_le]
   refine' congr_arg₂ (· + ·) (set_lintegral_congr_fun hm _) (set_lintegral_congr_fun hm.compl _)
-  exacts[ae_of_all _ fun x => max_eq_right, ae_of_all _ fun x hx => max_eq_left (not_le.1 hx).le]
+  exacts [ae_of_all _ fun x => max_eq_right, ae_of_all _ fun x hx => max_eq_left (not_le.1 hx).le]
 #align measure_theory.lintegral_max MeasureTheory.lintegral_max
 
 theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) (s : Set α) :
@@ -1303,7 +1303,7 @@ theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       (∫⁻ x in s ∩ { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in s ∩ { x | g x < f x }, f x ∂μ :=
   by
   rw [lintegral_max hf hg, restrict_restrict, restrict_restrict, inter_comm s, inter_comm s]
-  exacts[measurableSet_lt hg hf, measurableSet_le hf hg]
+  exacts [measurableSet_lt hg hf, measurableSet_le hf hg]
 #align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_max
 
 #print MeasureTheory.lintegral_map /-
@@ -1495,7 +1495,7 @@ theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a :
     (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
     (ε_ne_top : ε ≠ ∞) : Measure.count { i : α | ε ≤ a i } ≤ c / ε :=
   by
-  rw [← lintegral_count] at tsum_le_c
+  rw [← lintegral_count] at tsum_le_c 
   apply (MeasureTheory.meas_ge_le_lintegral_div a_mble.ae_measurable ε_ne_zero ε_ne_top).trans
   exact ENNReal.div_le_div tsum_le_c rfl.le
 #align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_le
@@ -1582,7 +1582,7 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
     ∀ᵐ x ∂μ, f x < ∞ := by
   simp_rw [ae_iff, ENNReal.not_lt_top]; by_contra h; apply h2f.lt_top.not_le
   have : (f ⁻¹' {∞}).indicator ⊤ ≤ f := by intro x;
-    by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [hx] ;simp [hx]]
+    by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [hx]; simp [hx]]
   convert lintegral_mono this
   rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]; simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
@@ -1597,7 +1597,7 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
     (hf : Measurable f) (hbdd : BddAbove (f '' s)) : (∫⁻ x in s, f x ∂μ) < ∞ :=
   by
   obtain ⟨M, hM⟩ := hbdd
-  rw [mem_upperBounds] at hM
+  rw [mem_upperBounds] at hM 
   refine'
     lt_of_le_of_lt (set_lintegral_mono hf.coe_nnreal_ennreal (@measurable_const _ _ _ _ ↑M) _) _
   · simpa using hM
@@ -1809,9 +1809,9 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
     apply measure_mono_null (inter_subset_inter_right _ (subset_to_measurable (μ.with_density f) s))
     have A : μ.with_density f t = 0 := by rw [measure_to_measurable, hs]
     rw [with_density_apply f (measurable_set_to_measurable _ s), lintegral_eq_zero_iff hf,
-      eventually_eq, ae_restrict_iff, ae_iff] at A
+      eventually_eq, ae_restrict_iff, ae_iff] at A 
     swap; · exact hf (measurable_set_singleton 0)
-    simp only [Pi.zero_apply, mem_set_of_eq, Filter.mem_mk] at A
+    simp only [Pi.zero_apply, mem_set_of_eq, Filter.mem_mk] at A 
     convert A
     ext x
     simp only [and_comm', exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, mem_compl_iff,
@@ -1862,7 +1862,7 @@ theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
     have A : MeasurableSet { x : α | f x ≠ 0 } := (hf (measurable_set_singleton 0)).compl
     refine' ⟨fun x => f x * g' x, hf.coe_nnreal_ennreal.smul g'meas, _⟩
     apply ae_of_ae_restrict_of_ae_restrict_compl { x | f x ≠ 0 }
-    · rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal] at hg'
+    · rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal] at hg' 
       rw [ae_restrict_iff' A]
       filter_upwards [hg']
       intro a ha h'a
@@ -1870,7 +1870,7 @@ theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
       rw [ha this]
     · filter_upwards [ae_restrict_mem A.compl]
       intro x hx
-      simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx
+      simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx 
       simp [hx]
   · rintro ⟨g', g'meas, hg'⟩
     refine' ⟨fun x => (f x)⁻¹ * g' x, hf.coe_nnreal_ennreal.inv.smul g'meas, _⟩
@@ -1927,7 +1927,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
   by
   let f' := hf.mk f
   have : μ.with_density f = μ.with_density f' := with_density_congr_ae hf.ae_eq_mk
-  rw [this] at hg⊢
+  rw [this] at hg ⊢
   let g' := hg.mk g
   calc
     (∫⁻ a, g a ∂μ.with_density f') = ∫⁻ a, g' a ∂μ.with_density f' := lintegral_congr_ae hg.ae_eq_mk
@@ -1937,7 +1937,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
       apply lintegral_congr_ae
       apply ae_of_ae_restrict_of_ae_restrict_compl { x | f' x ≠ 0 }
       · have Z := hg.ae_eq_mk
-        rw [eventually_eq, ae_with_density_iff_ae_restrict hf.measurable_mk] at Z
+        rw [eventually_eq, ae_with_density_iff_ae_restrict hf.measurable_mk] at Z 
         filter_upwards [Z]
         intro x hx
         simp only [hx, Pi.mul_apply]
@@ -1945,7 +1945,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
           (hf.measurable_mk (measurable_set_singleton 0).compl).compl
         filter_upwards [ae_restrict_mem M]
         intro x hx
-        simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx
+        simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx 
         simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply]
     _ = ∫⁻ a : α, (f * g) a ∂μ := by
       apply lintegral_congr_ae
@@ -1991,7 +1991,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
   intro x h'x
   rcases eq_or_ne (f x) 0 with (hx | hx)
   · have := hi x
-    simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this
+    simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this 
     simp [this]
   · apply le_of_eq _
     dsimp
@@ -2083,7 +2083,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
   · intro f g hfg hf hg hf_prop hg_prop
     have h_m := lintegral_add_left hf g
     have h_m0 := lintegral_add_left (Measurable.mono hf hm le_rfl) g
-    rwa [hf_prop, hg_prop, ← h_m0] at h_m
+    rwa [hf_prop, hg_prop, ← h_m0] at h_m 
   · intro f hf hf_mono hf_prop
     rw [lintegral_supr hf hf_mono]
     rw [lintegral_supr (fun n => Measurable.mono (hf n) hm le_rfl) hf_mono]
@@ -2146,8 +2146,8 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
       · simp only [hxn, le_refl, if_true]
       · by_cases hxi : x ∈ S i <;> simp [hxi]
     · simp only [hx_mem, if_false]
-      rw [mem_Union] at hx_mem
-      push_neg  at hx_mem
+      rw [mem_Union] at hx_mem 
+      push_neg  at hx_mem 
       refine' le_antisymm (zero_le _) (iSup_le fun n => _)
       simp only [hx_mem n, if_false, nonpos_iff_eq_zero]
   · exact fun n => hf_meas.indicator (hm _ (hS_meas n))
@@ -2198,7 +2198,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
   induction' f using MeasureTheory.SimpleFunc.induction with c s hs f₁ f₂ H h₁ h₂ generalizing L
   · simp only [hs, const_zero, coe_piecewise, coe_const, simple_func.coe_zero, univ_inter,
       piecewise_eq_indicator, lintegral_indicator, lintegral_const, measure.restrict_apply',
-      coe_indicator, Function.const_apply] at hL
+      coe_indicator, Function.const_apply] at hL 
     have c_ne_zero : c ≠ 0 := by intro hc;
       simpa only [hc, ENNReal.coe_zero, MulZeroClass.zero_mul, not_lt_zero] using hL
     have : L / c < μ s := by
@@ -2223,12 +2223,12 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
   · replace hL : L < (∫⁻ x, f₁ x ∂μ) + ∫⁻ x, f₂ x ∂μ
     · rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
     by_cases hf₁ : (∫⁻ x, f₁ x ∂μ) = 0
-    · simp only [hf₁, zero_add] at hL
+    · simp only [hf₁, zero_add] at hL 
       rcases h₂ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
       simp only [simple_func.coe_add, Pi.add_apply, le_add_iff_nonneg_left, zero_le']
     by_cases hf₂ : (∫⁻ x, f₂ x ∂μ) = 0
-    · simp only [hf₂, add_zero] at hL
+    · simp only [hf₂, add_zero] at hL 
       rcases h₁ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
       simp only [simple_func.coe_add, Pi.add_apply, le_add_iff_nonneg_right, zero_le']
@@ -2250,7 +2250,7 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
   by
-  simp_rw [lintegral_eq_nnreal, lt_iSup_iff] at hL
+  simp_rw [lintegral_eq_nnreal, lt_iSup_iff] at hL 
   rcases hL with ⟨g₀, hg₀, g₀L⟩
   have h'L : L < ∫⁻ x, g₀ x ∂μ := by
     convert g₀L
Diff
@@ -43,7 +43,7 @@ open Filter ENNReal
 
 open Function (support)
 
-open Classical Topology BigOperators NNReal ENNReal MeasureTheory
+open scoped Classical Topology BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
Diff
@@ -135,12 +135,6 @@ theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →
 #align measure_theory.simple_func.lintegral_eq_lintegral MeasureTheory.SimpleFunc.lintegral_eq_lintegral
 -/
 
-/- warning: measure_theory.lintegral_mono' -> MeasureTheory.lintegral_mono' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {{ν : MeasureTheory.Measure.{u1} α m}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) μ ν) -> (forall {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {{ν : MeasureTheory.Measure.{u1} α m}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) μ ν) -> (forall {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'ₓ'. -/
 @[mono]
 theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν : μ ≤ ν) ⦃f g : α → ℝ≥0∞⦄
     (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂ν :=
@@ -149,32 +143,14 @@ theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν
   exact iSup_mono fun φ => iSup_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
 #align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'
 
-/- warning: measure_theory.lintegral_mono -> MeasureTheory.lintegral_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono MeasureTheory.lintegral_monoₓ'. -/
 theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono' (le_refl μ) hfg
 #align measure_theory.lintegral_mono MeasureTheory.lintegral_mono
 
-/- warning: measure_theory.lintegral_mono_nnreal -> MeasureTheory.lintegral_mono_nnreal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal} {g : α -> NNReal}, (LE.le.{u1} (α -> NNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal} {g : α -> NNReal}, (LE.le.{u1} (α -> NNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => ENNReal.some (f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => ENNReal.some (g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnrealₓ'. -/
 theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
 
-/- warning: measure_theory.supr_lintegral_measurable_le_eq_lintegral -> MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (α -> ENNReal) (fun (g : α -> ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (fun (g_meas : Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) (fun (hg : LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (α -> ENNReal) (fun (g : α -> ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (fun (g_meas : Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) (fun (hg : LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegralₓ'. -/
 theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
     (⨆ (g : α → ℝ≥0∞) (g_meas : Measurable g) (hg : g ≤ f), ∫⁻ a, g a ∂μ) = ∫⁻ a, f a ∂μ :=
   by
@@ -185,64 +161,28 @@ theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
     exact le_of_eq (i.lintegral_eq_lintegral _).symm
 #align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral
 
-/- warning: measure_theory.lintegral_mono_set -> MeasureTheory.lintegral_mono_set is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_set MeasureTheory.lintegral_mono_setₓ'. -/
 theorem lintegral_mono_set {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
     (hst : s ⊆ t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set MeasureTheory.lintegral_mono_set
 
-/- warning: measure_theory.lintegral_mono_set' -> MeasureTheory.lintegral_mono_set' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_set' MeasureTheory.lintegral_mono_set'ₓ'. -/
 theorem lintegral_mono_set' {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
     (hst : s ≤ᵐ[μ] t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono' hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set' MeasureTheory.lintegral_mono_set'
 
-/- warning: measure_theory.monotone_lintegral -> MeasureTheory.monotone_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m), Monotone.{u1, 0} (α -> ENNReal) ENNReal (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.lintegral.{u1} α m μ)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m), Monotone.{u1, 0} (α -> ENNReal) ENNReal (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.lintegral.{u1} α m μ)
-Case conversion may be inaccurate. Consider using '#align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegralₓ'. -/
 theorem monotone_lintegral {m : MeasurableSpace α} (μ : Measure α) : Monotone (lintegral μ) :=
   lintegral_mono
 #align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegral
 
-/- warning: measure_theory.lintegral_const -> MeasureTheory.lintegral_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const MeasureTheory.lintegral_constₓ'. -/
 @[simp]
 theorem lintegral_const (c : ℝ≥0∞) : (∫⁻ a, c ∂μ) = c * μ univ := by
   rw [← simple_func.const_lintegral, ← simple_func.lintegral_eq_lintegral, simple_func.coe_const]
 #align measure_theory.lintegral_const MeasureTheory.lintegral_const
 
-/- warning: measure_theory.lintegral_zero -> MeasureTheory.lintegral_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_zero MeasureTheory.lintegral_zeroₓ'. -/
 theorem lintegral_zero : (∫⁻ a : α, 0 ∂μ) = 0 := by simp
 #align measure_theory.lintegral_zero MeasureTheory.lintegral_zero
 
-/- warning: measure_theory.lintegral_zero_fun -> MeasureTheory.lintegral_zero_fun is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.5462 : α) => ENNReal) (fun (i : α) => instENNRealZero))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_funₓ'. -/
 theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
   lintegral_zero
 #align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_fun
@@ -253,12 +193,6 @@ theorem lintegral_one : (∫⁻ a, (1 : ℝ≥0∞) ∂μ) = μ univ := by rw [l
 #align measure_theory.lintegral_one MeasureTheory.lintegral_one
 -/
 
-/- warning: measure_theory.set_lintegral_const -> MeasureTheory.set_lintegral_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_constₓ'. -/
 theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ a in s, c ∂μ) = c * μ s := by
   rw [lintegral_const, measure.restrict_apply_univ]
 #align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_const
@@ -268,24 +202,12 @@ theorem set_lintegral_one (s) : (∫⁻ a in s, 1 ∂μ) = μ s := by rw [set_li
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 -/
 
-/- warning: measure_theory.set_lintegral_const_lt_top -> MeasureTheory.set_lintegral_const_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] (s : Set.{u1} α) {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] (s : Set.{u1} α) {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_topₓ'. -/
 theorem set_lintegral_const_lt_top [FiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
     (∫⁻ a in s, c ∂μ) < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
-/- warning: measure_theory.lintegral_const_lt_top -> MeasureTheory.lintegral_const_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_topₓ'. -/
 theorem lintegral_const_lt_top [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
   simpa only [measure.restrict_univ] using set_lintegral_const_lt_top univ hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
@@ -294,12 +216,6 @@ section
 
 variable (μ)
 
-/- warning: measure_theory.exists_measurable_le_lintegral_eq -> MeasureTheory.exists_measurable_le_lintegral_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), Exists.{succ u1} (α -> ENNReal) (fun (g : α -> ENNReal) => And (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (And (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), Exists.{succ u1} (α -> ENNReal) (fun (g : α -> ENNReal) => And (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (And (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_measurable_le_lintegral_eq MeasureTheory.exists_measurable_le_lintegral_eqₓ'. -/
 /-- For any function `f : α → ℝ≥0∞`, there exists a measurable function `g ≤ f` with the same
 integral. -/
 theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
@@ -323,12 +239,6 @@ theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
 
 end
 
-/- warning: measure_theory.lintegral_eq_nnreal -> MeasureTheory.lintegral_eq_nnreal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) φ x)) (f x)) (fun (hf : forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) φ x)) (f x)) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe)))) φ) μ)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal φ x)) (f x)) (fun (hf : forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal φ x)) (f x)) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ENNReal.some φ) μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnrealₓ'. -/
 /-- `∫⁻ a in s, f a ∂μ` is defined as the supremum of integrals of simple functions
 `φ : α →ₛ ℝ≥0∞` such that `φ ≤ f`. This lemma says that it suffices to take
 functions `φ : α →ₛ ℝ≥0`. -/
@@ -357,12 +267,6 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
     simp only [hx, le_top]
 #align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnreal
 
-/- warning: measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos -> MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) φ x)) (f x)) (forall (ψ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal), (forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) ψ x)) (f x)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe)))) (HSub.hSub.{u1, u1, u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (instHSub.{u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.instSub.{u1, 0} α NNReal m NNReal.hasSub)) ψ φ)) μ) ε)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal φ x)) (f x)) (forall (ψ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal), (forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal ψ x)) (f x)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ENNReal.some (HSub.hSub.{u1, u1, u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (instHSub.{u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.instSub.{u1, 0} α NNReal m NNReal.instSubNNReal)) ψ φ)) μ) ε)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_posₓ'. -/
 theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞)
     {ε : ℝ≥0∞} (hε : ε ≠ 0) :
     ∃ φ : α →ₛ ℝ≥0,
@@ -382,12 +286,6 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
   simp only [add_apply, sub_apply, add_tsub_eq_max]
 #align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos
 
-/- warning: measure_theory.supr_lintegral_le -> MeasureTheory.iSup_lintegral_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_leₓ'. -/
 theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     (⨆ i, ∫⁻ a, f i a ∂μ) ≤ ∫⁻ a, ⨆ i, f i a ∂μ :=
   by
@@ -395,12 +293,6 @@ theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
   exact (monotone_lintegral μ).le_map_iSup
 #align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_le
 
-/- warning: measure_theory.supr₂_lintegral_le -> MeasureTheory.iSup₂_lintegral_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} {ι' : ι -> Sort.{u3}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (j : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i j a)))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (j : ι' i) => f i j a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u3}} {ι' : ι -> Sort.{u2}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (j : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i j a)))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (j : ι' i) => f i j a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
@@ -408,34 +300,16 @@ theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι'
   convert(monotone_lintegral μ).le_map_iSup₂ f; ext1 a; simp only [iSup_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
 
-/- warning: measure_theory.le_infi_lintegral -> MeasureTheory.le_iInf_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i a))) (iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i a))) (iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegralₓ'. -/
 theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ i, f i a ∂μ) ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by simp only [← iInf_apply];
   exact (monotone_lintegral μ).map_iInf_le
 #align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
 
-/- warning: measure_theory.le_infi₂_lintegral -> MeasureTheory.le_iInf₂_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} {ι' : ι -> Sort.{u3}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (h : ι' i) => f i h a)))) (iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (h : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i h a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u3}} {ι' : ι -> Sort.{u2}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (h : ι' i) => f i h a)))) (iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (h : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i h a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegralₓ'. -/
 theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
   convert(monotone_lintegral μ).map_iInf₂_le f; ext1 a; simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
 
-/- warning: measure_theory.lintegral_mono_ae -> MeasureTheory.lintegral_mono_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_aeₓ'. -/
 theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) :
     (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
   by
@@ -451,23 +325,11 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
     exact (hnt hat).elim
 #align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_ae
 
-/- warning: measure_theory.set_lintegral_mono_ae -> MeasureTheory.set_lintegral_mono_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_mono_ae MeasureTheory.set_lintegral_mono_aeₓ'. -/
 theorem set_lintegral_mono_ae {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
     (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
   lintegral_mono_ae <| (ae_restrict_iff <| measurableSet_le hf hg).2 hfg
 #align measure_theory.set_lintegral_mono_ae MeasureTheory.set_lintegral_mono_ae
 
-/- warning: measure_theory.set_lintegral_mono -> MeasureTheory.set_lintegral_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_mono MeasureTheory.set_lintegral_monoₓ'. -/
 theorem set_lintegral_mono {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
     (hfg : ∀ x ∈ s, f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
   set_lintegral_mono_ae hf hg (ae_of_all _ hfg)
@@ -498,12 +360,6 @@ theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : Mea
 #align measure_theory.set_lintegral_congr_fun MeasureTheory.set_lintegral_congr_fun
 -/
 
-/- warning: measure_theory.lintegral_of_real_le_lintegral_nnnorm -> MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> Real), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> Real), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnormₓ'. -/
 theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
     (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ‖f x‖₊ ∂μ :=
   by
@@ -513,12 +369,6 @@ theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
   exact le_abs_self (f x)
 #align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm
 
-/- warning: measure_theory.lintegral_nnnorm_eq_of_ae_nonneg -> MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (Filter.EventuallyLE.{u1, 0} α Real Real.hasLe (MeasureTheory.Measure.ae.{u1} α m μ) (OfNat.ofNat.{u1} (α -> Real) 0 (OfNat.mk.{u1} (α -> Real) 0 (Zero.zero.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.hasZero))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (Filter.EventuallyLE.{u1, 0} α Real Real.instLEReal (MeasureTheory.Measure.ae.{u1} α m μ) (OfNat.ofNat.{u1} (α -> Real) 0 (Zero.toOfNat0.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.21854 : α) => Real) (fun (i : α) => Real.instZeroReal)))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonnegₓ'. -/
 theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
     (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   by
@@ -527,23 +377,11 @@ theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[
   rw [Real.nnnorm_of_nonneg hx, ENNReal.ofReal_eq_coe_nnreal hx]
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
 
-/- warning: measure_theory.lintegral_nnnorm_eq_of_nonneg -> MeasureTheory.lintegral_nnnorm_eq_of_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (LE.le.{u1} (α -> Real) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.hasLe)) (OfNat.ofNat.{u1} (α -> Real) 0 (OfNat.mk.{u1} (α -> Real) 0 (Zero.zero.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.hasZero))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (LE.le.{u1} (α -> Real) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.instLEReal)) (OfNat.ofNat.{u1} (α -> Real) 0 (Zero.toOfNat0.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.9034 : α) => Real) (fun (i : α) => Real.instZeroReal)))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonnegₓ'. -/
 theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
     (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   lintegral_nnnorm_eq_of_ae_nonneg (Filter.eventually_of_forall h_nonneg)
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
 
-/- warning: measure_theory.lintegral_supr -> MeasureTheory.lintegral_iSup is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Monotone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Monotone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr MeasureTheory.lintegral_iSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([1]) } -/
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
 
@@ -616,12 +454,6 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     
 #align measure_theory.lintegral_supr MeasureTheory.lintegral_iSup
 
-/- warning: measure_theory.lintegral_supr' -> MeasureTheory.lintegral_iSup' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr' MeasureTheory.lintegral_iSup'ₓ'. -/
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
 ae_measurable functions. -/
 theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
@@ -644,12 +476,6 @@ theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurabl
   exact funext fun n => lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae hf hp n)
 #align measure_theory.lintegral_supr' MeasureTheory.lintegral_iSup'
 
-/- warning: measure_theory.lintegral_tendsto_of_tendsto_of_monotone -> MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {F : α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (F x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f n x)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => F x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {F : α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (F x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f n x)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => F x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotoneₓ'. -/
 /-- Monotone convergence theorem expressed with limits -/
 theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞}
     (hf : ∀ n, AEMeasurable (f n) μ) (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x)
@@ -668,12 +494,6 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
       (tendsto_atTop_iSup hx_mono)
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
 
-/- warning: measure_theory.lintegral_eq_supr_eapprox_lintegral -> MeasureTheory.lintegral_eq_iSup_eapprox_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.eapprox.{u1} α m f n) μ)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.eapprox.{u1} α m f n) μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_iSup_eapprox_lintegralₓ'. -/
 theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, f a ∂μ) = ⨆ n, (eapprox f n).lintegral μ :=
   calc
@@ -689,12 +509,6 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
     
 #align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_iSup_eapprox_lintegral
 
-/- warning: measure_theory.exists_pos_set_lintegral_lt_of_measure_lt -> MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{1} ENNReal (fun (δ : ENNReal) => Exists.{0} (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) δ (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) δ (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => forall (s : Set.{u1} α), (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) δ) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) ε)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{1} ENNReal (fun (δ : ENNReal) => And (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) δ (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (s : Set.{u1} α), (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) δ) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) ε)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_ltₓ'. -/
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. This lemma states states this fact in terms of `ε` and `δ`. -/
 theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {ε : ℝ≥0∞}
@@ -731,12 +545,6 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
     
 #align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt
 
-/- warning: measure_theory.tendsto_set_lintegral_zero -> MeasureTheory.tendsto_set_lintegral_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {l : Filter.{u2} ι} {s : ι -> (Set.{u1} α)}, (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) l (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (x : α) => f x)) l (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {l : Filter.{u2} ι} {s : ι -> (Set.{u1} α)}, (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (x : α) => f x)) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_set_lintegral_zero MeasureTheory.tendsto_set_lintegral_zeroₓ'. -/
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. -/
 theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {l : Filter ι}
@@ -749,12 +557,6 @@ theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x,
   exact (hl δ δ0).mono fun i => hδ _
 #align measure_theory.tendsto_set_lintegral_zero MeasureTheory.tendsto_set_lintegral_zero
 
-/- warning: measure_theory.le_lintegral_add -> MeasureTheory.le_lintegral_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_addₓ'. -/
 /-- The sum of the lower Lebesgue integrals of two functions is less than or equal to the integral
 of their sum. The other inequality needs one of these functions to be (a.e.-)measurable. -/
 theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ) ≤ ∫⁻ a, f a + g a ∂μ :=
@@ -764,12 +566,6 @@ theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + 
   exact le_iSup₂_of_le (f' + g') (add_le_add hf' hg') (add_lintegral _ _).ge
 #align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_add
 
-/- warning: measure_theory.lintegral_add_aux -> MeasureTheory.lintegral_add_aux is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_auxₓ'. -/
 -- Use stronger lemmas `lintegral_add_left`/`lintegral_add_right` instead
 theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
@@ -799,12 +595,6 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
     
 #align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_aux
 
-/- warning: measure_theory.lintegral_add_left -> MeasureTheory.lintegral_add_left is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_leftₓ'. -/
 /-- If `f g : α → ℝ≥0∞` are two functions and one of them is (a.e.) measurable, then the Lebesgue
 integral of `f + g` equals the sum of integrals. This lemma assumes that `f` is integrable, see also
 `measure_theory.lintegral_add_right` and primed versions of these lemmas. -/
@@ -823,35 +613,17 @@ theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α 
     
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
 
-/- warning: measure_theory.lintegral_add_left' -> MeasureTheory.lintegral_add_left' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'ₓ'. -/
 theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (g : α → ℝ≥0∞) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
   rw [lintegral_congr_ae hf.ae_eq_mk, ← lintegral_add_left hf.measurable_mk,
     lintegral_congr_ae (hf.ae_eq_mk.add (ae_eq_refl g))]
 #align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'
 
-/- warning: measure_theory.lintegral_add_right' -> MeasureTheory.lintegral_add_right' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'ₓ'. -/
 theorem lintegral_add_right' (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
   simpa only [add_comm] using lintegral_add_left' hg f
 #align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'
 
-/- warning: measure_theory.lintegral_add_right -> MeasureTheory.lintegral_add_right is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_rightₓ'. -/
 /-- If `f g : α → ℝ≥0∞` are two functions and one of them is (a.e.) measurable, then the Lebesgue
 integral of `f + g` equals the sum of integrals. This lemma assumes that `g` is integrable, see also
 `measure_theory.lintegral_add_left` and primed versions of these lemmas. -/
@@ -861,23 +633,11 @@ theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg
   lintegral_add_right' f hg.AEMeasurable
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
 
-/- warning: measure_theory.lintegral_smul_measure -> MeasureTheory.lintegral_smul_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) c μ) (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) c μ) (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measureₓ'. -/
 @[simp]
 theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂c • μ) = c * ∫⁻ a, f a ∂μ :=
   by simp only [lintegral, iSup_subtype', simple_func.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
-/- warning: measure_theory.lintegral_sum_measure -> MeasureTheory.lintegral_sum_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {ι : Type.{u2}} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.sum.{u1, u2} α ι m μ) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u2}} {m : MeasurableSpace.{u2} α} {ι : Type.{u1}} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u2} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u2} α m (MeasureTheory.Measure.sum.{u2, u1} α ι m μ) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.lintegral.{u2} α m (μ i) (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sum_measure MeasureTheory.lintegral_sum_measureₓ'. -/
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     (∫⁻ a, f a ∂Measure.sum μ) = ∑' i, ∫⁻ a, f a ∂μ i :=
@@ -895,59 +655,29 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
         (Finset.sum_le_sum fun j hj => simple_func.lintegral_mono le_sup_right le_rfl)⟩
 #align measure_theory.lintegral_sum_measure MeasureTheory.lintegral_sum_measure
 
-/- warning: measure_theory.has_sum_lintegral_measure -> MeasureTheory.hasSum_lintegral_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), HasSum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.sum.{u1, u2} α ι m μ) (fun (a : α) => f a))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), HasSum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.sum.{u1, u2} α ι m μ) (fun (a : α) => f a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.has_sum_lintegral_measure MeasureTheory.hasSum_lintegral_measureₓ'. -/
 theorem hasSum_lintegral_measure {ι} {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     HasSum (fun i => ∫⁻ a, f a ∂μ i) (∫⁻ a, f a ∂Measure.sum μ) :=
   (lintegral_sum_measure f μ).symm ▸ ENNReal.summable.HasSum
 #align measure_theory.has_sum_lintegral_measure MeasureTheory.hasSum_lintegral_measure
 
-/- warning: measure_theory.lintegral_add_measure -> MeasureTheory.lintegral_add_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m) (ν : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ ν) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m) (ν : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ ν) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_measure MeasureTheory.lintegral_add_measureₓ'. -/
 @[simp]
 theorem lintegral_add_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ ν : Measure α) :
     (∫⁻ a, f a ∂μ + ν) = (∫⁻ a, f a ∂μ) + ∫⁻ a, f a ∂ν := by
   simpa [tsum_fintype] using lintegral_sum_measure f fun b => cond b μ ν
 #align measure_theory.lintegral_add_measure MeasureTheory.lintegral_add_measure
 
-/- warning: measure_theory.lintegral_finset_sum_measure -> MeasureTheory.lintegral_finset_sum_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (s : Finset.{u2} ι) (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) s (fun (i : ι) => μ i)) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (s : Finset.{u2} ι) (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) s (fun (i : ι) => μ i)) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measureₓ'. -/
 @[simp]
 theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset ι) (f : α → ℝ≥0∞)
     (μ : ι → Measure α) : (∫⁻ a, f a ∂∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i := by
   rw [← measure.sum_coe_finset, lintegral_sum_measure, ← Finset.tsum_subtype']; rfl
 #align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measure
 
-/- warning: measure_theory.lintegral_zero_measure -> MeasureTheory.lintegral_zero_measure is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m)))) (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))) (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measureₓ'. -/
 @[simp]
 theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) :
     (∫⁻ a, f a ∂(0 : Measure α)) = 0 :=
   bot_unique <| by simp [lintegral]
 #align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measure
 
-/- warning: measure_theory.set_lintegral_empty -> MeasureTheory.set_lintegral_empty is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_emptyₓ'. -/
 theorem set_lintegral_empty (f : α → ℝ≥0∞) : (∫⁻ x in ∅, f x ∂μ) = 0 := by
   rw [measure.restrict_empty, lintegral_zero_measure]
 #align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_empty
@@ -958,24 +688,12 @@ theorem set_lintegral_univ (f : α → ℝ≥0∞) : (∫⁻ x in univ, f x ∂
 #align measure_theory.set_lintegral_univ MeasureTheory.set_lintegral_univ
 -/
 
-/- warning: measure_theory.set_lintegral_measure_zero -> MeasureTheory.set_lintegral_measure_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (f : α -> ENNReal), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (f : α -> ENNReal), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zeroₓ'. -/
 theorem set_lintegral_measure_zero (s : Set α) (f : α → ℝ≥0∞) (hs' : μ s = 0) :
     (∫⁻ x in s, f x ∂μ) = 0 := by
   convert lintegral_zero_measure _
   exact measure.restrict_eq_zero.2 hs'
 #align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zero
 
-/- warning: measure_theory.lintegral_finset_sum' -> MeasureTheory.lintegral_finset_sum' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'ₓ'. -/
 theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
     (hf : ∀ b ∈ s, AEMeasurable (f b) μ) : (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   by
@@ -986,23 +704,11 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
     rw [lintegral_add_left' hf.1, ih hf.2]
 #align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'
 
-/- warning: measure_theory.lintegral_finset_sum -> MeasureTheory.lintegral_finset_sum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sumₓ'. -/
 theorem lintegral_finset_sum (s : Finset β) {f : β → α → ℝ≥0∞} (hf : ∀ b ∈ s, Measurable (f b)) :
     (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   lintegral_finset_sum' s fun b hb => (hf b hb).AEMeasurable
 #align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sum
 
-/- warning: measure_theory.lintegral_const_mul -> MeasureTheory.lintegral_const_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mulₓ'. -/
 @[simp]
 theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
@@ -1020,12 +726,6 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
     
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
-/- warning: measure_theory.lintegral_const_mul'' -> MeasureTheory.lintegral_const_mul'' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''ₓ'. -/
 theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
   by
@@ -1035,12 +735,6 @@ theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEM
   rw [A, B, lintegral_const_mul _ hf.measurable_mk]
 #align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''
 
-/- warning: measure_theory.lintegral_const_mul_le -> MeasureTheory.lintegral_const_mul_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_leₓ'. -/
 theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * ∫⁻ a, f a ∂μ) ≤ ∫⁻ a, r * f a ∂μ :=
   by
   rw [lintegral, ENNReal.mul_iSup]
@@ -1053,12 +747,6 @@ theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * 
   exact mul_le_mul_left' (hs x) _
 #align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_le
 
-/- warning: measure_theory.lintegral_const_mul' -> MeasureTheory.lintegral_const_mul' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'ₓ'. -/
 theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
   by
@@ -1072,52 +760,22 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   simpa [(mul_assoc _ _ _).symm, rinv] using mul_le_mul_left' this r
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
 
-/- warning: measure_theory.lintegral_mul_const -> MeasureTheory.lintegral_mul_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_constₓ'. -/
 theorem lintegral_mul_const (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
 #align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_const
 
-/- warning: measure_theory.lintegral_mul_const'' -> MeasureTheory.lintegral_mul_const'' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''ₓ'. -/
 theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
 #align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''
 
-/- warning: measure_theory.lintegral_mul_const_le -> MeasureTheory.lintegral_mul_const_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_leₓ'. -/
 theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂μ) * r ≤ ∫⁻ a, f a * r ∂μ :=
   by simp_rw [mul_comm, lintegral_const_mul_le r f]
 #align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_le
 
-/- warning: measure_theory.lintegral_mul_const' -> MeasureTheory.lintegral_mul_const' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const' MeasureTheory.lintegral_mul_const'ₓ'. -/
 theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul' r f hr]
 #align measure_theory.lintegral_mul_const' MeasureTheory.lintegral_mul_const'
 
-/- warning: measure_theory.lintegral_lintegral_mul -> MeasureTheory.lintegral_lintegral_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> ENNReal} {g : β -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (AEMeasurable.{u2, 0} β ENNReal ENNReal.measurableSpace _inst_1 g ν) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (g y)))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => g y))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> ENNReal} {g : β -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (AEMeasurable.{u2, 0} β ENNReal ENNReal.measurableSpace _inst_1 g ν) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (g y)))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => g y))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mulₓ'. -/
 /- A double integral of a product where each factor contains only one variable
   is a product of integrals -/
 theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f : α → ℝ≥0∞}
@@ -1126,36 +784,18 @@ theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f :
   simp [lintegral_const_mul'' _ hg, lintegral_mul_const'' _ hf]
 #align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mul
 
-/- warning: measure_theory.lintegral_rw₁ -> MeasureTheory.lintegral_rw₁ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> β} {f' : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f f') -> (forall (g : β -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f' a))))
-but is expected to have type
-  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {f : α -> β} {f' : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m μ) f f') -> (forall (g : β -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u2} α m μ (fun (a : α) => g (f a))) (MeasureTheory.lintegral.{u2} α m μ (fun (a : α) => g (f' a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁ₓ'. -/
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₁ {f f' : α → β} (h : f =ᵐ[μ] f') (g : β → ℝ≥0∞) :
     (∫⁻ a, g (f a) ∂μ) = ∫⁻ a, g (f' a) ∂μ :=
   lintegral_congr_ae <| h.mono fun a h => by rw [h]
 #align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁
 
-/- warning: measure_theory.lintegral_rw₂ -> MeasureTheory.lintegral_rw₂ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f₁ : α -> β} {f₁' : α -> β} {f₂ : α -> γ} {f₂' : α -> γ}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f₁ f₁') -> (Filter.EventuallyEq.{u1, u3} α γ (MeasureTheory.Measure.ae.{u1} α m μ) f₂ f₂') -> (forall (g : β -> γ -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f₁ a) (f₂ a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f₁' a) (f₂' a))))
-but is expected to have type
-  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} {m : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m} {f₁ : α -> β} {f₁' : α -> β} {f₂ : α -> γ} {f₂' : α -> γ}, (Filter.EventuallyEq.{u3, u2} α β (MeasureTheory.Measure.ae.{u3} α m μ) f₁ f₁') -> (Filter.EventuallyEq.{u3, u1} α γ (MeasureTheory.Measure.ae.{u3} α m μ) f₂ f₂') -> (forall (g : β -> γ -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u3} α m μ (fun (a : α) => g (f₁ a) (f₂ a))) (MeasureTheory.lintegral.{u3} α m μ (fun (a : α) => g (f₁' a) (f₂' a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂ₓ'. -/
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁ : f₁ =ᵐ[μ] f₁') (h₂ : f₂ =ᵐ[μ] f₂')
     (g : β → γ → ℝ≥0∞) : (∫⁻ a, g (f₁ a) (f₂ a) ∂μ) = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
   lintegral_congr_ae <| h₁.mp <| h₂.mono fun _ h₂ h₁ => by rw [h₁, h₂]
 #align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂
 
-/- warning: measure_theory.lintegral_indicator -> MeasureTheory.lintegral_indicator is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicatorₓ'. -/
 @[simp]
 theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
     (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ :=
@@ -1172,12 +812,6 @@ theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : Measurabl
     simp [hφ x, hs, indicator_le_indicator]
 #align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicator
 
-/- warning: measure_theory.lintegral_indicator₀ -> MeasureTheory.lintegral_indicator₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m s μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m s μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀ₓ'. -/
 theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMeasurableSet s μ) :
     (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ := by
   rw [← lintegral_congr_ae (indicator_ae_eq_of_ae_eq_set hs.to_measurable_ae_eq),
@@ -1185,23 +819,11 @@ theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMe
     measure.restrict_congr_set hs.to_measurable_ae_eq]
 #align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀
 
-/- warning: measure_theory.lintegral_indicator_const -> MeasureTheory.lintegral_indicator_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (fun (_x : α) => c) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s (fun (_x : α) => c) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_constₓ'. -/
 theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ≥0∞) :
     (∫⁻ a, s.indicator (fun _ => c) a ∂μ) = c * μ s := by
   rw [lintegral_indicator _ hs, set_lintegral_const]
 #align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_const
 
-/- warning: measure_theory.set_lintegral_eq_const -> MeasureTheory.set_lintegral_eq_const is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (r : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r))) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (r : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r))) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_constₓ'. -/
 theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r : ℝ≥0∞) :
     (∫⁻ x in { x | f x = r }, f x ∂μ) = r * μ { x | f x = r } :=
   by
@@ -1212,12 +834,6 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
   exact hf (measurable_set_singleton r)
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 
-/- warning: measure_theory.lintegral_add_mul_meas_add_le_le_lintegral -> MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) ε) (g x)))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f x) ε) (g x)))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegralₓ'. -/
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
@@ -1241,12 +857,6 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
   exacts[hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]
 #align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral
 
-/- warning: measure_theory.mul_meas_ge_le_lintegral₀ -> MeasureTheory.mul_meas_ge_le_lintegral₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.mul_meas_ge_le_lintegral₀ MeasureTheory.mul_meas_ge_le_lintegral₀ₓ'. -/
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (ε : ℝ≥0∞) :
     ε * μ { x | ε ≤ f x } ≤ ∫⁻ a, f a ∂μ := by
@@ -1254,12 +864,6 @@ theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f
     lintegral_add_mul_meas_add_le_le_lintegral (ae_of_all _ fun x => zero_le (f x)) hf ε
 #align measure_theory.mul_meas_ge_le_lintegral₀ MeasureTheory.mul_meas_ge_le_lintegral₀
 
-/- warning: measure_theory.mul_meas_ge_le_lintegral -> MeasureTheory.mul_meas_ge_le_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegralₓ'. -/
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. For a version assuming
 `ae_measurable`, see `mul_meas_ge_le_lintegral₀`. -/
 theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε : ℝ≥0∞) :
@@ -1267,12 +871,6 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
   mul_meas_ge_le_lintegral₀ hf.AEMeasurable ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
-/- warning: measure_theory.lintegral_eq_top_of_measure_eq_top_pos -> MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_posₓ'. -/
 theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hμf : 0 < μ { x | f x = ∞ }) : (∫⁻ x, f x ∂μ) = ∞ :=
   eq_top_iff.mpr <|
@@ -1282,12 +880,6 @@ theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEM
       
 #align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
 
-/- warning: measure_theory.meas_ge_le_lintegral_div -> MeasureTheory.meas_ge_le_lintegral_div is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (f x)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) ε)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (f x)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) ε)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_divₓ'. -/
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
     (hε' : ε ≠ ∞) : μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε :=
@@ -1295,12 +887,6 @@ theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ
     exact mul_meas_ge_le_lintegral₀ hf ε
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
 
-/- warning: measure_theory.ae_eq_of_ae_le_of_lintegral_le -> MeasureTheory.ae_eq_of_ae_le_of_lintegral_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f g)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f g)
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_leₓ'. -/
 theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : (∫⁻ x, f x ∂μ) ≠ ∞)
     (hg : AEMeasurable g μ) (hgf : (∫⁻ x, g x ∂μ) ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g :=
   by
@@ -1318,12 +904,6 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     tendsto_const_nhds.add (ENNReal.tendsto_inv_iff.2 ENNReal.tendsto_nat_nhds_top)
 #align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_le
 
-/- warning: measure_theory.lintegral_eq_zero_iff' -> MeasureTheory.lintegral_eq_zero_iff' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_zero_iff' MeasureTheory.lintegral_eq_zero_iff'ₓ'. -/
 @[simp]
 theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
@@ -1334,34 +914,16 @@ theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     fun h => (lintegral_congr_ae h).trans lintegral_zero⟩
 #align measure_theory.lintegral_eq_zero_iff' MeasureTheory.lintegral_eq_zero_iff'
 
-/- warning: measure_theory.lintegral_eq_zero_iff -> MeasureTheory.lintegral_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iffₓ'. -/
 @[simp]
 theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
   lintegral_eq_zero_iff' hf.AEMeasurable
 #align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iff
 
-/- warning: measure_theory.lintegral_pos_iff_support -> MeasureTheory.lintegral_pos_iff_support is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Function.support.{u1, 0} α ENNReal ENNReal.hasZero f))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Function.support.{u1, 0} α ENNReal instENNRealZero f))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_pos_iff_support MeasureTheory.lintegral_pos_iff_supportₓ'. -/
 theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
     (0 < ∫⁻ a, f a ∂μ) ↔ 0 < μ (Function.support f) := by
   simp [pos_iff_ne_zero, hf, Filter.EventuallyEq, ae_iff, Function.support]
 #align measure_theory.lintegral_pos_iff_support MeasureTheory.lintegral_pos_iff_support
 
-/- warning: measure_theory.lintegral_supr_ae -> MeasureTheory.lintegral_iSup_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f n a) (f (Nat.succ n) a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f n a) (f (Nat.succ n) a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_aeₓ'. -/
 /-- Weaker version of the monotone convergence theorem-/
 theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
     (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
@@ -1383,12 +945,6 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
     
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 
-/- warning: measure_theory.lintegral_sub' -> MeasureTheory.lintegral_sub' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'ₓ'. -/
 theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
   by
@@ -1397,23 +953,11 @@ theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fi
   exact lintegral_congr_ae (h_le.mono fun x hx => tsub_add_cancel_of_le hx)
 #align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'
 
-/- warning: measure_theory.lintegral_sub -> MeasureTheory.lintegral_sub is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub MeasureTheory.lintegral_subₓ'. -/
 theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
   lintegral_sub' hg.AEMeasurable hg_fin h_le
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
 
-/- warning: measure_theory.lintegral_sub_le' -> MeasureTheory.lintegral_sub_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (g x) (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (g x) (f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'ₓ'. -/
 theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
     ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
   by
@@ -1425,23 +969,11 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
     exact lintegral_mono fun x => le_tsub_add
 #align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
 
-/- warning: measure_theory.lintegral_sub_le -> MeasureTheory.lintegral_sub_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (g x) (f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (g x) (f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_leₓ'. -/
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
     ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
   lintegral_sub_le' f g hf.AEMeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
 
-/- warning: measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt -> MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Filter.Frequently.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Filter.Frequently.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_ltₓ'. -/
 theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
     (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ := by
@@ -1450,12 +982,6 @@ theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0
   exact ae_eq_of_ae_le_of_lintegral_le h_le hfi hg h
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
 
-/- warning: measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on -> MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (forall {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (forall {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_onₓ'. -/
 theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
@@ -1463,12 +989,6 @@ theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg
     ((frequently_ae_mem_iff.2 hμs).and_eventually h).mono fun x hx => (hx.2 hx.1).Ne
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on
 
-/- warning: measure_theory.lintegral_strict_mono -> MeasureTheory.lintegral_strict_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_monoₓ'. -/
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
   by
@@ -1477,24 +997,12 @@ theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : A
   simpa using h
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
 
-/- warning: measure_theory.set_lintegral_strict_mono -> MeasureTheory.set_lintegral_strict_mono is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_monoₓ'. -/
 theorem set_lintegral_strict_mono {f g : α → ℝ≥0∞} {s : Set α} (hsm : MeasurableSet s)
     (hs : μ s ≠ 0) (hg : Measurable g) (hfi : (∫⁻ x in s, f x ∂μ) ≠ ∞)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x in s, f x ∂μ) < ∫⁻ x in s, g x ∂μ :=
   lintegral_strict_mono (by simp [hs]) hg.AEMeasurable hfi ((ae_restrict_iff' hsm).mpr h)
 #align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_mono
 
-/- warning: measure_theory.lintegral_infi_ae -> MeasureTheory.lintegral_iInf_ae is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f (Nat.succ n)) (f n)) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f (Nat.succ n)) (f n)) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_aeₓ'. -/
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n))
     (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) :
@@ -1527,24 +1035,12 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
         
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_ae
 
-/- warning: measure_theory.lintegral_infi -> MeasureTheory.lintegral_iInf is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Antitone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Antitone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_infi MeasureTheory.lintegral_iInfₓ'. -/
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) (h_anti : Antitone f)
     (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) : (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
-/- warning: measure_theory.lintegral_liminf_le' -> MeasureTheory.lintegral_liminf_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'ₓ'. -/
 /-- Known as Fatou's lemma, version with `ae_measurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
@@ -1559,24 +1055,12 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
     
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
 
-/- warning: measure_theory.lintegral_liminf_le -> MeasureTheory.lintegral_liminf_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_leₓ'. -/
 /-- Known as Fatou's lemma -/
 theorem lintegral_liminf_le {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) :
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   lintegral_liminf_le' fun n => (h_meas n).AEMeasurable
 #align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_le
 
-/- warning: measure_theory.limsup_lintegral_le -> MeasureTheory.limsup_lintegral_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {g : α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f n) g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Filter.limsup.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.limsup.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {g : α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f n) g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Filter.limsup.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.limsup.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.limsup_lintegral_le MeasureTheory.limsup_lintegral_leₓ'. -/
 theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0∞} (hf_meas : ∀ n, Measurable (f n))
     (h_bound : ∀ n, f n ≤ᵐ[μ] g) (h_fin : (∫⁻ a, g a ∂μ) ≠ ∞) :
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop ≤ ∫⁻ a, limsup (fun n => f n a) atTop ∂μ :=
@@ -1596,12 +1080,6 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
     
 #align measure_theory.limsup_lintegral_le MeasureTheory.limsup_lintegral_le
 
-/- warning: measure_theory.tendsto_lintegral_of_dominated_convergence -> MeasureTheory.tendsto_lintegral_of_dominated_convergence is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_lintegral_of_dominated_convergence MeasureTheory.tendsto_lintegral_of_dominated_convergenceₓ'. -/
 /-- Dominated convergence theorem for nonnegative functions -/
 theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
     (bound : α → ℝ≥0∞) (hF_meas : ∀ n, Measurable (F n)) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
@@ -1620,12 +1098,6 @@ theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0
       )
 #align measure_theory.tendsto_lintegral_of_dominated_convergence MeasureTheory.tendsto_lintegral_of_dominated_convergence
 
-/- warning: measure_theory.tendsto_lintegral_of_dominated_convergence' -> MeasureTheory.tendsto_lintegral_of_dominated_convergence' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (F n) μ) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (F n) μ) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'ₓ'. -/
 /-- Dominated convergence theorem for nonnegative functions which are just almost everywhere
 measurable. -/
 theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
@@ -1648,12 +1120,6 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
     rwa [H'] at H
 #align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'
 
-/- warning: measure_theory.tendsto_lintegral_filter_of_dominated_convergence -> MeasureTheory.tendsto_lintegral_filter_of_dominated_convergence is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {l : Filter.{u2} ι} [_inst_1 : Filter.IsCountablyGenerated.{u2} ι l] {F : ι -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (Filter.Eventually.{u2} ι (fun (n : ι) => Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) l) -> (Filter.Eventually.{u2} ι (fun (n : ι) => Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (F n a) (bound a)) (MeasureTheory.Measure.ae.{u1} α m μ)) l) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => F n a) l (nhds.{0} ENNReal ENNReal.topologicalSpace (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) l (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {l : Filter.{u2} ι} [_inst_1 : Filter.IsCountablyGenerated.{u2} ι l] {F : ι -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (Filter.Eventually.{u2} ι (fun (n : ι) => Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) l) -> (Filter.Eventually.{u2} ι (fun (n : ι) => Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (F n a) (bound a)) (MeasureTheory.Measure.ae.{u1} α m μ)) l) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => F n a) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_lintegral_filter_of_dominated_convergence MeasureTheory.tendsto_lintegral_filter_of_dominated_convergenceₓ'. -/
 /-- Dominated convergence theorem for filters with a countable basis -/
 theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
     [l.IsCountablyGenerated] {F : ι → α → ℝ≥0∞} {f : α → ℝ≥0∞} (bound : α → ℝ≥0∞)
@@ -1684,12 +1150,6 @@ section
 
 open Encodable
 
-/- warning: measure_theory.lintegral_supr_directed_of_measurable -> MeasureTheory.lintegral_iSup_directed_of_measurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b)) -> (Directed.{u1, succ u2} (α -> ENNReal) β (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b)) -> (Directed.{u1, succ u2} (α -> ENNReal) β (fun (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25151 : α -> ENNReal) (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25153 : α -> ENNReal) => LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25134 : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25151 x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25153) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurableₓ'. -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type -/
 theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α → ℝ≥0∞}
     (hf : ∀ b, Measurable (f b)) (h_directed : Directed (· ≤ ·) f) :
@@ -1715,12 +1175,6 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
     
 #align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurable
 
-/- warning: measure_theory.lintegral_supr_directed -> MeasureTheory.lintegral_iSup_directed is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ) -> (Directed.{u1, succ u2} (α -> ENNReal) β (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ) -> (Directed.{u1, succ u2} (α -> ENNReal) β (fun (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25659 : α -> ENNReal) (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25661 : α -> ENNReal) => LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25641 : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25659 x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25661) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr_directed MeasureTheory.lintegral_iSup_directedₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
@@ -1757,12 +1211,6 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
 
 end
 
-/- warning: measure_theory.lintegral_tsum -> MeasureTheory.lintegral_tsum is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (i : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => f i a))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (i : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => f i a))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_tsum MeasureTheory.lintegral_tsumₓ'. -/
 theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) :
     (∫⁻ a, ∑' i, f i a ∂μ) = ∑' i, ∫⁻ a, f i a ∂μ :=
   by
@@ -1779,36 +1227,18 @@ theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i
 
 open Measure
 
-/- warning: measure_theory.lintegral_Union₀ -> MeasureTheory.lintegral_iUnion₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_iUnion₀ₓ'. -/
 theorem lintegral_iUnion₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullMeasurableSet (s i) μ)
     (hd : Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ := by
   simp only [measure.restrict_Union_ae hd hm, lintegral_sum_measure]
 #align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_iUnion₀
 
-/- warning: measure_theory.lintegral_Union -> MeasureTheory.lintegral_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnionₓ'. -/
 theorem lintegral_iUnion [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
     (hd : Pairwise (Disjoint on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ :=
   lintegral_iUnion₀ (fun i => (hm i).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnion
 
-/- warning: measure_theory.lintegral_bUnion₀ -> MeasureTheory.lintegral_biUnion₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) -> (MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ)) -> (Set.Pairwise.{u2} β t (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t))))) i))) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) -> (MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ)) -> (Set.Pairwise.{u2} β t (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β t) (fun (i : Set.Elem.{u2} β t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) i))) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion₀ MeasureTheory.lintegral_biUnion₀ₓ'. -/
 theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
@@ -1817,48 +1247,24 @@ theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
   rw [bUnion_eq_Union, lintegral_Union₀ (SetCoe.forall'.1 hm) (hd.subtype _ _)]
 #align measure_theory.lintegral_bUnion₀ MeasureTheory.lintegral_biUnion₀
 
-/- warning: measure_theory.lintegral_bUnion -> MeasureTheory.lintegral_biUnion is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) -> (MeasurableSet.{u1} α m (s i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) t s) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t))))) i))) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) -> (MeasurableSet.{u1} α m (s i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) t s) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β t) (fun (i : Set.Elem.{u2} β t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) i))) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion MeasureTheory.lintegral_biUnionₓ'. -/
 theorem lintegral_biUnion {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, MeasurableSet (s i)) (hd : t.PairwiseDisjoint s) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
   lintegral_biUnion₀ ht (fun i hi => (hm i hi).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_bUnion MeasureTheory.lintegral_biUnion
 
-/- warning: measure_theory.lintegral_bUnion_finset₀ -> MeasureTheory.lintegral_biUnion_finset₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.Pairwise.{u2} β ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} β) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (Finset.Set.hasCoeT.{u2} β))) s) (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) t)) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (t b) μ)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.Pairwise.{u2} β (Finset.toSet.{u2} β s) (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) t)) -> (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (t b) μ)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_biUnion_finset₀ₓ'. -/
 theorem lintegral_biUnion_finset₀ {s : Finset β} {t : β → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on t)) (hm : ∀ b ∈ s, NullMeasurableSet (t b) μ)
     (f : α → ℝ≥0∞) : (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
   simp only [← Finset.mem_coe, lintegral_bUnion₀ s.countable_to_set hm hd, ← s.tsum_subtype']
 #align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_biUnion_finset₀
 
-/- warning: measure_theory.lintegral_bUnion_finset -> MeasureTheory.lintegral_biUnion_finset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} β) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (Finset.Set.hasCoeT.{u2} β))) s) t) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (MeasurableSet.{u1} α m (t b))) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} β s) t) -> (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (MeasurableSet.{u1} α m (t b))) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_biUnion_finsetₓ'. -/
 theorem lintegral_biUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.PairwiseDisjoint (↑s) t)
     (hm : ∀ b ∈ s, MeasurableSet (t b)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
   lintegral_biUnion_finset₀ hd.AEDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
 #align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_biUnion_finset
 
-/- warning: measure_theory.lintegral_Union_le -> MeasureTheory.lintegral_iUnion_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] (s : β -> (Set.{u1} α)) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] (s : β -> (Set.{u1} α)) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_leₓ'. -/
 theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) ≤ ∑' i, ∫⁻ a in s i, f a ∂μ :=
   by
@@ -1866,45 +1272,21 @@ theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ
   exact lintegral_mono' restrict_Union_le le_rfl
 #align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_le
 
-/- warning: measure_theory.lintegral_union -> MeasureTheory.lintegral_union is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {A : Set.{u1} α} {B : Set.{u1} α}, (MeasurableSet.{u1} α m B) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) A B) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) A B)) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ B) (fun (a : α) => f a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {A : Set.{u1} α} {B : Set.{u1} α}, (MeasurableSet.{u1} α m B) -> (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) A B) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) A B)) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ B) (fun (a : α) => f a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_union MeasureTheory.lintegral_unionₓ'. -/
 theorem lintegral_union {f : α → ℝ≥0∞} {A B : Set α} (hB : MeasurableSet B) (hAB : Disjoint A B) :
     (∫⁻ a in A ∪ B, f a ∂μ) = (∫⁻ a in A, f a ∂μ) + ∫⁻ a in B, f a ∂μ := by
   rw [restrict_union hAB hB, lintegral_add_measure]
 #align measure_theory.lintegral_union MeasureTheory.lintegral_union
 
-/- warning: measure_theory.lintegral_inter_add_diff -> MeasureTheory.lintegral_inter_add_diff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {B : Set.{u1} α} (f : α -> ENNReal) (A : Set.{u1} α), (MeasurableSet.{u1} α m B) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) A B)) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) A B)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {B : Set.{u1} α} (f : α -> ENNReal) (A : Set.{u1} α), (MeasurableSet.{u1} α m B) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) A B)) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) A B)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diffₓ'. -/
 theorem lintegral_inter_add_diff {B : Set α} (f : α → ℝ≥0∞) (A : Set α) (hB : MeasurableSet B) :
     ((∫⁻ x in A ∩ B, f x ∂μ) + ∫⁻ x in A \ B, f x ∂μ) = ∫⁻ x in A, f x ∂μ := by
   rw [← lintegral_add_measure, restrict_inter_add_diff _ hB]
 #align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diff
 
-/- warning: measure_theory.lintegral_add_compl -> MeasureTheory.lintegral_add_compl is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {A : Set.{u1} α}, (MeasurableSet.{u1} α m A) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) A)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {A : Set.{u1} α}, (MeasurableSet.{u1} α m A) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) A)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_complₓ'. -/
 theorem lintegral_add_compl (f : α → ℝ≥0∞) {A : Set α} (hA : MeasurableSet A) :
     ((∫⁻ x in A, f x ∂μ) + ∫⁻ x in Aᶜ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
   rw [← lintegral_add_measure, measure.restrict_add_restrict_compl hA]
 #align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_compl
 
-/- warning: measure_theory.lintegral_max -> MeasureTheory.lintegral_max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => LinearOrder.max.{0} ENNReal (ConditionallyCompleteLinearOrder.toLinearOrder.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.completeLinearOrder))) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x)))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (g x) (f x)))) (fun (x : α) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => Max.max.{0} ENNReal (CanonicallyLinearOrderedAddMonoid.toMax.{0} ENNReal ENNReal.instCanonicallyLinearOrderedAddMonoidENNReal) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x)))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (g x) (f x)))) (fun (x : α) => f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_max MeasureTheory.lintegral_maxₓ'. -/
 theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     (∫⁻ x, max (f x) (g x) ∂μ) =
       (∫⁻ x in { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in { x | g x < f x }, f x ∂μ :=
@@ -1916,12 +1298,6 @@ theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measur
   exacts[ae_of_all _ fun x => max_eq_right, ae_of_all _ fun x hx => max_eq_left (not_le.1 hx).le]
 #align measure_theory.lintegral_max MeasureTheory.lintegral_max
 
-/- warning: measure_theory.set_lintegral_max -> MeasureTheory.set_lintegral_max is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => LinearOrder.max.{0} ENNReal (ConditionallyCompleteLinearOrder.toLinearOrder.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.completeLinearOrder))) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (g x) (f x))))) (fun (x : α) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => Max.max.{0} ENNReal (CanonicallyLinearOrderedAddMonoid.toMax.{0} ENNReal ENNReal.instCanonicallyLinearOrderedAddMonoidENNReal) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (g x) (f x))))) (fun (x : α) => f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_maxₓ'. -/
 theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) (s : Set α) :
     (∫⁻ x in s, max (f x) (g x) ∂μ) =
       (∫⁻ x in s ∩ { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in s ∩ { x | g x < f x }, f x ∂μ :=
@@ -1956,12 +1332,6 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
 #align measure_theory.lintegral_map' MeasureTheory.lintegral_map'
 -/
 
-/- warning: measure_theory.lintegral_map_le -> MeasureTheory.lintegral_map_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} (f : β -> ENNReal) {g : α -> β}, (Measurable.{u1, u2} α β m mβ g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u2} β mβ (MeasureTheory.Measure.map.{u1, u2} α β mβ m g μ) (fun (a : β) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} (f : β -> ENNReal) {g : α -> β}, (Measurable.{u1, u2} α β m mβ g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u2} β mβ (MeasureTheory.Measure.map.{u1, u2} α β mβ m g μ) (fun (a : β) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_map_le MeasureTheory.lintegral_map_leₓ'. -/
 theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g : α → β} (hg : Measurable g) :
     (∫⁻ a, f a ∂Measure.map g μ) ≤ ∫⁻ a, f (g a) ∂μ :=
   by
@@ -1986,12 +1356,6 @@ theorem set_lintegral_map [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α 
 #align measure_theory.set_lintegral_map MeasureTheory.set_lintegral_map
 -/
 
-/- warning: measure_theory.lintegral_indicator_const_comp -> MeasureTheory.lintegral_indicator_const_comp is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} {f : α -> β} {s : Set.{u2} β}, (Measurable.{u1, u2} α β m mβ f) -> (MeasurableSet.{u2} β mβ s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u2, 0} β ENNReal ENNReal.hasZero s (fun (_x : β) => c) (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f s))))
-but is expected to have type
-  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} {f : α -> β} {s : Set.{u2} β}, (Measurable.{u1, u2} α β m mβ f) -> (MeasurableSet.{u2} β mβ s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u2, 0} β ENNReal instENNRealZero s (fun (_x : β) => c) (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f s))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator_const_comp MeasureTheory.lintegral_indicator_const_compₓ'. -/
 theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β} {s : Set β}
     (hf : Measurable f) (hs : MeasurableSet s) (c : ℝ≥0∞) :
     (∫⁻ a, s.indicator (fun _ => c) (f a) ∂μ) = c * μ (f ⁻¹' s) := by
@@ -2068,12 +1432,6 @@ theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν :
 
 section DiracAndCount
 
-/- warning: measurable_space.top.measurable_singleton_class -> MeasurableSpace.Top.measurableSingletonClass is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}}, MeasurableSingletonClass.{u1} α (Top.top.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasTop.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}}, MeasurableSingletonClass.{u1} α (Top.top.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toTop.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measurable_space.top.measurable_singleton_class MeasurableSpace.Top.measurableSingletonClassₓ'. -/
 instance (priority := 10) MeasurableSpace.Top.measurableSingletonClass {α : Type _} :
     @MeasurableSingletonClass α (⊤ : MeasurableSpace α)
     where measurableSet_singleton i := MeasurableSpace.measurableSet_top
@@ -2093,12 +1451,6 @@ theorem lintegral_dirac [MeasurableSingletonClass α] (a : α) (f : α → ℝ
 #align measure_theory.lintegral_dirac MeasureTheory.lintegral_dirac
 -/
 
-/- warning: measure_theory.set_lintegral_dirac' -> MeasureTheory.set_lintegral_dirac' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α _inst_1 s) -> (forall [_inst_2 : Decidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_2 (f a) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α _inst_1 s) -> (forall [_inst_2 : Decidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) _inst_2 (f a) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'ₓ'. -/
 theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f) {s : Set α}
     (hs : MeasurableSet s) [Decidable (a ∈ s)] :
     (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
@@ -2110,12 +1462,6 @@ theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'
 
-/- warning: measure_theory.set_lintegral_dirac -> MeasureTheory.set_lintegral_dirac is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} (f : α -> ENNReal) (s : Set.{u1} α) [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] [_inst_3 : Decidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_3 (f a) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} (f : α -> ENNReal) (s : Set.{u1} α) [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] [_inst_3 : Decidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) _inst_3 (f a) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_diracₓ'. -/
 theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [MeasurableSingletonClass α]
     [Decidable (a ∈ s)] : (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
   by
@@ -2125,12 +1471,6 @@ theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [Measu
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_dirac
 
-/- warning: measure_theory.lintegral_count' -> MeasureTheory.lintegral_count' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_count' MeasureTheory.lintegral_count'ₓ'. -/
 theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂count) = ∑' a, f a :=
   by
   rw [count, lintegral_sum_measure]
@@ -2138,12 +1478,6 @@ theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a
   exact funext fun a => lintegral_dirac' a hf
 #align measure_theory.lintegral_count' MeasureTheory.lintegral_count'
 
-/- warning: measure_theory.lintegral_count -> MeasureTheory.lintegral_count is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_count MeasureTheory.lintegral_countₓ'. -/
 theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
     (∫⁻ a, f a ∂count) = ∑' a, f a :=
   by
@@ -2152,22 +1486,10 @@ theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
   exact funext fun a => lintegral_dirac a f
 #align measure_theory.lintegral_count MeasureTheory.lintegral_count
 
-/- warning: ennreal.tsum_const_eq -> ENNReal.tsum_const_eq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (c : ENNReal), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) (MeasureTheory.Measure.count.{u1} α _inst_1) (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (c : ENNReal), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1)) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align ennreal.tsum_const_eq ENNReal.tsum_const_eqₓ'. -/
 theorem ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
     (∑' i : α, c) = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
 #align ennreal.tsum_const_eq ENNReal.tsum_const_eq
 
-/- warning: ennreal.count_const_le_le_of_tsum_le -> ENNReal.count_const_le_le_of_tsum_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace a) -> (forall {c : ENNReal}, (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) (MeasureTheory.Measure.count.{u1} α _inst_1) (setOf.{u1} α (fun (i : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) c ε))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace a) -> (forall {c : ENNReal}, (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1)) (setOf.{u1} α (fun (i : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) c ε))))
-Case conversion may be inaccurate. Consider using '#align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_leₓ'. -/
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
 theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
     (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
@@ -2178,12 +1500,6 @@ theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a :
   exact ENNReal.div_le_div tsum_le_c rfl.le
 #align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_le
 
-/- warning: nnreal.count_const_le_le_of_tsum_le -> NNReal.count_const_le_le_of_tsum_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> NNReal}, (Measurable.{u1, 0} α NNReal _inst_1 NNReal.measurableSpace a) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace a) -> (forall {c : NNReal}, (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (i : α) => a i)) c) -> (forall {ε : NNReal}, (Ne.{1} NNReal ε (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) (MeasureTheory.Measure.count.{u1} α _inst_1) (setOf.{u1} α (fun (i : α) => LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) c) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) ε)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> NNReal}, (Measurable.{u1, 0} α NNReal _inst_1 NNReal.measurableSpace a) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal a) -> (forall {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (i : α) => a i)) c) -> (forall {ε : NNReal}, (Ne.{1} NNReal ε (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1)) (setOf.{u1} α (fun (i : α) => LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (ENNReal.some c) (ENNReal.some ε)))))
-Case conversion may be inaccurate. Consider using '#align nnreal.count_const_le_le_of_tsum_le NNReal.count_const_le_le_of_tsum_leₓ'. -/
 /-- Markov's inequality for counting measure with hypothesis using `tsum` in `ℝ≥0`. -/
 theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0}
     (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : (∑' i, a i) ≤ c)
@@ -2207,12 +1523,6 @@ section Countable
 -/
 
 
-/- warning: measure_theory.lintegral_countable' -> MeasureTheory.lintegral_countable' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_countable' MeasureTheory.lintegral_countable'ₓ'. -/
 theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
     (∫⁻ a, f a ∂μ) = ∑' a, f a * μ {a} :=
   by
@@ -2221,34 +1531,16 @@ theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : 
   rw [lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_countable' MeasureTheory.lintegral_countable'
 
-/- warning: measure_theory.lintegral_singleton' -> MeasureTheory.lintegral_singleton' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_singleton' MeasureTheory.lintegral_singleton'ₓ'. -/
 theorem lintegral_singleton' {f : α → ℝ≥0∞} (hf : Measurable f) (a : α) :
     (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac' _ hf, mul_comm]
 #align measure_theory.lintegral_singleton' MeasureTheory.lintegral_singleton'
 
-/- warning: measure_theory.lintegral_singleton -> MeasureTheory.lintegral_singleton is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_singleton MeasureTheory.lintegral_singletonₓ'. -/
 theorem lintegral_singleton [MeasurableSingletonClass α] (f : α → ℝ≥0∞) (a : α) :
     (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_singleton MeasureTheory.lintegral_singleton
 
-/- warning: measure_theory.lintegral_countable -> MeasureTheory.lintegral_countable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (a : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) a)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) a))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (a : Set.Elem.{u1} α s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) a)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) a))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_countable MeasureTheory.lintegral_countableₓ'. -/
 theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞) {s : Set α}
     (hs : s.Countable) : (∫⁻ a in s, f a ∂μ) = ∑' a : s, f a * μ {(a : α)} :=
   calc
@@ -2259,12 +1551,6 @@ theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞
     
 #align measure_theory.lintegral_countable MeasureTheory.lintegral_countable
 
-/- warning: measure_theory.lintegral_insert -> MeasureTheory.lintegral_insert is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] {a : α} {s : Set.{u1} α}, (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] {a : α} {s : Set.{u1} α}, (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_insert MeasureTheory.lintegral_insertₓ'. -/
 theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h : a ∉ s)
     (f : α → ℝ≥0∞) : (∫⁻ x in insert a s, f x ∂μ) = f a * μ {a} + ∫⁻ x in s, f x ∂μ :=
   by
@@ -2273,34 +1559,16 @@ theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h
   rwa [disjoint_singleton_right]
 #align measure_theory.lintegral_insert MeasureTheory.lintegral_insert
 
-/- warning: measure_theory.lintegral_finset -> MeasureTheory.lintegral_finset is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (s : Finset.{u1} α) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (s : Finset.{u1} α) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Finset.toSet.{u1} α s)) (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset MeasureTheory.lintegral_finsetₓ'. -/
 theorem lintegral_finset [MeasurableSingletonClass α] (s : Finset α) (f : α → ℝ≥0∞) :
     (∫⁻ x in s, f x ∂μ) = ∑ x in s, f x * μ {x} := by
   simp only [lintegral_countable _ s.countable_to_set, ← s.tsum_subtype']
 #align measure_theory.lintegral_finset MeasureTheory.lintegral_finset
 
-/- warning: measure_theory.lintegral_fintype -> MeasureTheory.lintegral_fintype is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] [_inst_2 : Fintype.{u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u1} α _inst_2) (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] [_inst_2 : Fintype.{u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.univ.{u1} α _inst_2) (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_fintype MeasureTheory.lintegral_fintypeₓ'. -/
 theorem lintegral_fintype [MeasurableSingletonClass α] [Fintype α] (f : α → ℝ≥0∞) :
     (∫⁻ x, f x ∂μ) = ∑ x, f x * μ {x} := by
   rw [← lintegral_finset, Finset.coe_univ, measure.restrict_univ]
 #align measure_theory.lintegral_fintype MeasureTheory.lintegral_fintype
 
-/- warning: measure_theory.lintegral_unique -> MeasureTheory.lintegral_unique is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Unique.{succ u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f (Inhabited.default.{succ u1} α (Unique.inhabited.{succ u1} α _inst_1))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Unique.{succ u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f (Inhabited.default.{succ u1} α (Unique.instInhabited.{succ u1} α _inst_1))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_unique MeasureTheory.lintegral_uniqueₓ'. -/
 theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x ∂μ) = f default * μ univ :=
   calc
     (∫⁻ x, f x ∂μ) = ∫⁻ x, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
@@ -2310,12 +1578,6 @@ theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x 
 
 end Countable
 
-/- warning: measure_theory.ae_lt_top -> MeasureTheory.ae_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_lt_top MeasureTheory.ae_lt_topₓ'. -/
 theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ := by
   simp_rw [ae_iff, ENNReal.not_lt_top]; by_contra h; apply h2f.lt_top.not_le
@@ -2325,24 +1587,12 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
   rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]; simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
 
-/- warning: measure_theory.ae_lt_top' -> MeasureTheory.ae_lt_top' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_lt_top' MeasureTheory.ae_lt_top'ₓ'. -/
 theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ :=
   haveI h2f_meas : (∫⁻ x, hf.mk f x ∂μ) ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
   (ae_lt_top hf.measurable_mk h2f_meas).mp (hf.ae_eq_mk.mono fun x hx h => by rwa [hx])
 #align measure_theory.ae_lt_top' MeasureTheory.ae_lt_top'
 
-/- warning: measure_theory.set_lintegral_lt_top_of_bdd_above -> MeasureTheory.set_lintegral_lt_top_of_bddAbove is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (BddAbove.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))) (Set.image.{u1, 0} α NNReal f s)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (BddAbove.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)) (Set.image.{u1, 0} α NNReal f s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => ENNReal.some (f x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_lt_top_of_bdd_above MeasureTheory.set_lintegral_lt_top_of_bddAboveₓ'. -/
 theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : α → ℝ≥0}
     (hf : Measurable f) (hbdd : BddAbove (f '' s)) : (∫⁻ x in s, f x ∂μ) < ∞ :=
   by
@@ -2356,24 +1606,12 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
     simp [hs]
 #align measure_theory.set_lintegral_lt_top_of_bdd_above MeasureTheory.set_lintegral_lt_top_of_bddAbove
 
-/- warning: measure_theory.set_lintegral_lt_top_of_is_compact -> MeasureTheory.set_lintegral_lt_top_of_isCompact is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : OpensMeasurableSpace.{u1} α _inst_1 m] {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (IsCompact.{u1} α _inst_1 s) -> (forall {f : α -> NNReal}, (Continuous.{u1, 0} α NNReal _inst_1 NNReal.topologicalSpace f) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : OpensMeasurableSpace.{u1} α _inst_1 m] {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (IsCompact.{u1} α _inst_1 s) -> (forall {f : α -> NNReal}, (Continuous.{u1, 0} α NNReal _inst_1 NNReal.instTopologicalSpaceNNReal f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => ENNReal.some (f x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompactₓ'. -/
 theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α] {s : Set α}
     (hs : μ s ≠ ∞) (hsc : IsCompact s) {f : α → ℝ≥0} (hf : Continuous f) :
     (∫⁻ x in s, f x ∂μ) < ∞ :=
   set_lintegral_lt_top_of_bddAbove hs hf.Measurable (hsc.image hf).BddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
-/- warning: is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal -> IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [μ_fin : MeasureTheory.FiniteMeasure.{u1} α _inst_1 μ] {f : α -> ENNReal}, (Exists.{1} NNReal (fun (c : NNReal) => forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) c))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [μ_fin : MeasureTheory.FiniteMeasure.{u1} α _inst_1 μ] {f : α -> ENNReal}, (Exists.{1} NNReal (fun (c : NNReal) => forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (ENNReal.some c))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
-Case conversion may be inaccurate. Consider using '#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNRealₓ'. -/
 theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
     (μ : Measure α) [μ_fin : FiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
     (∫⁻ x, f x ∂μ) < ∞ := by
@@ -2456,12 +1694,6 @@ theorem withDensity_smul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurab
 #align measure_theory.with_density_smul MeasureTheory.withDensity_smul
 -/
 
-/- warning: measure_theory.with_density_smul' -> MeasureTheory.withDensity_smul' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ (SMul.smul.{0, u1} ENNReal (α -> ENNReal) (Function.hasSMul.{u1, 0, 0} α ENNReal ENNReal (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) r f)) (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) r (MeasureTheory.Measure.withDensity.{u1} α m μ f)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ (HSMul.hSMul.{0, u1, u1} ENNReal (α -> ENNReal) (α -> ENNReal) (instHSMul.{0, u1} ENNReal (α -> ENNReal) (Pi.instSMul.{u1, 0, 0} α ENNReal (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.34021 : α) => ENNReal) (fun (i : α) => Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) r f)) (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) r (MeasureTheory.Measure.withDensity.{u1} α m μ f)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'ₓ'. -/
 theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     μ.withDensity (r • f) = r • μ.withDensity f :=
   by
@@ -2471,12 +1703,6 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
-/- warning: measure_theory.is_finite_measure_with_density -> MeasureTheory.finiteMeasure_withDensity is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (MeasureTheory.FiniteMeasure.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (MeasureTheory.FiniteMeasure.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))
-Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_with_density MeasureTheory.finiteMeasure_withDensityₓ'. -/
 theorem finiteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
     FiniteMeasure (μ.withDensity f) :=
   {
@@ -2568,24 +1794,12 @@ theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ
 #align measure_theory.restrict_with_density MeasureTheory.restrict_withDensity
 -/
 
-/- warning: measure_theory.with_density_eq_zero -> MeasureTheory.withDensity_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ f) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ f) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m)))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero)))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.with_density_eq_zero MeasureTheory.withDensity_eq_zeroₓ'. -/
 theorem withDensity_eq_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h : μ.withDensity f = 0) :
     f =ᵐ[μ] 0 := by
   rw [← lintegral_eq_zero_iff' hf, ← set_lintegral_univ, ← with_density_apply _ MeasurableSet.univ,
     h, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.with_density_eq_zero MeasureTheory.withDensity_eq_zero
 
-/- warning: measure_theory.with_density_apply_eq_zero -> MeasureTheory.withDensity_apply_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {s : Set.{u1} α}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ f) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (setOf.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {s : Set.{u1} α}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (setOf.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.with_density_apply_eq_zero MeasureTheory.withDensity_apply_eq_zeroₓ'. -/
 theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Measurable f) :
     μ.withDensity f s = 0 ↔ μ ({ x | f x ≠ 0 } ∩ s) = 0 :=
   by
@@ -2620,12 +1834,6 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
       simp only [imp_self, Pi.zero_apply, imp_true_iff]
 #align measure_theory.with_density_apply_eq_zero MeasureTheory.withDensity_apply_eq_zero
 
-/- warning: measure_theory.ae_with_density_iff -> MeasureTheory.ae_withDensity_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {p : α -> Prop} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))) (Filter.Eventually.{u1} α (fun (x : α) => (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (p x)) (MeasureTheory.Measure.ae.{u1} α m μ)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {p : α -> Prop} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))) (Filter.Eventually.{u1} α (fun (x : α) => (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (p x)) (MeasureTheory.Measure.ae.{u1} α m μ)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_with_density_iff MeasureTheory.ae_withDensity_iffₓ'. -/
 theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ, f x ≠ 0 → p x :=
   by
@@ -2645,12 +1853,6 @@ theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞}
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
 -/
 
-/- warning: measure_theory.ae_measurable_with_density_ennreal_iff -> MeasureTheory.aemeasurable_withDensity_ennreal_iff is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, Iff (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)))) (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)) (g x)) μ))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, Iff (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ (fun (x : α) => ENNReal.some (f x)))) (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ENNReal.some (f x)) (g x)) μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aemeasurable_withDensity_ennreal_iffₓ'. -/
 theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
     AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
       AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
@@ -2686,12 +1888,6 @@ variable {m m0 : MeasurableSpace α}
 
 include m
 
-/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mulₓ'. -/
 /-- This is Exercise 1.2.1 from [tao2010]. It allows you to express integration of a measurable
 function with respect to `(μ.with_density f)` as an integral with respect to `μ`, called the base
 measure. `μ` is often the Lebesgue measure, and in this circumstance `f` is the probability density
@@ -2715,24 +1911,12 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
     simp [lintegral_supr, ENNReal.mul_iSup, h_mf.mul (h_mea_g _), *]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mul
 
-/- warning: measure_theory.set_lintegral_with_density_eq_set_lintegral_mul -> MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) s) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g x))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) s) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g x))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mulₓ'. -/
 theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : Measurable f) (hg : Measurable g) {s : Set α} (hs : MeasurableSet s) :
     (∫⁻ x in s, g x ∂μ.withDensity f) = ∫⁻ x in s, (f * g) x ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul _ hf hg]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul
 
-/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul₀' -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ f)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ f)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'ₓ'. -/
 /-- The Lebesgue integral of `g` with respect to the measure `μ.with_density f` coincides with
 the integral of `f * g`. This version assumes that `g` is almost everywhere measurable. For a
 version without conditions on `g` but requiring that `f` is almost everywhere finite, see
@@ -2771,24 +1955,12 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
     
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'
 
-/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul₀ -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀ₓ'. -/
 theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
   lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensity_absolutelyContinuous μ f))
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀
 
-/- warning: measure_theory.lintegral_with_density_le_lintegral_mul -> MeasureTheory.lintegral_withDensity_le_lintegral_mul is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mulₓ'. -/
 theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (g : α → ℝ≥0∞) : (∫⁻ a, g a ∂μ.withDensity f) ≤ ∫⁻ a, (f * g) a ∂μ :=
   by
@@ -2799,12 +1971,6 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
   exact le_iSup_of_le A (le_of_eq (lintegral_with_density_eq_lintegral_mul _ f_meas i_meas))
 #align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mul
 
-/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurableₓ'. -/
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (hf : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
@@ -2841,12 +2007,6 @@ theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Meas
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable
 -/
 
-/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀ is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)))
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀ₓ'. -/
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure α) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
@@ -2888,12 +2048,6 @@ theorem withDensity_mul (μ : Measure α) {f g : α → ℝ≥0∞} (hf : Measur
 #align measure_theory.with_density_mul MeasureTheory.withDensity_mul
 -/
 
-/- warning: measure_theory.exists_pos_lintegral_lt_of_sigma_finite -> MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) [_inst_1 : MeasureTheory.SigmaFinite.{u1} α m μ] {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} (α -> NNReal) (fun (g : α -> NNReal) => And (forall (x : α), LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (g x)) (And (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace g) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (g x))) ε))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) [_inst_1 : MeasureTheory.SigmaFinite.{u1} α m μ] {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} (α -> NNReal) (fun (g : α -> NNReal) => And (forall (x : α), LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (g x)) (And (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace g) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (g x))) ε))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_lintegral_lt_of_sigma_finite MeasureTheory.exists_pos_lintegral_lt_of_sigmaFiniteₓ'. -/
 /-- In a sigma-finite measure space, there exists an integrable function which is
 positive everywhere (and with an arbitrarily small integral). -/
 theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ] {ε : ℝ≥0∞}
@@ -2950,12 +2104,6 @@ section SigmaFinite
 
 variable {E : Type _} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E]
 
-/- warning: measure_theory.univ_le_of_forall_fin_meas_le -> MeasureTheory.univ_le_of_forall_fin_meas_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : (Set.{u1} α) -> ENNReal}, (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f s) C)) -> (forall (S : Nat -> (Set.{u1} α)), (forall (n : Nat), MeasurableSet.{u1} α m (S n)) -> (Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) S) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => S n))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f (S n))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f (Set.univ.{u1} α)) C)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : (Set.{u1} α) -> ENNReal}, (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f s) C)) -> (forall (S : Nat -> (Set.{u1} α)), (forall (n : Nat), MeasurableSet.{u1} α m (S n)) -> (Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) S) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => S n))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f (S n))))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f (Set.univ.{u1} α)) C)
-Case conversion may be inaccurate. Consider using '#align measure_theory.univ_le_of_forall_fin_meas_le MeasureTheory.univ_le_of_forall_fin_meas_leₓ'. -/
 theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFinite (μ.trim hm)]
     (C : ℝ≥0∞) {f : Set α → ℝ≥0∞} (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → f s ≤ C)
     (h_F_lim :
@@ -2970,12 +2118,6 @@ theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFi
   exact ((le_trim hm).trans_lt (@measure_spanning_sets_lt_top _ m (μ.trim hm) _ n)).Ne
 #align measure_theory.univ_le_of_forall_fin_meas_le MeasureTheory.univ_le_of_forall_fin_meas_le
 
-/- warning: measure_theory.lintegral_le_of_forall_fin_meas_le_of_measurable -> MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurable is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m0 ENNReal.measurableSpace f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m0 ENNReal.measurableSpace f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_le_of_forall_fin_meas_le_of_measurable MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurableₓ'. -/
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra, then the integral
 over the whole space is bounded by that same constant. Version for a measurable function.
@@ -3018,12 +2160,6 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
     · exact le_rfl
 #align measure_theory.lintegral_le_of_forall_fin_meas_le_of_measurable MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurable
 
-/- warning: measure_theory.lintegral_le_of_forall_fin_meas_le' -> MeasureTheory.lintegral_le_of_forall_fin_meas_le' is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m0 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m0 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_le_of_forall_fin_meas_le' MeasureTheory.lintegral_le_of_forall_fin_meas_le'ₓ'. -/
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra, then the integral
 over the whole space is bounded by that same constant. -/
@@ -3043,12 +2179,6 @@ theorem lintegral_le_of_forall_fin_meas_le' {μ : Measure α} (hm : m ≤ m0) [S
 
 omit m
 
-/- warning: measure_theory.lintegral_le_of_forall_fin_meas_le -> MeasureTheory.lintegral_le_of_forall_fin_meas_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_4 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_4} [_inst_5 : MeasureTheory.SigmaFinite.{u1} α _inst_4 μ] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_4 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_4 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_4) (fun (_x : MeasureTheory.Measure.{u1} α _inst_4) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_4) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_4 (MeasureTheory.Measure.restrict.{u1} α _inst_4 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_4 μ (fun (x : α) => f x)) C)
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_4 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_4} [_inst_5 : MeasureTheory.SigmaFinite.{u1} α _inst_4 μ] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_4 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_4 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_4 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_4 (MeasureTheory.Measure.restrict.{u1} α _inst_4 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_4 μ (fun (x : α) => f x)) C)
-Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_le_of_forall_fin_meas_le MeasureTheory.lintegral_le_of_forall_fin_meas_leₓ'. -/
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure and the measure is σ-finite, then the integral over the whole space is bounded by that same
 constant. -/
@@ -3061,12 +2191,6 @@ theorem lintegral_le_of_forall_fin_meas_le [MeasurableSpace α] {μ : Measure α
 -- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
-/- warning: measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral -> MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) f x)) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x) (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal f x)) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x)))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegralₓ'. -/
 theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     {μ : Measure α} [SigmaFinite μ] {f : α →ₛ ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
@@ -3122,12 +2246,6 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       exact le_rfl
 #align measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
-/- warning: measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral -> MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : α -> NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x) (f x)) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x)))))))
-but is expected to have type
-  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : α -> NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x) (f x)) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x)))))))
-Case conversion may be inaccurate. Consider using '#align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegralₓ'. -/
 theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α} {μ : Measure α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
Diff
@@ -347,8 +347,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
       le_iSup_of_le (φ.map ENNReal.toNNReal) (le_iSup_of_le this (ge_of_eq <| lintegral_congr h))
   · have h_meas : μ (φ ⁻¹' {∞}) ≠ 0 := mt measure_zero_iff_ae_nmem.1 h
     refine' le_trans le_top (ge_of_eq <| (iSup_eq_top _).2 fun b hb => _)
-    obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞})
-    exact exists_nat_mul_gt h_meas (ne_of_lt hb)
+    obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞}); exact exists_nat_mul_gt h_meas (ne_of_lt hb)
     use (const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
     simp only [lt_iSup_iff, exists_prop, coe_restrict, φ.measurable_set_preimage, coe_const,
       ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_nat,
@@ -405,11 +404,8 @@ Case conversion may be inaccurate. Consider using '#align measure_theory.supr₂
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
-    (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ :=
-  by
-  convert(monotone_lintegral μ).le_map_iSup₂ f
-  ext1 a
-  simp only [iSup_apply]
+    (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ := by
+  convert(monotone_lintegral μ).le_map_iSup₂ f; ext1 a; simp only [iSup_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
 
 /- warning: measure_theory.le_infi_lintegral -> MeasureTheory.le_iInf_lintegral is a dubious translation:
@@ -419,9 +415,7 @@ but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i a))) (iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a)))
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegralₓ'. -/
 theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
-    (∫⁻ a, ⨅ i, f i a ∂μ) ≤ ⨅ i, ∫⁻ a, f i a ∂μ :=
-  by
-  simp only [← iInf_apply]
+    (∫⁻ a, ⨅ i, f i a ∂μ) ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by simp only [← iInf_apply];
   exact (monotone_lintegral μ).map_iInf_le
 #align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
 
@@ -432,11 +426,8 @@ but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u3}} {ι' : ι -> Sort.{u2}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (h : ι' i) => f i h a)))) (iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (h : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i h a))))
 Case conversion may be inaccurate. Consider using '#align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegralₓ'. -/
 theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
-    (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ :=
-  by
-  convert(monotone_lintegral μ).map_iInf₂_le f
-  ext1 a
-  simp only [iInf_apply]
+    (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
+  convert(monotone_lintegral μ).map_iInf₂_le f; ext1 a; simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
 
 /- warning: measure_theory.lintegral_mono_ae -> MeasureTheory.lintegral_mono_ae is a dubious translation:
@@ -502,11 +493,8 @@ theorem set_lintegral_congr {f : α → ℝ≥0∞} {s t : Set α} (h : s =ᵐ[
 
 #print MeasureTheory.set_lintegral_congr_fun /-
 theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : MeasurableSet s)
-    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : (∫⁻ x in s, f x ∂μ) = ∫⁻ x in s, g x ∂μ :=
-  by
-  rw [lintegral_congr_ae]
-  rw [eventually_eq]
-  rwa [ae_restrict_iff' hs]
+    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : (∫⁻ x in s, f x ∂μ) = ∫⁻ x in s, g x ∂μ := by
+  rw [lintegral_congr_ae]; rw [eventually_eq]; rwa [ae_restrict_iff' hs]
 #align measure_theory.set_lintegral_congr_fun MeasureTheory.set_lintegral_congr_fun
 -/
 
@@ -573,29 +561,20 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
   rcases ENNReal.lt_iff_exists_coe.1 ha with ⟨r, rfl, ha⟩
   have ha : r < 1 := ENNReal.coe_lt_coe.1 ha
   let rs := s.map fun a => r * a
-  have eq_rs : (const α r : α →ₛ ℝ≥0∞) * map c s = rs.map c :=
-    by
-    ext1 a
-    exact ennreal.coe_mul.symm
+  have eq_rs : (const α r : α →ₛ ℝ≥0∞) * map c s = rs.map c := by ext1 a; exact ennreal.coe_mul.symm
   have eq : ∀ p, rs.map c ⁻¹' {p} = ⋃ n, rs.map c ⁻¹' {p} ∩ { a | p ≤ f n a } :=
     by
     intro p
     rw [← inter_Union, ← inter_univ (map c rs ⁻¹' {p})]
     refine' Set.ext fun x => and_congr_right fun hx => (true_iff_iff _).2 _
-    by_cases p_eq : p = 0
-    · simp [p_eq]
-    simp at hx
-    subst hx
+    by_cases p_eq : p = 0; · simp [p_eq]
+    simp at hx; subst hx
     have : r * s x ≠ 0 := by rwa [(· ≠ ·), ← ENNReal.coe_eq_zero]
-    have : s x ≠ 0 := by
-      refine' mt _ this
-      intro h
-      rw [h, MulZeroClass.mul_zero]
+    have : s x ≠ 0 := by refine' mt _ this; intro h; rw [h, MulZeroClass.mul_zero]
     have : (rs.map c) x < ⨆ n : ℕ, f n x :=
       by
       refine' lt_of_lt_of_le (ENNReal.coe_lt_coe.2 _) (hsf x)
-      suffices : r * s x < 1 * s x
-      simpa [rs]
+      suffices : r * s x < 1 * s x; simpa [rs]
       exact mul_lt_mul_of_pos_right ha (pos_iff_ne_zero.2 this)
     rcases lt_iSup_iff.1 this with ⟨i, hi⟩
     exact mem_Union.2 ⟨i, le_of_lt hi⟩
@@ -603,8 +582,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     by
     intro r i j h
     refine' inter_subset_inter (subset.refl _) _
-    intro x hx
-    exact le_trans hx (h_mono h x)
+    intro x hx; exact le_trans hx (h_mono h x)
   have h_meas : ∀ n, MeasurableSet { a : α | (⇑(map c rs)) a ≤ f n a } := fun n =>
     measurableSet_le (simple_func.measurable _) (hf n)
   calc
@@ -705,8 +683,7 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
       by
       rw [lintegral_supr]
       · measurability
-      · intro i j h
-        exact monotone_eapprox f h
+      · intro i j h; exact monotone_eapprox f h
     _ = ⨆ n, (eapprox f n).lintegral μ := by
       congr <;> ext n <;> rw [(eapprox f n).lintegral_eq_lintegral]
     
@@ -804,24 +781,19 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       by
       congr ; funext a
       rw [ENNReal.iSup_add_iSup_of_monotone]; · rfl
-      · intro i j h
-        exact monotone_eapprox _ h a
-      · intro i j h
-        exact monotone_eapprox _ h a
+      · intro i j h; exact monotone_eapprox _ h a
+      · intro i j h; exact monotone_eapprox _ h a
     _ = ⨆ n, (eapprox f n).lintegral μ + (eapprox g n).lintegral μ :=
       by
       rw [lintegral_supr]
       · congr
-        funext n
-        rw [← simple_func.add_lintegral, ← simple_func.lintegral_eq_lintegral]
+        funext n; rw [← simple_func.add_lintegral, ← simple_func.lintegral_eq_lintegral]
         rfl
       · measurability
-      · intro i j h a
-        exact add_le_add (monotone_eapprox _ h _) (monotone_eapprox _ h _)
+      · intro i j h a; exact add_le_add (monotone_eapprox _ h _) (monotone_eapprox _ h _)
     _ = (⨆ n, (eapprox f n).lintegral μ) + ⨆ n, (eapprox g n).lintegral μ := by
       refine' (ENNReal.iSup_add_iSup_of_monotone _ _).symm <;>
-        · intro i j h
-          exact simple_func.lintegral_mono (monotone_eapprox _ h) (le_refl μ)
+        · intro i j h; exact simple_func.lintegral_mono (monotone_eapprox _ h) (le_refl μ)
     _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
       rw [lintegral_eq_supr_eapprox_lintegral hf, lintegral_eq_supr_eapprox_lintegral hg]
     
@@ -913,9 +885,7 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
   simp only [lintegral, iSup_subtype', simple_func.lintegral_sum, ENNReal.tsum_eq_iSup_sum]
   rw [iSup_comm]
   congr ; funext s
-  induction' s using Finset.induction_on with i s hi hs;
-  · apply bot_unique
-    simp
+  induction' s using Finset.induction_on with i s hi hs; · apply bot_unique; simp
   simp only [Finset.sum_insert hi, ← hs]
   refine' (ENNReal.iSup_add_iSup _).symm
   intro φ ψ
@@ -956,10 +926,8 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measureₓ'. -/
 @[simp]
 theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset ι) (f : α → ℝ≥0∞)
-    (μ : ι → Measure α) : (∫⁻ a, f a ∂∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i :=
-  by
-  rw [← measure.sum_coe_finset, lintegral_sum_measure, ← Finset.tsum_subtype']
-  rfl
+    (μ : ι → Measure α) : (∫⁻ a, f a ∂∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i := by
+  rw [← measure.sum_coe_finset, lintegral_sum_measure, ← Finset.tsum_subtype']; rfl
 #align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measure
 
 /- warning: measure_theory.lintegral_zero_measure -> MeasureTheory.lintegral_zero_measure is a dubious translation:
@@ -1039,22 +1007,15 @@ Case conversion may be inaccurate. Consider using '#align measure_theory.lintegr
 theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
   calc
-    (∫⁻ a, r * f a ∂μ) = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ :=
-      by
-      congr
-      funext a
-      rw [← supr_eapprox_apply f hf, ENNReal.mul_iSup]
-      rfl
+    (∫⁻ a, r * f a ∂μ) = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ := by congr ; funext a;
+      rw [← supr_eapprox_apply f hf, ENNReal.mul_iSup]; rfl
     _ = ⨆ n, r * (eapprox f n).lintegral μ :=
       by
       rw [lintegral_supr]
-      · congr
-        funext n
+      · congr ; funext n
         rw [← simple_func.const_mul_lintegral, ← simple_func.lintegral_eq_lintegral]
-      · intro n
-        exact simple_func.measurable _
-      · intro i j h a
-        exact mul_le_mul_left' (monotone_eapprox _ h _) _
+      · intro n; exact simple_func.measurable _
+      · intro i j h a; exact mul_le_mul_left' (monotone_eapprox _ h _) _
     _ = r * ∫⁻ a, f a ∂μ := by rw [← ENNReal.mul_iSup, lintegral_eq_supr_eapprox_lintegral hf]
     
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
@@ -1105,9 +1066,7 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   · simp [h]
   apply le_antisymm _ (lintegral_const_mul_le r f)
   have rinv : r * r⁻¹ = 1 := ENNReal.mul_inv_cancel h hr
-  have rinv' : r⁻¹ * r = 1 := by
-    rw [mul_comm]
-    exact rinv
+  have rinv' : r⁻¹ * r = 1 := by rw [mul_comm]; exact rinv
   have := lintegral_const_mul_le r⁻¹ fun x => r * f x
   simp [(mul_assoc _ _ _).symm, rinv'] at this
   simpa [(mul_assoc _ _ _).symm, rinv] using mul_le_mul_left' this r
@@ -1332,9 +1291,7 @@ Case conversion may be inaccurate. Consider using '#align measure_theory.meas_ge
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
     (hε' : ε ≠ ∞) : μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε :=
-  (ENNReal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <|
-    by
-    rw [mul_comm]
+  (ENNReal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <| by rw [mul_comm];
     exact mul_meas_ge_le_lintegral₀ hf ε
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
 
@@ -1630,10 +1587,8 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
     _ = ∫⁻ a, ⨅ n : ℕ, ⨆ i ≥ n, f i a ∂μ :=
       by
       refine' (lintegral_infi _ _ _).symm
-      · intro n
-        exact measurable_biSup _ (to_countable _) hf_meas
-      · intro n m hnm a
-        exact iSup_le_iSup_of_subset fun i hi => le_trans hnm hi
+      · intro n; exact measurable_biSup _ (to_countable _) hf_meas
+      · intro n m hnm a; exact iSup_le_iSup_of_subset fun i hi => le_trans hnm hi
       · refine' ne_top_of_le_ne_top h_fin (lintegral_mono_ae _)
         refine' (ae_all_iff.2 h_bound).mono fun n hn => _
         exact iSup_le fun i => iSup_le fun hi => hn i
@@ -1708,21 +1663,15 @@ theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
   by
   rw [tendsto_iff_seq_tendsto]
   intro x xl
-  have hxl := by
-    rw [tendsto_at_top'] at xl
-    exact xl
+  have hxl := by rw [tendsto_at_top'] at xl; exact xl
   have h := inter_mem hF_meas h_bound
   replace h := hxl _ h
   rcases h with ⟨k, h⟩
   rw [← tendsto_add_at_top_iff_nat k]
   refine' tendsto_lintegral_of_dominated_convergence _ _ _ _ _
   · exact bound
-  · intro
-    refine' (h _ _).1
-    exact Nat.le_add_left _ _
-  · intro
-    refine' (h _ _).2
-    exact Nat.le_add_left _ _
+  · intro ; refine' (h _ _).1; exact Nat.le_add_left _ _
+  · intro ; refine' (h _ _).2; exact Nat.le_add_left _ _
   · assumption
   · refine' h_lim.mono fun a h_lim => _
     apply @tendsto.comp _ _ _ (fun n => x (n + k)) fun n => F n a
@@ -1747,8 +1696,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
     (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
   by
   cases nonempty_encodable β
-  cases isEmpty_or_nonempty β
-  · simp [iSup_of_empty]
+  cases isEmpty_or_nonempty β; · simp [iSup_of_empty]
   inhabit β
   have : ∀ a, (⨆ b, f b a) = ⨆ n, f (h_directed.sequence f n) a :=
     by
@@ -1821,8 +1769,7 @@ theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i
   simp only [ENNReal.tsum_eq_iSup_sum]
   rw [lintegral_supr_directed]
   · simp [lintegral_finset_sum' _ fun i _ => hf i]
-  · intro b
-    exact Finset.aemeasurable_sum _ fun i _ => hf i
+  · intro b; exact Finset.aemeasurable_sum _ fun i _ => hf i
   · intro s t
     use s ∪ t
     constructor
@@ -2001,10 +1948,7 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
   calc
     (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, hf.mk f a ∂Measure.map g μ :=
       lintegral_congr_ae hf.ae_eq_mk
-    _ = ∫⁻ a, hf.mk f a ∂Measure.map (hg.mk g) μ :=
-      by
-      congr 1
-      exact measure.map_congr hg.ae_eq_mk
+    _ = ∫⁻ a, hf.mk f a ∂Measure.map (hg.mk g) μ := by congr 1; exact measure.map_congr hg.ae_eq_mk
     _ = ∫⁻ a, hf.mk f (hg.mk g a) ∂μ := (lintegral_map hf.measurable_mk hg.measurable_mk)
     _ = ∫⁻ a, hf.mk f (g a) ∂μ := (lintegral_congr_ae <| hg.ae_eq_mk.symm.fun_comp _)
     _ = ∫⁻ a, f (g a) ∂μ := lintegral_congr_ae (ae_eq_comp hg hf.ae_eq_mk.symm)
@@ -2245,9 +2189,7 @@ theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : 
     (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : (∑' i, a i) ≤ c)
     {ε : ℝ≥0} (ε_ne_zero : ε ≠ 0) : Measure.count { i : α | ε ≤ a i } ≤ c / ε :=
   by
-  rw [show (fun i => ε ≤ a i) = fun i => (ε : ℝ≥0∞) ≤ (coe ∘ a) i
-      by
-      funext i
+  rw [show (fun i => ε ≤ a i) = fun i => (ε : ℝ≥0∞) ≤ (coe ∘ a) i by funext i;
       simp only [ENNReal.coe_le_coe]]
   apply
     ENNReal.count_const_le_le_of_tsum_le (measurable_coe_nnreal_ennreal.comp a_mble) _
@@ -2376,15 +2318,11 @@ but is expected to have type
 Case conversion may be inaccurate. Consider using '#align measure_theory.ae_lt_top MeasureTheory.ae_lt_topₓ'. -/
 theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ := by
-  simp_rw [ae_iff, ENNReal.not_lt_top]
-  by_contra h
-  apply h2f.lt_top.not_le
-  have : (f ⁻¹' {∞}).indicator ⊤ ≤ f := by
-    intro x
+  simp_rw [ae_iff, ENNReal.not_lt_top]; by_contra h; apply h2f.lt_top.not_le
+  have : (f ⁻¹' {∞}).indicator ⊤ ≤ f := by intro x;
     by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [hx] ;simp [hx]]
   convert lintegral_mono this
-  rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]
-  simp [ENNReal.top_mul', preimage, h]
+  rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]; simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
 
 /- warning: measure_theory.ae_lt_top' -> MeasureTheory.ae_lt_top' is a dubious translation:
@@ -2658,8 +2596,7 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
     have A : μ.with_density f t = 0 := by rw [measure_to_measurable, hs]
     rw [with_density_apply f (measurable_set_to_measurable _ s), lintegral_eq_zero_iff hf,
       eventually_eq, ae_restrict_iff, ae_iff] at A
-    swap
-    · exact hf (measurable_set_singleton 0)
+    swap; · exact hf (measurable_set_singleton 0)
     simp only [Pi.zero_apply, mem_set_of_eq, Filter.mem_mk] at A
     convert A
     ext x
@@ -2987,8 +2924,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
   · intro c s hs
     rw [lintegral_indicator _ hs, lintegral_indicator _ (hm s hs), set_lintegral_const,
       set_lintegral_const]
-    suffices h_trim_s : μ.trim hm s = μ s
-    · rw [h_trim_s]
+    suffices h_trim_s : μ.trim hm s = μ s; · rw [h_trim_s]
     exact trim_measurable_set_eq hm hs
   · intro f g hfg hf hg hf_prop hg_prop
     have h_m := lintegral_add_left hf g
@@ -3052,8 +2988,7 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
   rw [← this]
   refine' univ_le_of_forall_fin_meas_le hm C hf fun S hS_meas hS_mono => _
   rw [← lintegral_indicator]
-  swap
-  · exact hm (⋃ n, S n) (@MeasurableSet.iUnion _ _ m _ _ hS_meas)
+  swap; · exact hm (⋃ n, S n) (@MeasurableSet.iUnion _ _ m _ _ hS_meas)
   have h_integral_indicator : (⨆ n, ∫⁻ x in S n, f x ∂μ) = ⨆ n, ∫⁻ x, (S n).indicator f x ∂μ :=
     by
     congr
@@ -3140,8 +3075,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
   · simp only [hs, const_zero, coe_piecewise, coe_const, simple_func.coe_zero, univ_inter,
       piecewise_eq_indicator, lintegral_indicator, lintegral_const, measure.restrict_apply',
       coe_indicator, Function.const_apply] at hL
-    have c_ne_zero : c ≠ 0 := by
-      intro hc
+    have c_ne_zero : c ≠ 0 := by intro hc;
       simpa only [hc, ENNReal.coe_zero, MulZeroClass.zero_mul, not_lt_zero] using hL
     have : L / c < μ s := by
       rwa [ENNReal.div_lt_iff, mul_comm]
@@ -3151,8 +3085,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       ∃ t : Set α, MeasurableSet t ∧ t ⊆ s ∧ L / ↑c < μ t ∧ μ t < ∞ :=
       measure.exists_subset_measure_lt_top hs this
     refine' ⟨piecewise t ht (const α c) (const α 0), fun x => _, _, _⟩
-    · apply indicator_le_indicator_of_subset ts fun x => _
-      exact zero_le _
+    · apply indicator_le_indicator_of_subset ts fun x => _; exact zero_le _
     ·
       simp only [ht, const_zero, coe_piecewise, coe_const, simple_func.coe_zero, univ_inter,
         piecewise_eq_indicator, coe_indicator, Function.const_apply, lintegral_indicator,
Diff
@@ -2708,13 +2708,13 @@ theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞}
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
 -/
 
-/- warning: measure_theory.ae_measurable_with_density_ennreal_iff -> MeasureTheory.aEMeasurable_withDensity_eNNReal_iff is a dubious translation:
+/- warning: measure_theory.ae_measurable_with_density_ennreal_iff -> MeasureTheory.aemeasurable_withDensity_ennreal_iff is a dubious translation:
 lean 3 declaration is
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, Iff (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)))) (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)) (g x)) μ))
 but is expected to have type
   forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, Iff (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ (fun (x : α) => ENNReal.some (f x)))) (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ENNReal.some (f x)) (g x)) μ))
-Case conversion may be inaccurate. Consider using '#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aEMeasurable_withDensity_eNNReal_iffₓ'. -/
-theorem aEMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aemeasurable_withDensity_ennreal_iffₓ'. -/
+theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
     AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
       AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
   by
@@ -2739,7 +2739,7 @@ theorem aEMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurab
     filter_upwards [hg']
     intro x hx h'x
     rw [← hx, ← mul_assoc, ENNReal.inv_mul_cancel h'x ENNReal.coe_ne_top, one_mul]
-#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aEMeasurable_withDensity_eNNReal_iff
+#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aemeasurable_withDensity_ennreal_iff
 
 end Lintegral
 
Diff
@@ -372,7 +372,7 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
   by
   rw [lintegral_eq_nnreal] at h
   have := ENNReal.lt_add_right h hε
-  erw [ENNReal.biSup_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
+  erw [ENNReal.biSup_add] at this <;> [skip;exact ⟨0, fun x => zero_le _⟩]
   simp_rw [lt_iSup_iff, iSup_lt_iff, iSup_le_iff] at this
   rcases this with ⟨φ, hle : ∀ x, ↑(φ x) ≤ f x, b, hbφ, hb⟩
   refine' ⟨φ, hle, fun ψ hψ => _⟩
@@ -2381,7 +2381,7 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
   apply h2f.lt_top.not_le
   have : (f ⁻¹' {∞}).indicator ⊤ ≤ f := by
     intro x
-    by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [hx] , simp [hx]]
+    by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [hx] ;simp [hx]]
   convert lintegral_mono this
   rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]
   simp [ENNReal.top_mul', preimage, h]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
+! leanprover-community/mathlib commit 4280f5f32e16755ec7985ce11e189b6cd6ff6735
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.MeasureTheory.Measure.MutuallySingular
 /-!
 # Lower Lebesgue integral for `ℝ≥0∞`-valued functions
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 We define the lower Lebesgue integral of an `ℝ≥0∞`-valued function.
 
 ## Notation
Diff
@@ -50,6 +50,7 @@ variable {α : Type _} {mα : MeasurableSpace α} {a : α} {s : Set α}
 
 include mα
 
+#print MeasureTheory.restrict_dirac' /-
 -- todo after the port: move to measure_theory/measure/measure_space
 theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
     (Measure.dirac a).restrict s = if a ∈ s then Measure.dirac a else 0 :=
@@ -65,7 +66,9 @@ theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
       · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
     · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac' MeasureTheory.restrict_dirac'
+-/
 
+#print MeasureTheory.restrict_dirac /-
 -- todo after the port: move to measure_theory/measure/measure_space
 theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
     (Measure.dirac a).restrict s = if a ∈ s then Measure.dirac a else 0 :=
@@ -81,6 +84,7 @@ theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
       · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
     · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.restrict_dirac MeasureTheory.restrict_dirac
+-/
 
 end MoveThis
 
@@ -95,10 +99,12 @@ open SimpleFunc
 
 variable {m : MeasurableSpace α} {μ ν : Measure α}
 
+#print MeasureTheory.lintegral /-
 /-- The **lower Lebesgue integral** of a function `f` with respect to a measure `μ`. -/
 irreducible_def lintegral {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) : ℝ≥0∞ :=
   ⨆ (g : α →ₛ ℝ≥0∞) (hf : ⇑g ≤ f), g.lintegral μ
 #align measure_theory.lintegral MeasureTheory.lintegral
+-/
 
 /-! In the notation for integrals, an expression like `∫⁻ x, g ‖x‖ ∂μ` will not be parsed correctly,
   and needs parentheses. We do not set the binding power of `r` to `0`, because then
@@ -117,13 +123,21 @@ notation3"∫⁻ "(...)" in "s", "r:(scoped f => f)" ∂"μ => lintegral (Measur
 -- mathport name: «expr∫⁻ in , »
 notation3"∫⁻ "(...)" in "s", "r:(scoped f => lintegral Measure.restrict volume s f) => r
 
+#print MeasureTheory.SimpleFunc.lintegral_eq_lintegral /-
 theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →ₛ ℝ≥0∞) (μ : Measure α) :
     (∫⁻ a, f a ∂μ) = f.lintegral μ := by
   rw [lintegral]
   exact
     le_antisymm (iSup₂_le fun g hg => lintegral_mono hg <| le_rfl) (le_iSup₂_of_le f le_rfl le_rfl)
 #align measure_theory.simple_func.lintegral_eq_lintegral MeasureTheory.SimpleFunc.lintegral_eq_lintegral
+-/
 
+/- warning: measure_theory.lintegral_mono' -> MeasureTheory.lintegral_mono' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {{ν : MeasureTheory.Measure.{u1} α m}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toHasLe.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) μ ν) -> (forall {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {{ν : MeasureTheory.Measure.{u1} α m}}, (LE.le.{u1} (MeasureTheory.Measure.{u1} α m) (Preorder.toLE.{u1} (MeasureTheory.Measure.{u1} α m) (PartialOrder.toPreorder.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instPartialOrder.{u1} α m))) μ ν) -> (forall {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'ₓ'. -/
 @[mono]
 theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν : μ ≤ ν) ⦃f g : α → ℝ≥0∞⦄
     (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂ν :=
@@ -132,14 +146,32 @@ theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν
   exact iSup_mono fun φ => iSup_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
 #align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'
 
+/- warning: measure_theory.lintegral_mono -> MeasureTheory.lintegral_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {{f : α -> ENNReal}} {{g : α -> ENNReal}}, (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono MeasureTheory.lintegral_monoₓ'. -/
 theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono' (le_refl μ) hfg
 #align measure_theory.lintegral_mono MeasureTheory.lintegral_mono
 
-theorem lintegral_mono_nNReal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
+/- warning: measure_theory.lintegral_mono_nnreal -> MeasureTheory.lintegral_mono_nnreal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal} {g : α -> NNReal}, (LE.le.{u1} (α -> NNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))))) f g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal} {g : α -> NNReal}, (LE.le.{u1} (α -> NNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)))) f g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => ENNReal.some (f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => ENNReal.some (g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnrealₓ'. -/
+theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
-#align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nNReal
-
+#align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
+
+/- warning: measure_theory.supr_lintegral_measurable_le_eq_lintegral -> MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (α -> ENNReal) (fun (g : α -> ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (fun (g_meas : Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) (fun (hg : LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (α -> ENNReal) (fun (g : α -> ENNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (fun (g_meas : Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) (fun (hg : LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegralₓ'. -/
 theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
     (⨆ (g : α → ℝ≥0∞) (g_meas : Measurable g) (hg : g ≤ f), ∫⁻ a, g a ∂μ) = ∫⁻ a, f a ∂μ :=
   by
@@ -150,49 +182,107 @@ theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
     exact le_of_eq (i.lintegral_eq_lintegral _).symm
 #align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral
 
+/- warning: measure_theory.lintegral_mono_set -> MeasureTheory.lintegral_mono_set is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.hasSubset.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (HasSubset.Subset.{u1} (Set.{u1} α) (Set.instHasSubsetSet.{u1} α) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_set MeasureTheory.lintegral_mono_setₓ'. -/
 theorem lintegral_mono_set {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
     (hst : s ⊆ t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set MeasureTheory.lintegral_mono_set
 
+/- warning: measure_theory.lintegral_mono_set' -> MeasureTheory.lintegral_mono_set' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {{μ : MeasureTheory.Measure.{u1} α m}} {s : Set.{u1} α} {t : Set.{u1} α} {f : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α Prop Prop.le (MeasureTheory.Measure.ae.{u1} α m μ) s t) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ t) (fun (x : α) => f x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_set' MeasureTheory.lintegral_mono_set'ₓ'. -/
 theorem lintegral_mono_set' {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
     (hst : s ≤ᵐ[μ] t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono' hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set' MeasureTheory.lintegral_mono_set'
 
+/- warning: measure_theory.monotone_lintegral -> MeasureTheory.monotone_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m), Monotone.{u1, 0} (α -> ENNReal) ENNReal (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.lintegral.{u1} α m μ)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m), Monotone.{u1, 0} (α -> ENNReal) ENNReal (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.lintegral.{u1} α m μ)
+Case conversion may be inaccurate. Consider using '#align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegralₓ'. -/
 theorem monotone_lintegral {m : MeasurableSpace α} (μ : Measure α) : Monotone (lintegral μ) :=
   lintegral_mono
 #align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegral
 
+/- warning: measure_theory.lintegral_const -> MeasureTheory.lintegral_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const MeasureTheory.lintegral_constₓ'. -/
 @[simp]
 theorem lintegral_const (c : ℝ≥0∞) : (∫⁻ a, c ∂μ) = c * μ univ := by
   rw [← simple_func.const_lintegral, ← simple_func.lintegral_eq_lintegral, simple_func.coe_const]
 #align measure_theory.lintegral_const MeasureTheory.lintegral_const
 
+/- warning: measure_theory.lintegral_zero -> MeasureTheory.lintegral_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_zero MeasureTheory.lintegral_zeroₓ'. -/
 theorem lintegral_zero : (∫⁻ a : α, 0 ∂μ) = 0 := by simp
 #align measure_theory.lintegral_zero MeasureTheory.lintegral_zero
 
+/- warning: measure_theory.lintegral_zero_fun -> MeasureTheory.lintegral_zero_fun is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m}, Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.5462 : α) => ENNReal) (fun (i : α) => instENNRealZero))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_funₓ'. -/
 theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
   lintegral_zero
 #align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_fun
 
+#print MeasureTheory.lintegral_one /-
 @[simp]
 theorem lintegral_one : (∫⁻ a, (1 : ℝ≥0∞) ∂μ) = μ univ := by rw [lintegral_const, one_mul]
 #align measure_theory.lintegral_one MeasureTheory.lintegral_one
+-/
 
+/- warning: measure_theory.set_lintegral_const -> MeasureTheory.set_lintegral_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_constₓ'. -/
 theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ a in s, c ∂μ) = c * μ s := by
   rw [lintegral_const, measure.restrict_apply_univ]
 #align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_const
 
+#print MeasureTheory.set_lintegral_one /-
 theorem set_lintegral_one (s) : (∫⁻ a in s, 1 ∂μ) = μ s := by rw [set_lintegral_const, one_mul]
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
+-/
 
+/- warning: measure_theory.set_lintegral_const_lt_top -> MeasureTheory.set_lintegral_const_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] (s : Set.{u1} α) {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] (s : Set.{u1} α) {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_topₓ'. -/
 theorem set_lintegral_const_lt_top [FiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
     (∫⁻ a in s, c ∂μ) < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
+/- warning: measure_theory.lintegral_const_lt_top -> MeasureTheory.lintegral_const_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasureTheory.FiniteMeasure.{u1} α m μ] {c : ENNReal}, (Ne.{1} ENNReal c (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => c)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_topₓ'. -/
 theorem lintegral_const_lt_top [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
   simpa only [measure.restrict_univ] using set_lintegral_const_lt_top univ hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
@@ -201,6 +291,12 @@ section
 
 variable (μ)
 
+/- warning: measure_theory.exists_measurable_le_lintegral_eq -> MeasureTheory.exists_measurable_le_lintegral_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), Exists.{succ u1} (α -> ENNReal) (fun (g : α -> ENNReal) => And (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (And (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))) g f) (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) (f : α -> ENNReal), Exists.{succ u1} (α -> ENNReal) (fun (g : α -> ENNReal) => And (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) (And (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) g f) (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_measurable_le_lintegral_eq MeasureTheory.exists_measurable_le_lintegral_eqₓ'. -/
 /-- For any function `f : α → ℝ≥0∞`, there exists a measurable function `g ≤ f` with the same
 integral. -/
 theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
@@ -224,10 +320,16 @@ theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
 
 end
 
+/- warning: measure_theory.lintegral_eq_nnreal -> MeasureTheory.lintegral_eq_nnreal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) φ x)) (f x)) (fun (hf : forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) φ x)) (f x)) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe)))) φ) μ)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, succ u1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => iSup.{0, 0} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal φ x)) (f x)) (fun (hf : forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal φ x)) (f x)) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ENNReal.some φ) μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnrealₓ'. -/
 /-- `∫⁻ a in s, f a ∂μ` is defined as the supremum of integrals of simple functions
 `φ : α →ₛ ℝ≥0∞` such that `φ ≤ f`. This lemma says that it suffices to take
 functions `φ : α →ₛ ℝ≥0`. -/
-theorem lintegral_eq_nNReal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : Measure α) :
+theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : Measure α) :
     (∫⁻ a, f a ∂μ) =
       ⨆ (φ : α →ₛ ℝ≥0) (hf : ∀ x, ↑(φ x) ≤ f x), (φ.map (coe : ℝ≥0 → ℝ≥0∞)).lintegral μ :=
   by
@@ -251,8 +353,14 @@ theorem lintegral_eq_nNReal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
     refine' ⟨indicator_le fun x hx => le_trans _ (hφ _), hn⟩
     simp only [mem_preimage, mem_singleton_iff] at hx
     simp only [hx, le_top]
-#align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nNReal
-
+#align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnreal
+
+/- warning: measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos -> MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) φ x)) (f x)) (forall (ψ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal), (forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) ψ x)) (f x)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe)))) (HSub.hSub.{u1, u1, u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (instHSub.{u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.instSub.{u1, 0} α NNReal m NNReal.hasSub)) ψ φ)) μ) ε)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (φ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal φ x)) (f x)) (forall (ψ : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal), (forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal ψ x)) (f x)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.map.{u1, 0, 0} α NNReal ENNReal m ENNReal.some (HSub.hSub.{u1, u1, u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (instHSub.{u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (MeasureTheory.SimpleFunc.instSub.{u1, 0} α NNReal m NNReal.instSubNNReal)) ψ φ)) μ) ε)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_posₓ'. -/
 theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞)
     {ε : ℝ≥0∞} (hε : ε ≠ 0) :
     ∃ φ : α →ₛ ℝ≥0,
@@ -272,6 +380,12 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
   simp only [add_apply, sub_apply, add_tsub_eq_max]
 #align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos
 
+/- warning: measure_theory.supr_lintegral_le -> MeasureTheory.iSup_lintegral_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_leₓ'. -/
 theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     (⨆ i, ∫⁻ a, f i a ∂μ) ≤ ∫⁻ a, ⨆ i, f i a ∂μ :=
   by
@@ -279,16 +393,28 @@ theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
   exact (monotone_lintegral μ).le_map_iSup
 #align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_le
 
+/- warning: measure_theory.supr₂_lintegral_le -> MeasureTheory.iSup₂_lintegral_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} {ι' : ι -> Sort.{u3}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (j : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i j a)))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (j : ι' i) => f i j a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u3}} {ι' : ι -> Sort.{u2}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (j : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i j a)))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, u3} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iSup.{0, u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (j : ι' i) => f i j a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_leₓ'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem supr₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
+theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ :=
   by
   convert(monotone_lintegral μ).le_map_iSup₂ f
   ext1 a
   simp only [iSup_apply]
-#align measure_theory.supr₂_lintegral_le MeasureTheory.supr₂_lintegral_le
-
+#align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
+
+/- warning: measure_theory.le_infi_lintegral -> MeasureTheory.le_iInf_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => f i a))) (iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} (f : ι -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => f i a))) (iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegralₓ'. -/
 theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ i, f i a ∂μ) ≤ ⨅ i, ∫⁻ a, f i a ∂μ :=
   by
@@ -296,14 +422,26 @@ theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
   exact (monotone_lintegral μ).map_iInf_le
 #align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
 
-theorem le_infi₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
+/- warning: measure_theory.le_infi₂_lintegral -> MeasureTheory.le_iInf₂_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u2}} {ι' : ι -> Sort.{u3}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (h : ι' i) => f i h a)))) (iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ι (fun (i : ι) => iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) (ι' i) (fun (h : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i h a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Sort.{u3}} {ι' : ι -> Sort.{u2}} (f : forall (i : ι), (ι' i) -> α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (h : ι' i) => f i h a)))) (iInf.{0, u3} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ι (fun (i : ι) => iInf.{0, u2} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (ι' i) (fun (h : ι' i) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i h a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegralₓ'. -/
+theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ :=
   by
   convert(monotone_lintegral μ).map_iInf₂_le f
   ext1 a
   simp only [iInf_apply]
-#align measure_theory.le_infi₂_lintegral MeasureTheory.le_infi₂_lintegral
-
+#align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
+
+/- warning: measure_theory.lintegral_mono_ae -> MeasureTheory.lintegral_mono_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f a) (g a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f a) (g a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_aeₓ'. -/
 theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) :
     (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
   by
@@ -319,28 +457,47 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
     exact (hnt hat).elim
 #align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_ae
 
+/- warning: measure_theory.set_lintegral_mono_ae -> MeasureTheory.set_lintegral_mono_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_mono_ae MeasureTheory.set_lintegral_mono_aeₓ'. -/
 theorem set_lintegral_mono_ae {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
     (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
   lintegral_mono_ae <| (ae_restrict_iff <| measurableSet_le hf hg).2 hfg
 #align measure_theory.set_lintegral_mono_ae MeasureTheory.set_lintegral_mono_ae
 
+/- warning: measure_theory.set_lintegral_mono -> MeasureTheory.set_lintegral_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (x : α), (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (x : α), (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_mono MeasureTheory.set_lintegral_monoₓ'. -/
 theorem set_lintegral_mono {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
     (hfg : ∀ x ∈ s, f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
   set_lintegral_mono_ae hf hg (ae_of_all _ hfg)
 #align measure_theory.set_lintegral_mono MeasureTheory.set_lintegral_mono
 
+#print MeasureTheory.lintegral_congr_ae /-
 theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ :=
   le_antisymm (lintegral_mono_ae <| h.le) (lintegral_mono_ae <| h.symm.le)
 #align measure_theory.lintegral_congr_ae MeasureTheory.lintegral_congr_ae
+-/
 
+#print MeasureTheory.lintegral_congr /-
 theorem lintegral_congr {f g : α → ℝ≥0∞} (h : ∀ a, f a = g a) : (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ := by
   simp only [h]
 #align measure_theory.lintegral_congr MeasureTheory.lintegral_congr
+-/
 
+#print MeasureTheory.set_lintegral_congr /-
 theorem set_lintegral_congr {f : α → ℝ≥0∞} {s t : Set α} (h : s =ᵐ[μ] t) :
     (∫⁻ x in s, f x ∂μ) = ∫⁻ x in t, f x ∂μ := by rw [measure.restrict_congr_set h]
 #align measure_theory.set_lintegral_congr MeasureTheory.set_lintegral_congr
+-/
 
+#print MeasureTheory.set_lintegral_congr_fun /-
 theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : MeasurableSet s)
     (hfg : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : (∫⁻ x in s, f x ∂μ) = ∫⁻ x in s, g x ∂μ :=
   by
@@ -348,7 +505,14 @@ theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : Mea
   rw [eventually_eq]
   rwa [ae_restrict_iff' hs]
 #align measure_theory.set_lintegral_congr_fun MeasureTheory.set_lintegral_congr_fun
+-/
 
+/- warning: measure_theory.lintegral_of_real_le_lintegral_nnnorm -> MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> Real), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> Real), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnormₓ'. -/
 theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
     (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ‖f x‖₊ ∂μ :=
   by
@@ -358,6 +522,12 @@ theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
   exact le_abs_self (f x)
 #align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm
 
+/- warning: measure_theory.lintegral_nnnorm_eq_of_ae_nonneg -> MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (Filter.EventuallyLE.{u1, 0} α Real Real.hasLe (MeasureTheory.Measure.ae.{u1} α m μ) (OfNat.ofNat.{u1} (α -> Real) 0 (OfNat.mk.{u1} (α -> Real) 0 (Zero.zero.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.hasZero))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (Filter.EventuallyLE.{u1, 0} α Real Real.instLEReal (MeasureTheory.Measure.ae.{u1} α m μ) (OfNat.ofNat.{u1} (α -> Real) 0 (Zero.toOfNat0.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.21854 : α) => Real) (fun (i : α) => Real.instZeroReal)))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonnegₓ'. -/
 theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
     (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   by
@@ -366,11 +536,23 @@ theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[
   rw [Real.nnnorm_of_nonneg hx, ENNReal.ofReal_eq_coe_nnreal hx]
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
 
+/- warning: measure_theory.lintegral_nnnorm_eq_of_nonneg -> MeasureTheory.lintegral_nnnorm_eq_of_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (LE.le.{u1} (α -> Real) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.hasLe)) (OfNat.ofNat.{u1} (α -> Real) 0 (OfNat.mk.{u1} (α -> Real) 0 (Zero.zero.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.hasZero))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> Real}, (LE.le.{u1} (α -> Real) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => Real) (fun (i : α) => Real.instLEReal)) (OfNat.ofNat.{u1} (α -> Real) 0 (Zero.toOfNat0.{u1} (α -> Real) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.9034 : α) => Real) (fun (i : α) => Real.instZeroReal)))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (NNNorm.nnnorm.{0} Real (SeminormedAddGroup.toNNNorm.{0} Real (SeminormedAddCommGroup.toSeminormedAddGroup.{0} Real (NormedAddCommGroup.toSeminormedAddCommGroup.{0} Real Real.normedAddCommGroup))) (f x)))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.ofReal (f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonnegₓ'. -/
 theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
     (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   lintegral_nnnorm_eq_of_ae_nonneg (Filter.eventually_of_forall h_nonneg)
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
 
+/- warning: measure_theory.lintegral_supr -> MeasureTheory.lintegral_iSup is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Monotone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Monotone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr MeasureTheory.lintegral_iSupₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Lean3.lean:132:4: warning: unsupported: rw with cfg: { occs := occurrences.pos[occurrences.pos] «expr[ ,]»([1]) } -/
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
 
@@ -453,9 +635,15 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     
 #align measure_theory.lintegral_supr MeasureTheory.lintegral_iSup
 
+/- warning: measure_theory.lintegral_supr' -> MeasureTheory.lintegral_iSup' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr' MeasureTheory.lintegral_iSup'ₓ'. -/
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
 ae_measurable functions. -/
-theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
+theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
     (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
   by
   simp_rw [← iSup_apply]
@@ -473,8 +661,14 @@ theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurabl
   rw [@lintegral_supr _ _ μ _ (aeSeq.measurable hf p) h_ae_seq_mono]
   congr
   exact funext fun n => lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae hf hp n)
-#align measure_theory.lintegral_supr' MeasureTheory.lintegral_supr'
-
+#align measure_theory.lintegral_supr' MeasureTheory.lintegral_iSup'
+
+/- warning: measure_theory.lintegral_tendsto_of_tendsto_of_monotone -> MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {F : α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (F x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f n x)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => F x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {F : α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (Filter.Eventually.{u1} α (fun (x : α) => Monotone.{0, 0} Nat ENNReal (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (fun (n : Nat) => f n x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Eventually.{u1} α (fun (x : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => f n x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (F x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f n x)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => F x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotoneₓ'. -/
 /-- Monotone convergence theorem expressed with limits -/
 theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞}
     (hf : ∀ n, AEMeasurable (f n) μ) (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x)
@@ -493,6 +687,12 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
       (tendsto_atTop_iSup hx_mono)
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
 
+/- warning: measure_theory.lintegral_eq_supr_eapprox_lintegral -> MeasureTheory.lintegral_eq_iSup_eapprox_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.eapprox.{u1} α m f n) μ)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.SimpleFunc.lintegral.{u1} α m (MeasureTheory.SimpleFunc.eapprox.{u1} α m f n) μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_iSup_eapprox_lintegralₓ'. -/
 theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, f a ∂μ) = ⨆ n, (eapprox f n).lintegral μ :=
   calc
@@ -509,6 +709,12 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
     
 #align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_iSup_eapprox_lintegral
 
+/- warning: measure_theory.exists_pos_set_lintegral_lt_of_measure_lt -> MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{1} ENNReal (fun (δ : ENNReal) => Exists.{0} (GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) δ (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (fun (H : GT.gt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) δ (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) => forall (s : Set.{u1} α), (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) δ) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) ε)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{1} ENNReal (fun (δ : ENNReal) => And (GT.gt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) δ (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (forall (s : Set.{u1} α), (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) δ) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) ε)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_ltₓ'. -/
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. This lemma states states this fact in terms of `ε` and `δ`. -/
 theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {ε : ℝ≥0∞}
@@ -545,6 +751,12 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
     
 #align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt
 
+/- warning: measure_theory.tendsto_set_lintegral_zero -> MeasureTheory.tendsto_set_lintegral_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {l : Filter.{u2} ι} {s : ι -> (Set.{u1} α)}, (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ) s) l (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (x : α) => f x)) l (nhds.{0} ENNReal ENNReal.topologicalSpace (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {l : Filter.{u2} ι} {s : ι -> (Set.{u1} α)}, (Filter.Tendsto.{u2, 0} ι ENNReal (Function.comp.{succ u2, succ u1, 1} ι (Set.{u1} α) ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ)) s) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (x : α) => f x)) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_set_lintegral_zero MeasureTheory.tendsto_set_lintegral_zeroₓ'. -/
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. -/
 theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {l : Filter ι}
@@ -557,6 +769,12 @@ theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x,
   exact (hl δ δ0).mono fun i => hδ _
 #align measure_theory.tendsto_set_lintegral_zero MeasureTheory.tendsto_set_lintegral_zero
 
+/- warning: measure_theory.le_lintegral_add -> MeasureTheory.le_lintegral_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_addₓ'. -/
 /-- The sum of the lower Lebesgue integrals of two functions is less than or equal to the integral
 of their sum. The other inequality needs one of these functions to be (a.e.-)measurable. -/
 theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ) ≤ ∫⁻ a, f a + g a ∂μ :=
@@ -566,6 +784,12 @@ theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + 
   exact le_iSup₂_of_le (f' + g') (add_le_add hf' hg') (add_lintegral _ _).ge
 #align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_add
 
+/- warning: measure_theory.lintegral_add_aux -> MeasureTheory.lintegral_add_aux is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_auxₓ'. -/
 -- Use stronger lemmas `lintegral_add_left`/`lintegral_add_right` instead
 theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
@@ -600,6 +824,12 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
     
 #align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_aux
 
+/- warning: measure_theory.lintegral_add_left -> MeasureTheory.lintegral_add_left is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_leftₓ'. -/
 /-- If `f g : α → ℝ≥0∞` are two functions and one of them is (a.e.) measurable, then the Lebesgue
 integral of `f + g` equals the sum of integrals. This lemma assumes that `f` is integrable, see also
 `measure_theory.lintegral_add_right` and primed versions of these lemmas. -/
@@ -618,17 +848,35 @@ theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α 
     
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
 
+/- warning: measure_theory.lintegral_add_left' -> MeasureTheory.lintegral_add_left' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'ₓ'. -/
 theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (g : α → ℝ≥0∞) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
   rw [lintegral_congr_ae hf.ae_eq_mk, ← lintegral_add_left hf.measurable_mk,
     lintegral_congr_ae (hf.ae_eq_mk.add (ae_eq_refl g))]
 #align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'
 
+/- warning: measure_theory.lintegral_add_right' -> MeasureTheory.lintegral_add_right' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'ₓ'. -/
 theorem lintegral_add_right' (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
   simpa only [add_comm] using lintegral_add_left' hg f
 #align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'
 
+/- warning: measure_theory.lintegral_add_right -> MeasureTheory.lintegral_add_right is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_rightₓ'. -/
 /-- If `f g : α → ℝ≥0∞` are two functions and one of them is (a.e.) measurable, then the Lebesgue
 integral of `f + g` equals the sum of integrals. This lemma assumes that `g` is integrable, see also
 `measure_theory.lintegral_add_left` and primed versions of these lemmas. -/
@@ -638,11 +886,23 @@ theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg
   lintegral_add_right' f hg.AEMeasurable
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
 
+/- warning: measure_theory.lintegral_smul_measure -> MeasureTheory.lintegral_smul_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) c μ) (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (c : ENNReal) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) c μ) (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measureₓ'. -/
 @[simp]
 theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂c • μ) = c * ∫⁻ a, f a ∂μ :=
   by simp only [lintegral, iSup_subtype', simple_func.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
+/- warning: measure_theory.lintegral_sum_measure -> MeasureTheory.lintegral_sum_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {ι : Type.{u2}} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.sum.{u1, u2} α ι m μ) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace ι (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u2}} {m : MeasurableSpace.{u2} α} {ι : Type.{u1}} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u2} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u2} α m (MeasureTheory.Measure.sum.{u2, u1} α ι m μ) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal ι (fun (i : ι) => MeasureTheory.lintegral.{u2} α m (μ i) (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sum_measure MeasureTheory.lintegral_sum_measureₓ'. -/
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     (∫⁻ a, f a ∂Measure.sum μ) = ∑' i, ∫⁻ a, f a ∂μ i :=
@@ -662,17 +922,35 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
         (Finset.sum_le_sum fun j hj => simple_func.lintegral_mono le_sup_right le_rfl)⟩
 #align measure_theory.lintegral_sum_measure MeasureTheory.lintegral_sum_measure
 
+/- warning: measure_theory.has_sum_lintegral_measure -> MeasureTheory.hasSum_lintegral_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), HasSum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.sum.{u1, u2} α ι m μ) (fun (a : α) => f a))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), HasSum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.sum.{u1, u2} α ι m μ) (fun (a : α) => f a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.has_sum_lintegral_measure MeasureTheory.hasSum_lintegral_measureₓ'. -/
 theorem hasSum_lintegral_measure {ι} {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     HasSum (fun i => ∫⁻ a, f a ∂μ i) (∫⁻ a, f a ∂Measure.sum μ) :=
   (lintegral_sum_measure f μ).symm ▸ ENNReal.summable.HasSum
 #align measure_theory.has_sum_lintegral_measure MeasureTheory.hasSum_lintegral_measure
 
+/- warning: measure_theory.lintegral_add_measure -> MeasureTheory.lintegral_add_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m) (ν : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ ν) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal) (μ : MeasureTheory.Measure.{u1} α m) (ν : MeasureTheory.Measure.{u1} α m), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (HAdd.hAdd.{u1, u1, u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHAdd.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instAdd.{u1} α m)) μ ν) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m ν (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_measure MeasureTheory.lintegral_add_measureₓ'. -/
 @[simp]
 theorem lintegral_add_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ ν : Measure α) :
     (∫⁻ a, f a ∂μ + ν) = (∫⁻ a, f a ∂μ) + ∫⁻ a, f a ∂ν := by
   simpa [tsum_fintype] using lintegral_sum_measure f fun b => cond b μ ν
 #align measure_theory.lintegral_add_measure MeasureTheory.lintegral_add_measure
 
+/- warning: measure_theory.lintegral_finset_sum_measure -> MeasureTheory.lintegral_finset_sum_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (s : Finset.{u2} ι) (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) s (fun (i : ι) => μ i)) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal ι (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {ι : Type.{u2}} {m : MeasurableSpace.{u1} α} (s : Finset.{u2} ι) (f : α -> ENNReal) (μ : ι -> (MeasureTheory.Measure.{u1} α m)), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (Finset.sum.{u1, u2} (MeasureTheory.Measure.{u1} α m) ι (MeasureTheory.Measure.instAddCommMonoid.{u1} α m) s (fun (i : ι) => μ i)) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal ι (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (i : ι) => MeasureTheory.lintegral.{u1} α m (μ i) (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measureₓ'. -/
 @[simp]
 theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset ι) (f : α → ℝ≥0∞)
     (μ : ι → Measure α) : (∫⁻ a, f a ∂∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i :=
@@ -681,26 +959,52 @@ theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset 
   rfl
 #align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measure
 
+/- warning: measure_theory.lintegral_zero_measure -> MeasureTheory.lintegral_zero_measure is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m)))) (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))) (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measureₓ'. -/
 @[simp]
 theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) :
     (∫⁻ a, f a ∂(0 : Measure α)) = 0 :=
   bot_unique <| by simp [lintegral]
 #align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measure
 
+/- warning: measure_theory.set_lintegral_empty -> MeasureTheory.set_lintegral_empty is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.hasEmptyc.{u1} α))) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (EmptyCollection.emptyCollection.{u1} (Set.{u1} α) (Set.instEmptyCollectionSet.{u1} α))) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_emptyₓ'. -/
 theorem set_lintegral_empty (f : α → ℝ≥0∞) : (∫⁻ x in ∅, f x ∂μ) = 0 := by
   rw [measure.restrict_empty, lintegral_zero_measure]
 #align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_empty
 
+#print MeasureTheory.set_lintegral_univ /-
 theorem set_lintegral_univ (f : α → ℝ≥0∞) : (∫⁻ x in univ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
   rw [measure.restrict_univ]
 #align measure_theory.set_lintegral_univ MeasureTheory.set_lintegral_univ
+-/
 
+/- warning: measure_theory.set_lintegral_measure_zero -> MeasureTheory.set_lintegral_measure_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (f : α -> ENNReal), (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Set.{u1} α) (f : α -> ENNReal), (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zeroₓ'. -/
 theorem set_lintegral_measure_zero (s : Set α) (f : α → ℝ≥0∞) (hs' : μ s = 0) :
     (∫⁻ x in s, f x ∂μ) = 0 := by
   convert lintegral_zero_measure _
   exact measure.restrict_eq_zero.2 hs'
 #align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zero
 
+/- warning: measure_theory.lintegral_finset_sum' -> MeasureTheory.lintegral_finset_sum' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'ₓ'. -/
 theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
     (hf : ∀ b ∈ s, AEMeasurable (f b) μ) : (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   by
@@ -711,11 +1015,23 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
     rw [lintegral_add_left' hf.1, ih hf.2]
 #align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'
 
+/- warning: measure_theory.lintegral_finset_sum -> MeasureTheory.lintegral_finset_sum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (s : Finset.{u2} β) {f : β -> α -> ENNReal}, (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => f b a))) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sumₓ'. -/
 theorem lintegral_finset_sum (s : Finset β) {f : β → α → ℝ≥0∞} (hf : ∀ b ∈ s, Measurable (f b)) :
     (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   lintegral_finset_sum' s fun b hb => (hf b hb).AEMeasurable
 #align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sum
 
+/- warning: measure_theory.lintegral_const_mul -> MeasureTheory.lintegral_const_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mulₓ'. -/
 @[simp]
 theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
@@ -740,6 +1056,12 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
     
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
+/- warning: measure_theory.lintegral_const_mul'' -> MeasureTheory.lintegral_const_mul'' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''ₓ'. -/
 theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
   by
@@ -749,6 +1071,12 @@ theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEM
   rw [A, B, lintegral_const_mul _ hf.measurable_mk]
 #align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''
 
+/- warning: measure_theory.lintegral_const_mul_le -> MeasureTheory.lintegral_const_mul_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_leₓ'. -/
 theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * ∫⁻ a, f a ∂μ) ≤ ∫⁻ a, r * f a ∂μ :=
   by
   rw [lintegral, ENNReal.mul_iSup]
@@ -761,6 +1089,12 @@ theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * 
   exact mul_le_mul_left' (hs x) _
 #align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_le
 
+/- warning: measure_theory.lintegral_const_mul' -> MeasureTheory.lintegral_const_mul' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'ₓ'. -/
 theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
   by
@@ -776,22 +1110,52 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   simpa [(mul_assoc _ _ _).symm, rinv] using mul_le_mul_left' this r
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
 
+/- warning: measure_theory.lintegral_mul_const -> MeasureTheory.lintegral_mul_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_constₓ'. -/
 theorem lintegral_mul_const (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
 #align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_const
 
+/- warning: measure_theory.lintegral_mul_const'' -> MeasureTheory.lintegral_mul_const'' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''ₓ'. -/
 theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
 #align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''
 
+/- warning: measure_theory.lintegral_mul_const_le -> MeasureTheory.lintegral_mul_const_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_leₓ'. -/
 theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂μ) * r ≤ ∫⁻ a, f a * r ∂μ :=
   by simp_rw [mul_comm, lintegral_const_mul_le r f]
 #align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_le
 
+/- warning: measure_theory.lintegral_mul_const' -> MeasureTheory.lintegral_mul_const' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) r)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) r))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_mul_const' MeasureTheory.lintegral_mul_const'ₓ'. -/
 theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul' r f hr]
 #align measure_theory.lintegral_mul_const' MeasureTheory.lintegral_mul_const'
 
+/- warning: measure_theory.lintegral_lintegral_mul -> MeasureTheory.lintegral_lintegral_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> ENNReal} {g : β -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (AEMeasurable.{u2, 0} β ENNReal ENNReal.measurableSpace _inst_1 g ν) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (g y)))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => g y))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {β : Type.{u2}} [_inst_1 : MeasurableSpace.{u2} β] {ν : MeasureTheory.Measure.{u2} β _inst_1} {f : α -> ENNReal} {g : β -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (AEMeasurable.{u2, 0} β ENNReal ENNReal.measurableSpace _inst_1 g ν) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (g y)))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u2} β _inst_1 ν (fun (y : β) => g y))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mulₓ'. -/
 /- A double integral of a product where each factor contains only one variable
   is a product of integrals -/
 theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f : α → ℝ≥0∞}
@@ -800,18 +1164,36 @@ theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f :
   simp [lintegral_const_mul'' _ hg, lintegral_mul_const'' _ hf]
 #align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mul
 
+/- warning: measure_theory.lintegral_rw₁ -> MeasureTheory.lintegral_rw₁ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> β} {f' : α -> β}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f f') -> (forall (g : β -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f' a))))
+but is expected to have type
+  forall {α : Type.{u2}} {β : Type.{u1}} {m : MeasurableSpace.{u2} α} {μ : MeasureTheory.Measure.{u2} α m} {f : α -> β} {f' : α -> β}, (Filter.EventuallyEq.{u2, u1} α β (MeasureTheory.Measure.ae.{u2} α m μ) f f') -> (forall (g : β -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u2} α m μ (fun (a : α) => g (f a))) (MeasureTheory.lintegral.{u2} α m μ (fun (a : α) => g (f' a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁ₓ'. -/
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₁ {f f' : α → β} (h : f =ᵐ[μ] f') (g : β → ℝ≥0∞) :
     (∫⁻ a, g (f a) ∂μ) = ∫⁻ a, g (f' a) ∂μ :=
   lintegral_congr_ae <| h.mono fun a h => by rw [h]
 #align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁
 
+/- warning: measure_theory.lintegral_rw₂ -> MeasureTheory.lintegral_rw₂ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {γ : Type.{u3}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f₁ : α -> β} {f₁' : α -> β} {f₂ : α -> γ} {f₂' : α -> γ}, (Filter.EventuallyEq.{u1, u2} α β (MeasureTheory.Measure.ae.{u1} α m μ) f₁ f₁') -> (Filter.EventuallyEq.{u1, u3} α γ (MeasureTheory.Measure.ae.{u1} α m μ) f₂ f₂') -> (forall (g : β -> γ -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f₁ a) (f₂ a))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g (f₁' a) (f₂' a))))
+but is expected to have type
+  forall {α : Type.{u3}} {β : Type.{u2}} {γ : Type.{u1}} {m : MeasurableSpace.{u3} α} {μ : MeasureTheory.Measure.{u3} α m} {f₁ : α -> β} {f₁' : α -> β} {f₂ : α -> γ} {f₂' : α -> γ}, (Filter.EventuallyEq.{u3, u2} α β (MeasureTheory.Measure.ae.{u3} α m μ) f₁ f₁') -> (Filter.EventuallyEq.{u3, u1} α γ (MeasureTheory.Measure.ae.{u3} α m μ) f₂ f₂') -> (forall (g : β -> γ -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u3} α m μ (fun (a : α) => g (f₁ a) (f₂ a))) (MeasureTheory.lintegral.{u3} α m μ (fun (a : α) => g (f₁' a) (f₂' a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂ₓ'. -/
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁ : f₁ =ᵐ[μ] f₁') (h₂ : f₂ =ᵐ[μ] f₂')
     (g : β → γ → ℝ≥0∞) : (∫⁻ a, g (f₁ a) (f₂ a) ∂μ) = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
   lintegral_congr_ae <| h₁.mp <| h₂.mono fun _ h₂ h₁ => by rw [h₁, h₂]
 #align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂
 
+/- warning: measure_theory.lintegral_indicator -> MeasureTheory.lintegral_indicator is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicatorₓ'. -/
 @[simp]
 theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
     (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ :=
@@ -828,6 +1210,12 @@ theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : Measurabl
     simp [hφ x, hs, indicator_le_indicator]
 #align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicator
 
+/- warning: measure_theory.lintegral_indicator₀ -> MeasureTheory.lintegral_indicator₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m s μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {s : Set.{u1} α}, (MeasureTheory.NullMeasurableSet.{u1} α m s μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀ₓ'. -/
 theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMeasurableSet s μ) :
     (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ := by
   rw [← lintegral_congr_ae (indicator_ae_eq_of_ae_eq_set hs.to_measurable_ae_eq),
@@ -835,11 +1223,23 @@ theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMe
     measure.restrict_congr_set hs.to_measurable_ae_eq]
 #align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀
 
+/- warning: measure_theory.lintegral_indicator_const -> MeasureTheory.lintegral_indicator_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal ENNReal.hasZero s (fun (_x : α) => c) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u1, 0} α ENNReal instENNRealZero s (fun (_x : α) => c) a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_constₓ'. -/
 theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ≥0∞) :
     (∫⁻ a, s.indicator (fun _ => c) a ∂μ) = c * μ s := by
   rw [lintegral_indicator _ hs, set_lintegral_const]
 #align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_const
 
+/- warning: measure_theory.set_lintegral_eq_const -> MeasureTheory.set_lintegral_eq_const is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (r : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r))) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) r (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (r : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r))) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) r (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) r)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_constₓ'. -/
 theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r : ℝ≥0∞) :
     (∫⁻ x in { x | f x = r }, f x ∂μ) = r * μ { x | f x = r } :=
   by
@@ -850,6 +1250,12 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
   exact hf (measurable_set_singleton r)
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 
+/- warning: measure_theory.lintegral_add_mul_meas_add_le_le_lintegral -> MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) ε) (g x)))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f x) ε) (g x)))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegralₓ'. -/
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
@@ -873,6 +1279,12 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
   exacts[hx₂, (add_zero _).trans_le <| (hφ_le x).trans hx₁]
 #align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral
 
+/- warning: measure_theory.mul_meas_ge_le_lintegral₀ -> MeasureTheory.mul_meas_ge_le_lintegral₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.mul_meas_ge_le_lintegral₀ MeasureTheory.mul_meas_ge_le_lintegral₀ₓ'. -/
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (ε : ℝ≥0∞) :
     ε * μ { x | ε ≤ f x } ≤ ∫⁻ a, f a ∂μ := by
@@ -880,6 +1292,12 @@ theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f
     lintegral_add_mul_meas_add_le_le_lintegral (ae_of_all _ fun x => zero_le (f x)) hf ε
 #align measure_theory.mul_meas_ge_le_lintegral₀ MeasureTheory.mul_meas_ge_le_lintegral₀
 
+/- warning: measure_theory.mul_meas_ge_le_lintegral -> MeasureTheory.mul_meas_ge_le_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ε (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (ε : ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) ε (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (f x))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegralₓ'. -/
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. For a version assuming
 `ae_measurable`, see `mul_meas_ge_le_lintegral₀`. -/
 theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε : ℝ≥0∞) :
@@ -887,6 +1305,12 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
   mul_meas_ge_le_lintegral₀ hf.AEMeasurable ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
+/- warning: measure_theory.lintegral_eq_top_of_measure_eq_top_pos -> MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => Eq.{1} ENNReal (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_posₓ'. -/
 theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hμf : 0 < μ { x | f x = ∞ }) : (∫⁻ x, f x ∂μ) = ∞ :=
   eq_top_iff.mpr <|
@@ -896,6 +1320,12 @@ theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEM
       
 #align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
 
+/- warning: measure_theory.meas_ge_le_lintegral_div -> MeasureTheory.meas_ge_le_lintegral_div is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (f x)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) ε)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (f x)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) ε)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_divₓ'. -/
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
     (hε' : ε ≠ ∞) : μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε :=
@@ -905,6 +1335,12 @@ theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ
     exact mul_meas_ge_le_lintegral₀ hf ε
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
 
+/- warning: measure_theory.ae_eq_of_ae_le_of_lintegral_le -> MeasureTheory.ae_eq_of_ae_le_of_lintegral_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f g)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f g)
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_leₓ'. -/
 theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : (∫⁻ x, f x ∂μ) ≠ ∞)
     (hg : AEMeasurable g μ) (hgf : (∫⁻ x, g x ∂μ) ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g :=
   by
@@ -922,6 +1358,12 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     tendsto_const_nhds.add (ENNReal.tendsto_inv_iff.2 ENNReal.tendsto_nat_nhds_top)
 #align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_le
 
+/- warning: measure_theory.lintegral_eq_zero_iff' -> MeasureTheory.lintegral_eq_zero_iff' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_zero_iff' MeasureTheory.lintegral_eq_zero_iff'ₓ'. -/
 @[simp]
 theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
@@ -932,16 +1374,34 @@ theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     fun h => (lintegral_congr_ae h).trans lintegral_zero⟩
 #align measure_theory.lintegral_eq_zero_iff' MeasureTheory.lintegral_eq_zero_iff'
 
+/- warning: measure_theory.lintegral_eq_zero_iff -> MeasureTheory.lintegral_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iffₓ'. -/
 @[simp]
 theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
   lintegral_eq_zero_iff' hf.AEMeasurable
 #align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iff
 
+/- warning: measure_theory.lintegral_pos_iff_support -> MeasureTheory.lintegral_pos_iff_support is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Function.support.{u1, 0} α ENNReal ENNReal.hasZero f))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Function.support.{u1, 0} α ENNReal instENNRealZero f))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_pos_iff_support MeasureTheory.lintegral_pos_iff_supportₓ'. -/
 theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
     (0 < ∫⁻ a, f a ∂μ) ↔ 0 < μ (Function.support f) := by
   simp [pos_iff_ne_zero, hf, Filter.EventuallyEq, ae_iff, Function.support]
 #align measure_theory.lintegral_pos_iff_support MeasureTheory.lintegral_pos_iff_support
 
+/- warning: measure_theory.lintegral_supr_ae -> MeasureTheory.lintegral_iSup_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f n a) (f (Nat.succ n) a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f n a) (f (Nat.succ n) a)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_aeₓ'. -/
 /-- Weaker version of the monotone convergence theorem-/
 theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
     (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
@@ -963,6 +1423,12 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
     
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 
+/- warning: measure_theory.lintegral_sub' -> MeasureTheory.lintegral_sub' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'ₓ'. -/
 theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
   by
@@ -971,11 +1437,23 @@ theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fi
   exact lintegral_congr_ae (h_le.mono fun x hx => tsub_add_cancel_of_le hx)
 #align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'
 
+/- warning: measure_theory.lintegral_sub -> MeasureTheory.lintegral_sub is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) g f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (f a) (g a))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub MeasureTheory.lintegral_subₓ'. -/
 theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
   lintegral_sub' hg.AEMeasurable hg_fin h_le
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
 
+/- warning: measure_theory.lintegral_sub_le' -> MeasureTheory.lintegral_sub_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (g x) (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (g x) (f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'ₓ'. -/
 theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
     ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
   by
@@ -987,11 +1465,23 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
     exact lintegral_mono fun x => le_tsub_add
 #align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
 
+/- warning: measure_theory.lintegral_sub_le -> MeasureTheory.lintegral_sub_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.hasSub) (g x) (f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) (g : α -> ENNReal), (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => HSub.hSub.{0, 0, 0} ENNReal ENNReal ENNReal (instHSub.{0} ENNReal ENNReal.instSub) (g x) (f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_leₓ'. -/
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
     ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
   lintegral_sub_le' f g hf.AEMeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
 
+/- warning: measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt -> MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Filter.Frequently.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (Filter.Frequently.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_ltₓ'. -/
 theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
     (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ := by
@@ -1000,6 +1490,12 @@ theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0
   exact ae_eq_of_ae_le_of_lintegral_le h_le hfi hg h
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
 
+/- warning: measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on -> MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (forall {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) f g) -> (forall {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_onₓ'. -/
 theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
@@ -1007,6 +1503,12 @@ theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg
     ((frequently_ae_mem_iff.2 hμs).and_eventually h).mono fun x hx => (hx.2 hx.1).Ne
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on
 
+/- warning: measure_theory.lintegral_strict_mono -> MeasureTheory.lintegral_strict_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Ne.{succ u1} (MeasureTheory.Measure.{u1} α m) μ (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x)) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => g x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_monoₓ'. -/
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
   by
@@ -1015,12 +1517,24 @@ theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : A
   simpa using h
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
 
+/- warning: measure_theory.set_lintegral_strict_mono -> MeasureTheory.set_lintegral_strict_mono is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal} {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => g x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_monoₓ'. -/
 theorem set_lintegral_strict_mono {f g : α → ℝ≥0∞} {s : Set α} (hsm : MeasurableSet s)
     (hs : μ s ≠ 0) (hg : Measurable g) (hfi : (∫⁻ x in s, f x ∂μ) ≠ ∞)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x in s, f x ∂μ) < ∫⁻ x in s, g x ∂μ :=
   lintegral_strict_mono (by simp [hs]) hg.AEMeasurable hfi ((ae_restrict_iff' hsm).mpr h)
 #align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_mono
 
+/- warning: measure_theory.lintegral_infi_ae -> MeasureTheory.lintegral_iInf_ae is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f (Nat.succ n)) (f n)) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f (Nat.succ n)) (f n)) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_aeₓ'. -/
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n))
     (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) :
@@ -1053,12 +1567,24 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
         
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_ae
 
+/- warning: measure_theory.lintegral_infi -> MeasureTheory.lintegral_iInf is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Antitone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero))) a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasInf.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (Antitone.{0, u1} Nat (α -> ENNReal) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (Pi.preorder.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0)) a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f n a))) (iInf.{0, 1} ENNReal (ConditionallyCompleteLattice.toInfSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_infi MeasureTheory.lintegral_iInfₓ'. -/
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) (h_anti : Antitone f)
     (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) : (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
+/- warning: measure_theory.lintegral_liminf_le' -> MeasureTheory.lintegral_liminf_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f n) μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'ₓ'. -/
 /-- Known as Fatou's lemma, version with `ae_measurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
@@ -1066,26 +1592,38 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
       simp only [liminf_eq_supr_infi_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
-      (lintegral_supr' (fun n => aemeasurable_biInf _ (to_countable _) h_meas)
+      (lintegral_iSup' (fun n => aemeasurable_biInf _ (to_countable _) h_meas)
         (ae_of_all μ fun a n m hnm => iInf_le_iInf_of_subset fun i hi => le_trans hnm hi))
-    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_infi₂_lintegral _)
+    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_iInf₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
     
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
 
+/- warning: measure_theory.lintegral_liminf_le -> MeasureTheory.lintegral_liminf_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))) (Filter.liminf.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))) (Filter.liminf.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_leₓ'. -/
 /-- Known as Fatou's lemma -/
 theorem lintegral_liminf_le {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) :
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   lintegral_liminf_le' fun n => (h_meas n).AEMeasurable
 #align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_le
 
+/- warning: measure_theory.limsup_lintegral_le -> MeasureTheory.limsup_lintegral_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {g : α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f n) g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (Filter.limsup.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.limsup.{0, 0} ENNReal Nat (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : Nat -> α -> ENNReal} {g : α -> ENNReal}, (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (f n) g) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => g a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (Filter.limsup.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Filter.limsup.{0, 0} ENNReal Nat (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))) (fun (n : Nat) => f n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.limsup_lintegral_le MeasureTheory.limsup_lintegral_leₓ'. -/
 theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0∞} (hf_meas : ∀ n, Measurable (f n))
     (h_bound : ∀ n, f n ≤ᵐ[μ] g) (h_fin : (∫⁻ a, g a ∂μ) ≠ ∞) :
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop ≤ ∫⁻ a, limsup (fun n => f n a) atTop ∂μ :=
   calc
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop = ⨅ n : ℕ, ⨆ i ≥ n, ∫⁻ a, f i a ∂μ :=
       limsup_eq_iInf_iSup_of_nat
-    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := (iInf_mono fun n => supr₂_lintegral_le _)
+    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := (iInf_mono fun n => iSup₂_lintegral_le _)
     _ = ∫⁻ a, ⨅ n : ℕ, ⨆ i ≥ n, f i a ∂μ :=
       by
       refine' (lintegral_infi _ _ _).symm
@@ -1100,6 +1638,12 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
     
 #align measure_theory.limsup_lintegral_le MeasureTheory.limsup_lintegral_le
 
+/- warning: measure_theory.tendsto_lintegral_of_dominated_convergence -> MeasureTheory.tendsto_lintegral_of_dominated_convergence is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_lintegral_of_dominated_convergence MeasureTheory.tendsto_lintegral_of_dominated_convergenceₓ'. -/
 /-- Dominated convergence theorem for nonnegative functions -/
 theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
     (bound : α → ℝ≥0∞) (hF_meas : ∀ n, Measurable (F n)) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
@@ -1118,6 +1662,12 @@ theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0
       )
 #align measure_theory.tendsto_lintegral_of_dominated_convergence MeasureTheory.tendsto_lintegral_of_dominated_convergence
 
+/- warning: measure_theory.tendsto_lintegral_of_dominated_convergence' -> MeasureTheory.tendsto_lintegral_of_dominated_convergence' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (F n) μ) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {F : Nat -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (forall (n : Nat), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (F n) μ) -> (forall (n : Nat), Filter.EventuallyLE.{u1, 0} α ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.Measure.ae.{u1} α m μ) (F n) bound) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => F n a) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{0, 0} Nat ENNReal (fun (n : Nat) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'ₓ'. -/
 /-- Dominated convergence theorem for nonnegative functions which are just almost everywhere
 measurable. -/
 theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
@@ -1140,6 +1690,12 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
     rwa [H'] at H
 #align measure_theory.tendsto_lintegral_of_dominated_convergence' MeasureTheory.tendsto_lintegral_of_dominated_convergence'
 
+/- warning: measure_theory.tendsto_lintegral_filter_of_dominated_convergence -> MeasureTheory.tendsto_lintegral_filter_of_dominated_convergence is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {l : Filter.{u2} ι} [_inst_1 : Filter.IsCountablyGenerated.{u2} ι l] {F : ι -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (Filter.Eventually.{u2} ι (fun (n : ι) => Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) l) -> (Filter.Eventually.{u2} ι (fun (n : ι) => Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (F n a) (bound a)) (MeasureTheory.Measure.ae.{u1} α m μ)) l) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => F n a) l (nhds.{0} ENNReal ENNReal.topologicalSpace (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) l (nhds.{0} ENNReal ENNReal.topologicalSpace (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {ι : Type.{u2}} {l : Filter.{u2} ι} [_inst_1 : Filter.IsCountablyGenerated.{u2} ι l] {F : ι -> α -> ENNReal} {f : α -> ENNReal} (bound : α -> ENNReal), (Filter.Eventually.{u2} ι (fun (n : ι) => Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (F n)) l) -> (Filter.Eventually.{u2} ι (fun (n : ι) => Filter.Eventually.{u1} α (fun (a : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (F n a) (bound a)) (MeasureTheory.Measure.ae.{u1} α m μ)) l) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => bound a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (a : α) => Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => F n a) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (f a))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (Filter.Tendsto.{u2, 0} ι ENNReal (fun (n : ι) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => F n a)) l (nhds.{0} ENNReal ENNReal.instTopologicalSpaceENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.tendsto_lintegral_filter_of_dominated_convergence MeasureTheory.tendsto_lintegral_filter_of_dominated_convergenceₓ'. -/
 /-- Dominated convergence theorem for filters with a countable basis -/
 theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
     [l.IsCountablyGenerated] {F : ι → α → ℝ≥0∞} {f : α → ℝ≥0∞} (bound : α → ℝ≥0∞)
@@ -1176,6 +1732,12 @@ section
 
 open Encodable
 
+/- warning: measure_theory.lintegral_supr_directed_of_measurable -> MeasureTheory.lintegral_iSup_directed_of_measurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b)) -> (Directed.{u1, succ u2} (α -> ENNReal) β (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace (f b)) -> (Directed.{u1, succ u2} (α -> ENNReal) β (fun (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25151 : α -> ENNReal) (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25153 : α -> ENNReal) => LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25134 : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25151 x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25153) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurableₓ'. -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type -/
 theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α → ℝ≥0∞}
     (hf : ∀ b, Measurable (f b)) (h_directed : Directed (· ≤ ·) f) :
@@ -1202,6 +1764,12 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
     
 #align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurable
 
+/- warning: measure_theory.lintegral_supr_directed -> MeasureTheory.lintegral_iSup_directed is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ) -> (Directed.{u1, succ u2} (α -> ENNReal) β (LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))))) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (b : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f b) μ) -> (Directed.{u1, succ u2} (α -> ENNReal) β (fun (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25659 : α -> ENNReal) (x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25661 : α -> ENNReal) => LE.le.{u1} (α -> ENNReal) (Pi.hasLe.{u1, 0} α (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25641 : α) => ENNReal) (fun (i : α) => Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))) x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25659 x._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.25661) f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => f b a))) (iSup.{0, succ u2} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) β (fun (b : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f b a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_supr_directed MeasureTheory.lintegral_iSup_directedₓ'. -/
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
@@ -1238,6 +1806,12 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
 
 end
 
+/- warning: measure_theory.lintegral_tsum -> MeasureTheory.lintegral_tsum is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (i : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => f i a))) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {f : β -> α -> ENNReal}, (forall (i : β), AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (f i) μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => f i a))) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f i a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_tsum MeasureTheory.lintegral_tsumₓ'. -/
 theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) :
     (∫⁻ a, ∑' i, f i a ∂μ) = ∑' i, ∫⁻ a, f i a ∂μ :=
   by
@@ -1255,44 +1829,86 @@ theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i
 
 open Measure
 
-theorem lintegral_Union₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullMeasurableSet (s i) μ)
+/- warning: measure_theory.lintegral_Union₀ -> MeasureTheory.lintegral_iUnion₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_iUnion₀ₓ'. -/
+theorem lintegral_iUnion₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullMeasurableSet (s i) μ)
     (hd : Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ := by
   simp only [measure.restrict_Union_ae hd hm, lintegral_sum_measure]
-#align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_Union₀
-
+#align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_iUnion₀
+
+/- warning: measure_theory.lintegral_Union -> MeasureTheory.lintegral_iUnion is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)))) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] {s : β -> (Set.{u1} α)}, (forall (i : β), MeasurableSet.{u1} α m (s i)) -> (Pairwise.{u2} β (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnionₓ'. -/
 theorem lintegral_iUnion [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
     (hd : Pairwise (Disjoint on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ :=
-  lintegral_Union₀ (fun i => (hm i).NullMeasurableSet) hd.AEDisjoint f
+  lintegral_iUnion₀ (fun i => (hm i).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnion
 
-theorem lintegral_bUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
+/- warning: measure_theory.lintegral_bUnion₀ -> MeasureTheory.lintegral_biUnion₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) -> (MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ)) -> (Set.Pairwise.{u2} β t (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t))))) i))) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) -> (MeasureTheory.NullMeasurableSet.{u1} α m (s i) μ)) -> (Set.Pairwise.{u2} β t (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β t) (fun (i : Set.Elem.{u2} β t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) i))) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion₀ MeasureTheory.lintegral_biUnion₀ₓ'. -/
+theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
   by
   haveI := ht.to_encodable
   rw [bUnion_eq_Union, lintegral_Union₀ (SetCoe.forall'.1 hm) (hd.subtype _ _)]
-#align measure_theory.lintegral_bUnion₀ MeasureTheory.lintegral_bUnion₀
-
-theorem lintegral_bUnion {t : Set β} {s : β → Set α} (ht : t.Countable)
+#align measure_theory.lintegral_bUnion₀ MeasureTheory.lintegral_biUnion₀
+
+/- warning: measure_theory.lintegral_bUnion -> MeasureTheory.lintegral_biUnion is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) -> (MeasurableSet.{u1} α m (s i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) t s) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) (fun (H : Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) (fun (i : coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (HasLiftT.mk.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (CoeTCₓ.coe.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeBase.{succ u2, succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} β) Type.{u2} (Set.hasCoeToSort.{u2} β) t) β (coeSubtype.{succ u2} β (fun (x : β) => Membership.Mem.{u2, u2} β (Set.{u2} β) (Set.hasMem.{u2} β) x t))))) i))) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {t : Set.{u2} β} {s : β -> (Set.{u1} α)}, (Set.Countable.{u2} β t) -> (forall (i : β), (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) -> (MeasurableSet.{u1} α m (s i))) -> (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) t s) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) (fun (H : Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) i t) => s i)))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u2} β t) (fun (i : Set.Elem.{u2} β t) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s (Subtype.val.{succ u2} β (fun (x : β) => Membership.mem.{u2, u2} β (Set.{u2} β) (Set.instMembershipSet.{u2} β) x t) i))) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion MeasureTheory.lintegral_biUnionₓ'. -/
+theorem lintegral_biUnion {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, MeasurableSet (s i)) (hd : t.PairwiseDisjoint s) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
-  lintegral_bUnion₀ ht (fun i hi => (hm i hi).NullMeasurableSet) hd.AEDisjoint f
-#align measure_theory.lintegral_bUnion MeasureTheory.lintegral_bUnion
-
-theorem lintegral_bUnion_finset₀ {s : Finset β} {t : β → Set α}
+  lintegral_biUnion₀ ht (fun i hi => (hm i hi).NullMeasurableSet) hd.AEDisjoint f
+#align measure_theory.lintegral_bUnion MeasureTheory.lintegral_biUnion
+
+/- warning: measure_theory.lintegral_bUnion_finset₀ -> MeasureTheory.lintegral_biUnion_finset₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.Pairwise.{u2} β ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} β) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (Finset.Set.hasCoeT.{u2} β))) s) (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) t)) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (t b) μ)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.Pairwise.{u2} β (Finset.toSet.{u2} β s) (Function.onFun.{succ u2, succ u1, 1} β (Set.{u1} α) Prop (MeasureTheory.AEDisjoint.{u1} α m μ) t)) -> (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (MeasureTheory.NullMeasurableSet.{u1} α m (t b) μ)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_biUnion_finset₀ₓ'. -/
+theorem lintegral_biUnion_finset₀ {s : Finset β} {t : β → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on t)) (hm : ∀ b ∈ s, NullMeasurableSet (t b) μ)
     (f : α → ℝ≥0∞) : (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
   simp only [← Finset.mem_coe, lintegral_bUnion₀ s.countable_to_set hm hd, ← s.tsum_subtype']
-#align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_bUnion_finset₀
-
-theorem lintegral_bUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.PairwiseDisjoint (↑s) t)
+#align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_biUnion_finset₀
+
+/- warning: measure_theory.lintegral_bUnion_finset -> MeasureTheory.lintegral_biUnion_finset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (Finset.{u2} β) (Set.{u2} β) (HasLiftT.mk.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (CoeTCₓ.coe.{succ u2, succ u2} (Finset.{u2} β) (Set.{u2} β) (Finset.Set.hasCoeT.{u2} β))) s) t) -> (forall (b : β), (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) -> (MeasurableSet.{u1} α m (t b))) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) (fun (H : Membership.Mem.{u2, u2} β (Finset.{u2} β) (Finset.hasMem.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Finset.{u2} β} {t : β -> (Set.{u1} α)}, (Set.PairwiseDisjoint.{u1, u2} (Set.{u1} α) β (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (Finset.toSet.{u2} β s) t) -> (forall (b : β), (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) -> (MeasurableSet.{u1} α m (t b))) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (b : β) => Set.iUnion.{u1, 0} α (Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) (fun (H : Membership.mem.{u2, u2} β (Finset.{u2} β) (Finset.instMembershipFinset.{u2} β) b s) => t b)))) (fun (a : α) => f a)) (Finset.sum.{0, u2} ENNReal β (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (b : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (t b)) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_biUnion_finsetₓ'. -/
+theorem lintegral_biUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.PairwiseDisjoint (↑s) t)
     (hm : ∀ b ∈ s, MeasurableSet (t b)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
-  lintegral_bUnion_finset₀ hd.AEDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
-#align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_bUnion_finset
-
+  lintegral_biUnion_finset₀ hd.AEDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
+#align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_biUnion_finset
+
+/- warning: measure_theory.lintegral_Union_le -> MeasureTheory.lintegral_iUnion_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] (s : β -> (Set.{u1} α)) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u2} β] (s : β -> (Set.{u1} α)) (f : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Set.iUnion.{u1, succ u2} α β (fun (i : β) => s i))) (fun (a : α) => f a)) (tsum.{0, u2} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal β (fun (i : β) => MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (s i)) (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_leₓ'. -/
 theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) ≤ ∑' i, ∫⁻ a in s i, f a ∂μ :=
   by
@@ -1300,21 +1916,45 @@ theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ
   exact lintegral_mono' restrict_Union_le le_rfl
 #align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_le
 
+/- warning: measure_theory.lintegral_union -> MeasureTheory.lintegral_union is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {A : Set.{u1} α} {B : Set.{u1} α}, (MeasurableSet.{u1} α m B) -> (Disjoint.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α)))))) (GeneralizedBooleanAlgebra.toOrderBot.{u1} (Set.{u1} α) (BooleanAlgebra.toGeneralizedBooleanAlgebra.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α))) A B) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Union.union.{u1} (Set.{u1} α) (Set.hasUnion.{u1} α) A B)) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ B) (fun (a : α) => f a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {A : Set.{u1} α} {B : Set.{u1} α}, (MeasurableSet.{u1} α m B) -> (Disjoint.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) (BoundedOrder.toOrderBot.{u1} (Set.{u1} α) (Preorder.toLE.{u1} (Set.{u1} α) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))))) (CompleteLattice.toBoundedOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α)))))) A B) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Union.union.{u1} (Set.{u1} α) (Set.instUnionSet.{u1} α) A B)) (fun (a : α) => f a)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (a : α) => f a)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ B) (fun (a : α) => f a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_union MeasureTheory.lintegral_unionₓ'. -/
 theorem lintegral_union {f : α → ℝ≥0∞} {A B : Set α} (hB : MeasurableSet B) (hAB : Disjoint A B) :
     (∫⁻ a in A ∪ B, f a ∂μ) = (∫⁻ a in A, f a ∂μ) + ∫⁻ a in B, f a ∂μ := by
   rw [restrict_union hAB hB, lintegral_add_measure]
 #align measure_theory.lintegral_union MeasureTheory.lintegral_union
 
+/- warning: measure_theory.lintegral_inter_add_diff -> MeasureTheory.lintegral_inter_add_diff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {B : Set.{u1} α} (f : α -> ENNReal) (A : Set.{u1} α), (MeasurableSet.{u1} α m B) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) A B)) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (SDiff.sdiff.{u1} (Set.{u1} α) (BooleanAlgebra.toHasSdiff.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) A B)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {B : Set.{u1} α} (f : α -> ENNReal) (A : Set.{u1} α), (MeasurableSet.{u1} α m B) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) A B)) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (SDiff.sdiff.{u1} (Set.{u1} α) (Set.instSDiffSet.{u1} α) A B)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diffₓ'. -/
 theorem lintegral_inter_add_diff {B : Set α} (f : α → ℝ≥0∞) (A : Set α) (hB : MeasurableSet B) :
     ((∫⁻ x in A ∩ B, f x ∂μ) + ∫⁻ x in A \ B, f x ∂μ) = ∫⁻ x in A, f x ∂μ := by
   rw [← lintegral_add_measure, restrict_inter_add_diff _ hB]
 #align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diff
 
+/- warning: measure_theory.lintegral_add_compl -> MeasureTheory.lintegral_add_compl is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {A : Set.{u1} α}, (MeasurableSet.{u1} α m A) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.booleanAlgebra.{u1} α)) A)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (f : α -> ENNReal) {A : Set.{u1} α}, (MeasurableSet.{u1} α m A) -> (Eq.{1} ENNReal (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ A) (fun (x : α) => f x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (HasCompl.compl.{u1} (Set.{u1} α) (BooleanAlgebra.toHasCompl.{u1} (Set.{u1} α) (Set.instBooleanAlgebraSet.{u1} α)) A)) (fun (x : α) => f x))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_complₓ'. -/
 theorem lintegral_add_compl (f : α → ℝ≥0∞) {A : Set α} (hA : MeasurableSet A) :
     ((∫⁻ x in A, f x ∂μ) + ∫⁻ x in Aᶜ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
   rw [← lintegral_add_measure, measure.restrict_add_restrict_compl hA]
 #align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_compl
 
+/- warning: measure_theory.lintegral_max -> MeasureTheory.lintegral_max is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => LinearOrder.max.{0} ENNReal (ConditionallyCompleteLinearOrder.toLinearOrder.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.completeLinearOrder))) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x)))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (g x) (f x)))) (fun (x : α) => f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => Max.max.{0} ENNReal (CanonicallyLinearOrderedAddMonoid.toMax.{0} ENNReal ENNReal.instCanonicallyLinearOrderedAddMonoidENNReal) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x)))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (g x) (f x)))) (fun (x : α) => f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_max MeasureTheory.lintegral_maxₓ'. -/
 theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     (∫⁻ x, max (f x) (g x) ∂μ) =
       (∫⁻ x in { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in { x | g x < f x }, f x ∂μ :=
@@ -1326,6 +1966,12 @@ theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measur
   exacts[ae_of_all _ fun x => max_eq_right, ae_of_all _ fun x hx => max_eq_left (not_le.1 hx).le]
 #align measure_theory.lintegral_max MeasureTheory.lintegral_max
 
+/- warning: measure_theory.set_lintegral_max -> MeasureTheory.set_lintegral_max is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => LinearOrder.max.{0} ENNReal (ConditionallyCompleteLinearOrder.toLinearOrder.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.completeLinearOrder))) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (g x))))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) s (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (g x) (f x))))) (fun (x : α) => f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall (s : Set.{u1} α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => Max.max.{0} ENNReal (CanonicallyLinearOrderedAddMonoid.toMax.{0} ENNReal ENNReal.instCanonicallyLinearOrderedAddMonoidENNReal) (f x) (g x))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (x : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (g x))))) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) s (setOf.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (g x) (f x))))) (fun (x : α) => f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_maxₓ'. -/
 theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) (s : Set α) :
     (∫⁻ x in s, max (f x) (g x) ∂μ) =
       (∫⁻ x in s ∩ { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in s ∩ { x | g x < f x }, f x ∂μ :=
@@ -1334,6 +1980,7 @@ theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
   exacts[measurableSet_lt hg hf, measurableSet_le hf hg]
 #align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_max
 
+#print MeasureTheory.lintegral_map /-
 theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
     (hg : Measurable g) : (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ :=
   by
@@ -1342,7 +1989,9 @@ theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α
   convert simple_func.lintegral_map _ hg
   ext1 x; simp only [eapprox_comp hf hg, coe_comp]
 #align measure_theory.lintegral_map MeasureTheory.lintegral_map
+-/
 
+#print MeasureTheory.lintegral_map' /-
 theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β}
     (hf : AEMeasurable f (Measure.map g μ)) (hg : AEMeasurable g μ) :
     (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, f (g a) ∂μ :=
@@ -1358,7 +2007,14 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
     _ = ∫⁻ a, f (g a) ∂μ := lintegral_congr_ae (ae_eq_comp hg hf.ae_eq_mk.symm)
     
 #align measure_theory.lintegral_map' MeasureTheory.lintegral_map'
+-/
 
+/- warning: measure_theory.lintegral_map_le -> MeasureTheory.lintegral_map_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} (f : β -> ENNReal) {g : α -> β}, (Measurable.{u1, u2} α β m mβ g) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u2} β mβ (MeasureTheory.Measure.map.{u1, u2} α β mβ m g μ) (fun (a : β) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} (f : β -> ENNReal) {g : α -> β}, (Measurable.{u1, u2} α β m mβ g) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u2} β mβ (MeasureTheory.Measure.map.{u1, u2} α β mβ m g μ) (fun (a : β) => f a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f (g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_map_le MeasureTheory.lintegral_map_leₓ'. -/
 theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g : α → β} (hg : Measurable g) :
     (∫⁻ a, f a ∂Measure.map g μ) ≤ ∫⁻ a, f (g a) ∂μ :=
   by
@@ -1368,17 +2024,27 @@ theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g :
   exact le_iSup_of_le (fun x => h'i (g x)) (le_of_eq (lintegral_map hi hg))
 #align measure_theory.lintegral_map_le MeasureTheory.lintegral_map_le
 
+#print MeasureTheory.lintegral_comp /-
 theorem lintegral_comp [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
     (hg : Measurable g) : lintegral μ (f ∘ g) = ∫⁻ a, f a ∂map g μ :=
   (lintegral_map hf hg).symm
 #align measure_theory.lintegral_comp MeasureTheory.lintegral_comp
+-/
 
+#print MeasureTheory.set_lintegral_map /-
 theorem set_lintegral_map [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α → β} {s : Set β}
     (hs : MeasurableSet s) (hf : Measurable f) (hg : Measurable g) :
     (∫⁻ y in s, f y ∂map g μ) = ∫⁻ x in g ⁻¹' s, f (g x) ∂μ := by
   rw [restrict_map hg hs, lintegral_map hf hg]
 #align measure_theory.set_lintegral_map MeasureTheory.set_lintegral_map
+-/
 
+/- warning: measure_theory.lintegral_indicator_const_comp -> MeasureTheory.lintegral_indicator_const_comp is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} {f : α -> β} {s : Set.{u2} β}, (Measurable.{u1, u2} α β m mβ f) -> (MeasurableSet.{u2} β mβ s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u2, 0} β ENNReal ENNReal.hasZero s (fun (_x : β) => c) (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.preimage.{u1, u2} α β f s))))
+but is expected to have type
+  forall {α : Type.{u1}} {β : Type.{u2}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {mβ : MeasurableSpace.{u2} β} {f : α -> β} {s : Set.{u2} β}, (Measurable.{u1, u2} α β m mβ f) -> (MeasurableSet.{u2} β mβ s) -> (forall (c : ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => Set.indicator.{u2, 0} β ENNReal instENNRealZero s (fun (_x : β) => c) (f a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.preimage.{u1, u2} α β f s))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_indicator_const_comp MeasureTheory.lintegral_indicator_const_compₓ'. -/
 theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β} {s : Set β}
     (hf : Measurable f) (hs : MeasurableSet s) (c : ℝ≥0∞) :
     (∫⁻ a, s.indicator (fun _ => c) (f a) ∂μ) = c * μ (f ⁻¹' s) := by
@@ -1386,6 +2052,7 @@ theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β
     measure.map_apply hf hs]
 #align measure_theory.lintegral_indicator_const_comp MeasureTheory.lintegral_indicator_const_comp
 
+#print MeasurableEmbedding.lintegral_map /-
 /-- If `g : α → β` is a measurable embedding and `f : β → ℝ≥0∞` is any function (not necessarily
 measurable), then `∫⁻ a, f a ∂(map g μ) = ∫⁻ a, f (g a) ∂μ`. Compare with `lintegral_map` wich
 applies to any measurable `g : α → β` but requires that `f` is measurable as well. -/
@@ -1402,7 +2069,9 @@ theorem MeasurableEmbedding.lintegral_map [MeasurableSpace β] {g : α → β}
     refine' lintegral_mono_ae (hg.ae_map_iff.2 <| eventually_of_forall fun x => _)
     exact (extend_apply _ _ _ _).trans_le (hf₀ _)
 #align measurable_embedding.lintegral_map MeasurableEmbedding.lintegral_map
+-/
 
+#print MeasureTheory.lintegral_map_equiv /-
 /-- The `lintegral` transforms appropriately under a measurable equivalence `g : α ≃ᵐ β`.
 (Compare `lintegral_map`, which applies to a wider class of functions `g : α → β`, but requires
 measurability of the function being integrated.) -/
@@ -1410,37 +2079,54 @@ theorem lintegral_map_equiv [MeasurableSpace β] (f : β → ℝ≥0∞) (g : α
     (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ :=
   g.MeasurableEmbedding.lintegral_map f
 #align measure_theory.lintegral_map_equiv MeasureTheory.lintegral_map_equiv
+-/
 
+#print MeasureTheory.MeasurePreserving.lintegral_comp /-
 theorem MeasurePreserving.lintegral_comp {mb : MeasurableSpace β} {ν : Measure β} {g : α → β}
     (hg : MeasurePreserving g μ ν) {f : β → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, f (g a) ∂μ) = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, lintegral_map hf hg.measurable]
 #align measure_theory.measure_preserving.lintegral_comp MeasureTheory.MeasurePreserving.lintegral_comp
+-/
 
+#print MeasureTheory.MeasurePreserving.lintegral_comp_emb /-
 theorem MeasurePreserving.lintegral_comp_emb {mb : MeasurableSpace β} {ν : Measure β} {g : α → β}
     (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞) :
     (∫⁻ a, f (g a) ∂μ) = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, hge.lintegral_map]
 #align measure_theory.measure_preserving.lintegral_comp_emb MeasureTheory.MeasurePreserving.lintegral_comp_emb
+-/
 
+#print MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage /-
 theorem MeasurePreserving.set_lintegral_comp_preimage {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) {s : Set β} (hs : MeasurableSet s) {f : β → ℝ≥0∞}
     (hf : Measurable f) : (∫⁻ a in g ⁻¹' s, f (g a) ∂μ) = ∫⁻ b in s, f b ∂ν := by
   rw [← hg.map_eq, set_lintegral_map hs hf hg.measurable]
 #align measure_theory.measure_preserving.set_lintegral_comp_preimage MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage
+-/
 
+#print MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage_emb /-
 theorem MeasurePreserving.set_lintegral_comp_preimage_emb {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞)
     (s : Set β) : (∫⁻ a in g ⁻¹' s, f (g a) ∂μ) = ∫⁻ b in s, f b ∂ν := by
   rw [← hg.map_eq, hge.restrict_map, hge.lintegral_map]
 #align measure_theory.measure_preserving.set_lintegral_comp_preimage_emb MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage_emb
+-/
 
+#print MeasureTheory.MeasurePreserving.set_lintegral_comp_emb /-
 theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞)
     (s : Set α) : (∫⁻ a in s, f (g a) ∂μ) = ∫⁻ b in g '' s, f b ∂ν := by
   rw [← hg.set_lintegral_comp_preimage_emb hge, preimage_image_eq _ hge.injective]
 #align measure_theory.measure_preserving.set_lintegral_comp_emb MeasureTheory.MeasurePreserving.set_lintegral_comp_emb
+-/
 
 section DiracAndCount
 
+/- warning: measurable_space.top.measurable_singleton_class -> MeasurableSpace.Top.measurableSingletonClass is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}}, MeasurableSingletonClass.{u1} α (Top.top.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toHasTop.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.completeLattice.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}}, MeasurableSingletonClass.{u1} α (Top.top.{u1} (MeasurableSpace.{u1} α) (CompleteLattice.toTop.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instCompleteLatticeMeasurableSpace.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measurable_space.top.measurable_singleton_class MeasurableSpace.Top.measurableSingletonClassₓ'. -/
 instance (priority := 10) MeasurableSpace.Top.measurableSingletonClass {α : Type _} :
     @MeasurableSingletonClass α (⊤ : MeasurableSpace α)
     where measurableSet_singleton i := MeasurableSpace.measurableSet_top
@@ -1448,14 +2134,24 @@ instance (priority := 10) MeasurableSpace.Top.measurableSingletonClass {α : Typ
 
 variable [MeasurableSpace α]
 
+#print MeasureTheory.lintegral_dirac' /-
 theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂dirac a) = f a :=
   by simp [lintegral_congr_ae (ae_eq_dirac' hf)]
 #align measure_theory.lintegral_dirac' MeasureTheory.lintegral_dirac'
+-/
 
+#print MeasureTheory.lintegral_dirac /-
 theorem lintegral_dirac [MeasurableSingletonClass α] (a : α) (f : α → ℝ≥0∞) :
     (∫⁻ a, f a ∂dirac a) = f a := by simp [lintegral_congr_ae (ae_eq_dirac f)]
 #align measure_theory.lintegral_dirac MeasureTheory.lintegral_dirac
+-/
 
+/- warning: measure_theory.set_lintegral_dirac' -> MeasureTheory.set_lintegral_dirac' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α _inst_1 s) -> (forall [_inst_2 : Decidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_2 (f a) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α _inst_1 s) -> (forall [_inst_2 : Decidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) _inst_2 (f a) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'ₓ'. -/
 theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f) {s : Set α}
     (hs : MeasurableSet s) [Decidable (a ∈ s)] :
     (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
@@ -1467,6 +2163,12 @@ theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'
 
+/- warning: measure_theory.set_lintegral_dirac -> MeasureTheory.set_lintegral_dirac is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} (f : α -> ENNReal) (s : Set.{u1} α) [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] [_inst_3 : Decidable (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s) _inst_3 (f a) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {a : α} (f : α -> ENNReal) (s : Set.{u1} α) [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] [_inst_3 : Decidable (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s)], Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.restrict.{u1} α _inst_1 (MeasureTheory.Measure.dirac.{u1} α _inst_1 a) s) (fun (x : α) => f x)) (ite.{1} ENNReal (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s) _inst_3 (f a) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_diracₓ'. -/
 theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [MeasurableSingletonClass α]
     [Decidable (a ∈ s)] : (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
   by
@@ -1476,6 +2178,12 @@ theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [Measu
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_dirac
 
+/- warning: measure_theory.lintegral_count' -> MeasureTheory.lintegral_count' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace f) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_count' MeasureTheory.lintegral_count'ₓ'. -/
 theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂count) = ∑' a, f a :=
   by
   rw [count, lintegral_sum_measure]
@@ -1483,6 +2191,12 @@ theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a
   exact funext fun a => lintegral_dirac' a hf
 #align measure_theory.lintegral_count' MeasureTheory.lintegral_count'
 
+/- warning: measure_theory.lintegral_count -> MeasureTheory.lintegral_count is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => f a))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => f a))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_count MeasureTheory.lintegral_countₓ'. -/
 theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
     (∫⁻ a, f a ∂count) = ∑' a, f a :=
   by
@@ -1491,10 +2205,22 @@ theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
   exact funext fun a => lintegral_dirac a f
 #align measure_theory.lintegral_count MeasureTheory.lintegral_count
 
+/- warning: ennreal.tsum_const_eq -> ENNReal.tsum_const_eq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (c : ENNReal), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) c (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) (MeasureTheory.Measure.count.{u1} α _inst_1) (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] (c : ENNReal), Eq.{1} ENNReal (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => c)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) c (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1)) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align ennreal.tsum_const_eq ENNReal.tsum_const_eqₓ'. -/
 theorem ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
     (∑' i : α, c) = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
 #align ennreal.tsum_const_eq ENNReal.tsum_const_eq
 
+/- warning: ennreal.count_const_le_le_of_tsum_le -> ENNReal.count_const_le_le_of_tsum_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace a) -> (forall {c : ENNReal}, (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (i : α) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) (MeasureTheory.Measure.count.{u1} α _inst_1) (setOf.{u1} α (fun (i : α) => LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) c ε))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal _inst_1 ENNReal.measurableSpace a) -> (forall {c : ENNReal}, (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (i : α) => a i)) c) -> (forall {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal ε (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1)) (setOf.{u1} α (fun (i : α) => LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) c ε))))
+Case conversion may be inaccurate. Consider using '#align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_leₓ'. -/
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
 theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
     (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
@@ -1505,6 +2231,12 @@ theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a :
   exact ENNReal.div_le_div tsum_le_c rfl.le
 #align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_le
 
+/- warning: nnreal.count_const_le_le_of_tsum_le -> NNReal.count_const_le_le_of_tsum_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> NNReal}, (Measurable.{u1, 0} α NNReal _inst_1 NNReal.measurableSpace a) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace a) -> (forall {c : NNReal}, (LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)) NNReal.topologicalSpace α (fun (i : α) => a i)) c) -> (forall {ε : NNReal}, (Ne.{1} NNReal ε (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_1) (fun (_x : MeasureTheory.Measure.{u1} α _inst_1) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_1) (MeasureTheory.Measure.count.{u1} α _inst_1) (setOf.{u1} α (fun (i : α) => LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toHasDiv.{0} ENNReal ENNReal.divInvMonoid)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) c) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) ε)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α _inst_1] {a : α -> NNReal}, (Measurable.{u1, 0} α NNReal _inst_1 NNReal.measurableSpace a) -> (Summable.{0, u1} NNReal α (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal a) -> (forall {c : NNReal}, (LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (tsum.{0, u1} NNReal (OrderedCancelAddCommMonoid.toAddCommMonoid.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal instNNRealStrictOrderedSemiring)) NNReal.instTopologicalSpaceNNReal α (fun (i : α) => a i)) c) -> (forall {ε : NNReal}, (Ne.{1} NNReal ε (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_1 (MeasureTheory.Measure.count.{u1} α _inst_1)) (setOf.{u1} α (fun (i : α) => LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) ε (a i)))) (HDiv.hDiv.{0, 0, 0} ENNReal ENNReal ENNReal (instHDiv.{0} ENNReal (DivInvMonoid.toDiv.{0} ENNReal ENNReal.instDivInvMonoidENNReal)) (ENNReal.some c) (ENNReal.some ε)))))
+Case conversion may be inaccurate. Consider using '#align nnreal.count_const_le_le_of_tsum_le NNReal.count_const_le_le_of_tsum_leₓ'. -/
 /-- Markov's inequality for counting measure with hypothesis using `tsum` in `ℝ≥0`. -/
 theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0}
     (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : (∑' i, a i) ≤ c)
@@ -1530,6 +2262,12 @@ section Countable
 -/
 
 
+/- warning: measure_theory.lintegral_countable' -> MeasureTheory.lintegral_countable' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace α (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Countable.{succ u1} α] [_inst_2 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal α (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_countable' MeasureTheory.lintegral_countable'ₓ'. -/
 theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
     (∫⁻ a, f a ∂μ) = ∑' a, f a * μ {a} :=
   by
@@ -1538,26 +2276,50 @@ theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : 
   rw [lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_countable' MeasureTheory.lintegral_countable'
 
+/- warning: measure_theory.lintegral_singleton' -> MeasureTheory.lintegral_singleton' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_singleton' MeasureTheory.lintegral_singleton'ₓ'. -/
 theorem lintegral_singleton' {f : α → ℝ≥0∞} (hf : Measurable f) (a : α) :
     (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac' _ hf, mul_comm]
 #align measure_theory.lintegral_singleton' MeasureTheory.lintegral_singleton'
 
+/- warning: measure_theory.lintegral_singleton -> MeasureTheory.lintegral_singleton is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) (a : α), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)) (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_singleton MeasureTheory.lintegral_singletonₓ'. -/
 theorem lintegral_singleton [MeasurableSingletonClass α] (f : α → ℝ≥0∞) (a : α) :
     (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_singleton MeasureTheory.lintegral_singleton
 
+/- warning: measure_theory.lintegral_countable -> MeasureTheory.lintegral_countable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) ENNReal.topologicalSpace (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) (fun (a : coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) a)) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (HasLiftT.mk.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (CoeTCₓ.coe.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeBase.{succ u1, succ u1} (coeSort.{succ u1, succ (succ u1)} (Set.{u1} α) Type.{u1} (Set.hasCoeToSort.{u1} α) s) α (coeSubtype.{succ u1} α (fun (x : α) => Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) x s))))) a))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (f : α -> ENNReal) {s : Set.{u1} α}, (Set.Countable.{u1} α s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (a : α) => f a)) (tsum.{0, u1} ENNReal (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) ENNReal.instTopologicalSpaceENNReal (Set.Elem.{u1} α s) (fun (a : Set.Elem.{u1} α s) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) a)) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) (Subtype.val.{succ u1} α (fun (x : α) => Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) x s) a))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_countable MeasureTheory.lintegral_countableₓ'. -/
 theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞) {s : Set α}
     (hs : s.Countable) : (∫⁻ a in s, f a ∂μ) = ∑' a : s, f a * μ {(a : α)} :=
   calc
     (∫⁻ a in s, f a ∂μ) = ∫⁻ a in ⋃ x ∈ s, {x}, f a ∂μ := by rw [bUnion_of_singleton]
     _ = ∑' a : s, ∫⁻ x in {a}, f x ∂μ :=
-      (lintegral_bUnion hs (fun _ _ => measurableSet_singleton _) (pairwise_disjoint_fiber id s) _)
+      (lintegral_biUnion hs (fun _ _ => measurableSet_singleton _) (pairwise_disjoint_fiber id s) _)
     _ = ∑' a : s, f a * μ {(a : α)} := by simp only [lintegral_singleton]
     
 #align measure_theory.lintegral_countable MeasureTheory.lintegral_countable
 
+/- warning: measure_theory.lintegral_insert -> MeasureTheory.lintegral_insert is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] {a : α} {s : Set.{u1} α}, (Not (Membership.Mem.{u1, u1} α (Set.{u1} α) (Set.hasMem.{u1} α) a s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.hasInsert.{u1} α) a s)) (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) a))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] {a : α} {s : Set.{u1} α}, (Not (Membership.mem.{u1, u1} α (Set.{u1} α) (Set.instMembershipSet.{u1} α) a s)) -> (forall (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Insert.insert.{u1, u1} α (Set.{u1} α) (Set.instInsertSet.{u1} α) a s)) (fun (x : α) => f x)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) a))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => f x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_insert MeasureTheory.lintegral_insertₓ'. -/
 theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h : a ∉ s)
     (f : α → ℝ≥0∞) : (∫⁻ x in insert a s, f x ∂μ) = f a * μ {a} + ∫⁻ x in s, f x ∂μ :=
   by
@@ -1566,16 +2328,34 @@ theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h
   rwa [disjoint_singleton_right]
 #align measure_theory.lintegral_insert MeasureTheory.lintegral_insert
 
+/- warning: measure_theory.lintegral_finset -> MeasureTheory.lintegral_finset is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (s : Finset.{u1} α) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ ((fun (a : Type.{u1}) (b : Type.{u1}) [self : HasLiftT.{succ u1, succ u1} a b] => self.0) (Finset.{u1} α) (Set.{u1} α) (HasLiftT.mk.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (CoeTCₓ.coe.{succ u1, succ u1} (Finset.{u1} α) (Set.{u1} α) (Finset.Set.hasCoeT.{u1} α))) s)) (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) s (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] (s : Finset.{u1} α) (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ (Finset.toSet.{u1} α s)) (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) s (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_finset MeasureTheory.lintegral_finsetₓ'. -/
 theorem lintegral_finset [MeasurableSingletonClass α] (s : Finset α) (f : α → ℝ≥0∞) :
     (∫⁻ x in s, f x ∂μ) = ∑ x in s, f x * μ {x} := by
   simp only [lintegral_countable _ s.countable_to_set, ← s.tsum_subtype']
 #align measure_theory.lintegral_finset MeasureTheory.lintegral_finset
 
+/- warning: measure_theory.lintegral_fintype -> MeasureTheory.lintegral_fintype is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] [_inst_2 : Fintype.{u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (OrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (OrderedSemiring.toOrderedAddCommMonoid.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))) (Finset.univ.{u1} α _inst_2) (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f x) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.hasSingleton.{u1} α) x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : MeasurableSingletonClass.{u1} α m] [_inst_2 : Fintype.{u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Finset.sum.{0, u1} ENNReal α (LinearOrderedAddCommMonoid.toAddCommMonoid.{0} ENNReal (LinearOrderedAddCommMonoidWithTop.toLinearOrderedAddCommMonoid.{0} ENNReal ENNReal.instLinearOrderedAddCommMonoidWithTopENNReal)) (Finset.univ.{u1} α _inst_2) (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f x) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Singleton.singleton.{u1, u1} α (Set.{u1} α) (Set.instSingletonSet.{u1} α) x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_fintype MeasureTheory.lintegral_fintypeₓ'. -/
 theorem lintegral_fintype [MeasurableSingletonClass α] [Fintype α] (f : α → ℝ≥0∞) :
     (∫⁻ x, f x ∂μ) = ∑ x, f x * μ {x} := by
   rw [← lintegral_finset, Finset.coe_univ, measure.restrict_univ]
 #align measure_theory.lintegral_fintype MeasureTheory.lintegral_fintype
 
+/- warning: measure_theory.lintegral_unique -> MeasureTheory.lintegral_unique is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Unique.{succ u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f (Inhabited.default.{succ u1} α (Unique.inhabited.{succ u1} α _inst_1))) (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Set.univ.{u1} α)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : Unique.{succ u1} α] (f : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f (Inhabited.default.{succ u1} α (Unique.instInhabited.{succ u1} α _inst_1))) (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Set.univ.{u1} α)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_unique MeasureTheory.lintegral_uniqueₓ'. -/
 theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x ∂μ) = f default * μ univ :=
   calc
     (∫⁻ x, f x ∂μ) = ∫⁻ x, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
@@ -1585,6 +2365,12 @@ theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x 
 
 end Countable
 
+/- warning: measure_theory.ae_lt_top -> MeasureTheory.ae_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_lt_top MeasureTheory.ae_lt_topₓ'. -/
 theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ := by
   simp_rw [ae_iff, ENNReal.not_lt_top]
@@ -1598,12 +2384,24 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
   simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
 
+/- warning: measure_theory.ae_lt_top' -> MeasureTheory.ae_lt_top' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_lt_top' MeasureTheory.ae_lt_top'ₓ'. -/
 theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ :=
   haveI h2f_meas : (∫⁻ x, hf.mk f x ∂μ) ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
   (ae_lt_top hf.measurable_mk h2f_meas).mp (hf.ae_eq_mk.mono fun x hx h => by rwa [hx])
 #align measure_theory.ae_lt_top' MeasureTheory.ae_lt_top'
 
+/- warning: measure_theory.set_lintegral_lt_top_of_bdd_above -> MeasureTheory.set_lintegral_lt_top_of_bddAbove is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (BddAbove.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring))) (Set.image.{u1, 0} α NNReal f s)) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (BddAbove.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring)) (Set.image.{u1, 0} α NNReal f s)) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => ENNReal.some (f x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_lt_top_of_bdd_above MeasureTheory.set_lintegral_lt_top_of_bddAboveₓ'. -/
 theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : α → ℝ≥0}
     (hf : Measurable f) (hbdd : BddAbove (f '' s)) : (∫⁻ x in s, f x ∂μ) < ∞ :=
   by
@@ -1617,12 +2415,24 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
     simp [hs]
 #align measure_theory.set_lintegral_lt_top_of_bdd_above MeasureTheory.set_lintegral_lt_top_of_bddAbove
 
+/- warning: measure_theory.set_lintegral_lt_top_of_is_compact -> MeasureTheory.set_lintegral_lt_top_of_isCompact is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : OpensMeasurableSpace.{u1} α _inst_1 m] {s : Set.{u1} α}, (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (IsCompact.{u1} α _inst_1 s) -> (forall {f : α -> NNReal}, (Continuous.{u1, 0} α NNReal _inst_1 NNReal.topologicalSpace f) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_1 : TopologicalSpace.{u1} α] [_inst_2 : OpensMeasurableSpace.{u1} α _inst_1 m] {s : Set.{u1} α}, (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (IsCompact.{u1} α _inst_1 s) -> (forall {f : α -> NNReal}, (Continuous.{u1, 0} α NNReal _inst_1 NNReal.instTopologicalSpaceNNReal f) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => ENNReal.some (f x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompactₓ'. -/
 theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α] {s : Set α}
     (hs : μ s ≠ ∞) (hsc : IsCompact s) {f : α → ℝ≥0} (hf : Continuous f) :
     (∫⁻ x in s, f x ∂μ) < ∞ :=
   set_lintegral_lt_top_of_bddAbove hs hf.Measurable (hsc.image hf).BddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
+/- warning: is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal -> IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [μ_fin : MeasureTheory.FiniteMeasure.{u1} α _inst_1 μ] {f : α -> ENNReal}, (Exists.{1} NNReal (fun (c : NNReal) => forall (x : α), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) c))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) [μ_fin : MeasureTheory.FiniteMeasure.{u1} α _inst_1 μ] {f : α -> ENNReal}, (Exists.{1} NNReal (fun (c : NNReal) => forall (x : α), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (ENNReal.some c))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (x : α) => f x)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNRealₓ'. -/
 theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
     (μ : Measure α) [μ_fin : FiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
     (∫⁻ x, f x ∂μ) < ∞ := by
@@ -1632,26 +2442,33 @@ theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [Me
   exact ENNReal.mul_lt_top ennreal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
 #align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal
 
+#print MeasureTheory.Measure.withDensity /-
 /-- Given a measure `μ : measure α` and a function `f : α → ℝ≥0∞`, `μ.with_density f` is the
 measure such that for a measurable set `s` we have `μ.with_density f s = ∫⁻ a in s, f a ∂μ`. -/
 def Measure.withDensity {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) : Measure α :=
   Measure.ofMeasurable (fun s hs => ∫⁻ a in s, f a ∂μ) (by simp) fun s hs hd =>
     lintegral_iUnion hs hd _
 #align measure_theory.measure.with_density MeasureTheory.Measure.withDensity
+-/
 
+#print MeasureTheory.withDensity_apply /-
 @[simp]
 theorem withDensity_apply (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
     μ.withDensity f s = ∫⁻ a in s, f a ∂μ :=
   Measure.ofMeasurable_apply s hs
 #align measure_theory.with_density_apply MeasureTheory.withDensity_apply
+-/
 
+#print MeasureTheory.withDensity_congr_ae /-
 theorem withDensity_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : μ.withDensity f = μ.withDensity g :=
   by
   apply measure.ext fun s hs => _
   rw [with_density_apply _ hs, with_density_apply _ hs]
   exact lintegral_congr_ae (ae_restrict_of_ae h)
 #align measure_theory.with_density_congr_ae MeasureTheory.withDensity_congr_ae
+-/
 
+#print MeasureTheory.withDensity_add_left /-
 theorem withDensity_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α → ℝ≥0∞) :
     μ.withDensity (f + g) = μ.withDensity f + μ.withDensity g :=
   by
@@ -1660,26 +2477,34 @@ theorem withDensity_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α
     ← lintegral_add_left hf]
   rfl
 #align measure_theory.with_density_add_left MeasureTheory.withDensity_add_left
+-/
 
+#print MeasureTheory.withDensity_add_right /-
 theorem withDensity_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : Measurable g) :
     μ.withDensity (f + g) = μ.withDensity f + μ.withDensity g := by
   simpa only [add_comm] using with_density_add_left hg f
 #align measure_theory.with_density_add_right MeasureTheory.withDensity_add_right
+-/
 
+#print MeasureTheory.withDensity_add_measure /-
 theorem withDensity_add_measure {m : MeasurableSpace α} (μ ν : Measure α) (f : α → ℝ≥0∞) :
     (μ + ν).withDensity f = μ.withDensity f + ν.withDensity f :=
   by
   ext1 s hs
   simp only [with_density_apply f hs, restrict_add, lintegral_add_measure, measure.add_apply]
 #align measure_theory.with_density_add_measure MeasureTheory.withDensity_add_measure
+-/
 
+#print MeasureTheory.withDensity_sum /-
 theorem withDensity_sum {ι : Type _} {m : MeasurableSpace α} (μ : ι → Measure α) (f : α → ℝ≥0∞) :
     (Sum μ).withDensity f = Sum fun n => (μ n).withDensity f :=
   by
   ext1 s hs
   simp_rw [sum_apply _ hs, with_density_apply f hs, restrict_sum μ hs, lintegral_sum_measure]
 #align measure_theory.with_density_sum MeasureTheory.withDensity_sum
+-/
 
+#print MeasureTheory.withDensity_smul /-
 theorem withDensity_smul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
     μ.withDensity (r • f) = r • μ.withDensity f :=
   by
@@ -1688,7 +2513,14 @@ theorem withDensity_smul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurab
     smul_eq_mul, ← lintegral_const_mul r hf]
   rfl
 #align measure_theory.with_density_smul MeasureTheory.withDensity_smul
+-/
 
+/- warning: measure_theory.with_density_smul' -> MeasureTheory.withDensity_smul' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ (SMul.smul.{0, u1} ENNReal (α -> ENNReal) (Function.hasSMul.{u1, 0, 0} α ENNReal ENNReal (Mul.toSMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) r f)) (SMul.smul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (SMulZeroClass.toHasSmul.{0, 0} ENNReal ENNReal (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (SMulWithZero.toSmulZeroClass.{0, 0} ENNReal ENNReal (MulZeroClass.toHasZero.{0} ENNReal (MulZeroOneClass.toMulZeroClass.{0} ENNReal (MonoidWithZero.toMulZeroOneClass.{0} ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (MulActionWithZero.toSMulWithZero.{0, 0} ENNReal ENNReal (Semiring.toMonoidWithZero.{0} ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (AddZeroClass.toHasZero.{0} ENNReal (AddMonoid.toAddZeroClass.{0} ENNReal (AddCommMonoid.toAddMonoid.{0} ENNReal (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) (Module.toMulActionWithZero.{0, 0} ENNReal ENNReal (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))) (Algebra.toModule.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))) m) r (MeasureTheory.Measure.withDensity.{u1} α m μ f)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} (r : ENNReal) (f : α -> ENNReal), (Ne.{1} ENNReal r (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ (HSMul.hSMul.{0, u1, u1} ENNReal (α -> ENNReal) (α -> ENNReal) (instHSMul.{0, u1} ENNReal (α -> ENNReal) (Pi.instSMul.{u1, 0, 0} α ENNReal (fun (a._@.Mathlib.MeasureTheory.Integral.Lebesgue._hyg.34021 : α) => ENNReal) (fun (i : α) => Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))) r f)) (HSMul.hSMul.{0, u1, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.{u1} α m) (instHSMul.{0, u1} ENNReal (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instSMul.{u1, 0} α ENNReal (Algebra.toSMul.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) (IsScalarTower.right.{0, 0} ENNReal ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (CommSemiring.toSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (Algebra.id.{0} ENNReal (CanonicallyOrderedCommSemiring.toCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) m)) r (MeasureTheory.Measure.withDensity.{u1} α m μ f)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'ₓ'. -/
 theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
     μ.withDensity (r • f) = r • μ.withDensity f :=
   by
@@ -1698,6 +2530,12 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
+/- warning: measure_theory.is_finite_measure_with_density -> MeasureTheory.finiteMeasure_withDensity is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (MeasureTheory.FiniteMeasure.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => f a)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (MeasureTheory.FiniteMeasure.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))
+Case conversion may be inaccurate. Consider using '#align measure_theory.is_finite_measure_with_density MeasureTheory.finiteMeasure_withDensityₓ'. -/
 theorem finiteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
     FiniteMeasure (μ.withDensity f) :=
   {
@@ -1705,6 +2543,7 @@ theorem finiteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a 
       rwa [with_density_apply _ MeasurableSet.univ, measure.restrict_univ, lt_top_iff_ne_top] }
 #align measure_theory.is_finite_measure_with_density MeasureTheory.finiteMeasure_withDensity
 
+#print MeasureTheory.withDensity_absolutelyContinuous /-
 theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
     μ.withDensity f ≪ μ :=
   by
@@ -1712,21 +2551,27 @@ theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure
   rw [with_density_apply _ hs₁]
   exact set_lintegral_measure_zero _ _ hs₂
 #align measure_theory.with_density_absolutely_continuous MeasureTheory.withDensity_absolutelyContinuous
+-/
 
+#print MeasureTheory.withDensity_zero /-
 @[simp]
 theorem withDensity_zero : μ.withDensity 0 = 0 :=
   by
   ext1 s hs
   simp [with_density_apply _ hs]
 #align measure_theory.with_density_zero MeasureTheory.withDensity_zero
+-/
 
+#print MeasureTheory.withDensity_one /-
 @[simp]
 theorem withDensity_one : μ.withDensity 1 = μ :=
   by
   ext1 s hs
   simp [with_density_apply _ hs]
 #align measure_theory.with_density_one MeasureTheory.withDensity_one
+-/
 
+#print MeasureTheory.withDensity_tsum /-
 theorem withDensity_tsum {f : ℕ → α → ℝ≥0∞} (h : ∀ i, Measurable (f i)) :
     μ.withDensity (∑' n, f n) = Sum fun n => μ.withDensity (f n) :=
   by
@@ -1736,7 +2581,9 @@ theorem withDensity_tsum {f : ℕ → α → ℝ≥0∞} (h : ∀ i, Measurable
   rw [← lintegral_tsum fun i => (h i).AEMeasurable]
   refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)
 #align measure_theory.with_density_tsum MeasureTheory.withDensity_tsum
+-/
 
+#print MeasureTheory.withDensity_indicator /-
 theorem withDensity_indicator {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
     μ.withDensity (s.indicator f) = (μ.restrict s).withDensity f :=
   by
@@ -1744,12 +2591,16 @@ theorem withDensity_indicator {s : Set α} (hs : MeasurableSet s) (f : α → 
   rw [with_density_apply _ ht, lintegral_indicator _ hs, restrict_comm hs, ←
     with_density_apply _ ht]
 #align measure_theory.with_density_indicator MeasureTheory.withDensity_indicator
+-/
 
+#print MeasureTheory.withDensity_indicator_one /-
 theorem withDensity_indicator_one {s : Set α} (hs : MeasurableSet s) :
     μ.withDensity (s.indicator 1) = μ.restrict s := by
   rw [with_density_indicator hs, with_density_one]
 #align measure_theory.with_density_indicator_one MeasureTheory.withDensity_indicator_one
+-/
 
+#print MeasureTheory.withDensity_ofReal_mutuallySingular /-
 theorem withDensity_ofReal_mutuallySingular {f : α → ℝ} (hf : Measurable f) :
     (μ.withDensity fun x => ENNReal.ofReal <| f x) ⟂ₘ
       μ.withDensity fun x => ENNReal.ofReal <| -f x :=
@@ -1764,7 +2615,9 @@ theorem withDensity_ofReal_mutuallySingular {f : α → ℝ} (hf : Measurable f)
       (ae_restrict_mem hS.compl).mono fun x hx =>
         ENNReal.ofReal_eq_zero.2 (not_lt.1 <| mt neg_pos.1 hx)
 #align measure_theory.with_density_of_real_mutually_singular MeasureTheory.withDensity_ofReal_mutuallySingular
+-/
 
+#print MeasureTheory.restrict_withDensity /-
 theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
     (μ.withDensity f).restrict s = (μ.restrict s).withDensity f :=
   by
@@ -1772,13 +2625,26 @@ theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ
   rw [restrict_apply ht, with_density_apply _ ht, with_density_apply _ (ht.inter hs),
     restrict_restrict ht]
 #align measure_theory.restrict_with_density MeasureTheory.restrict_withDensity
+-/
 
+/- warning: measure_theory.with_density_eq_zero -> MeasureTheory.withDensity_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ f) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (OfNat.mk.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.zero.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m))))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Eq.{succ u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ f) (OfNat.ofNat.{u1} (MeasureTheory.Measure.{u1} α m) 0 (Zero.toOfNat0.{u1} (MeasureTheory.Measure.{u1} α m) (MeasureTheory.Measure.instZero.{u1} α m)))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α m μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero)))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.with_density_eq_zero MeasureTheory.withDensity_eq_zeroₓ'. -/
 theorem withDensity_eq_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h : μ.withDensity f = 0) :
     f =ᵐ[μ] 0 := by
   rw [← lintegral_eq_zero_iff' hf, ← set_lintegral_univ, ← with_density_apply _ MeasurableSet.univ,
     h, measure.coe_zero, Pi.zero_apply]
 #align measure_theory.with_density_eq_zero MeasureTheory.withDensity_eq_zero
 
+/- warning: measure_theory.with_density_apply_eq_zero -> MeasureTheory.withDensity_apply_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {s : Set.{u1} α}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) (MeasureTheory.Measure.withDensity.{u1} α m μ f) s) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) (Eq.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m) (fun (_x : MeasureTheory.Measure.{u1} α m) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m) μ (Inter.inter.{u1} (Set.{u1} α) (Set.hasInter.{u1} α) (setOf.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero))))) s)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal} {s : Set.{u1} α}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f)) s) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) (Eq.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m μ) (Inter.inter.{u1} (Set.{u1} α) (Set.instInterSet.{u1} α) (setOf.{u1} α (fun (x : α) => Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero)))) s)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.with_density_apply_eq_zero MeasureTheory.withDensity_apply_eq_zeroₓ'. -/
 theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Measurable f) :
     μ.withDensity f s = 0 ↔ μ ({ x | f x ≠ 0 } ∩ s) = 0 :=
   by
@@ -1814,6 +2680,12 @@ theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Mea
       simp only [imp_self, Pi.zero_apply, imp_true_iff]
 #align measure_theory.with_density_apply_eq_zero MeasureTheory.withDensity_apply_eq_zero
 
+/- warning: measure_theory.ae_with_density_iff -> MeasureTheory.ae_withDensity_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {p : α -> Prop} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))) (Filter.Eventually.{u1} α (fun (x : α) => (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (p x)) (MeasureTheory.Measure.ae.{u1} α m μ)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {p : α -> Prop} {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Iff (Filter.Eventually.{u1} α (fun (x : α) => p x) (MeasureTheory.Measure.ae.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f))) (Filter.Eventually.{u1} α (fun (x : α) => (Ne.{1} ENNReal (f x) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (p x)) (MeasureTheory.Measure.ae.{u1} α m μ)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_with_density_iff MeasureTheory.ae_withDensity_iffₓ'. -/
 theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ, f x ≠ 0 → p x :=
   by
@@ -1823,6 +2695,7 @@ theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measu
   simp only [exists_prop, mem_inter_iff, iff_self_iff, mem_set_of_eq, not_forall]
 #align measure_theory.ae_with_density_iff MeasureTheory.ae_withDensity_iff
 
+#print MeasureTheory.ae_withDensity_iff_ae_restrict /-
 theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ.restrict { x | f x ≠ 0 }, p x :=
   by
@@ -1830,7 +2703,14 @@ theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞}
   · rfl
   · exact hf (measurable_set_singleton 0).compl
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
+-/
 
+/- warning: measure_theory.ae_measurable_with_density_ennreal_iff -> MeasureTheory.aEMeasurable_withDensity_eNNReal_iff is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, Iff (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)))) (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)) (g x)) μ))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> NNReal}, (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, Iff (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ (fun (x : α) => ENNReal.some (f x)))) (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m (fun (x : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ENNReal.some (f x)) (g x)) μ))
+Case conversion may be inaccurate. Consider using '#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aEMeasurable_withDensity_eNNReal_iffₓ'. -/
 theorem aEMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
     AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
       AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
@@ -1866,6 +2746,12 @@ variable {m m0 : MeasurableSpace α}
 
 include m
 
+/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mulₓ'. -/
 /-- This is Exercise 1.2.1 from [tao2010]. It allows you to express integration of a measurable
 function with respect to `(μ.with_density f)` as an integral with respect to `μ`, called the base
 measure. `μ` is often the Lebesgue measure, and in this circumstance `f` is the probability density
@@ -1879,7 +2765,7 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
     (h_mf : Measurable f) :
     ∀ {g : α → ℝ≥0∞}, Measurable g → (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
   by
-  apply Measurable.eNNReal_induction
+  apply Measurable.ennreal_induction
   · intro c s h_ms
     simp [*, mul_comm _ c, ← indicator_mul_right]
   · intro g h h_univ h_mea_g h_mea_h h_ind_g h_ind_h
@@ -1889,12 +2775,24 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
     simp [lintegral_supr, ENNReal.mul_iSup, h_mf.mul (h_mea_g _), *]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mul
 
+/- warning: measure_theory.set_lintegral_with_density_eq_set_lintegral_mul -> MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) s) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g x))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal} {g : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace g) -> (forall {s : Set.{u1} α}, (MeasurableSet.{u1} α m s) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) s) (fun (x : α) => g x)) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.restrict.{u1} α m μ s) (fun (x : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g x))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mulₓ'. -/
 theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : Measurable f) (hg : Measurable g) {s : Set α} (hs : MeasurableSet s) :
     (∫⁻ x in s, g x ∂μ.withDensity f) = ∫⁻ x in s, (f * g) x ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul _ hf hg]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul
 
+/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul₀' -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ f)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g (MeasureTheory.Measure.withDensity.{u1} α m μ f)) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'ₓ'. -/
 /-- The Lebesgue integral of `g` with respect to the measure `μ.with_density f` coincides with
 the integral of `f * g`. This version assumes that `g` is almost everywhere measurable. For a
 version without conditions on `g` but requiring that `f` is almost everywhere finite, see
@@ -1933,12 +2831,24 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
     
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'
 
+/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul₀ -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (forall {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m g μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀ₓ'. -/
 theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
   lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensity_absolutelyContinuous μ f))
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀
 
+/- warning: measure_theory.lintegral_with_density_le_lintegral_mul -> MeasureTheory.lintegral_withDensity_le_lintegral_mul is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (forall (g : α -> ENNReal), LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mulₓ'. -/
 theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (g : α → ℝ≥0∞) : (∫⁻ a, g a ∂μ.withDensity f) ≤ ∫⁻ a, (f * g) a ∂μ :=
   by
@@ -1949,6 +2859,12 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
   exact le_iSup_of_le A (le_of_eq (lintegral_with_density_eq_lintegral_mul _ f_meas i_meas))
 #align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mul
 
+/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m ENNReal.measurableSpace f) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurableₓ'. -/
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (hf : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
@@ -1976,13 +2892,21 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
     rw [← mul_assoc, ENNReal.mul_inv_cancel hx h'x.ne, one_mul]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable
 
+#print MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable /-
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (g : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s)
     (hf : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
     (∫⁻ a in s, g a ∂μ.withDensity f) = ∫⁻ a in s, (f * g) a ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul_non_measurable _ f_meas hf]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable
+-/
 
+/- warning: measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ -> MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀ is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m f μ) -> (Filter.Eventually.{u1} α (fun (x : α) => LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f x) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (MeasureTheory.Measure.ae.{u1} α m μ)) -> (forall (g : α -> ENNReal), Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α m (MeasureTheory.Measure.withDensity.{u1} α m μ f) (fun (a : α) => g a)) (MeasureTheory.lintegral.{u1} α m μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)))
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀ₓ'. -/
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure α) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
@@ -2005,13 +2929,16 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure 
     
 #align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀
 
+#print MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ /-
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ (μ : Measure α)
     {f : α → ℝ≥0∞} {s : Set α} (hf : AEMeasurable f (μ.restrict s)) (g : α → ℝ≥0∞)
     (hs : MeasurableSet s) (h'f : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
     (∫⁻ a in s, g a ∂μ.withDensity f) = ∫⁻ a in s, (f * g) a ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul_non_measurable₀ _ hf h'f]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable₀ MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀
+-/
 
+#print MeasureTheory.withDensity_mul /-
 theorem withDensity_mul (μ : Measure α) {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
     μ.withDensity (f * g) = (μ.withDensity f).withDensity g :=
   by
@@ -2019,7 +2946,14 @@ theorem withDensity_mul (μ : Measure α) {f g : α → ℝ≥0∞} (hf : Measur
   simp [with_density_apply _ hs, restrict_with_density hs,
     lintegral_with_density_eq_lintegral_mul _ hf hg]
 #align measure_theory.with_density_mul MeasureTheory.withDensity_mul
+-/
 
+/- warning: measure_theory.exists_pos_lintegral_lt_of_sigma_finite -> MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) [_inst_1 : MeasureTheory.SigmaFinite.{u1} α m μ] {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Exists.{succ u1} (α -> NNReal) (fun (g : α -> NNReal) => And (forall (x : α), LT.lt.{0} NNReal (Preorder.toHasLt.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (OfNat.ofNat.{0} NNReal 0 (OfNat.mk.{0} NNReal 0 (Zero.zero.{0} NNReal (MulZeroClass.toHasZero.{0} NNReal (NonUnitalNonAssocSemiring.toMulZeroClass.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring))))))) (g x)) (And (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace g) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (g x))) ε))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} (μ : MeasureTheory.Measure.{u1} α m) [_inst_1 : MeasureTheory.SigmaFinite.{u1} α m μ] {ε : ENNReal}, (Ne.{1} ENNReal ε (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Exists.{succ u1} (α -> NNReal) (fun (g : α -> NNReal) => And (forall (x : α), LT.lt.{0} NNReal (Preorder.toLT.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (OfNat.ofNat.{0} NNReal 0 (Zero.toOfNat0.{0} NNReal instNNRealZero)) (g x)) (And (Measurable.{u1, 0} α NNReal m NNReal.measurableSpace g) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (g x))) ε))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_pos_lintegral_lt_of_sigma_finite MeasureTheory.exists_pos_lintegral_lt_of_sigmaFiniteₓ'. -/
 /-- In a sigma-finite measure space, there exists an integrable function which is
 positive everywhere (and with an arbitrarily small integral). -/
 theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ] {ε : ℝ≥0∞}
@@ -2041,11 +2975,12 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
     measurable_spanning_sets_index, mul_comm] using δsum
 #align measure_theory.exists_pos_lintegral_lt_of_sigma_finite MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite
 
+#print MeasureTheory.lintegral_trim /-
 theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : measurable[m] f) :
     (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ :=
   by
   refine'
-    @Measurable.eNNReal_induction α m (fun f => (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ) _ _ _ f hf
+    @Measurable.ennreal_induction α m (fun f => (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ) _ _ _ f hf
   · intro c s hs
     rw [lintegral_indicator _ hs, lintegral_indicator _ (hm s hs), set_lintegral_const,
       set_lintegral_const]
@@ -2062,17 +2997,26 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
     congr
     exact funext fun n => hf_prop n
 #align measure_theory.lintegral_trim MeasureTheory.lintegral_trim
+-/
 
+#print MeasureTheory.lintegral_trim_ae /-
 theorem lintegral_trim_ae {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f (μ.trim hm)) : (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ := by
   rw [lintegral_congr_ae (ae_eq_of_ae_eq_trim hf.ae_eq_mk), lintegral_congr_ae hf.ae_eq_mk,
     lintegral_trim hm hf.measurable_mk]
 #align measure_theory.lintegral_trim_ae MeasureTheory.lintegral_trim_ae
+-/
 
 section SigmaFinite
 
 variable {E : Type _} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E]
 
+/- warning: measure_theory.univ_le_of_forall_fin_meas_le -> MeasureTheory.univ_le_of_forall_fin_meas_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : (Set.{u1} α) -> ENNReal}, (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f s) C)) -> (forall (S : Nat -> (Set.{u1} α)), (forall (n : Nat), MeasurableSet.{u1} α m (S n)) -> (Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (CompleteSemilatticeInf.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.toCompleteSemilatticeInf.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.completeBooleanAlgebra.{u1} α))))))) S) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => S n))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) Nat (fun (n : Nat) => f (S n))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (f (Set.univ.{u1} α)) C)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : (Set.{u1} α) -> ENNReal}, (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f s) C)) -> (forall (S : Nat -> (Set.{u1} α)), (forall (n : Nat), MeasurableSet.{u1} α m (S n)) -> (Monotone.{0, u1} Nat (Set.{u1} α) (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)) (PartialOrder.toPreorder.{u1} (Set.{u1} α) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} α) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} α) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} α) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} α) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} α) (Set.instCompleteBooleanAlgebraSet.{u1} α))))))) S) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f (Set.iUnion.{u1, 1} α Nat (fun (n : Nat) => S n))) (iSup.{0, 1} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) Nat (fun (n : Nat) => f (S n))))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (f (Set.univ.{u1} α)) C)
+Case conversion may be inaccurate. Consider using '#align measure_theory.univ_le_of_forall_fin_meas_le MeasureTheory.univ_le_of_forall_fin_meas_leₓ'. -/
 theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFinite (μ.trim hm)]
     (C : ℝ≥0∞) {f : Set α → ℝ≥0∞} (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → f s ≤ C)
     (h_F_lim :
@@ -2087,6 +3031,12 @@ theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFi
   exact ((le_trim hm).trans_lt (@measure_spanning_sets_lt_top _ m (μ.trim hm) _ n)).Ne
 #align measure_theory.univ_le_of_forall_fin_meas_le MeasureTheory.univ_le_of_forall_fin_meas_le
 
+/- warning: measure_theory.lintegral_le_of_forall_fin_meas_le_of_measurable -> MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurable is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m0 ENNReal.measurableSpace f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (Measurable.{u1, 0} α ENNReal m0 ENNReal.measurableSpace f) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_le_of_forall_fin_meas_le_of_measurable MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurableₓ'. -/
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra, then the integral
 over the whole space is bounded by that same constant. Version for a measurable function.
@@ -2130,6 +3080,12 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
     · exact le_rfl
 #align measure_theory.lintegral_le_of_forall_fin_meas_le_of_measurable MeasureTheory.lintegral_le_of_forall_fin_meas_le_of_measurable
 
+/- warning: measure_theory.lintegral_le_of_forall_fin_meas_le' -> MeasureTheory.lintegral_le_of_forall_fin_meas_le' is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.hasLe.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m0 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α m0) (fun (_x : MeasureTheory.Measure.{u1} α m0) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α m0) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {m0 : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m0} (hm : LE.le.{u1} (MeasurableSpace.{u1} α) (MeasurableSpace.instLEMeasurableSpace.{u1} α) m m0) [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m (MeasureTheory.Measure.trim.{u1} α m m0 μ hm)] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace m0 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α m s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α m0 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 (MeasureTheory.Measure.restrict.{u1} α m0 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m0 μ (fun (x : α) => f x)) C)
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_le_of_forall_fin_meas_le' MeasureTheory.lintegral_le_of_forall_fin_meas_le'ₓ'. -/
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra, then the integral
 over the whole space is bounded by that same constant. -/
@@ -2149,6 +3105,12 @@ theorem lintegral_le_of_forall_fin_meas_le' {μ : Measure α} (hm : m ≤ m0) [S
 
 omit m
 
+/- warning: measure_theory.lintegral_le_of_forall_fin_meas_le -> MeasureTheory.lintegral_le_of_forall_fin_meas_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_4 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_4} [_inst_5 : MeasureTheory.SigmaFinite.{u1} α _inst_4 μ] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_4 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_4 s) -> (Ne.{1} ENNReal (coeFn.{succ u1, succ u1} (MeasureTheory.Measure.{u1} α _inst_4) (fun (_x : MeasureTheory.Measure.{u1} α _inst_4) => (Set.{u1} α) -> ENNReal) (MeasureTheory.Measure.instCoeFun.{u1} α _inst_4) μ s) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_4 (MeasureTheory.Measure.restrict.{u1} α _inst_4 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_4 μ (fun (x : α) => f x)) C)
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_4 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_4} [_inst_5 : MeasureTheory.SigmaFinite.{u1} α _inst_4 μ] (C : ENNReal) {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_4 f μ) -> (forall (s : Set.{u1} α), (MeasurableSet.{u1} α _inst_4 s) -> (Ne.{1} ENNReal (MeasureTheory.OuterMeasure.measureOf.{u1} α (MeasureTheory.Measure.toOuterMeasure.{u1} α _inst_4 μ) s) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_4 (MeasureTheory.Measure.restrict.{u1} α _inst_4 μ s) (fun (x : α) => f x)) C)) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_4 μ (fun (x : α) => f x)) C)
+Case conversion may be inaccurate. Consider using '#align measure_theory.lintegral_le_of_forall_fin_meas_le MeasureTheory.lintegral_le_of_forall_fin_meas_leₓ'. -/
 /-- If the Lebesgue integral of a function is bounded by some constant on all sets with finite
 measure and the measure is σ-finite, then the integral over the whole space is bounded by that same
 constant. -/
@@ -2161,6 +3123,12 @@ theorem lintegral_le_of_forall_fin_meas_le [MeasurableSpace α] {μ : Measure α
 -- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
+/- warning: measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral -> MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) f x)) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x) (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal f x)) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x)))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegralₓ'. -/
 theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     {μ : Measure α} [SigmaFinite μ] {f : α →ₛ ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
@@ -2218,6 +3186,12 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       exact le_rfl
 #align measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
+/- warning: measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral -> MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : α -> NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toHasLe.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (OrderedCancelAddCommMonoid.toPartialOrder.{0} NNReal (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} NNReal NNReal.strictOrderedSemiring)))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x) (f x)) (And (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (coeFn.{succ u1, succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (_x : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => α -> NNReal) (MeasureTheory.SimpleFunc.instCoeFun.{u1, 0} α NNReal m) g x)))))))
+but is expected to have type
+  forall {α : Type.{u1}} {m : MeasurableSpace.{u1} α} {μ : MeasureTheory.Measure.{u1} α m} [_inst_4 : MeasureTheory.SigmaFinite.{u1} α m μ] {f : α -> NNReal} {L : ENNReal}, (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (f x)))) -> (Exists.{succ u1} (MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) (fun (g : MeasureTheory.SimpleFunc.{u1, 0} α m NNReal) => And (forall (x : α), LE.le.{0} NNReal (Preorder.toLE.{0} NNReal (PartialOrder.toPreorder.{0} NNReal (StrictOrderedSemiring.toPartialOrder.{0} NNReal instNNRealStrictOrderedSemiring))) (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x) (f x)) (And (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) L (MeasureTheory.lintegral.{u1} α m μ (fun (x : α) => ENNReal.some (MeasureTheory.SimpleFunc.toFun.{u1, 0} α m NNReal g x)))))))
+Case conversion may be inaccurate. Consider using '#align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegralₓ'. -/
 theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α} {μ : Measure α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
@@ -2232,6 +3206,7 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
   exact ⟨g, fun x => (hg x).trans (coe_le_coe.1 (hg₀ x)), gL, gtop⟩
 #align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
+#print MeasureTheory.exists_absolutelyContinuous_finiteMeasure /-
 /-- A sigma-finite measure is absolutely continuous with respect to some finite measure. -/
 theorem exists_absolutelyContinuous_finiteMeasure {m : MeasurableSpace α} (μ : Measure α)
     [SigmaFinite μ] : ∃ ν : Measure α, FiniteMeasure ν ∧ μ ≪ ν :=
@@ -2251,6 +3226,7 @@ theorem exists_absolutelyContinuous_finiteMeasure {m : MeasurableSpace α} (μ :
   conv_lhs => rw [this]
   exact with_density_absolutely_continuous _ _
 #align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_finiteMeasure
+-/
 
 end SigmaFinite
 
Diff
@@ -1066,7 +1066,7 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
       simp only [liminf_eq_supr_infi_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
-      (lintegral_supr' (fun n => aEMeasurable_binfi _ (to_countable _) h_meas)
+      (lintegral_supr' (fun n => aemeasurable_biInf _ (to_countable _) h_meas)
         (ae_of_all μ fun a n m hnm => iInf_le_iInf_of_subset fun i hi => le_trans hnm hi))
     _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_infi₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
@@ -1090,7 +1090,7 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
       by
       refine' (lintegral_infi _ _ _).symm
       · intro n
-        exact measurable_bsupr _ (to_countable _) hf_meas
+        exact measurable_biSup _ (to_countable _) hf_meas
       · intro n m hnm a
         exact iSup_le_iSup_of_subset fun i hi => le_trans hnm hi
       · refine' ne_top_of_le_ne_top h_fin (lintegral_mono_ae _)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit a9545e8a564bac7f24637443f52ae955474e4991
+! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1831,37 +1831,6 @@ theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞}
   · exact hf (measurable_set_singleton 0).compl
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
 
-theorem aEMeasurable_withDensity_iff {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E]
-    [TopologicalSpace.SecondCountableTopology E] [MeasurableSpace E] [BorelSpace E] {f : α → ℝ≥0}
-    (hf : Measurable f) {g : α → E} :
-    AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
-      AEMeasurable (fun x => (f x : ℝ) • g x) μ :=
-  by
-  constructor
-  · rintro ⟨g', g'meas, hg'⟩
-    have A : MeasurableSet { x : α | f x ≠ 0 } := (hf (measurable_set_singleton 0)).compl
-    refine' ⟨fun x => (f x : ℝ) • g' x, hf.coe_nnreal_real.smul g'meas, _⟩
-    apply @ae_of_ae_restrict_of_ae_restrict_compl _ _ _ { x | f x ≠ 0 }
-    · rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal] at hg'
-      rw [ae_restrict_iff' A]
-      filter_upwards [hg']
-      intro a ha h'a
-      have : (f a : ℝ≥0∞) ≠ 0 := by simpa only [Ne.def, coe_eq_zero] using h'a
-      rw [ha this]
-    · filter_upwards [ae_restrict_mem A.compl]
-      intro x hx
-      simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx
-      simp [hx]
-  · rintro ⟨g', g'meas, hg'⟩
-    refine' ⟨fun x => (f x : ℝ)⁻¹ • g' x, hf.coe_nnreal_real.inv.smul g'meas, _⟩
-    rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal]
-    filter_upwards [hg']
-    intro x hx h'x
-    rw [← hx, smul_smul, _root_.inv_mul_cancel, one_smul]
-    simp only [Ne.def, coe_eq_zero] at h'x
-    simpa only [NNReal.coe_eq_zero, Ne.def] using h'x
-#align measure_theory.ae_measurable_with_density_iff MeasureTheory.aEMeasurable_withDensity_iff
-
 theorem aEMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
     AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
       AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
Diff
@@ -121,7 +121,7 @@ theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →
     (∫⁻ a, f a ∂μ) = f.lintegral μ := by
   rw [lintegral]
   exact
-    le_antisymm (supᵢ₂_le fun g hg => lintegral_mono hg <| le_rfl) (le_supᵢ₂_of_le f le_rfl le_rfl)
+    le_antisymm (iSup₂_le fun g hg => lintegral_mono hg <| le_rfl) (le_iSup₂_of_le f le_rfl le_rfl)
 #align measure_theory.simple_func.lintegral_eq_lintegral MeasureTheory.SimpleFunc.lintegral_eq_lintegral
 
 @[mono]
@@ -129,7 +129,7 @@ theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν
     (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂ν :=
   by
   rw [lintegral, lintegral]
-  exact supᵢ_mono fun φ => supᵢ_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
+  exact iSup_mono fun φ => iSup_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
 #align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'
 
 theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
@@ -140,15 +140,15 @@ theorem lintegral_mono_nNReal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a,
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nNReal
 
-theorem supᵢ_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
+theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
     (⨆ (g : α → ℝ≥0∞) (g_meas : Measurable g) (hg : g ≤ f), ∫⁻ a, g a ∂μ) = ∫⁻ a, f a ∂μ :=
   by
   apply le_antisymm
-  · exact supᵢ_le fun i => supᵢ_le fun hi => supᵢ_le fun h'i => lintegral_mono h'i
+  · exact iSup_le fun i => iSup_le fun hi => iSup_le fun h'i => lintegral_mono h'i
   · rw [lintegral]
-    refine' supᵢ₂_le fun i hi => le_supᵢ₂_of_le i i.Measurable <| le_supᵢ_of_le hi _
+    refine' iSup₂_le fun i hi => le_iSup₂_of_le i i.Measurable <| le_iSup_of_le hi _
     exact le_of_eq (i.lintegral_eq_lintegral _).symm
-#align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.supᵢ_lintegral_measurable_le_eq_lintegral
+#align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral
 
 theorem lintegral_mono_set {m : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
     (hst : s ⊆ t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
@@ -212,14 +212,14 @@ theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
   have : ∀ n, ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ L n < ∫⁻ a, g a ∂μ :=
     by
     intro n
-    simpa only [← supr_lintegral_measurable_le_eq_lintegral f, lt_supᵢ_iff, exists_prop] using
+    simpa only [← supr_lintegral_measurable_le_eq_lintegral f, lt_iSup_iff, exists_prop] using
       (hLf n).2
   choose g hgm hgf hLg
   refine'
-    ⟨fun x => ⨆ n, g n x, measurable_supᵢ hgm, fun x => supᵢ_le fun n => hgf n x, le_antisymm _ _⟩
+    ⟨fun x => ⨆ n, g n x, measurable_iSup hgm, fun x => iSup_le fun n => hgf n x, le_antisymm _ _⟩
   · refine' le_of_tendsto' hL_tendsto fun n => (hLg n).le.trans <| lintegral_mono fun x => _
-    exact le_supᵢ (fun n => g n x) n
-  · exact lintegral_mono fun x => supᵢ_le fun n => hgf n x
+    exact le_iSup (fun n => g n x) n
+  · exact lintegral_mono fun x => iSup_le fun n => hgf n x
 #align measure_theory.exists_measurable_le_lintegral_eq MeasureTheory.exists_measurable_le_lintegral_eq
 
 end
@@ -233,19 +233,19 @@ theorem lintegral_eq_nNReal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
   by
   rw [lintegral]
   refine'
-    le_antisymm (supᵢ₂_le fun φ hφ => _) (supᵢ_mono' fun φ => ⟨φ.map (coe : ℝ≥0 → ℝ≥0∞), le_rfl⟩)
+    le_antisymm (iSup₂_le fun φ hφ => _) (iSup_mono' fun φ => ⟨φ.map (coe : ℝ≥0 → ℝ≥0∞), le_rfl⟩)
   by_cases h : ∀ᵐ a ∂μ, φ a ≠ ∞
   · let ψ := φ.map ENNReal.toNNReal
     replace h : ψ.map (coe : ℝ≥0 → ℝ≥0∞) =ᵐ[μ] φ := h.mono fun a => ENNReal.coe_toNNReal
     have : ∀ x, ↑(ψ x) ≤ f x := fun x => le_trans ENNReal.coe_toNNReal_le_self (hφ x)
     exact
-      le_supᵢ_of_le (φ.map ENNReal.toNNReal) (le_supᵢ_of_le this (ge_of_eq <| lintegral_congr h))
+      le_iSup_of_le (φ.map ENNReal.toNNReal) (le_iSup_of_le this (ge_of_eq <| lintegral_congr h))
   · have h_meas : μ (φ ⁻¹' {∞}) ≠ 0 := mt measure_zero_iff_ae_nmem.1 h
-    refine' le_trans le_top (ge_of_eq <| (supᵢ_eq_top _).2 fun b hb => _)
+    refine' le_trans le_top (ge_of_eq <| (iSup_eq_top _).2 fun b hb => _)
     obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞})
     exact exists_nat_mul_gt h_meas (ne_of_lt hb)
     use (const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
-    simp only [lt_supᵢ_iff, exists_prop, coe_restrict, φ.measurable_set_preimage, coe_const,
+    simp only [lt_iSup_iff, exists_prop, coe_restrict, φ.measurable_set_preimage, coe_const,
       ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_nat,
       restrict_const_lintegral]
     refine' ⟨indicator_le fun x hx => le_trans _ (hφ _), hn⟩
@@ -261,47 +261,47 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
   by
   rw [lintegral_eq_nnreal] at h
   have := ENNReal.lt_add_right h hε
-  erw [ENNReal.bsupᵢ_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
-  simp_rw [lt_supᵢ_iff, supᵢ_lt_iff, supᵢ_le_iff] at this
+  erw [ENNReal.biSup_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
+  simp_rw [lt_iSup_iff, iSup_lt_iff, iSup_le_iff] at this
   rcases this with ⟨φ, hle : ∀ x, ↑(φ x) ≤ f x, b, hbφ, hb⟩
   refine' ⟨φ, hle, fun ψ hψ => _⟩
-  have : (map coe φ).lintegral μ ≠ ∞ := ne_top_of_le_ne_top h (le_supᵢ₂ φ hle)
+  have : (map coe φ).lintegral μ ≠ ∞ := ne_top_of_le_ne_top h (le_iSup₂ φ hle)
   rw [← ENNReal.add_lt_add_iff_left this, ← add_lintegral, ← map_add @ENNReal.coe_add]
   refine' (hb _ fun x => le_trans _ (max_le (hle x) (hψ x))).trans_lt hbφ
   norm_cast
   simp only [add_apply, sub_apply, add_tsub_eq_max]
 #align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos
 
-theorem supᵢ_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
+theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     (⨆ i, ∫⁻ a, f i a ∂μ) ≤ ∫⁻ a, ⨆ i, f i a ∂μ :=
   by
-  simp only [← supᵢ_apply]
-  exact (monotone_lintegral μ).le_map_supᵢ
-#align measure_theory.supr_lintegral_le MeasureTheory.supᵢ_lintegral_le
+  simp only [← iSup_apply]
+  exact (monotone_lintegral μ).le_map_iSup
+#align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_le
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem supr₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ :=
   by
-  convert(monotone_lintegral μ).le_map_supᵢ₂ f
+  convert(monotone_lintegral μ).le_map_iSup₂ f
   ext1 a
-  simp only [supᵢ_apply]
+  simp only [iSup_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.supr₂_lintegral_le
 
-theorem le_infᵢ_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
+theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ i, f i a ∂μ) ≤ ⨅ i, ∫⁻ a, f i a ∂μ :=
   by
-  simp only [← infᵢ_apply]
-  exact (monotone_lintegral μ).map_infᵢ_le
-#align measure_theory.le_infi_lintegral MeasureTheory.le_infᵢ_lintegral
+  simp only [← iInf_apply]
+  exact (monotone_lintegral μ).map_iInf_le
+#align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
 
 theorem le_infi₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ :=
   by
-  convert(monotone_lintegral μ).map_infᵢ₂_le f
+  convert(monotone_lintegral μ).map_iInf₂_le f
   ext1 a
-  simp only [infᵢ_apply]
+  simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_infi₂_lintegral
 
 theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) :
@@ -310,7 +310,7 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
   rcases exists_measurable_superset_of_null h with ⟨t, hts, ht, ht0⟩
   have : ∀ᵐ x ∂μ, x ∉ t := measure_zero_iff_ae_nmem.1 ht0
   rw [lintegral, lintegral]
-  refine' supᵢ_le fun s => supᵢ_le fun hfs => le_supᵢ_of_le (s.restrict (tᶜ)) <| le_supᵢ_of_le _ _
+  refine' iSup_le fun s => iSup_le fun hfs => le_iSup_of_le (s.restrict (tᶜ)) <| le_iSup_of_le _ _
   · intro a
     by_cases a ∈ t <;> simp [h, restrict_apply, ht.compl]
     exact le_trans (hfs a) (by_contradiction fun hnfg => h (hts hnfg))
@@ -375,15 +375,15 @@ theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
 
 See `lintegral_supr_directed` for a more general form. -/
-theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n)) (h_mono : Monotone f) :
+theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n)) (h_mono : Monotone f) :
     (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
   by
   set c : ℝ≥0 → ℝ≥0∞ := coe
   set F := fun a : α => ⨆ n, f n a
-  have hF : Measurable F := measurable_supᵢ hf
+  have hF : Measurable F := measurable_iSup hf
   refine' le_antisymm _ (supr_lintegral_le _)
   rw [lintegral_eq_nnreal]
-  refine' supᵢ_le fun s => supᵢ_le fun hsf => _
+  refine' iSup_le fun s => iSup_le fun hsf => _
   refine' ENNReal.le_of_forall_lt_one_mul_le fun a ha => _
   rcases ENNReal.lt_iff_exists_coe.1 ha with ⟨r, rfl, ha⟩
   have ha : r < 1 := ENNReal.coe_lt_coe.1 ha
@@ -412,7 +412,7 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
       suffices : r * s x < 1 * s x
       simpa [rs]
       exact mul_lt_mul_of_pos_right ha (pos_iff_ne_zero.2 this)
-    rcases lt_supᵢ_iff.1 this with ⟨i, hi⟩
+    rcases lt_iSup_iff.1 this with ⟨i, hi⟩
     exact mem_Union.2 ⟨i, le_of_lt hi⟩
   have mono : ∀ r : ℝ≥0∞, Monotone fun n => rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a } :=
     by
@@ -429,36 +429,36 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
       simp only [(Eq _).symm]
     _ = ∑ r in (rs.map c).range, ⨆ n, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
       (Finset.sum_congr rfl fun x hx => by
-        rw [measure_Union_eq_supr (directed_of_sup <| mono x), ENNReal.mul_supᵢ])
+        rw [measure_Union_eq_supr (directed_of_sup <| mono x), ENNReal.mul_iSup])
     _ = ⨆ n, ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
       by
-      rw [ENNReal.finset_sum_supᵢ_nat]
+      rw [ENNReal.finset_sum_iSup_nat]
       intro p i j h
       exact mul_le_mul_left' (measure_mono <| mono p h) _
     _ ≤ ⨆ n : ℕ, ((rs.map c).restrict { a | (rs.map c) a ≤ f n a }).lintegral μ :=
       by
-      refine' supᵢ_mono fun n => _
+      refine' iSup_mono fun n => _
       rw [restrict_lintegral _ (h_meas n)]
       · refine' le_of_eq (Finset.sum_congr rfl fun r hr => _)
         congr 2 with a
         refine' and_congr_right _
         simp (config := { contextual := true })
     _ ≤ ⨆ n, ∫⁻ a, f n a ∂μ := by
-      refine' supᵢ_mono fun n => _
+      refine' iSup_mono fun n => _
       rw [← simple_func.lintegral_eq_lintegral]
       refine' lintegral_mono fun a => _
       simp only [map_apply] at h_meas
       simp only [coe_map, restrict_apply _ (h_meas _), (· ∘ ·)]
       exact indicator_apply_le id
     
-#align measure_theory.lintegral_supr MeasureTheory.lintegral_supᵢ
+#align measure_theory.lintegral_supr MeasureTheory.lintegral_iSup
 
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
 ae_measurable functions. -/
 theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
     (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
   by
-  simp_rw [← supᵢ_apply]
+  simp_rw [← iSup_apply]
   let p : α → (ℕ → ℝ≥0∞) → Prop := fun x f' => Monotone f'
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x := h_mono
   have h_ae_seq_mono : Monotone (aeSeq hf p) :=
@@ -468,8 +468,8 @@ theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurabl
     · exact aeSeq.prop_of_mem_aeSeqSet hf hx hnm
     · simp only [aeSeq, hx, if_false]
       exact le_rfl
-  rw [lintegral_congr_ae (aeSeq.supᵢ hf hp).symm]
-  simp_rw [supᵢ_apply]
+  rw [lintegral_congr_ae (aeSeq.iSup hf hp).symm]
+  simp_rw [iSup_apply]
   rw [@lintegral_supr _ _ μ _ (aeSeq.measurable hf p) h_ae_seq_mono]
   congr
   exact funext fun n => lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae hf hp n)
@@ -485,15 +485,15 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
     lintegral_mono_ae (h_mono.mono fun x hx => hx hij)
   suffices key : (∫⁻ x, F x ∂μ) = ⨆ n, ∫⁻ x, f n x ∂μ
   · rw [key]
-    exact tendsto_atTop_supᵢ this
+    exact tendsto_atTop_iSup this
   rw [← lintegral_supr' hf h_mono]
   refine' lintegral_congr_ae _
   filter_upwards [h_mono,
     h_tendsto]with _ hx_mono hx_tendsto using tendsto_nhds_unique hx_tendsto
-      (tendsto_atTop_supᵢ hx_mono)
+      (tendsto_atTop_iSup hx_mono)
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
 
-theorem lintegral_eq_supᵢ_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
+theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∫⁻ a, f a ∂μ) = ⨆ n, (eapprox f n).lintegral μ :=
   calc
     (∫⁻ a, f a ∂μ) = ∫⁻ a, ⨆ n, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
@@ -507,7 +507,7 @@ theorem lintegral_eq_supᵢ_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Meas
     _ = ⨆ n, (eapprox f n).lintegral μ := by
       congr <;> ext n <;> rw [(eapprox f n).lintegral_eq_lintegral]
     
-#align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_supᵢ_eapprox_lintegral
+#align measure_theory.lintegral_eq_supr_eapprox_lintegral MeasureTheory.lintegral_eq_iSup_eapprox_lintegral
 
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. This lemma states states this fact in terms of `ε` and `δ`. -/
@@ -520,7 +520,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
   rcases φ.exists_forall_le with ⟨C, hC⟩
   use (ε₂ - ε₁) / C, ENNReal.div_pos_iff.2 ⟨(tsub_pos_iff_lt.2 hε₁₂).ne', ENNReal.coe_ne_top⟩
   refine' fun s hs => lt_of_le_of_lt _ hε₂ε
-  simp only [lintegral_eq_nnreal, supᵢ_le_iff]
+  simp only [lintegral_eq_nnreal, iSup_le_iff]
   intro ψ hψ
   calc
     (map coe ψ).lintegral (μ.restrict s) ≤
@@ -562,8 +562,8 @@ of their sum. The other inequality needs one of these functions to be (a.e.-)mea
 theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ) ≤ ∫⁻ a, f a + g a ∂μ :=
   by
   dsimp only [lintegral]
-  refine' ENNReal.bsupᵢ_add_bsupᵢ_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
-  exact le_supᵢ₂_of_le (f' + g') (add_le_add hf' hg') (add_lintegral _ _).ge
+  refine' ENNReal.biSup_add_biSup_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
+  exact le_iSup₂_of_le (f' + g') (add_le_add hf' hg') (add_lintegral _ _).ge
 #align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_add
 
 -- Use stronger lemmas `lintegral_add_left`/`lintegral_add_right` instead
@@ -576,7 +576,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
     _ = ∫⁻ a, ⨆ n, (eapprox f n + eapprox g n : α → ℝ≥0∞) a ∂μ :=
       by
       congr ; funext a
-      rw [ENNReal.supᵢ_add_supᵢ_of_monotone]; · rfl
+      rw [ENNReal.iSup_add_iSup_of_monotone]; · rfl
       · intro i j h
         exact monotone_eapprox _ h a
       · intro i j h
@@ -592,7 +592,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       · intro i j h a
         exact add_le_add (monotone_eapprox _ h _) (monotone_eapprox _ h _)
     _ = (⨆ n, (eapprox f n).lintegral μ) + ⨆ n, (eapprox g n).lintegral μ := by
-      refine' (ENNReal.supᵢ_add_supᵢ_of_monotone _ _).symm <;>
+      refine' (ENNReal.iSup_add_iSup_of_monotone _ _).symm <;>
         · intro i j h
           exact simple_func.lintegral_mono (monotone_eapprox _ h) (le_refl μ)
     _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
@@ -640,21 +640,21 @@ theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg
 
 @[simp]
 theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂c • μ) = c * ∫⁻ a, f a ∂μ :=
-  by simp only [lintegral, supᵢ_subtype', simple_func.lintegral_smul, ENNReal.mul_supᵢ, smul_eq_mul]
+  by simp only [lintegral, iSup_subtype', simple_func.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     (∫⁻ a, f a ∂Measure.sum μ) = ∑' i, ∫⁻ a, f a ∂μ i :=
   by
-  simp only [lintegral, supᵢ_subtype', simple_func.lintegral_sum, ENNReal.tsum_eq_supᵢ_sum]
-  rw [supᵢ_comm]
+  simp only [lintegral, iSup_subtype', simple_func.lintegral_sum, ENNReal.tsum_eq_iSup_sum]
+  rw [iSup_comm]
   congr ; funext s
   induction' s using Finset.induction_on with i s hi hs;
   · apply bot_unique
     simp
   simp only [Finset.sum_insert hi, ← hs]
-  refine' (ENNReal.supᵢ_add_supᵢ _).symm
+  refine' (ENNReal.iSup_add_iSup _).symm
   intro φ ψ
   exact
     ⟨⟨φ ⊔ ψ, fun x => sup_le (φ.2 x) (ψ.2 x)⟩,
@@ -724,7 +724,7 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
       by
       congr
       funext a
-      rw [← supr_eapprox_apply f hf, ENNReal.mul_supᵢ]
+      rw [← supr_eapprox_apply f hf, ENNReal.mul_iSup]
       rfl
     _ = ⨆ n, r * (eapprox f n).lintegral μ :=
       by
@@ -736,7 +736,7 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
         exact simple_func.measurable _
       · intro i j h a
         exact mul_le_mul_left' (monotone_eapprox _ h _) _
-    _ = r * ∫⁻ a, f a ∂μ := by rw [← ENNReal.mul_supᵢ, lintegral_eq_supr_eapprox_lintegral hf]
+    _ = r * ∫⁻ a, f a ∂μ := by rw [← ENNReal.mul_iSup, lintegral_eq_supr_eapprox_lintegral hf]
     
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
@@ -751,13 +751,13 @@ theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEM
 
 theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * ∫⁻ a, f a ∂μ) ≤ ∫⁻ a, r * f a ∂μ :=
   by
-  rw [lintegral, ENNReal.mul_supᵢ]
-  refine' supᵢ_le fun s => _
-  rw [ENNReal.mul_supᵢ]
-  simp only [supᵢ_le_iff]
+  rw [lintegral, ENNReal.mul_iSup]
+  refine' iSup_le fun s => _
+  rw [ENNReal.mul_iSup]
+  simp only [iSup_le_iff]
   intro hs
   rw [← simple_func.const_mul_lintegral, lintegral]
-  refine' le_supᵢ_of_le (const α r * s) (le_supᵢ_of_le (fun x => _) le_rfl)
+  refine' le_iSup_of_le (const α r * s) (le_iSup_of_le (fun x => _) le_rfl)
   exact mul_le_mul_left' (hs x) _
 #align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_le
 
@@ -816,8 +816,8 @@ theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁
 theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
     (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ :=
   by
-  simp only [lintegral, ← restrict_lintegral_eq_lintegral_restrict _ hs, supᵢ_subtype']
-  apply le_antisymm <;> refine' supᵢ_mono' (Subtype.forall.2 fun φ hφ => _)
+  simp only [lintegral, ← restrict_lintegral_eq_lintegral_restrict _ hs, iSup_subtype']
+  apply le_antisymm <;> refine' iSup_mono' (Subtype.forall.2 fun φ hφ => _)
   · refine' ⟨⟨φ, le_trans hφ (indicator_le_self _ _)⟩, _⟩
     refine' simple_func.lintegral_mono (fun x => _) le_rfl
     by_cases hx : x ∈ s
@@ -943,7 +943,7 @@ theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
 #align measure_theory.lintegral_pos_iff_support MeasureTheory.lintegral_pos_iff_support
 
 /-- Weaker version of the monotone convergence theorem-/
-theorem lintegral_supᵢ_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
+theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
     (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
   let ⟨s, hs⟩ := exists_measurable_superset_of_null (ae_iff.1 (ae_all_iff.2 h_mono))
   let g n a := if a ∈ s then 0 else f n a
@@ -953,7 +953,7 @@ theorem lintegral_supᵢ_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measura
     (∫⁻ a, ⨆ n, f n a ∂μ) = ∫⁻ a, ⨆ n, g n a ∂μ :=
       lintegral_congr_ae <| g_eq_f.mono fun a ha => by simp only [ha]
     _ = ⨆ n, ∫⁻ a, g n a ∂μ :=
-      (lintegral_supᵢ (fun n => measurable_const.piecewise hs.2.1 (hf n))
+      (lintegral_iSup (fun n => measurable_const.piecewise hs.2.1 (hf n))
         (monotone_nat_of_le_succ fun n a =>
           by_cases (fun h : a ∈ s => by simp [g, if_pos h]) fun h : a ∉ s =>
             by
@@ -961,7 +961,7 @@ theorem lintegral_supᵢ_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measura
             simp only [Classical.not_not, mem_set_of_eq] at this; exact this n))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun a ha => ha _)]
     
-#align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_supᵢ_ae
+#align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 
 theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
@@ -1022,22 +1022,22 @@ theorem set_lintegral_strict_mono {f g : α → ℝ≥0∞} {s : Set α} (hsm :
 #align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_mono
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
-theorem lintegral_infᵢ_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n))
+theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n))
     (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) :
     (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
   have fn_le_f0 : (∫⁻ a, ⨅ n, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ :=
-    lintegral_mono fun a => infᵢ_le_of_le 0 le_rfl
-  have fn_le_f0' : (⨅ n, ∫⁻ a, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ := infᵢ_le_of_le 0 le_rfl
+    lintegral_mono fun a => iInf_le_of_le 0 le_rfl
+  have fn_le_f0' : (⨅ n, ∫⁻ a, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ := iInf_le_of_le 0 le_rfl
   (ENNReal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 <|
     show ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ from
       calc
         ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
-          (lintegral_sub (measurable_infᵢ h_meas)
-              (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => infᵢ_le _ _)
-              (ae_of_all _ fun a => infᵢ_le _ _)).symm
-        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := (congr rfl (funext fun a => ENNReal.sub_infᵢ))
+          (lintegral_sub (measurable_iInf h_meas)
+              (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => iInf_le _ _)
+              (ae_of_all _ fun a => iInf_le _ _)).symm
+        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := (congr rfl (funext fun a => ENNReal.sub_iInf))
         _ = ⨆ n, ∫⁻ a, f 0 a - f n a ∂μ :=
-          (lintegral_supᵢ_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
+          (lintegral_iSup_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
             (h_mono n).mono fun a ha => tsub_le_tsub le_rfl ha)
         _ = ⨆ n, (∫⁻ a, f 0 a ∂μ) - ∫⁻ a, f n a ∂μ :=
           (have h_mono : ∀ᵐ a ∂μ, ∀ n : ℕ, f n.succ a ≤ f n a := ae_all_iff.2 h_mono
@@ -1045,19 +1045,19 @@ theorem lintegral_infᵢ_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Mea
             h_mono.mono fun a h => by
               induction' n with n ih
               · exact le_rfl; · exact le_trans (h n) ih
-          congr_arg supᵢ <|
+          congr_arg iSup <|
             funext fun n =>
               lintegral_sub (h_meas _) (ne_top_of_le_ne_top h_fin <| lintegral_mono_ae <| h_mono n)
                 (h_mono n))
-        _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_infᵢ.symm
+        _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_iInf.symm
         
-#align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_infᵢ_ae
+#align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_ae
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
-theorem lintegral_infᵢ {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) (h_anti : Antitone f)
+theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) (h_anti : Antitone f)
     (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) : (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
-  lintegral_infᵢ_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
-#align measure_theory.lintegral_infi MeasureTheory.lintegral_infᵢ
+  lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
+#align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
 /-- Known as Fatou's lemma, version with `ae_measurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
@@ -1067,9 +1067,9 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
       simp only [liminf_eq_supr_infi_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
       (lintegral_supr' (fun n => aEMeasurable_binfi _ (to_countable _) h_meas)
-        (ae_of_all μ fun a n m hnm => infᵢ_le_infᵢ_of_subset fun i hi => le_trans hnm hi))
-    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (supᵢ_mono fun n => le_infi₂_lintegral _)
-    _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_supᵢ_infᵢ_of_nat.symm
+        (ae_of_all μ fun a n m hnm => iInf_le_iInf_of_subset fun i hi => le_trans hnm hi))
+    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_infi₂_lintegral _)
+    _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
     
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
 
@@ -1084,18 +1084,18 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop ≤ ∫⁻ a, limsup (fun n => f n a) atTop ∂μ :=
   calc
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop = ⨅ n : ℕ, ⨆ i ≥ n, ∫⁻ a, f i a ∂μ :=
-      limsup_eq_infᵢ_supᵢ_of_nat
-    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := (infᵢ_mono fun n => supr₂_lintegral_le _)
+      limsup_eq_iInf_iSup_of_nat
+    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := (iInf_mono fun n => supr₂_lintegral_le _)
     _ = ∫⁻ a, ⨅ n : ℕ, ⨆ i ≥ n, f i a ∂μ :=
       by
       refine' (lintegral_infi _ _ _).symm
       · intro n
         exact measurable_bsupr _ (to_countable _) hf_meas
       · intro n m hnm a
-        exact supᵢ_le_supᵢ_of_subset fun i hi => le_trans hnm hi
+        exact iSup_le_iSup_of_subset fun i hi => le_trans hnm hi
       · refine' ne_top_of_le_ne_top h_fin (lintegral_mono_ae _)
         refine' (ae_all_iff.2 h_bound).mono fun n hn => _
-        exact supᵢ_le fun i => supᵢ_le fun hi => hn i
+        exact iSup_le fun i => iSup_le fun hi => hn i
     _ = ∫⁻ a, limsup (fun n => f n a) atTop ∂μ := by simp only [limsup_eq_infi_supr_of_nat]
     
 #align measure_theory.limsup_lintegral_le MeasureTheory.limsup_lintegral_le
@@ -1177,37 +1177,37 @@ section
 open Encodable
 
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type -/
-theorem lintegral_supᵢ_directed_of_measurable [Countable β] {f : β → α → ℝ≥0∞}
+theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α → ℝ≥0∞}
     (hf : ∀ b, Measurable (f b)) (h_directed : Directed (· ≤ ·) f) :
     (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
   by
   cases nonempty_encodable β
   cases isEmpty_or_nonempty β
-  · simp [supᵢ_of_empty]
+  · simp [iSup_of_empty]
   inhabit β
   have : ∀ a, (⨆ b, f b a) = ⨆ n, f (h_directed.sequence f n) a :=
     by
     intro a
-    refine' le_antisymm (supᵢ_le fun b => _) (supᵢ_le fun n => le_supᵢ (fun n => f n a) _)
-    exact le_supᵢ_of_le (encode b + 1) (h_directed.le_sequence b a)
+    refine' le_antisymm (iSup_le fun b => _) (iSup_le fun n => le_iSup (fun n => f n a) _)
+    exact le_iSup_of_le (encode b + 1) (h_directed.le_sequence b a)
   calc
     (∫⁻ a, ⨆ b, f b a ∂μ) = ∫⁻ a, ⨆ n, f (h_directed.sequence f n) a ∂μ := by simp only [this]
     _ = ⨆ n, ∫⁻ a, f (h_directed.sequence f n) a ∂μ :=
       (lintegral_supr (fun n => hf _) h_directed.sequence_mono)
     _ = ⨆ b, ∫⁻ a, f b a ∂μ :=
       by
-      refine' le_antisymm (supᵢ_le fun n => _) (supᵢ_le fun b => _)
-      · exact le_supᵢ (fun b => ∫⁻ a, f b a ∂μ) _
-      · exact le_supᵢ_of_le (encode b + 1) (lintegral_mono <| h_directed.le_sequence b)
+      refine' le_antisymm (iSup_le fun n => _) (iSup_le fun b => _)
+      · exact le_iSup (fun b => ∫⁻ a, f b a ∂μ) _
+      · exact le_iSup_of_le (encode b + 1) (lintegral_mono <| h_directed.le_sequence b)
     
-#align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_supᵢ_directed_of_measurable
+#align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_iSup_directed_of_measurable
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
-theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
+theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
     (h_directed : Directed (· ≤ ·) f) : (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
   by
-  simp_rw [← supᵢ_apply]
+  simp_rw [← iSup_apply]
   let p : α → (β → ENNReal) → Prop := fun x f' => Directed LE.le f'
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x :=
     by
@@ -1227,21 +1227,21 @@ theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞}
         · simp only [aeSeq, hx, if_false]
           exact le_rfl
   convert lintegral_supr_directed_of_measurable (aeSeq.measurable hf p) h_ae_seq_directed using 1
-  · simp_rw [← supᵢ_apply]
-    rw [lintegral_congr_ae (aeSeq.supᵢ hf hp).symm]
+  · simp_rw [← iSup_apply]
+    rw [lintegral_congr_ae (aeSeq.iSup hf hp).symm]
   · congr 1
     ext1 b
     rw [lintegral_congr_ae]
     symm
     refine' aeSeq.aeSeq_n_eq_fun_n_ae hf hp _
-#align measure_theory.lintegral_supr_directed MeasureTheory.lintegral_supᵢ_directed
+#align measure_theory.lintegral_supr_directed MeasureTheory.lintegral_iSup_directed
 
 end
 
 theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) :
     (∫⁻ a, ∑' i, f i a ∂μ) = ∑' i, ∫⁻ a, f i a ∂μ :=
   by
-  simp only [ENNReal.tsum_eq_supᵢ_sum]
+  simp only [ENNReal.tsum_eq_iSup_sum]
   rw [lintegral_supr_directed]
   · simp [lintegral_finset_sum' _ fun i _ => hf i]
   · intro b
@@ -1261,11 +1261,11 @@ theorem lintegral_Union₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullM
   simp only [measure.restrict_Union_ae hd hm, lintegral_sum_measure]
 #align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_Union₀
 
-theorem lintegral_unionᵢ [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
+theorem lintegral_iUnion [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
     (hd : Pairwise (Disjoint on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ :=
   lintegral_Union₀ (fun i => (hm i).NullMeasurableSet) hd.AEDisjoint f
-#align measure_theory.lintegral_Union MeasureTheory.lintegral_unionᵢ
+#align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnion
 
 theorem lintegral_bUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
@@ -1293,12 +1293,12 @@ theorem lintegral_bUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.Pa
   lintegral_bUnion_finset₀ hd.AEDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
 #align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_bUnion_finset
 
-theorem lintegral_unionᵢ_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
+theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) ≤ ∑' i, ∫⁻ a in s i, f a ∂μ :=
   by
   rw [← lintegral_sum_measure]
   exact lintegral_mono' restrict_Union_le le_rfl
-#align measure_theory.lintegral_Union_le MeasureTheory.lintegral_unionᵢ_le
+#align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_le
 
 theorem lintegral_union {f : α → ℝ≥0∞} {A B : Set α} (hB : MeasurableSet B) (hAB : Disjoint A B) :
     (∫⁻ a in A ∪ B, f a ∂μ) = (∫⁻ a in A, f a ∂μ) + ∫⁻ a in B, f a ∂μ := by
@@ -1363,9 +1363,9 @@ theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g :
     (∫⁻ a, f a ∂Measure.map g μ) ≤ ∫⁻ a, f (g a) ∂μ :=
   by
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
-  refine' supᵢ₂_le fun i hi => supᵢ_le fun h'i => _
-  refine' le_supᵢ₂_of_le (i ∘ g) (hi.comp hg) _
-  exact le_supᵢ_of_le (fun x => h'i (g x)) (le_of_eq (lintegral_map hi hg))
+  refine' iSup₂_le fun i hi => iSup_le fun h'i => _
+  refine' le_iSup₂_of_le (i ∘ g) (hi.comp hg) _
+  exact le_iSup_of_le (fun x => h'i (g x)) (le_of_eq (lintegral_map hi hg))
 #align measure_theory.lintegral_map_le MeasureTheory.lintegral_map_le
 
 theorem lintegral_comp [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
@@ -1393,10 +1393,10 @@ theorem MeasurableEmbedding.lintegral_map [MeasurableSpace β] {g : α → β}
     (hg : MeasurableEmbedding g) (f : β → ℝ≥0∞) : (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ :=
   by
   rw [lintegral, lintegral]
-  refine' le_antisymm (supᵢ₂_le fun f₀ hf₀ => _) (supᵢ₂_le fun f₀ hf₀ => _)
+  refine' le_antisymm (iSup₂_le fun f₀ hf₀ => _) (iSup₂_le fun f₀ hf₀ => _)
   · rw [simple_func.lintegral_map _ hg.measurable]
     have : (f₀.comp g hg.measurable : α → ℝ≥0∞) ≤ f ∘ g := fun x => hf₀ (g x)
-    exact le_supᵢ_of_le (comp f₀ g hg.measurable) (le_supᵢ _ this)
+    exact le_iSup_of_le (comp f₀ g hg.measurable) (le_iSup _ this)
   · rw [← f₀.extend_comp_eq hg (const _ 0), ← simple_func.lintegral_map, ←
       simple_func.lintegral_eq_lintegral, ← lintegral]
     refine' lintegral_mono_ae (hg.ae_map_iff.2 <| eventually_of_forall fun x => _)
@@ -1636,7 +1636,7 @@ theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [Me
 measure such that for a measurable set `s` we have `μ.with_density f s = ∫⁻ a in s, f a ∂μ`. -/
 def Measure.withDensity {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) : Measure α :=
   Measure.ofMeasurable (fun s hs => ∫⁻ a in s, f a ∂μ) (by simp) fun s hs hd =>
-    lintegral_unionᵢ hs hd _
+    lintegral_iUnion hs hd _
 #align measure_theory.measure.with_density MeasureTheory.Measure.withDensity
 
 @[simp]
@@ -1917,7 +1917,7 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
     simp [mul_add, *, Measurable.mul]
   · intro g h_mea_g h_mono_g h_ind
     have : Monotone fun n a => f a * g n a := fun m n hmn x => mul_le_mul_left' (h_mono_g hmn x) _
-    simp [lintegral_supr, ENNReal.mul_supᵢ, h_mf.mul (h_mea_g _), *]
+    simp [lintegral_supr, ENNReal.mul_iSup, h_mf.mul (h_mea_g _), *]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mul
 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
@@ -1974,10 +1974,10 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
     (f_meas : Measurable f) (g : α → ℝ≥0∞) : (∫⁻ a, g a ∂μ.withDensity f) ≤ ∫⁻ a, (f * g) a ∂μ :=
   by
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
-  refine' supᵢ₂_le fun i i_meas => supᵢ_le fun hi => _
+  refine' iSup₂_le fun i i_meas => iSup_le fun hi => _
   have A : f * i ≤ f * g := fun x => mul_le_mul_left' (hi x) _
-  refine' le_supᵢ₂_of_le (f * i) (f_meas.mul i_meas) _
-  exact le_supᵢ_of_le A (le_of_eq (lintegral_with_density_eq_lintegral_mul _ f_meas i_meas))
+  refine' le_iSup₂_of_le (f * i) (f_meas.mul i_meas) _
+  exact le_iSup_of_le A (le_of_eq (lintegral_with_density_eq_lintegral_mul _ f_meas i_meas))
 #align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mul
 
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
@@ -1986,14 +1986,14 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
   by
   refine' le_antisymm (lintegral_with_density_le_lintegral_mul μ f_meas g) _
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
-  refine' supᵢ₂_le fun i i_meas => supᵢ_le fun hi => _
+  refine' iSup₂_le fun i i_meas => iSup_le fun hi => _
   have A : (fun x => (f x)⁻¹ * i x) ≤ g := by
     intro x
     dsimp
     rw [mul_comm, ← div_eq_mul_inv]
     exact div_le_of_le_mul' (hi x)
-  refine' le_supᵢ_of_le (fun x => (f x)⁻¹ * i x) (le_supᵢ_of_le (f_meas.inv.mul i_meas) _)
-  refine' le_supᵢ_of_le A _
+  refine' le_iSup_of_le (fun x => (f x)⁻¹ * i x) (le_iSup_of_le (f_meas.inv.mul i_meas) _)
+  refine' le_iSup_of_le A _
   rw [lintegral_with_density_eq_lintegral_mul _ f_meas (f_meas.inv.mul i_meas)]
   apply lintegral_mono_ae
   filter_upwards [hf]
@@ -2114,7 +2114,7 @@ theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFi
   have hS_meas : ∀ n, measurable_set[m] (S n) := @measurable_spanning_sets _ m (μ.trim hm) _
   rw [← @Union_spanning_sets _ m (μ.trim hm)]
   refine' (h_F_lim S hS_meas hS_mono).trans _
-  refine' supᵢ_le fun n => hf (S n) (hS_meas n) _
+  refine' iSup_le fun n => hf (S n) (hS_meas n) _
   exact ((le_trim hm).trans_lt (@measure_spanning_sets_lt_top _ m (μ.trim hm) _ n)).Ne
 #align measure_theory.univ_le_of_forall_fin_meas_le MeasureTheory.univ_le_of_forall_fin_meas_le
 
@@ -2131,7 +2131,7 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
   refine' univ_le_of_forall_fin_meas_le hm C hf fun S hS_meas hS_mono => _
   rw [← lintegral_indicator]
   swap
-  · exact hm (⋃ n, S n) (@MeasurableSet.unionᵢ _ _ m _ _ hS_meas)
+  · exact hm (⋃ n, S n) (@MeasurableSet.iUnion _ _ m _ _ hS_meas)
   have h_integral_indicator : (⨆ n, ∫⁻ x in S n, f x ∂μ) = ⨆ n, ∫⁻ x, (S n).indicator f x ∂μ :=
     by
     congr
@@ -2143,13 +2143,13 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
     by_cases hx_mem : x ∈ Union S
     · simp only [hx_mem, if_true]
       obtain ⟨n, hxn⟩ := mem_Union.mp hx_mem
-      refine' le_antisymm (trans _ (le_supᵢ _ n)) (supᵢ_le fun i => _)
+      refine' le_antisymm (trans _ (le_iSup _ n)) (iSup_le fun i => _)
       · simp only [hxn, le_refl, if_true]
       · by_cases hxi : x ∈ S i <;> simp [hxi]
     · simp only [hx_mem, if_false]
       rw [mem_Union] at hx_mem
       push_neg  at hx_mem
-      refine' le_antisymm (zero_le _) (supᵢ_le fun n => _)
+      refine' le_antisymm (zero_le _) (iSup_le fun n => _)
       simp only [hx_mem n, if_false, nonpos_iff_eq_zero]
   · exact fun n => hf_meas.indicator (hm _ (hS_meas n))
   · intro n₁ n₂ hn₁₂ a
@@ -2253,7 +2253,7 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
     ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ :=
   by
-  simp_rw [lintegral_eq_nnreal, lt_supᵢ_iff] at hL
+  simp_rw [lintegral_eq_nnreal, lt_iSup_iff] at hL
   rcases hL with ⟨g₀, hg₀, g₀L⟩
   have h'L : L < ∫⁻ x, g₀ x ∂μ := by
     convert g₀L
Diff
@@ -1245,7 +1245,7 @@ theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i
   rw [lintegral_supr_directed]
   · simp [lintegral_finset_sum' _ fun i _ => hf i]
   · intro b
-    exact Finset.aEMeasurable_sum _ fun i _ => hf i
+    exact Finset.aemeasurable_sum _ fun i _ => hf i
   · intro s t
     use s ∪ t
     constructor
Diff
@@ -187,13 +187,13 @@ theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ a in s, c 
 theorem set_lintegral_one (s) : (∫⁻ a in s, 1 ∂μ) = μ s := by rw [set_lintegral_const, one_mul]
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 
-theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
+theorem set_lintegral_const_lt_top [FiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
     (∫⁻ a in s, c ∂μ) < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
-theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
+theorem lintegral_const_lt_top [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
   simpa only [measure.restrict_univ] using set_lintegral_const_lt_top univ hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
 
@@ -1624,7 +1624,7 @@ theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurable
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
 theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
-    (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
+    (μ : Measure α) [μ_fin : FiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
     (∫⁻ x, f x ∂μ) < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
@@ -1698,12 +1698,12 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
-theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
-    IsFiniteMeasure (μ.withDensity f) :=
+theorem finiteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
+    FiniteMeasure (μ.withDensity f) :=
   {
     measure_univ_lt_top := by
       rwa [with_density_apply _ MeasurableSet.univ, measure.restrict_univ, lt_top_iff_ne_top] }
-#align measure_theory.is_finite_measure_with_density MeasureTheory.isFiniteMeasure_withDensity
+#align measure_theory.is_finite_measure_with_density MeasureTheory.finiteMeasure_withDensity
 
 theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
     μ.withDensity f ≪ μ :=
@@ -2264,8 +2264,8 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
 #align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
 /-- A sigma-finite measure is absolutely continuous with respect to some finite measure. -/
-theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ : Measure α)
-    [SigmaFinite μ] : ∃ ν : Measure α, IsFiniteMeasure ν ∧ μ ≪ ν :=
+theorem exists_absolutelyContinuous_finiteMeasure {m : MeasurableSpace α} (μ : Measure α)
+    [SigmaFinite μ] : ∃ ν : Measure α, FiniteMeasure ν ∧ μ ≪ ν :=
   by
   obtain ⟨g, gpos, gmeas, hg⟩ :
     ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ (∫⁻ x : α, ↑(g x) ∂μ) < 1 :=
@@ -2281,7 +2281,7 @@ theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ
       with_density_one]
   conv_lhs => rw [this]
   exact with_density_absolutely_continuous _ _
-#align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_isFiniteMeasure
+#align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_finiteMeasure
 
 end SigmaFinite
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit 7317149f12f55affbc900fc873d0d422485122b9
+! leanprover-community/mathlib commit a9545e8a564bac7f24637443f52ae955474e4991
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -44,6 +44,46 @@ open Classical Topology BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
+section MoveThis
+
+variable {α : Type _} {mα : MeasurableSpace α} {a : α} {s : Set α}
+
+include mα
+
+-- todo after the port: move to measure_theory/measure/measure_space
+theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
+    (Measure.dirac a).restrict s = if a ∈ s then Measure.dirac a else 0 :=
+  by
+  ext1 t ht
+  classical
+    simp only [measure.restrict_apply ht, measure.dirac_apply' _ (ht.inter hs), Set.indicator_apply,
+      Set.mem_inter_iff, Pi.one_apply]
+    by_cases has : a ∈ s
+    · simp only [has, and_true_iff, if_true]
+      split_ifs with hat
+      · rw [measure.dirac_apply_of_mem hat]
+      · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
+    · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
+#align measure_theory.restrict_dirac' MeasureTheory.restrict_dirac'
+
+-- todo after the port: move to measure_theory/measure/measure_space
+theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
+    (Measure.dirac a).restrict s = if a ∈ s then Measure.dirac a else 0 :=
+  by
+  ext1 t ht
+  classical
+    simp only [measure.restrict_apply ht, measure.dirac_apply _, Set.indicator_apply,
+      Set.mem_inter_iff, Pi.one_apply]
+    by_cases has : a ∈ s
+    · simp only [has, and_true_iff, if_true]
+      split_ifs with hat
+      · rw [measure.dirac_apply_of_mem hat]
+      · simp only [measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
+    · simp only [has, and_false_iff, if_false, measure.coe_zero, Pi.zero_apply]
+#align measure_theory.restrict_dirac MeasureTheory.restrict_dirac
+
+end MoveThis
+
 -- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
@@ -1416,6 +1456,26 @@ theorem lintegral_dirac [MeasurableSingletonClass α] (a : α) (f : α → ℝ
     (∫⁻ a, f a ∂dirac a) = f a := by simp [lintegral_congr_ae (ae_eq_dirac f)]
 #align measure_theory.lintegral_dirac MeasureTheory.lintegral_dirac
 
+theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f) {s : Set α}
+    (hs : MeasurableSet s) [Decidable (a ∈ s)] :
+    (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
+  by
+  rw [restrict_dirac' hs]
+  swap; · infer_instance
+  split_ifs
+  · exact lintegral_dirac' _ hf
+  · exact lintegral_zero_measure _
+#align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'
+
+theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [MeasurableSingletonClass α]
+    [Decidable (a ∈ s)] : (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 :=
+  by
+  rw [restrict_dirac]
+  split_ifs
+  · exact lintegral_dirac _ _
+  · exact lintegral_zero_measure _
+#align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_dirac
+
 theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂count) = ∑' a, f a :=
   by
   rw [count, lintegral_sum_measure]
Diff
@@ -1216,7 +1216,7 @@ theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i
 open Measure
 
 theorem lintegral_Union₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullMeasurableSet (s i) μ)
-    (hd : Pairwise (AeDisjoint μ on s)) (f : α → ℝ≥0∞) :
+    (hd : Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ := by
   simp only [measure.restrict_Union_ae hd hm, lintegral_sum_measure]
 #align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_Union₀
@@ -1224,11 +1224,11 @@ theorem lintegral_Union₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullM
 theorem lintegral_unionᵢ [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
     (hd : Pairwise (Disjoint on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ :=
-  lintegral_Union₀ (fun i => (hm i).NullMeasurableSet) hd.AeDisjoint f
+  lintegral_Union₀ (fun i => (hm i).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_Union MeasureTheory.lintegral_unionᵢ
 
 theorem lintegral_bUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
-    (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AeDisjoint μ on s)) (f : α → ℝ≥0∞) :
+    (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
   by
   haveI := ht.to_encodable
@@ -1238,11 +1238,11 @@ theorem lintegral_bUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
 theorem lintegral_bUnion {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, MeasurableSet (s i)) (hd : t.PairwiseDisjoint s) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
-  lintegral_bUnion₀ ht (fun i hi => (hm i hi).NullMeasurableSet) hd.AeDisjoint f
+  lintegral_bUnion₀ ht (fun i hi => (hm i hi).NullMeasurableSet) hd.AEDisjoint f
 #align measure_theory.lintegral_bUnion MeasureTheory.lintegral_bUnion
 
 theorem lintegral_bUnion_finset₀ {s : Finset β} {t : β → Set α}
-    (hd : Set.Pairwise (↑s) (AeDisjoint μ on t)) (hm : ∀ b ∈ s, NullMeasurableSet (t b) μ)
+    (hd : Set.Pairwise (↑s) (AEDisjoint μ on t)) (hm : ∀ b ∈ s, NullMeasurableSet (t b) μ)
     (f : α → ℝ≥0∞) : (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
   simp only [← Finset.mem_coe, lintegral_bUnion₀ s.countable_to_set hm hd, ← s.tsum_subtype']
 #align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_bUnion_finset₀
@@ -1250,7 +1250,7 @@ theorem lintegral_bUnion_finset₀ {s : Finset β} {t : β → Set α}
 theorem lintegral_bUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.PairwiseDisjoint (↑s) t)
     (hm : ∀ b ∈ s, MeasurableSet (t b)) (f : α → ℝ≥0∞) :
     (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
-  lintegral_bUnion_finset₀ hd.AeDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
+  lintegral_bUnion_finset₀ hd.AEDisjoint (fun b hb => (hm b hb).NullMeasurableSet) f
 #align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_bUnion_finset
 
 theorem lintegral_unionᵢ_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
Diff
@@ -415,7 +415,7 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
 
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
 ae_measurable functions. -/
-theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AeMeasurable (f n) μ)
+theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
     (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
   by
   simp_rw [← supᵢ_apply]
@@ -425,7 +425,7 @@ theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AeMeasurabl
     by
     intro n m hnm x
     by_cases hx : x ∈ aeSeqSet hf p
-    · exact aeSeq.propOfMemAeSeqSet hf hx hnm
+    · exact aeSeq.prop_of_mem_aeSeqSet hf hx hnm
     · simp only [aeSeq, hx, if_false]
       exact le_rfl
   rw [lintegral_congr_ae (aeSeq.supᵢ hf hp).symm]
@@ -437,7 +437,7 @@ theorem lintegral_supr' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AeMeasurabl
 
 /-- Monotone convergence theorem expressed with limits -/
 theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞}
-    (hf : ∀ n, AeMeasurable (f n) μ) (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x)
+    (hf : ∀ n, AEMeasurable (f n) μ) (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x)
     (h_tendsto : ∀ᵐ x ∂μ, Tendsto (fun n => f n x) atTop (𝓝 <| F x)) :
     Tendsto (fun n => ∫⁻ x, f n x ∂μ) atTop (𝓝 <| ∫⁻ x, F x ∂μ) :=
   by
@@ -578,13 +578,13 @@ theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α 
     
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
 
-theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) (g : α → ℝ≥0∞) :
+theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (g : α → ℝ≥0∞) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
   rw [lintegral_congr_ae hf.ae_eq_mk, ← lintegral_add_left hf.measurable_mk,
     lintegral_congr_ae (hf.ae_eq_mk.add (ae_eq_refl g))]
 #align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'
 
-theorem lintegral_add_right' (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : AeMeasurable g μ) :
+theorem lintegral_add_right' (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
   simpa only [add_comm] using lintegral_add_left' hg f
 #align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'
@@ -595,7 +595,7 @@ integral of `f + g` equals the sum of integrals. This lemma assumes that `g` is
 @[simp]
 theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : Measurable g) :
     (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
-  lintegral_add_right' f hg.AeMeasurable
+  lintegral_add_right' f hg.AEMeasurable
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
 
 @[simp]
@@ -662,7 +662,7 @@ theorem set_lintegral_measure_zero (s : Set α) (f : α → ℝ≥0∞) (hs' : 
 #align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zero
 
 theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
-    (hf : ∀ b ∈ s, AeMeasurable (f b) μ) : (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
+    (hf : ∀ b ∈ s, AEMeasurable (f b) μ) : (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   by
   induction' s using Finset.induction_on with a s has ih
   · simp
@@ -673,7 +673,7 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
 
 theorem lintegral_finset_sum (s : Finset β) {f : β → α → ℝ≥0∞} (hf : ∀ b ∈ s, Measurable (f b)) :
     (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
-  lintegral_finset_sum' s fun b hb => (hf b hb).AeMeasurable
+  lintegral_finset_sum' s fun b hb => (hf b hb).AEMeasurable
 #align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sum
 
 @[simp]
@@ -700,7 +700,7 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
     
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
-theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) :
+theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
   by
   have A : (∫⁻ a, f a ∂μ) = ∫⁻ a, hf.mk f a ∂μ := lintegral_congr_ae hf.ae_eq_mk
@@ -740,7 +740,7 @@ theorem lintegral_mul_const (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
 #align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_const
 
-theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) :
+theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
 #align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''
 
@@ -755,7 +755,7 @@ theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
 /- A double integral of a product where each factor contains only one variable
   is a product of integrals -/
 theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f : α → ℝ≥0∞}
-    {g : β → ℝ≥0∞} (hf : AeMeasurable f μ) (hg : AeMeasurable g ν) :
+    {g : β → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g ν) :
     (∫⁻ x, ∫⁻ y, f x * g y ∂ν ∂μ) = (∫⁻ x, f x ∂μ) * ∫⁻ y, g y ∂ν := by
   simp [lintegral_const_mul'' _ hg, lintegral_mul_const'' _ hf]
 #align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mul
@@ -813,7 +813,7 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
-    (hg : AeMeasurable g μ) (ε : ℝ≥0∞) :
+    (hg : AEMeasurable g μ) (ε : ℝ≥0∞) :
     (∫⁻ a, f a ∂μ) + ε * μ { x | f x + ε ≤ g x } ≤ ∫⁻ a, g a ∂μ :=
   by
   rcases exists_measurable_le_lintegral_eq μ f with ⟨φ, hφm, hφ_le, hφ_eq⟩
@@ -834,7 +834,7 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
 #align measure_theory.lintegral_add_mul_meas_add_le_le_lintegral MeasureTheory.lintegral_add_mul_meas_add_le_le_lintegral
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
-theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) (ε : ℝ≥0∞) :
+theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (ε : ℝ≥0∞) :
     ε * μ { x | ε ≤ f x } ≤ ∫⁻ a, f a ∂μ := by
   simpa only [lintegral_zero, zero_add] using
     lintegral_add_mul_meas_add_le_le_lintegral (ae_of_all _ fun x => zero_le (f x)) hf ε
@@ -844,10 +844,10 @@ theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AeMeasurable f
 `ae_measurable`, see `mul_meas_ge_le_lintegral₀`. -/
 theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε : ℝ≥0∞) :
     ε * μ { x | ε ≤ f x } ≤ ∫⁻ a, f a ∂μ :=
-  mul_meas_ge_le_lintegral₀ hf.AeMeasurable ε
+  mul_meas_ge_le_lintegral₀ hf.AEMeasurable ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
-theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AeMeasurable f μ)
+theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hμf : 0 < μ { x | f x = ∞ }) : (∫⁻ x, f x ∂μ) = ∞ :=
   eq_top_iff.mpr <|
     calc
@@ -857,7 +857,7 @@ theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AeM
 #align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
-theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
+theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
     (hε' : ε ≠ ∞) : μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε :=
   (ENNReal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <|
     by
@@ -866,7 +866,7 @@ theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AeMeasurable f μ
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
 
 theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : (∫⁻ x, f x ∂μ) ≠ ∞)
-    (hg : AeMeasurable g μ) (hgf : (∫⁻ x, g x ∂μ) ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g :=
+    (hg : AEMeasurable g μ) (hgf : (∫⁻ x, g x ∂μ) ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g :=
   by
   have : ∀ n : ℕ, ∀ᵐ x ∂μ, g x < f x + n⁻¹ := by
     intro n
@@ -883,7 +883,7 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
 #align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_le
 
 @[simp]
-theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) :
+theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
   have : (∫⁻ a : α, 0 ∂μ) ≠ ∞ := by simpa only [lintegral_zero] using zero_ne_top
   ⟨fun h =>
@@ -894,7 +894,7 @@ theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AeMeasurable f μ)
 
 @[simp]
 theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
-  lintegral_eq_zero_iff' hf.AeMeasurable
+  lintegral_eq_zero_iff' hf.AEMeasurable
 #align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iff
 
 theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
@@ -923,7 +923,7 @@ theorem lintegral_supᵢ_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measura
     
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_supᵢ_ae
 
-theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AeMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
+theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
   by
   refine' ENNReal.eq_sub_of_add_eq hg_fin _
@@ -933,10 +933,10 @@ theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AeMeasurable g μ) (hg_fi
 
 theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
-  lintegral_sub' hg.AeMeasurable hg_fin h_le
+  lintegral_sub' hg.AEMeasurable hg_fin h_le
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
 
-theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AeMeasurable f μ) :
+theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
     ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
   by
   rw [tsub_le_iff_right]
@@ -949,10 +949,10 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AeMeasurable f μ) :
 
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
     ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
-  lintegral_sub_le' f g hf.AeMeasurable
+  lintegral_sub_le' f g hf.AEMeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
 
-theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AeMeasurable g μ)
+theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
     (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ := by
   contrapose! h
@@ -960,14 +960,14 @@ theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0
   exact ae_eq_of_ae_le_of_lintegral_le h_le hfi hg h
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
 
-theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg : AeMeasurable g μ)
+theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
   lintegral_strict_mono_of_ae_le_of_frequently_ae_lt hg hfi h_le <|
     ((frequently_ae_mem_iff.2 hμs).and_eventually h).mono fun x hx => (hx.2 hx.1).Ne
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on
 
-theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AeMeasurable g μ)
+theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
     (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
   by
   rw [Ne.def, ← measure.measure_univ_eq_zero] at hμ
@@ -978,7 +978,7 @@ theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : A
 theorem set_lintegral_strict_mono {f g : α → ℝ≥0∞} {s : Set α} (hsm : MeasurableSet s)
     (hs : μ s ≠ 0) (hg : Measurable g) (hfi : (∫⁻ x in s, f x ∂μ) ≠ ∞)
     (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x in s, f x ∂μ) < ∫⁻ x in s, g x ∂μ :=
-  lintegral_strict_mono (by simp [hs]) hg.AeMeasurable hfi ((ae_restrict_iff' hsm).mpr h)
+  lintegral_strict_mono (by simp [hs]) hg.AEMeasurable hfi ((ae_restrict_iff' hsm).mpr h)
 #align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_mono
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
@@ -1020,13 +1020,13 @@ theorem lintegral_infᵢ {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measur
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_infᵢ
 
 /-- Known as Fatou's lemma, version with `ae_measurable` functions -/
-theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AeMeasurable (f n) μ) :
+theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   calc
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
       simp only [liminf_eq_supr_infi_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
-      (lintegral_supr' (fun n => aeMeasurableBinfi _ (to_countable _) h_meas)
+      (lintegral_supr' (fun n => aEMeasurable_binfi _ (to_countable _) h_meas)
         (ae_of_all μ fun a n m hnm => infᵢ_le_infᵢ_of_subset fun i hi => le_trans hnm hi))
     _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (supᵢ_mono fun n => le_infi₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_supᵢ_infᵢ_of_nat.symm
@@ -1036,7 +1036,7 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Ae
 /-- Known as Fatou's lemma -/
 theorem lintegral_liminf_le {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) :
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
-  lintegral_liminf_le' fun n => (h_meas n).AeMeasurable
+  lintegral_liminf_le' fun n => (h_meas n).AEMeasurable
 #align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_le
 
 theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0∞} (hf_meas : ∀ n, Measurable (f n))
@@ -1081,7 +1081,7 @@ theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0
 /-- Dominated convergence theorem for nonnegative functions which are just almost everywhere
 measurable. -/
 theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
-    (bound : α → ℝ≥0∞) (hF_meas : ∀ n, AeMeasurable (F n) μ) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
+    (bound : α → ℝ≥0∞) (hF_meas : ∀ n, AEMeasurable (F n) μ) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
     (h_fin : (∫⁻ a, bound a ∂μ) ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
     Tendsto (fun n => ∫⁻ a, F n a ∂μ) atTop (𝓝 (∫⁻ a, f a ∂μ)) :=
   by
@@ -1164,7 +1164,7 @@ theorem lintegral_supᵢ_directed_of_measurable [Countable β] {f : β → α 
 
 /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
-theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AeMeasurable (f b) μ)
+theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
     (h_directed : Directed (· ≤ ·) f) : (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
   by
   simp_rw [← supᵢ_apply]
@@ -1198,14 +1198,14 @@ theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞}
 
 end
 
-theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AeMeasurable (f i) μ) :
+theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) :
     (∫⁻ a, ∑' i, f i a ∂μ) = ∑' i, ∫⁻ a, f i a ∂μ :=
   by
   simp only [ENNReal.tsum_eq_supᵢ_sum]
   rw [lintegral_supr_directed]
   · simp [lintegral_finset_sum' _ fun i _ => hf i]
   · intro b
-    exact Finset.ae_measurable_sum _ fun i _ => hf i
+    exact Finset.aEMeasurable_sum _ fun i _ => hf i
   · intro s t
     use s ∪ t
     constructor
@@ -1304,7 +1304,7 @@ theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α
 #align measure_theory.lintegral_map MeasureTheory.lintegral_map
 
 theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β}
-    (hf : AeMeasurable f (Measure.map g μ)) (hg : AeMeasurable g μ) :
+    (hf : AEMeasurable f (Measure.map g μ)) (hg : AEMeasurable g μ) :
     (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, f (g a) ∂μ :=
   calc
     (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, hf.mk f a ∂Measure.map g μ :=
@@ -1538,7 +1538,7 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
   simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
 
-theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
+theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ :=
   haveI h2f_meas : (∫⁻ x, hf.mk f x ∂μ) ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
   (ae_lt_top hf.measurable_mk h2f_meas).mp (hf.ae_eq_mk.mono fun x hx h => by rwa [hx])
@@ -1638,20 +1638,20 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
-theorem isFiniteMeasureWithDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
+theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
     IsFiniteMeasure (μ.withDensity f) :=
   {
     measure_univ_lt_top := by
       rwa [with_density_apply _ MeasurableSet.univ, measure.restrict_univ, lt_top_iff_ne_top] }
-#align measure_theory.is_finite_measure_with_density MeasureTheory.isFiniteMeasureWithDensity
+#align measure_theory.is_finite_measure_with_density MeasureTheory.isFiniteMeasure_withDensity
 
-theorem withDensityAbsolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
+theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
     μ.withDensity f ≪ μ :=
   by
   refine' absolutely_continuous.mk fun s hs₁ hs₂ => _
   rw [with_density_apply _ hs₁]
   exact set_lintegral_measure_zero _ _ hs₂
-#align measure_theory.with_density_absolutely_continuous MeasureTheory.withDensityAbsolutelyContinuous
+#align measure_theory.with_density_absolutely_continuous MeasureTheory.withDensity_absolutelyContinuous
 
 @[simp]
 theorem withDensity_zero : μ.withDensity 0 = 0 :=
@@ -1673,7 +1673,7 @@ theorem withDensity_tsum {f : ℕ → α → ℝ≥0∞} (h : ∀ i, Measurable
   ext1 s hs
   simp_rw [sum_apply _ hs, with_density_apply _ hs]
   change (∫⁻ x in s, (∑' n, f n) x ∂μ) = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s
-  rw [← lintegral_tsum fun i => (h i).AeMeasurable]
+  rw [← lintegral_tsum fun i => (h i).AEMeasurable]
   refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)
 #align measure_theory.with_density_tsum MeasureTheory.withDensity_tsum
 
@@ -1690,7 +1690,7 @@ theorem withDensity_indicator_one {s : Set α} (hs : MeasurableSet s) :
   rw [with_density_indicator hs, with_density_one]
 #align measure_theory.with_density_indicator_one MeasureTheory.withDensity_indicator_one
 
-theorem withDensityOfRealMutuallySingular {f : α → ℝ} (hf : Measurable f) :
+theorem withDensity_ofReal_mutuallySingular {f : α → ℝ} (hf : Measurable f) :
     (μ.withDensity fun x => ENNReal.ofReal <| f x) ⟂ₘ
       μ.withDensity fun x => ENNReal.ofReal <| -f x :=
   by
@@ -1703,7 +1703,7 @@ theorem withDensityOfRealMutuallySingular {f : α → ℝ} (hf : Measurable f) :
     exact
       (ae_restrict_mem hS.compl).mono fun x hx =>
         ENNReal.ofReal_eq_zero.2 (not_lt.1 <| mt neg_pos.1 hx)
-#align measure_theory.with_density_of_real_mutually_singular MeasureTheory.withDensityOfRealMutuallySingular
+#align measure_theory.with_density_of_real_mutually_singular MeasureTheory.withDensity_ofReal_mutuallySingular
 
 theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
     (μ.withDensity f).restrict s = (μ.restrict s).withDensity f :=
@@ -1713,7 +1713,7 @@ theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ
     restrict_restrict ht]
 #align measure_theory.restrict_with_density MeasureTheory.restrict_withDensity
 
-theorem withDensity_eq_zero {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) (h : μ.withDensity f = 0) :
+theorem withDensity_eq_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h : μ.withDensity f = 0) :
     f =ᵐ[μ] 0 := by
   rw [← lintegral_eq_zero_iff' hf, ← set_lintegral_univ, ← with_density_apply _ MeasurableSet.univ,
     h, measure.coe_zero, Pi.zero_apply]
@@ -1771,11 +1771,11 @@ theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞}
   · exact hf (measurable_set_singleton 0).compl
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
 
-theorem aeMeasurable_withDensity_iff {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E]
+theorem aEMeasurable_withDensity_iff {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E]
     [TopologicalSpace.SecondCountableTopology E] [MeasurableSpace E] [BorelSpace E] {f : α → ℝ≥0}
     (hf : Measurable f) {g : α → E} :
-    AeMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
-      AeMeasurable (fun x => (f x : ℝ) • g x) μ :=
+    AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
+      AEMeasurable (fun x => (f x : ℝ) • g x) μ :=
   by
   constructor
   · rintro ⟨g', g'meas, hg'⟩
@@ -1800,11 +1800,11 @@ theorem aeMeasurable_withDensity_iff {E : Type _} [NormedAddCommGroup E] [Normed
     rw [← hx, smul_smul, _root_.inv_mul_cancel, one_smul]
     simp only [Ne.def, coe_eq_zero] at h'x
     simpa only [NNReal.coe_eq_zero, Ne.def] using h'x
-#align measure_theory.ae_measurable_with_density_iff MeasureTheory.aeMeasurable_withDensity_iff
+#align measure_theory.ae_measurable_with_density_iff MeasureTheory.aEMeasurable_withDensity_iff
 
-theorem aeMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
-    AeMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
-      AeMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
+theorem aEMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
+    AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
+      AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
   by
   constructor
   · rintro ⟨g', g'meas, hg'⟩
@@ -1827,7 +1827,7 @@ theorem aeMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurab
     filter_upwards [hg']
     intro x hx h'x
     rw [← hx, ← mul_assoc, ENNReal.inv_mul_cancel h'x ENNReal.coe_ne_top, one_mul]
-#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aeMeasurable_withDensity_eNNReal_iff
+#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aEMeasurable_withDensity_eNNReal_iff
 
 end Lintegral
 
@@ -1871,7 +1871,7 @@ the integral of `f * g`. This version assumes that `g` is almost everywhere meas
 version without conditions on `g` but requiring that `f` is almost everywhere finite, see
 `lintegral_with_density_eq_lintegral_mul_non_measurable` -/
 theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) {g : α → ℝ≥0∞} (hg : AeMeasurable g (μ.withDensity f)) :
+    (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g (μ.withDensity f)) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
   by
   let f' := hf.mk f
@@ -1905,9 +1905,9 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'
 
 theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) {g : α → ℝ≥0∞} (hg : AeMeasurable g μ) :
+    (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
-  lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensityAbsolutelyContinuous μ f))
+  lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensity_absolutelyContinuous μ f))
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀
 
 theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
@@ -1955,7 +1955,7 @@ theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Meas
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable
 
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure α) {f : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
+    (hf : AEMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
   by
   let f' := hf.mk f
@@ -1977,7 +1977,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure 
 #align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀
 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ (μ : Measure α)
-    {f : α → ℝ≥0∞} {s : Set α} (hf : AeMeasurable f (μ.restrict s)) (g : α → ℝ≥0∞)
+    {f : α → ℝ≥0∞} {s : Set α} (hf : AEMeasurable f (μ.restrict s)) (g : α → ℝ≥0∞)
     (hs : MeasurableSet s) (h'f : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
     (∫⁻ a in s, g a ∂μ.withDensity f) = ∫⁻ a in s, (f * g) a ∂μ := by
   rw [restrict_with_density hs, lintegral_with_density_eq_lintegral_mul_non_measurable₀ _ hf h'f]
@@ -2035,7 +2035,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
 #align measure_theory.lintegral_trim MeasureTheory.lintegral_trim
 
 theorem lintegral_trim_ae {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
-    (hf : AeMeasurable f (μ.trim hm)) : (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ := by
+    (hf : AEMeasurable f (μ.trim hm)) : (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ := by
   rw [lintegral_congr_ae (ae_eq_of_ae_eq_trim hf.ae_eq_mk), lintegral_congr_ae hf.ae_eq_mk,
     lintegral_trim hm hf.measurable_mk]
 #align measure_theory.lintegral_trim_ae MeasureTheory.lintegral_trim_ae
@@ -2105,7 +2105,7 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
 measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra, then the integral
 over the whole space is bounded by that same constant. -/
 theorem lintegral_le_of_forall_fin_meas_le' {μ : Measure α} (hm : m ≤ m0) [SigmaFinite (μ.trim hm)]
-    (C : ℝ≥0∞) {f : _ → ℝ≥0∞} (hf_meas : AeMeasurable f μ)
+    (C : ℝ≥0∞) {f : _ → ℝ≥0∞} (hf_meas : AEMeasurable f μ)
     (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C :=
   by
   let f' := hf_meas.mk f
@@ -2124,7 +2124,7 @@ omit m
 measure and the measure is σ-finite, then the integral over the whole space is bounded by that same
 constant. -/
 theorem lintegral_le_of_forall_fin_meas_le [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ]
-    (C : ℝ≥0∞) {f : α → ℝ≥0∞} (hf_meas : AeMeasurable f μ)
+    (C : ℝ≥0∞) {f : α → ℝ≥0∞} (hf_meas : AEMeasurable f μ)
     (hf : ∀ s, MeasurableSet s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C :=
   @lintegral_le_of_forall_fin_meas_le' _ _ _ _ _ (by rwa [trim_eq_self]) C _ hf_meas hf
 #align measure_theory.lintegral_le_of_forall_fin_meas_le MeasureTheory.lintegral_le_of_forall_fin_meas_le
Diff
@@ -4,26 +4,18 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit f231b9d8ce4970789c592af9508e06a0884f72d1
+! leanprover-community/mathlib commit 7317149f12f55affbc900fc873d0d422485122b9
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
-import Mathbin.MeasureTheory.Measure.MutuallySingular
-import Mathbin.MeasureTheory.Constructions.BorelSpace
-import Mathbin.Algebra.IndicatorFunction
-import Mathbin.Algebra.Support
 import Mathbin.Dynamics.Ergodic.MeasurePreserving
+import Mathbin.MeasureTheory.Function.SimpleFunc
+import Mathbin.MeasureTheory.Measure.MutuallySingular
 
 /-!
-# Lebesgue integral for `ℝ≥0∞`-valued functions
+# Lower Lebesgue integral for `ℝ≥0∞`-valued functions
 
-We define simple functions and show that each Borel measurable function on `ℝ≥0∞` can be
-approximated by a sequence of simple functions.
-
-To prove something for an arbitrary measurable function into `ℝ≥0∞`, the theorem
-`measurable.ennreal_induction` shows that is it sufficient to show that the property holds for
-(multiples of) characteristic functions and is closed under addition and supremum of increasing
-sequences of functions.
+We define the lower Lebesgue integral of an `ℝ≥0∞`-valued function.
 
 ## Notation
 
@@ -52,1285 +44,10 @@ open Classical Topology BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
-variable {α β γ δ : Type _}
-
-/-- A function `f` from a measurable space to any type is called *simple*,
-if every preimage `f ⁻¹' {x}` is measurable, and the range is finite. This structure bundles
-a function with these properties. -/
-structure SimpleFunc.{u, v} (α : Type u) [MeasurableSpace α] (β : Type v) where
-  toFun : α → β
-  measurableSet_fiber' : ∀ x, MeasurableSet (to_fun ⁻¹' {x})
-  finite_range' : (Set.range to_fun).Finite
-#align measure_theory.simple_func MeasureTheory.SimpleFunc
-
 -- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
-namespace SimpleFunc
-
-section Measurable
-
-variable [MeasurableSpace α]
-
-instance hasCoeToFun : CoeFun (α →ₛ β) fun _ => α → β :=
-  ⟨toFun⟩
-#align measure_theory.simple_func.has_coe_to_fun MeasureTheory.SimpleFunc.hasCoeToFun
-
-theorem coe_injective ⦃f g : α →ₛ β⦄ (H : (f : α → β) = g) : f = g := by
-  cases f <;> cases g <;> congr <;> exact H
-#align measure_theory.simple_func.coe_injective MeasureTheory.SimpleFunc.coe_injective
-
-@[ext]
-theorem ext {f g : α →ₛ β} (H : ∀ a, f a = g a) : f = g :=
-  coe_injective <| funext H
-#align measure_theory.simple_func.ext MeasureTheory.SimpleFunc.ext
-
-theorem finite_range (f : α →ₛ β) : (Set.range f).Finite :=
-  f.finite_range'
-#align measure_theory.simple_func.finite_range MeasureTheory.SimpleFunc.finite_range
-
-theorem measurableSet_fiber (f : α →ₛ β) (x : β) : MeasurableSet (f ⁻¹' {x}) :=
-  f.measurableSet_fiber' x
-#align measure_theory.simple_func.measurable_set_fiber MeasureTheory.SimpleFunc.measurableSet_fiber
-
-@[simp]
-theorem apply_mk (f : α → β) (h h') (x : α) : SimpleFunc.mk f h h' x = f x :=
-  rfl
-#align measure_theory.simple_func.apply_mk MeasureTheory.SimpleFunc.apply_mk
-
-/-- Simple function defined on the empty type. -/
-def ofIsEmpty [IsEmpty α] : α →ₛ β where
-  toFun := isEmptyElim
-  measurableSet_fiber' x := Subsingleton.measurableSet
-  finite_range' := by simp [range_eq_empty]
-#align measure_theory.simple_func.of_is_empty MeasureTheory.SimpleFunc.ofIsEmpty
-
-/-- Range of a simple function `α →ₛ β` as a `finset β`. -/
-protected def range (f : α →ₛ β) : Finset β :=
-  f.finite_range.toFinset
-#align measure_theory.simple_func.range MeasureTheory.SimpleFunc.range
-
-@[simp]
-theorem mem_range {f : α →ₛ β} {b} : b ∈ f.range ↔ b ∈ range f :=
-  Finite.mem_toFinset _
-#align measure_theory.simple_func.mem_range MeasureTheory.SimpleFunc.mem_range
-
-theorem mem_range_self (f : α →ₛ β) (x : α) : f x ∈ f.range :=
-  mem_range.2 ⟨x, rfl⟩
-#align measure_theory.simple_func.mem_range_self MeasureTheory.SimpleFunc.mem_range_self
-
-@[simp]
-theorem coe_range (f : α →ₛ β) : (↑f.range : Set β) = Set.range f :=
-  f.finite_range.coe_toFinset
-#align measure_theory.simple_func.coe_range MeasureTheory.SimpleFunc.coe_range
-
-theorem mem_range_of_measure_ne_zero {f : α →ₛ β} {x : β} {μ : Measure α} (H : μ (f ⁻¹' {x}) ≠ 0) :
-    x ∈ f.range :=
-  let ⟨a, ha⟩ := nonempty_of_measure_ne_zero H
-  mem_range.2 ⟨a, ha⟩
-#align measure_theory.simple_func.mem_range_of_measure_ne_zero MeasureTheory.SimpleFunc.mem_range_of_measure_ne_zero
-
-theorem forall_range_iff {f : α →ₛ β} {p : β → Prop} : (∀ y ∈ f.range, p y) ↔ ∀ x, p (f x) := by
-  simp only [mem_range, Set.forall_range_iff]
-#align measure_theory.simple_func.forall_range_iff MeasureTheory.SimpleFunc.forall_range_iff
-
-theorem exists_range_iff {f : α →ₛ β} {p : β → Prop} : (∃ y ∈ f.range, p y) ↔ ∃ x, p (f x) := by
-  simpa only [mem_range, exists_prop] using Set.exists_range_iff
-#align measure_theory.simple_func.exists_range_iff MeasureTheory.SimpleFunc.exists_range_iff
-
-theorem preimage_eq_empty_iff (f : α →ₛ β) (b : β) : f ⁻¹' {b} = ∅ ↔ b ∉ f.range :=
-  preimage_singleton_eq_empty.trans <| not_congr mem_range.symm
-#align measure_theory.simple_func.preimage_eq_empty_iff MeasureTheory.SimpleFunc.preimage_eq_empty_iff
-
-theorem exists_forall_le [Nonempty β] [Preorder β] [IsDirected β (· ≤ ·)] (f : α →ₛ β) :
-    ∃ C, ∀ x, f x ≤ C :=
-  f.range.exists_le.imp fun C => forall_range_iff.1
-#align measure_theory.simple_func.exists_forall_le MeasureTheory.SimpleFunc.exists_forall_le
-
-/-- Constant function as a `simple_func`. -/
-def const (α) {β} [MeasurableSpace α] (b : β) : α →ₛ β :=
-  ⟨fun a => b, fun x => MeasurableSet.const _, finite_range_const⟩
-#align measure_theory.simple_func.const MeasureTheory.SimpleFunc.const
-
-instance [Inhabited β] : Inhabited (α →ₛ β) :=
-  ⟨const _ default⟩
-
-theorem const_apply (a : α) (b : β) : (const α b) a = b :=
-  rfl
-#align measure_theory.simple_func.const_apply MeasureTheory.SimpleFunc.const_apply
-
-@[simp]
-theorem coe_const (b : β) : ⇑(const α b) = Function.const α b :=
-  rfl
-#align measure_theory.simple_func.coe_const MeasureTheory.SimpleFunc.coe_const
-
-@[simp]
-theorem range_const (α) [MeasurableSpace α] [Nonempty α] (b : β) : (const α b).range = {b} :=
-  Finset.coe_injective <| by simp
-#align measure_theory.simple_func.range_const MeasureTheory.SimpleFunc.range_const
-
-theorem range_const_subset (α) [MeasurableSpace α] (b : β) : (const α b).range ⊆ {b} :=
-  Finset.coe_subset.1 <| by simp
-#align measure_theory.simple_func.range_const_subset MeasureTheory.SimpleFunc.range_const_subset
-
-theorem simpleFunc_bot {α} (f : @SimpleFunc α ⊥ β) [Nonempty β] : ∃ c, ∀ x, f x = c :=
-  by
-  have hf_meas := @simple_func.measurable_set_fiber α _ ⊥ f
-  simp_rw [MeasurableSpace.measurableSet_bot_iff] at hf_meas
-  cases isEmpty_or_nonempty α
-  · simp only [IsEmpty.forall_iff, exists_const]
-  · specialize hf_meas (f h.some)
-    cases hf_meas
-    · exfalso
-      refine' Set.not_mem_empty h.some _
-      rw [← hf_meas, Set.mem_preimage]
-      exact Set.mem_singleton _
-    · refine' ⟨f h.some, fun x => _⟩
-      have : x ∈ f ⁻¹' {f h.some} := by
-        rw [hf_meas]
-        exact Set.mem_univ x
-      rwa [Set.mem_preimage, Set.mem_singleton_iff] at this
-#align measure_theory.simple_func.simple_func_bot MeasureTheory.SimpleFunc.simpleFunc_bot
-
-theorem simpleFunc_bot' {α} [Nonempty β] (f : @SimpleFunc α ⊥ β) :
-    ∃ c, f = @SimpleFunc.const α _ ⊥ c :=
-  by
-  obtain ⟨c, h_eq⟩ := simple_func_bot f
-  refine' ⟨c, _⟩
-  ext1 x
-  rw [h_eq x, simple_func.coe_const]
-#align measure_theory.simple_func.simple_func_bot' MeasureTheory.SimpleFunc.simpleFunc_bot'
-
-theorem measurableSet_cut (r : α → β → Prop) (f : α →ₛ β) (h : ∀ b, MeasurableSet { a | r a b }) :
-    MeasurableSet { a | r a (f a) } :=
-  by
-  have : { a | r a (f a) } = ⋃ b ∈ range f, { a | r a b } ∩ f ⁻¹' {b} :=
-    by
-    ext a
-    suffices r a (f a) ↔ ∃ i, r a (f i) ∧ f a = f i by simpa
-    exact ⟨fun h => ⟨a, ⟨h, rfl⟩⟩, fun ⟨a', ⟨h', e⟩⟩ => e.symm ▸ h'⟩
-  rw [this]
-  exact
-    MeasurableSet.bunionᵢ f.finite_range.countable fun b _ =>
-      MeasurableSet.inter (h b) (f.measurable_set_fiber _)
-#align measure_theory.simple_func.measurable_set_cut MeasureTheory.SimpleFunc.measurableSet_cut
-
-@[measurability]
-theorem measurableSet_preimage (f : α →ₛ β) (s) : MeasurableSet (f ⁻¹' s) :=
-  measurableSet_cut (fun _ b => b ∈ s) f fun b => MeasurableSet.const (b ∈ s)
-#align measure_theory.simple_func.measurable_set_preimage MeasureTheory.SimpleFunc.measurableSet_preimage
-
-/-- A simple function is measurable -/
-@[measurability]
-protected theorem measurable [MeasurableSpace β] (f : α →ₛ β) : Measurable f := fun s _ =>
-  measurableSet_preimage f s
-#align measure_theory.simple_func.measurable MeasureTheory.SimpleFunc.measurable
-
-@[measurability]
-protected theorem aeMeasurable [MeasurableSpace β] {μ : Measure α} (f : α →ₛ β) :
-    AeMeasurable f μ :=
-  f.Measurable.AeMeasurable
-#align measure_theory.simple_func.ae_measurable MeasureTheory.SimpleFunc.aeMeasurable
-
-protected theorem sum_measure_preimage_singleton (f : α →ₛ β) {μ : Measure α} (s : Finset β) :
-    (∑ y in s, μ (f ⁻¹' {y})) = μ (f ⁻¹' ↑s) :=
-  sum_measure_preimage_singleton _ fun _ _ => f.measurableSet_fiber _
-#align measure_theory.simple_func.sum_measure_preimage_singleton MeasureTheory.SimpleFunc.sum_measure_preimage_singleton
-
-theorem sum_range_measure_preimage_singleton (f : α →ₛ β) (μ : Measure α) :
-    (∑ y in f.range, μ (f ⁻¹' {y})) = μ univ := by
-  rw [f.sum_measure_preimage_singleton, coe_range, preimage_range]
-#align measure_theory.simple_func.sum_range_measure_preimage_singleton MeasureTheory.SimpleFunc.sum_range_measure_preimage_singleton
-
-/-- If-then-else as a `simple_func`. -/
-def piecewise (s : Set α) (hs : MeasurableSet s) (f g : α →ₛ β) : α →ₛ β :=
-  ⟨s.piecewise f g, fun x =>
-    letI : MeasurableSpace β := ⊤
-    f.measurable.piecewise hs g.measurable trivial,
-    (f.finite_range.union g.finite_range).Subset range_ite_subset⟩
-#align measure_theory.simple_func.piecewise MeasureTheory.SimpleFunc.piecewise
-
-@[simp]
-theorem coe_piecewise {s : Set α} (hs : MeasurableSet s) (f g : α →ₛ β) :
-    ⇑(piecewise s hs f g) = s.piecewise f g :=
-  rfl
-#align measure_theory.simple_func.coe_piecewise MeasureTheory.SimpleFunc.coe_piecewise
-
-theorem piecewise_apply {s : Set α} (hs : MeasurableSet s) (f g : α →ₛ β) (a) :
-    piecewise s hs f g a = if a ∈ s then f a else g a :=
-  rfl
-#align measure_theory.simple_func.piecewise_apply MeasureTheory.SimpleFunc.piecewise_apply
-
-@[simp]
-theorem piecewise_compl {s : Set α} (hs : MeasurableSet (sᶜ)) (f g : α →ₛ β) :
-    piecewise (sᶜ) hs f g = piecewise s hs.ofCompl g f :=
-  coe_injective <| by simp [hs]
-#align measure_theory.simple_func.piecewise_compl MeasureTheory.SimpleFunc.piecewise_compl
-
-@[simp]
-theorem piecewise_univ (f g : α →ₛ β) : piecewise univ MeasurableSet.univ f g = f :=
-  coe_injective <| by simp
-#align measure_theory.simple_func.piecewise_univ MeasureTheory.SimpleFunc.piecewise_univ
-
-@[simp]
-theorem piecewise_empty (f g : α →ₛ β) : piecewise ∅ MeasurableSet.empty f g = g :=
-  coe_injective <| by simp
-#align measure_theory.simple_func.piecewise_empty MeasureTheory.SimpleFunc.piecewise_empty
-
-theorem support_indicator [Zero β] {s : Set α} (hs : MeasurableSet s) (f : α →ₛ β) :
-    Function.support (f.piecewise s hs (SimpleFunc.const α 0)) = s ∩ Function.support f :=
-  Set.support_indicator
-#align measure_theory.simple_func.support_indicator MeasureTheory.SimpleFunc.support_indicator
-
-theorem range_indicator {s : Set α} (hs : MeasurableSet s) (hs_nonempty : s.Nonempty)
-    (hs_ne_univ : s ≠ univ) (x y : β) : (piecewise s hs (const α x) (const α y)).range = {x, y} :=
-  by
-  simp only [← Finset.coe_inj, coe_range, coe_piecewise, range_piecewise, coe_const,
-    Finset.coe_insert, Finset.coe_singleton, hs_nonempty.image_const,
-    (nonempty_compl.2 hs_ne_univ).image_const, singleton_union]
-#align measure_theory.simple_func.range_indicator MeasureTheory.SimpleFunc.range_indicator
-
-theorem measurable_bind [MeasurableSpace γ] (f : α →ₛ β) (g : β → α → γ)
-    (hg : ∀ b, Measurable (g b)) : Measurable fun a => g (f a) a := fun s hs =>
-  f.measurableSet_cut (fun a b => g b a ∈ s) fun b => hg b hs
-#align measure_theory.simple_func.measurable_bind MeasureTheory.SimpleFunc.measurable_bind
-
-/-- If `f : α →ₛ β` is a simple function and `g : β → α →ₛ γ` is a family of simple functions,
-then `f.bind g` binds the first argument of `g` to `f`. In other words, `f.bind g a = g (f a) a`. -/
-def bind (f : α →ₛ β) (g : β → α →ₛ γ) : α →ₛ γ :=
-  ⟨fun a => g (f a) a, fun c =>
-    f.measurableSet_cut (fun a b => g b a = c) fun b => (g b).measurableSet_preimage {c},
-    (f.finite_range.bunionᵢ fun b _ => (g b).finite_range).Subset <| by
-      rintro _ ⟨a, rfl⟩ <;> simp <;> exact ⟨a, a, rfl⟩⟩
-#align measure_theory.simple_func.bind MeasureTheory.SimpleFunc.bind
-
-@[simp]
-theorem bind_apply (f : α →ₛ β) (g : β → α →ₛ γ) (a) : f.bind g a = g (f a) a :=
-  rfl
-#align measure_theory.simple_func.bind_apply MeasureTheory.SimpleFunc.bind_apply
-
-/-- Given a function `g : β → γ` and a simple function `f : α →ₛ β`, `f.map g` return the simple
-    function `g ∘ f : α →ₛ γ` -/
-def map (g : β → γ) (f : α →ₛ β) : α →ₛ γ :=
-  bind f (const α ∘ g)
-#align measure_theory.simple_func.map MeasureTheory.SimpleFunc.map
-
-theorem map_apply (g : β → γ) (f : α →ₛ β) (a) : f.map g a = g (f a) :=
-  rfl
-#align measure_theory.simple_func.map_apply MeasureTheory.SimpleFunc.map_apply
-
-theorem map_map (g : β → γ) (h : γ → δ) (f : α →ₛ β) : (f.map g).map h = f.map (h ∘ g) :=
-  rfl
-#align measure_theory.simple_func.map_map MeasureTheory.SimpleFunc.map_map
-
-@[simp]
-theorem coe_map (g : β → γ) (f : α →ₛ β) : (f.map g : α → γ) = g ∘ f :=
-  rfl
-#align measure_theory.simple_func.coe_map MeasureTheory.SimpleFunc.coe_map
-
-@[simp]
-theorem range_map [DecidableEq γ] (g : β → γ) (f : α →ₛ β) : (f.map g).range = f.range.image g :=
-  Finset.coe_injective <| by simp only [coe_range, coe_map, Finset.coe_image, range_comp]
-#align measure_theory.simple_func.range_map MeasureTheory.SimpleFunc.range_map
-
-@[simp]
-theorem map_const (g : β → γ) (b : β) : (const α b).map g = const α (g b) :=
-  rfl
-#align measure_theory.simple_func.map_const MeasureTheory.SimpleFunc.map_const
-
-theorem map_preimage (f : α →ₛ β) (g : β → γ) (s : Set γ) :
-    f.map g ⁻¹' s = f ⁻¹' ↑(f.range.filterₓ fun b => g b ∈ s) :=
-  by
-  simp only [coe_range, sep_mem_eq, Set.mem_range, Function.comp_apply, coe_map, Finset.coe_filter,
-    ← mem_preimage, inter_comm, preimage_inter_range]
-  apply preimage_comp
-#align measure_theory.simple_func.map_preimage MeasureTheory.SimpleFunc.map_preimage
-
-theorem map_preimage_singleton (f : α →ₛ β) (g : β → γ) (c : γ) :
-    f.map g ⁻¹' {c} = f ⁻¹' ↑(f.range.filterₓ fun b => g b = c) :=
-  map_preimage _ _ _
-#align measure_theory.simple_func.map_preimage_singleton MeasureTheory.SimpleFunc.map_preimage_singleton
-
-/-- Composition of a `simple_fun` and a measurable function is a `simple_func`. -/
-def comp [MeasurableSpace β] (f : β →ₛ γ) (g : α → β) (hgm : Measurable g) : α →ₛ γ
-    where
-  toFun := f ∘ g
-  finite_range' := f.finite_range.Subset <| Set.range_comp_subset_range _ _
-  measurableSet_fiber' z := hgm (f.measurableSet_fiber z)
-#align measure_theory.simple_func.comp MeasureTheory.SimpleFunc.comp
-
-@[simp]
-theorem coe_comp [MeasurableSpace β] (f : β →ₛ γ) {g : α → β} (hgm : Measurable g) :
-    ⇑(f.comp g hgm) = f ∘ g :=
-  rfl
-#align measure_theory.simple_func.coe_comp MeasureTheory.SimpleFunc.coe_comp
-
-theorem range_comp_subset_range [MeasurableSpace β] (f : β →ₛ γ) {g : α → β} (hgm : Measurable g) :
-    (f.comp g hgm).range ⊆ f.range :=
-  Finset.coe_subset.1 <| by simp only [coe_range, coe_comp, Set.range_comp_subset_range]
-#align measure_theory.simple_func.range_comp_subset_range MeasureTheory.SimpleFunc.range_comp_subset_range
-
-/-- Extend a `simple_func` along a measurable embedding: `f₁.extend g hg f₂` is the function
-`F : β →ₛ γ` such that `F ∘ g = f₁` and `F y = f₂ y` whenever `y ∉ range g`. -/
-def extend [MeasurableSpace β] (f₁ : α →ₛ γ) (g : α → β) (hg : MeasurableEmbedding g)
-    (f₂ : β →ₛ γ) : β →ₛ γ where
-  toFun := Function.extend g f₁ f₂
-  finite_range' :=
-    (f₁.finite_range.union <| f₂.finite_range.Subset (image_subset_range _ _)).Subset
-      (range_extend_subset _ _ _)
-  measurableSet_fiber' := by
-    letI : MeasurableSpace γ := ⊤; haveI : MeasurableSingletonClass γ := ⟨fun _ => trivial⟩
-    exact fun x => hg.measurable_extend f₁.measurable f₂.measurable (measurable_set_singleton _)
-#align measure_theory.simple_func.extend MeasureTheory.SimpleFunc.extend
-
-@[simp]
-theorem extend_apply [MeasurableSpace β] (f₁ : α →ₛ γ) {g : α → β} (hg : MeasurableEmbedding g)
-    (f₂ : β →ₛ γ) (x : α) : (f₁.extend g hg f₂) (g x) = f₁ x :=
-  hg.Injective.extend_apply _ _ _
-#align measure_theory.simple_func.extend_apply MeasureTheory.SimpleFunc.extend_apply
-
-@[simp]
-theorem extend_apply' [MeasurableSpace β] (f₁ : α →ₛ γ) {g : α → β} (hg : MeasurableEmbedding g)
-    (f₂ : β →ₛ γ) {y : β} (h : ¬∃ x, g x = y) : (f₁.extend g hg f₂) y = f₂ y :=
-  Function.extend_apply' _ _ _ h
-#align measure_theory.simple_func.extend_apply' MeasureTheory.SimpleFunc.extend_apply'
-
-@[simp]
-theorem extend_comp_eq' [MeasurableSpace β] (f₁ : α →ₛ γ) {g : α → β} (hg : MeasurableEmbedding g)
-    (f₂ : β →ₛ γ) : f₁.extend g hg f₂ ∘ g = f₁ :=
-  funext fun x => extend_apply _ _ _ _
-#align measure_theory.simple_func.extend_comp_eq' MeasureTheory.SimpleFunc.extend_comp_eq'
-
-@[simp]
-theorem extend_comp_eq [MeasurableSpace β] (f₁ : α →ₛ γ) {g : α → β} (hg : MeasurableEmbedding g)
-    (f₂ : β →ₛ γ) : (f₁.extend g hg f₂).comp g hg.Measurable = f₁ :=
-  coe_injective <| extend_comp_eq' _ _ _
-#align measure_theory.simple_func.extend_comp_eq MeasureTheory.SimpleFunc.extend_comp_eq
-
-/-- If `f` is a simple function taking values in `β → γ` and `g` is another simple function
-with the same domain and codomain `β`, then `f.seq g = f a (g a)`. -/
-def seq (f : α →ₛ β → γ) (g : α →ₛ β) : α →ₛ γ :=
-  f.bind fun f => g.map f
-#align measure_theory.simple_func.seq MeasureTheory.SimpleFunc.seq
-
-@[simp]
-theorem seq_apply (f : α →ₛ β → γ) (g : α →ₛ β) (a : α) : f.seq g a = f a (g a) :=
-  rfl
-#align measure_theory.simple_func.seq_apply MeasureTheory.SimpleFunc.seq_apply
-
-/-- Combine two simple functions `f : α →ₛ β` and `g : α →ₛ β`
-into `λ a, (f a, g a)`. -/
-def pair (f : α →ₛ β) (g : α →ₛ γ) : α →ₛ β × γ :=
-  (f.map Prod.mk).seq g
-#align measure_theory.simple_func.pair MeasureTheory.SimpleFunc.pair
-
-@[simp]
-theorem pair_apply (f : α →ₛ β) (g : α →ₛ γ) (a) : pair f g a = (f a, g a) :=
-  rfl
-#align measure_theory.simple_func.pair_apply MeasureTheory.SimpleFunc.pair_apply
-
-/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
-theorem pair_preimage (f : α →ₛ β) (g : α →ₛ γ) (s : Set β) (t : Set γ) :
-    pair f g ⁻¹' s ×ˢ t = f ⁻¹' s ∩ g ⁻¹' t :=
-  rfl
-#align measure_theory.simple_func.pair_preimage MeasureTheory.SimpleFunc.pair_preimage
-
--- A special form of `pair_preimage`
-theorem pair_preimage_singleton (f : α →ₛ β) (g : α →ₛ γ) (b : β) (c : γ) :
-    pair f g ⁻¹' {(b, c)} = f ⁻¹' {b} ∩ g ⁻¹' {c} :=
-  by
-  rw [← singleton_prod_singleton]
-  exact pair_preimage _ _ _ _
-#align measure_theory.simple_func.pair_preimage_singleton MeasureTheory.SimpleFunc.pair_preimage_singleton
-
-theorem bind_const (f : α →ₛ β) : f.bind (const α) = f := by ext <;> simp
-#align measure_theory.simple_func.bind_const MeasureTheory.SimpleFunc.bind_const
-
-@[to_additive]
-instance [One β] : One (α →ₛ β) :=
-  ⟨const α 1⟩
-
-@[to_additive]
-instance [Mul β] : Mul (α →ₛ β) :=
-  ⟨fun f g => (f.map (· * ·)).seq g⟩
-
-@[to_additive]
-instance [Div β] : Div (α →ₛ β) :=
-  ⟨fun f g => (f.map (· / ·)).seq g⟩
-
-@[to_additive]
-instance [Inv β] : Inv (α →ₛ β) :=
-  ⟨fun f => f.map Inv.inv⟩
-
-instance [Sup β] : Sup (α →ₛ β) :=
-  ⟨fun f g => (f.map (· ⊔ ·)).seq g⟩
-
-instance [Inf β] : Inf (α →ₛ β) :=
-  ⟨fun f g => (f.map (· ⊓ ·)).seq g⟩
-
-instance [LE β] : LE (α →ₛ β) :=
-  ⟨fun f g => ∀ a, f a ≤ g a⟩
-
-@[simp, to_additive]
-theorem const_one [One β] : const α (1 : β) = 1 :=
-  rfl
-#align measure_theory.simple_func.const_one MeasureTheory.SimpleFunc.const_one
-#align measure_theory.simple_func.const_zero MeasureTheory.SimpleFunc.const_zero
-
-@[simp, norm_cast, to_additive]
-theorem coe_one [One β] : ⇑(1 : α →ₛ β) = 1 :=
-  rfl
-#align measure_theory.simple_func.coe_one MeasureTheory.SimpleFunc.coe_one
-#align measure_theory.simple_func.coe_zero MeasureTheory.SimpleFunc.coe_zero
-
-@[simp, norm_cast, to_additive]
-theorem coe_mul [Mul β] (f g : α →ₛ β) : ⇑(f * g) = f * g :=
-  rfl
-#align measure_theory.simple_func.coe_mul MeasureTheory.SimpleFunc.coe_mul
-#align measure_theory.simple_func.coe_add MeasureTheory.SimpleFunc.coe_add
-
-@[simp, norm_cast, to_additive]
-theorem coe_inv [Inv β] (f : α →ₛ β) : ⇑f⁻¹ = f⁻¹ :=
-  rfl
-#align measure_theory.simple_func.coe_inv MeasureTheory.SimpleFunc.coe_inv
-#align measure_theory.simple_func.coe_neg MeasureTheory.SimpleFunc.coe_neg
-
-@[simp, norm_cast, to_additive]
-theorem coe_div [Div β] (f g : α →ₛ β) : ⇑(f / g) = f / g :=
-  rfl
-#align measure_theory.simple_func.coe_div MeasureTheory.SimpleFunc.coe_div
-#align measure_theory.simple_func.coe_sub MeasureTheory.SimpleFunc.coe_sub
-
-@[simp, norm_cast]
-theorem coe_le [Preorder β] {f g : α →ₛ β} : (f : α → β) ≤ g ↔ f ≤ g :=
-  Iff.rfl
-#align measure_theory.simple_func.coe_le MeasureTheory.SimpleFunc.coe_le
-
-@[simp, norm_cast]
-theorem coe_sup [Sup β] (f g : α →ₛ β) : ⇑(f ⊔ g) = f ⊔ g :=
-  rfl
-#align measure_theory.simple_func.coe_sup MeasureTheory.SimpleFunc.coe_sup
-
-@[simp, norm_cast]
-theorem coe_inf [Inf β] (f g : α →ₛ β) : ⇑(f ⊓ g) = f ⊓ g :=
-  rfl
-#align measure_theory.simple_func.coe_inf MeasureTheory.SimpleFunc.coe_inf
-
-@[to_additive]
-theorem mul_apply [Mul β] (f g : α →ₛ β) (a : α) : (f * g) a = f a * g a :=
-  rfl
-#align measure_theory.simple_func.mul_apply MeasureTheory.SimpleFunc.mul_apply
-#align measure_theory.simple_func.add_apply MeasureTheory.SimpleFunc.add_apply
-
-@[to_additive]
-theorem div_apply [Div β] (f g : α →ₛ β) (x : α) : (f / g) x = f x / g x :=
-  rfl
-#align measure_theory.simple_func.div_apply MeasureTheory.SimpleFunc.div_apply
-#align measure_theory.simple_func.sub_apply MeasureTheory.SimpleFunc.sub_apply
-
-@[to_additive]
-theorem inv_apply [Inv β] (f : α →ₛ β) (x : α) : f⁻¹ x = (f x)⁻¹ :=
-  rfl
-#align measure_theory.simple_func.inv_apply MeasureTheory.SimpleFunc.inv_apply
-#align measure_theory.simple_func.neg_apply MeasureTheory.SimpleFunc.neg_apply
-
-theorem sup_apply [Sup β] (f g : α →ₛ β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
-  rfl
-#align measure_theory.simple_func.sup_apply MeasureTheory.SimpleFunc.sup_apply
-
-theorem inf_apply [Inf β] (f g : α →ₛ β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
-  rfl
-#align measure_theory.simple_func.inf_apply MeasureTheory.SimpleFunc.inf_apply
-
-@[simp, to_additive]
-theorem range_one [Nonempty α] [One β] : (1 : α →ₛ β).range = {1} :=
-  Finset.ext fun x => by simp [eq_comm]
-#align measure_theory.simple_func.range_one MeasureTheory.SimpleFunc.range_one
-#align measure_theory.simple_func.range_zero MeasureTheory.SimpleFunc.range_zero
-
-@[simp]
-theorem range_eq_empty_of_isEmpty {β} [hα : IsEmpty α] (f : α →ₛ β) : f.range = ∅ :=
-  by
-  rw [← Finset.not_nonempty_iff_eq_empty]
-  by_contra
-  obtain ⟨y, hy_mem⟩ := h
-  rw [simple_func.mem_range, Set.mem_range] at hy_mem
-  obtain ⟨x, hxy⟩ := hy_mem
-  rw [isEmpty_iff] at hα
-  exact hα x
-#align measure_theory.simple_func.range_eq_empty_of_is_empty MeasureTheory.SimpleFunc.range_eq_empty_of_isEmpty
-
-theorem eq_zero_of_mem_range_zero [Zero β] : ∀ {y : β}, y ∈ (0 : α →ₛ β).range → y = 0 :=
-  forall_range_iff.2 fun x => rfl
-#align measure_theory.simple_func.eq_zero_of_mem_range_zero MeasureTheory.SimpleFunc.eq_zero_of_mem_range_zero
-
-@[to_additive]
-theorem mul_eq_map₂ [Mul β] (f g : α →ₛ β) : f * g = (pair f g).map fun p : β × β => p.1 * p.2 :=
-  rfl
-#align measure_theory.simple_func.mul_eq_map₂ MeasureTheory.SimpleFunc.mul_eq_map₂
-#align measure_theory.simple_func.add_eq_map₂ MeasureTheory.SimpleFunc.add_eq_map₂
-
-theorem sup_eq_map₂ [Sup β] (f g : α →ₛ β) : f ⊔ g = (pair f g).map fun p : β × β => p.1 ⊔ p.2 :=
-  rfl
-#align measure_theory.simple_func.sup_eq_map₂ MeasureTheory.SimpleFunc.sup_eq_map₂
-
-@[to_additive]
-theorem const_mul_eq_map [Mul β] (f : α →ₛ β) (b : β) : const α b * f = f.map fun a => b * a :=
-  rfl
-#align measure_theory.simple_func.const_mul_eq_map MeasureTheory.SimpleFunc.const_mul_eq_map
-#align measure_theory.simple_func.const_add_eq_map MeasureTheory.SimpleFunc.const_add_eq_map
-
-@[to_additive]
-theorem map_mul [Mul β] [Mul γ] {g : β → γ} (hg : ∀ x y, g (x * y) = g x * g y) (f₁ f₂ : α →ₛ β) :
-    (f₁ * f₂).map g = f₁.map g * f₂.map g :=
-  ext fun x => hg _ _
-#align measure_theory.simple_func.map_mul MeasureTheory.SimpleFunc.map_mul
-#align measure_theory.simple_func.map_add MeasureTheory.SimpleFunc.map_add
-
-variable {K : Type _}
-
-instance [SMul K β] : SMul K (α →ₛ β) :=
-  ⟨fun k f => f.map ((· • ·) k)⟩
-
-@[simp]
-theorem coe_smul [SMul K β] (c : K) (f : α →ₛ β) : ⇑(c • f) = c • f :=
-  rfl
-#align measure_theory.simple_func.coe_smul MeasureTheory.SimpleFunc.coe_smul
-
-theorem smul_apply [SMul K β] (k : K) (f : α →ₛ β) (a : α) : (k • f) a = k • f a :=
-  rfl
-#align measure_theory.simple_func.smul_apply MeasureTheory.SimpleFunc.smul_apply
-
-instance hasNatPow [Monoid β] : Pow (α →ₛ β) ℕ :=
-  ⟨fun f n => f.map (· ^ n)⟩
-#align measure_theory.simple_func.has_nat_pow MeasureTheory.SimpleFunc.hasNatPow
-
-@[simp]
-theorem coe_pow [Monoid β] (f : α →ₛ β) (n : ℕ) : ⇑(f ^ n) = f ^ n :=
-  rfl
-#align measure_theory.simple_func.coe_pow MeasureTheory.SimpleFunc.coe_pow
-
-theorem pow_apply [Monoid β] (n : ℕ) (f : α →ₛ β) (a : α) : (f ^ n) a = f a ^ n :=
-  rfl
-#align measure_theory.simple_func.pow_apply MeasureTheory.SimpleFunc.pow_apply
-
-instance hasIntPow [DivInvMonoid β] : Pow (α →ₛ β) ℤ :=
-  ⟨fun f n => f.map (· ^ n)⟩
-#align measure_theory.simple_func.has_int_pow MeasureTheory.SimpleFunc.hasIntPow
-
-@[simp]
-theorem coe_zpow [DivInvMonoid β] (f : α →ₛ β) (z : ℤ) : ⇑(f ^ z) = f ^ z :=
-  rfl
-#align measure_theory.simple_func.coe_zpow MeasureTheory.SimpleFunc.coe_zpow
-
-theorem zpow_apply [DivInvMonoid β] (z : ℤ) (f : α →ₛ β) (a : α) : (f ^ z) a = f a ^ z :=
-  rfl
-#align measure_theory.simple_func.zpow_apply MeasureTheory.SimpleFunc.zpow_apply
-
--- TODO: work out how to generate these instances with `to_additive`, which gets confused by the
--- argument order swap between `coe_smul` and `coe_pow`.
-section Additive
-
-instance [AddMonoid β] : AddMonoid (α →ₛ β) :=
-  Function.Injective.addMonoid (fun f => show α → β from f) coe_injective coe_zero coe_add
-    fun _ _ => coe_smul _ _
-
-instance [AddCommMonoid β] : AddCommMonoid (α →ₛ β) :=
-  Function.Injective.addCommMonoid (fun f => show α → β from f) coe_injective coe_zero coe_add
-    fun _ _ => coe_smul _ _
-
-instance [AddGroup β] : AddGroup (α →ₛ β) :=
-  Function.Injective.addGroup (fun f => show α → β from f) coe_injective coe_zero coe_add coe_neg
-    coe_sub (fun _ _ => coe_smul _ _) fun _ _ => coe_smul _ _
-
-instance [AddCommGroup β] : AddCommGroup (α →ₛ β) :=
-  Function.Injective.addCommGroup (fun f => show α → β from f) coe_injective coe_zero coe_add
-    coe_neg coe_sub (fun _ _ => coe_smul _ _) fun _ _ => coe_smul _ _
-
-end Additive
-
-@[to_additive]
-instance [Monoid β] : Monoid (α →ₛ β) :=
-  Function.Injective.monoid (fun f => show α → β from f) coe_injective coe_one coe_mul coe_pow
-
-@[to_additive]
-instance [CommMonoid β] : CommMonoid (α →ₛ β) :=
-  Function.Injective.commMonoid (fun f => show α → β from f) coe_injective coe_one coe_mul coe_pow
-
-@[to_additive]
-instance [Group β] : Group (α →ₛ β) :=
-  Function.Injective.group (fun f => show α → β from f) coe_injective coe_one coe_mul coe_inv
-    coe_div coe_pow coe_zpow
-
-@[to_additive]
-instance [CommGroup β] : CommGroup (α →ₛ β) :=
-  Function.Injective.commGroup (fun f => show α → β from f) coe_injective coe_one coe_mul coe_inv
-    coe_div coe_pow coe_zpow
-
-instance [Semiring K] [AddCommMonoid β] [Module K β] : Module K (α →ₛ β) :=
-  Function.Injective.module K ⟨fun f => show α → β from f, coe_zero, coe_add⟩ coe_injective coe_smul
-
-theorem smul_eq_map [SMul K β] (k : K) (f : α →ₛ β) : k • f = f.map ((· • ·) k) :=
-  rfl
-#align measure_theory.simple_func.smul_eq_map MeasureTheory.SimpleFunc.smul_eq_map
-
-instance [Preorder β] : Preorder (α →ₛ β) :=
-  { SimpleFunc.hasLe with
-    le_refl := fun f a => le_rfl
-    le_trans := fun f g h hfg hgh a => le_trans (hfg _) (hgh a) }
-
-instance [PartialOrder β] : PartialOrder (α →ₛ β) :=
-  { SimpleFunc.preorder with
-    le_antisymm := fun f g hfg hgf => ext fun a => le_antisymm (hfg a) (hgf a) }
-
-instance [LE β] [OrderBot β] : OrderBot (α →ₛ β)
-    where
-  bot := const α ⊥
-  bot_le f a := bot_le
-
-instance [LE β] [OrderTop β] : OrderTop (α →ₛ β)
-    where
-  top := const α ⊤
-  le_top f a := le_top
-
-instance [SemilatticeInf β] : SemilatticeInf (α →ₛ β) :=
-  { SimpleFunc.partialOrder with
-    inf := (· ⊓ ·)
-    inf_le_left := fun f g a => inf_le_left
-    inf_le_right := fun f g a => inf_le_right
-    le_inf := fun f g h hfh hgh a => le_inf (hfh a) (hgh a) }
-
-instance [SemilatticeSup β] : SemilatticeSup (α →ₛ β) :=
-  { SimpleFunc.partialOrder with
-    sup := (· ⊔ ·)
-    le_sup_left := fun f g a => le_sup_left
-    le_sup_right := fun f g a => le_sup_right
-    sup_le := fun f g h hfh hgh a => sup_le (hfh a) (hgh a) }
-
-instance [Lattice β] : Lattice (α →ₛ β) :=
-  { SimpleFunc.semilatticeSup, SimpleFunc.semilatticeInf with }
-
-instance [LE β] [BoundedOrder β] : BoundedOrder (α →ₛ β) :=
-  { SimpleFunc.orderBot, SimpleFunc.orderTop with }
-
-theorem finset_sup_apply [SemilatticeSup β] [OrderBot β] {f : γ → α →ₛ β} (s : Finset γ) (a : α) :
-    s.sup f a = s.sup fun c => f c a :=
-  by
-  refine' Finset.induction_on s rfl _
-  intro a s hs ih
-  rw [Finset.sup_insert, Finset.sup_insert, sup_apply, ih]
-#align measure_theory.simple_func.finset_sup_apply MeasureTheory.SimpleFunc.finset_sup_apply
-
-section Restrict
-
-variable [Zero β]
-
-/-- Restrict a simple function `f : α →ₛ β` to a set `s`. If `s` is measurable,
-then `f.restrict s a = if a ∈ s then f a else 0`, otherwise `f.restrict s = const α 0`. -/
-def restrict (f : α →ₛ β) (s : Set α) : α →ₛ β :=
-  if hs : MeasurableSet s then piecewise s hs f 0 else 0
-#align measure_theory.simple_func.restrict MeasureTheory.SimpleFunc.restrict
-
-theorem restrict_of_not_measurable {f : α →ₛ β} {s : Set α} (hs : ¬MeasurableSet s) :
-    restrict f s = 0 :=
-  dif_neg hs
-#align measure_theory.simple_func.restrict_of_not_measurable MeasureTheory.SimpleFunc.restrict_of_not_measurable
-
-@[simp]
-theorem coe_restrict (f : α →ₛ β) {s : Set α} (hs : MeasurableSet s) :
-    ⇑(restrict f s) = indicator s f :=
-  by
-  rw [restrict, dif_pos hs]
-  rfl
-#align measure_theory.simple_func.coe_restrict MeasureTheory.SimpleFunc.coe_restrict
-
-@[simp]
-theorem restrict_univ (f : α →ₛ β) : restrict f univ = f := by simp [restrict]
-#align measure_theory.simple_func.restrict_univ MeasureTheory.SimpleFunc.restrict_univ
-
-@[simp]
-theorem restrict_empty (f : α →ₛ β) : restrict f ∅ = 0 := by simp [restrict]
-#align measure_theory.simple_func.restrict_empty MeasureTheory.SimpleFunc.restrict_empty
-
-theorem map_restrict_of_zero [Zero γ] {g : β → γ} (hg : g 0 = 0) (f : α →ₛ β) (s : Set α) :
-    (f.restrict s).map g = (f.map g).restrict s :=
-  ext fun x =>
-    if hs : MeasurableSet s then by simp [hs, Set.indicator_comp_of_zero hg]
-    else by simp [restrict_of_not_measurable hs, hg]
-#align measure_theory.simple_func.map_restrict_of_zero MeasureTheory.SimpleFunc.map_restrict_of_zero
-
-theorem map_coe_eNNReal_restrict (f : α →ₛ ℝ≥0) (s : Set α) :
-    (f.restrict s).map (coe : ℝ≥0 → ℝ≥0∞) = (f.map coe).restrict s :=
-  map_restrict_of_zero ENNReal.coe_zero _ _
-#align measure_theory.simple_func.map_coe_ennreal_restrict MeasureTheory.SimpleFunc.map_coe_eNNReal_restrict
-
-theorem map_coe_nNReal_restrict (f : α →ₛ ℝ≥0) (s : Set α) :
-    (f.restrict s).map (coe : ℝ≥0 → ℝ) = (f.map coe).restrict s :=
-  map_restrict_of_zero NNReal.coe_zero _ _
-#align measure_theory.simple_func.map_coe_nnreal_restrict MeasureTheory.SimpleFunc.map_coe_nNReal_restrict
-
-theorem restrict_apply (f : α →ₛ β) {s : Set α} (hs : MeasurableSet s) (a) :
-    restrict f s a = indicator s f a := by simp only [f.coe_restrict hs]
-#align measure_theory.simple_func.restrict_apply MeasureTheory.SimpleFunc.restrict_apply
-
-theorem restrict_preimage (f : α →ₛ β) {s : Set α} (hs : MeasurableSet s) {t : Set β}
-    (ht : (0 : β) ∉ t) : restrict f s ⁻¹' t = s ∩ f ⁻¹' t := by
-  simp [hs, indicator_preimage_of_not_mem _ _ ht, inter_comm]
-#align measure_theory.simple_func.restrict_preimage MeasureTheory.SimpleFunc.restrict_preimage
-
-theorem restrict_preimage_singleton (f : α →ₛ β) {s : Set α} (hs : MeasurableSet s) {r : β}
-    (hr : r ≠ 0) : restrict f s ⁻¹' {r} = s ∩ f ⁻¹' {r} :=
-  f.restrictPreimage hs hr.symm
-#align measure_theory.simple_func.restrict_preimage_singleton MeasureTheory.SimpleFunc.restrict_preimage_singleton
-
-theorem mem_restrict_range {r : β} {s : Set α} {f : α →ₛ β} (hs : MeasurableSet s) :
-    r ∈ (restrict f s).range ↔ r = 0 ∧ s ≠ univ ∨ r ∈ f '' s := by
-  rw [← Finset.mem_coe, coe_range, coe_restrict _ hs, mem_range_indicator]
-#align measure_theory.simple_func.mem_restrict_range MeasureTheory.SimpleFunc.mem_restrict_range
-
-theorem mem_image_of_mem_range_restrict {r : β} {s : Set α} {f : α →ₛ β}
-    (hr : r ∈ (restrict f s).range) (h0 : r ≠ 0) : r ∈ f '' s :=
-  if hs : MeasurableSet s then by simpa [mem_restrict_range hs, h0] using hr
-  else by
-    rw [restrict_of_not_measurable hs] at hr
-    exact (h0 <| eq_zero_of_mem_range_zero hr).elim
-#align measure_theory.simple_func.mem_image_of_mem_range_restrict MeasureTheory.SimpleFunc.mem_image_of_mem_range_restrict
-
-@[mono]
-theorem restrict_mono [Preorder β] (s : Set α) {f g : α →ₛ β} (H : f ≤ g) :
-    f.restrict s ≤ g.restrict s :=
-  if hs : MeasurableSet s then fun x => by
-    simp only [coe_restrict _ hs, indicator_le_indicator (H x)]
-  else by simp only [restrict_of_not_measurable hs, le_refl]
-#align measure_theory.simple_func.restrict_mono MeasureTheory.SimpleFunc.restrict_mono
-
-end Restrict
-
-section Approx
-
-section
-
-variable [SemilatticeSup β] [OrderBot β] [Zero β]
-
-/-- Fix a sequence `i : ℕ → β`. Given a function `α → β`, its `n`-th approximation
-by simple functions is defined so that in case `β = ℝ≥0∞` it sends each `a` to the supremum
-of the set `{i k | k ≤ n ∧ i k ≤ f a}`, see `approx_apply` and `supr_approx_apply` for details. -/
-def approx (i : ℕ → β) (f : α → β) (n : ℕ) : α →ₛ β :=
-  (Finset.range n).sup fun k => restrict (const α (i k)) { a : α | i k ≤ f a }
-#align measure_theory.simple_func.approx MeasureTheory.SimpleFunc.approx
-
-theorem approx_apply [TopologicalSpace β] [OrderClosedTopology β] [MeasurableSpace β]
-    [OpensMeasurableSpace β] {i : ℕ → β} {f : α → β} {n : ℕ} (a : α) (hf : Measurable f) :
-    (approx i f n : α →ₛ β) a = (Finset.range n).sup fun k => if i k ≤ f a then i k else 0 :=
-  by
-  dsimp only [approx]
-  rw [finset_sup_apply]
-  congr
-  funext k
-  rw [restrict_apply]
-  rfl
-  exact hf measurableSet_Ici
-#align measure_theory.simple_func.approx_apply MeasureTheory.SimpleFunc.approx_apply
-
-theorem monotone_approx (i : ℕ → β) (f : α → β) : Monotone (approx i f) := fun n m h =>
-  Finset.sup_mono <| Finset.range_subset.2 h
-#align measure_theory.simple_func.monotone_approx MeasureTheory.SimpleFunc.monotone_approx
-
-theorem approx_comp [TopologicalSpace β] [OrderClosedTopology β] [MeasurableSpace β]
-    [OpensMeasurableSpace β] [MeasurableSpace γ] {i : ℕ → β} {f : γ → β} {g : α → γ} {n : ℕ} (a : α)
-    (hf : Measurable f) (hg : Measurable g) :
-    (approx i (f ∘ g) n : α →ₛ β) a = (approx i f n : γ →ₛ β) (g a) := by
-  rw [approx_apply _ hf, approx_apply _ (hf.comp hg)]
-#align measure_theory.simple_func.approx_comp MeasureTheory.SimpleFunc.approx_comp
-
-end
-
-theorem supᵢ_approx_apply [TopologicalSpace β] [CompleteLattice β] [OrderClosedTopology β] [Zero β]
-    [MeasurableSpace β] [OpensMeasurableSpace β] (i : ℕ → β) (f : α → β) (a : α) (hf : Measurable f)
-    (h_zero : (0 : β) = ⊥) : (⨆ n, (approx i f n : α →ₛ β) a) = ⨆ (k) (h : i k ≤ f a), i k :=
-  by
-  refine' le_antisymm (supᵢ_le fun n => _) (supᵢ_le fun k => supᵢ_le fun hk => _)
-  · rw [approx_apply a hf, h_zero]
-    refine' Finset.sup_le fun k hk => _
-    split_ifs
-    exact le_supᵢ_of_le k (le_supᵢ _ h)
-    exact bot_le
-  · refine' le_supᵢ_of_le (k + 1) _
-    rw [approx_apply a hf]
-    have : k ∈ Finset.range (k + 1) := Finset.mem_range.2 (Nat.lt_succ_self _)
-    refine' le_trans (le_of_eq _) (Finset.le_sup this)
-    rw [if_pos hk]
-#align measure_theory.simple_func.supr_approx_apply MeasureTheory.SimpleFunc.supᵢ_approx_apply
-
-end Approx
-
-section Eapprox
-
-/-- A sequence of `ℝ≥0∞`s such that its range is the set of non-negative rational numbers. -/
-def ennrealRatEmbed (n : ℕ) : ℝ≥0∞ :=
-  ENNReal.ofReal ((Encodable.decode ℚ n).getD (0 : ℚ))
-#align measure_theory.simple_func.ennreal_rat_embed MeasureTheory.SimpleFunc.ennrealRatEmbed
-
-theorem ennrealRatEmbed_encode (q : ℚ) : ennrealRatEmbed (Encodable.encode q) = Real.toNNReal q :=
-  by rw [ennreal_rat_embed, Encodable.encodek] <;> rfl
-#align measure_theory.simple_func.ennreal_rat_embed_encode MeasureTheory.SimpleFunc.ennrealRatEmbed_encode
-
-/-- Approximate a function `α → ℝ≥0∞` by a sequence of simple functions. -/
-def eapprox : (α → ℝ≥0∞) → ℕ → α →ₛ ℝ≥0∞ :=
-  approx ennrealRatEmbed
-#align measure_theory.simple_func.eapprox MeasureTheory.SimpleFunc.eapprox
-
-theorem eapprox_lt_top (f : α → ℝ≥0∞) (n : ℕ) (a : α) : eapprox f n a < ∞ :=
-  by
-  simp only [eapprox, approx, finset_sup_apply, Finset.sup_lt_iff, WithTop.zero_lt_top,
-    Finset.mem_range, ENNReal.bot_eq_zero, restrict]
-  intro b hb
-  split_ifs
-  · simp only [coe_zero, coe_piecewise, piecewise_eq_indicator, coe_const]
-    calc
-      { a : α | ennreal_rat_embed b ≤ f a }.indicator (fun x => ennreal_rat_embed b) a ≤
-          ennreal_rat_embed b :=
-        indicator_le_self _ _ a
-      _ < ⊤ := ENNReal.coe_lt_top
-      
-  · exact WithTop.zero_lt_top
-#align measure_theory.simple_func.eapprox_lt_top MeasureTheory.SimpleFunc.eapprox_lt_top
-
-@[mono]
-theorem monotone_eapprox (f : α → ℝ≥0∞) : Monotone (eapprox f) :=
-  monotone_approx _ f
-#align measure_theory.simple_func.monotone_eapprox MeasureTheory.SimpleFunc.monotone_eapprox
-
-theorem supᵢ_eapprox_apply (f : α → ℝ≥0∞) (hf : Measurable f) (a : α) :
-    (⨆ n, (eapprox f n : α →ₛ ℝ≥0∞) a) = f a :=
-  by
-  rw [eapprox, supr_approx_apply ennreal_rat_embed f a hf rfl]
-  refine' le_antisymm (supᵢ_le fun i => supᵢ_le fun hi => hi) (le_of_not_gt _)
-  intro h
-  rcases ENNReal.lt_iff_exists_rat_btwn.1 h with ⟨q, hq, lt_q, q_lt⟩
-  have :
-    (Real.toNNReal q : ℝ≥0∞) ≤ ⨆ (k : ℕ) (h : ennreal_rat_embed k ≤ f a), ennreal_rat_embed k :=
-    by
-    refine' le_supᵢ_of_le (Encodable.encode q) _
-    rw [ennreal_rat_embed_encode q]
-    refine' le_supᵢ_of_le (le_of_lt q_lt) _
-    exact le_rfl
-  exact lt_irrefl _ (lt_of_le_of_lt this lt_q)
-#align measure_theory.simple_func.supr_eapprox_apply MeasureTheory.SimpleFunc.supᵢ_eapprox_apply
-
-theorem eapprox_comp [MeasurableSpace γ] {f : γ → ℝ≥0∞} {g : α → γ} {n : ℕ} (hf : Measurable f)
-    (hg : Measurable g) : (eapprox (f ∘ g) n : α → ℝ≥0∞) = (eapprox f n : γ →ₛ ℝ≥0∞) ∘ g :=
-  funext fun a => approx_comp a hf hg
-#align measure_theory.simple_func.eapprox_comp MeasureTheory.SimpleFunc.eapprox_comp
-
-/-- Approximate a function `α → ℝ≥0∞` by a series of simple functions taking their values
-in `ℝ≥0`. -/
-def eapproxDiff (f : α → ℝ≥0∞) : ∀ n : ℕ, α →ₛ ℝ≥0
-  | 0 => (eapprox f 0).map ENNReal.toNNReal
-  | n + 1 => (eapprox f (n + 1) - eapprox f n).map ENNReal.toNNReal
-#align measure_theory.simple_func.eapprox_diff MeasureTheory.SimpleFunc.eapproxDiff
-
-theorem sum_eapproxDiff (f : α → ℝ≥0∞) (n : ℕ) (a : α) :
-    (∑ k in Finset.range (n + 1), (eapproxDiff f k a : ℝ≥0∞)) = eapprox f n a :=
-  by
-  induction' n with n IH
-  · simp only [Nat.zero_eq, Finset.sum_singleton, Finset.range_one]
-    rfl
-  · rw [Finset.sum_range_succ, Nat.succ_eq_add_one, IH, eapprox_diff, coe_map, Function.comp_apply,
-      coe_sub, Pi.sub_apply, ENNReal.coe_toNNReal,
-      add_tsub_cancel_of_le (monotone_eapprox f (Nat.le_succ _) _)]
-    apply (lt_of_le_of_lt _ (eapprox_lt_top f (n + 1) a)).Ne
-    rw [tsub_le_iff_right]
-    exact le_self_add
-#align measure_theory.simple_func.sum_eapprox_diff MeasureTheory.SimpleFunc.sum_eapproxDiff
-
-theorem tsum_eapproxDiff (f : α → ℝ≥0∞) (hf : Measurable f) (a : α) :
-    (∑' n, (eapproxDiff f n a : ℝ≥0∞)) = f a := by
-  simp_rw [ENNReal.tsum_eq_supᵢ_nat' (tendsto_add_at_top_nat 1), sum_eapprox_diff,
-    supr_eapprox_apply f hf a]
-#align measure_theory.simple_func.tsum_eapprox_diff MeasureTheory.SimpleFunc.tsum_eapproxDiff
-
-end Eapprox
-
-end Measurable
-
-section Measure
-
-variable {m : MeasurableSpace α} {μ ν : Measure α}
-
-/-- Integral of a simple function whose codomain is `ℝ≥0∞`. -/
-def lintegral {m : MeasurableSpace α} (f : α →ₛ ℝ≥0∞) (μ : Measure α) : ℝ≥0∞ :=
-  ∑ x in f.range, x * μ (f ⁻¹' {x})
-#align measure_theory.simple_func.lintegral MeasureTheory.SimpleFunc.lintegral
-
-theorem lintegral_eq_of_subset (f : α →ₛ ℝ≥0∞) {s : Finset ℝ≥0∞}
-    (hs : ∀ x, f x ≠ 0 → μ (f ⁻¹' {f x}) ≠ 0 → f x ∈ s) :
-    f.lintegral μ = ∑ x in s, x * μ (f ⁻¹' {x}) :=
-  by
-  refine' Finset.sum_bij_ne_zero (fun r _ _ => r) _ _ _ _
-  · simpa only [forall_range_iff, mul_ne_zero_iff, and_imp]
-  · intros
-    assumption
-  · intro b _ hb
-    refine' ⟨b, _, hb, rfl⟩
-    rw [mem_range, ← preimage_singleton_nonempty]
-    exact nonempty_of_measure_ne_zero (mul_ne_zero_iff.1 hb).2
-  · intros
-    rfl
-#align measure_theory.simple_func.lintegral_eq_of_subset MeasureTheory.SimpleFunc.lintegral_eq_of_subset
-
-theorem lintegral_eq_of_subset' (f : α →ₛ ℝ≥0∞) {s : Finset ℝ≥0∞} (hs : f.range \ {0} ⊆ s) :
-    f.lintegral μ = ∑ x in s, x * μ (f ⁻¹' {x}) :=
-  f.lintegral_eq_of_subset fun x hfx _ =>
-    hs <| Finset.mem_sdiff.2 ⟨f.mem_range_self x, mt Finset.mem_singleton.1 hfx⟩
-#align measure_theory.simple_func.lintegral_eq_of_subset' MeasureTheory.SimpleFunc.lintegral_eq_of_subset'
-
-/-- Calculate the integral of `(g ∘ f)`, where `g : β → ℝ≥0∞` and `f : α →ₛ β`.  -/
-theorem map_lintegral (g : β → ℝ≥0∞) (f : α →ₛ β) :
-    (f.map g).lintegral μ = ∑ x in f.range, g x * μ (f ⁻¹' {x}) :=
-  by
-  simp only [lintegral, range_map]
-  refine' Finset.sum_image' _ fun b hb => _
-  rcases mem_range.1 hb with ⟨a, rfl⟩
-  rw [map_preimage_singleton, ← f.sum_measure_preimage_singleton, Finset.mul_sum]
-  refine' Finset.sum_congr _ _
-  · congr
-  · intro x
-    simp only [Finset.mem_filter]
-    rintro ⟨_, h⟩
-    rw [h]
-#align measure_theory.simple_func.map_lintegral MeasureTheory.SimpleFunc.map_lintegral
-
-theorem add_lintegral (f g : α →ₛ ℝ≥0∞) : (f + g).lintegral μ = f.lintegral μ + g.lintegral μ :=
-  calc
-    (f + g).lintegral μ =
-        ∑ x in (pair f g).range, x.1 * μ (pair f g ⁻¹' {x}) + x.2 * μ (pair f g ⁻¹' {x}) :=
-      by rw [add_eq_map₂, map_lintegral] <;> exact Finset.sum_congr rfl fun a ha => add_mul _ _ _
-    _ =
-        (∑ x in (pair f g).range, x.1 * μ (pair f g ⁻¹' {x})) +
-          ∑ x in (pair f g).range, x.2 * μ (pair f g ⁻¹' {x}) :=
-      by rw [Finset.sum_add_distrib]
-    _ = ((pair f g).map Prod.fst).lintegral μ + ((pair f g).map Prod.snd).lintegral μ := by
-      rw [map_lintegral, map_lintegral]
-    _ = lintegral f μ + lintegral g μ := rfl
-    
-#align measure_theory.simple_func.add_lintegral MeasureTheory.SimpleFunc.add_lintegral
-
-theorem const_mul_lintegral (f : α →ₛ ℝ≥0∞) (x : ℝ≥0∞) :
-    (const α x * f).lintegral μ = x * f.lintegral μ :=
-  calc
-    (f.map fun a => x * a).lintegral μ = ∑ r in f.range, x * r * μ (f ⁻¹' {r}) := map_lintegral _ _
-    _ = ∑ r in f.range, x * (r * μ (f ⁻¹' {r})) :=
-      (Finset.sum_congr rfl fun a ha => mul_assoc _ _ _)
-    _ = x * f.lintegral μ := Finset.mul_sum.symm
-    
-#align measure_theory.simple_func.const_mul_lintegral MeasureTheory.SimpleFunc.const_mul_lintegral
-
-/-- Integral of a simple function `α →ₛ ℝ≥0∞` as a bilinear map. -/
-def lintegralₗ {m : MeasurableSpace α} : (α →ₛ ℝ≥0∞) →ₗ[ℝ≥0∞] Measure α →ₗ[ℝ≥0∞] ℝ≥0∞
-    where
-  toFun f :=
-    { toFun := lintegral f
-      map_add' := by simp [lintegral, mul_add, Finset.sum_add_distrib]
-      map_smul' := fun c μ => by simp [lintegral, mul_left_comm _ c, Finset.mul_sum] }
-  map_add' f g := LinearMap.ext fun μ => add_lintegral f g
-  map_smul' c f := LinearMap.ext fun μ => const_mul_lintegral f c
-#align measure_theory.simple_func.lintegralₗ MeasureTheory.SimpleFunc.lintegralₗ
-
-@[simp]
-theorem zero_lintegral : (0 : α →ₛ ℝ≥0∞).lintegral μ = 0 :=
-  LinearMap.ext_iff.1 lintegralₗ.map_zero μ
-#align measure_theory.simple_func.zero_lintegral MeasureTheory.SimpleFunc.zero_lintegral
-
-theorem lintegral_add {ν} (f : α →ₛ ℝ≥0∞) : f.lintegral (μ + ν) = f.lintegral μ + f.lintegral ν :=
-  (lintegralₗ f).map_add μ ν
-#align measure_theory.simple_func.lintegral_add MeasureTheory.SimpleFunc.lintegral_add
-
-theorem lintegral_smul (f : α →ₛ ℝ≥0∞) (c : ℝ≥0∞) : f.lintegral (c • μ) = c • f.lintegral μ :=
-  (lintegralₗ f).map_smul c μ
-#align measure_theory.simple_func.lintegral_smul MeasureTheory.SimpleFunc.lintegral_smul
-
-@[simp]
-theorem lintegral_zero [MeasurableSpace α] (f : α →ₛ ℝ≥0∞) : f.lintegral 0 = 0 :=
-  (lintegralₗ f).map_zero
-#align measure_theory.simple_func.lintegral_zero MeasureTheory.SimpleFunc.lintegral_zero
-
-theorem lintegral_sum {m : MeasurableSpace α} {ι} (f : α →ₛ ℝ≥0∞) (μ : ι → Measure α) :
-    f.lintegral (Measure.sum μ) = ∑' i, f.lintegral (μ i) :=
-  by
-  simp only [lintegral, measure.sum_apply, f.measurable_set_preimage, ← Finset.tsum_subtype, ←
-    ENNReal.tsum_mul_left]
-  apply ENNReal.tsum_comm
-#align measure_theory.simple_func.lintegral_sum MeasureTheory.SimpleFunc.lintegral_sum
-
-theorem restrict_lintegral (f : α →ₛ ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
-    (restrict f s).lintegral μ = ∑ r in f.range, r * μ (f ⁻¹' {r} ∩ s) :=
-  calc
-    (restrict f s).lintegral μ = ∑ r in f.range, r * μ (restrict f s ⁻¹' {r}) :=
-      lintegral_eq_of_subset _ fun x hx =>
-        if hxs : x ∈ s then fun _ => by
-          simp only [f.restrict_apply hs, indicator_of_mem hxs, mem_range_self]
-        else False.elim <| hx <| by simp [*]
-    _ = ∑ r in f.range, r * μ (f ⁻¹' {r} ∩ s) :=
-      Finset.sum_congr rfl <|
-        forall_range_iff.2 fun b =>
-          if hb : f b = 0 then by simp only [hb, MulZeroClass.zero_mul]
-          else by rw [restrict_preimage_singleton _ hs hb, inter_comm]
-    
-#align measure_theory.simple_func.restrict_lintegral MeasureTheory.SimpleFunc.restrict_lintegral
-
-theorem lintegral_restrict {m : MeasurableSpace α} (f : α →ₛ ℝ≥0∞) (s : Set α) (μ : Measure α) :
-    f.lintegral (μ.restrict s) = ∑ y in f.range, y * μ (f ⁻¹' {y} ∩ s) := by
-  simp only [lintegral, measure.restrict_apply, f.measurable_set_preimage]
-#align measure_theory.simple_func.lintegral_restrict MeasureTheory.SimpleFunc.lintegral_restrict
-
-theorem restrict_lintegral_eq_lintegral_restrict (f : α →ₛ ℝ≥0∞) {s : Set α}
-    (hs : MeasurableSet s) : (restrict f s).lintegral μ = f.lintegral (μ.restrict s) := by
-  rw [f.restrict_lintegral hs, lintegral_restrict]
-#align measure_theory.simple_func.restrict_lintegral_eq_lintegral_restrict MeasureTheory.SimpleFunc.restrict_lintegral_eq_lintegral_restrict
-
-theorem const_lintegral (c : ℝ≥0∞) : (const α c).lintegral μ = c * μ univ :=
-  by
-  rw [lintegral]
-  cases isEmpty_or_nonempty α
-  · simp [μ.eq_zero_of_is_empty]
-  · simp [preimage_const_of_mem]
-#align measure_theory.simple_func.const_lintegral MeasureTheory.SimpleFunc.const_lintegral
-
-theorem const_lintegral_restrict (c : ℝ≥0∞) (s : Set α) :
-    (const α c).lintegral (μ.restrict s) = c * μ s := by
-  rw [const_lintegral, measure.restrict_apply MeasurableSet.univ, univ_inter]
-#align measure_theory.simple_func.const_lintegral_restrict MeasureTheory.SimpleFunc.const_lintegral_restrict
-
-theorem restrict_const_lintegral (c : ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
-    ((const α c).restrict s).lintegral μ = c * μ s := by
-  rw [restrict_lintegral_eq_lintegral_restrict _ hs, const_lintegral_restrict]
-#align measure_theory.simple_func.restrict_const_lintegral MeasureTheory.SimpleFunc.restrict_const_lintegral
-
-theorem le_sup_lintegral (f g : α →ₛ ℝ≥0∞) : f.lintegral μ ⊔ g.lintegral μ ≤ (f ⊔ g).lintegral μ :=
-  calc
-    f.lintegral μ ⊔ g.lintegral μ =
-        ((pair f g).map Prod.fst).lintegral μ ⊔ ((pair f g).map Prod.snd).lintegral μ :=
-      rfl
-    _ ≤ ∑ x in (pair f g).range, (x.1 ⊔ x.2) * μ (pair f g ⁻¹' {x}) :=
-      by
-      rw [map_lintegral, map_lintegral]
-      refine' sup_le _ _ <;> refine' Finset.sum_le_sum fun a _ => mul_le_mul_right' _ _
-      exact le_sup_left
-      exact le_sup_right
-    _ = (f ⊔ g).lintegral μ := by rw [sup_eq_map₂, map_lintegral]
-    
-#align measure_theory.simple_func.le_sup_lintegral MeasureTheory.SimpleFunc.le_sup_lintegral
-
-/-- `simple_func.lintegral` is monotone both in function and in measure. -/
-@[mono]
-theorem lintegral_mono {f g : α →ₛ ℝ≥0∞} (hfg : f ≤ g) (hμν : μ ≤ ν) :
-    f.lintegral μ ≤ g.lintegral ν :=
-  calc
-    f.lintegral μ ≤ f.lintegral μ ⊔ g.lintegral μ := le_sup_left
-    _ ≤ (f ⊔ g).lintegral μ := (le_sup_lintegral _ _)
-    _ = g.lintegral μ := by rw [sup_of_le_right hfg]
-    _ ≤ g.lintegral ν :=
-      Finset.sum_le_sum fun y hy => ENNReal.mul_left_mono <| hμν _ (g.measurableSet_preimage _)
-    
-#align measure_theory.simple_func.lintegral_mono MeasureTheory.SimpleFunc.lintegral_mono
-
-/-- `simple_func.lintegral` depends only on the measures of `f ⁻¹' {y}`. -/
-theorem lintegral_eq_of_measure_preimage [MeasurableSpace β] {f : α →ₛ ℝ≥0∞} {g : β →ₛ ℝ≥0∞}
-    {ν : Measure β} (H : ∀ y, μ (f ⁻¹' {y}) = ν (g ⁻¹' {y})) : f.lintegral μ = g.lintegral ν :=
-  by
-  simp only [lintegral, ← H]
-  apply lintegral_eq_of_subset
-  simp only [H]
-  intros
-  exact mem_range_of_measure_ne_zero ‹_›
-#align measure_theory.simple_func.lintegral_eq_of_measure_preimage MeasureTheory.SimpleFunc.lintegral_eq_of_measure_preimage
-
-/-- If two simple functions are equal a.e., then their `lintegral`s are equal. -/
-theorem lintegral_congr {f g : α →ₛ ℝ≥0∞} (h : f =ᵐ[μ] g) : f.lintegral μ = g.lintegral μ :=
-  lintegral_eq_of_measure_preimage fun y =>
-    measure_congr <| Eventually.set_eq <| h.mono fun x hx => by simp [hx]
-#align measure_theory.simple_func.lintegral_congr MeasureTheory.SimpleFunc.lintegral_congr
-
-theorem lintegral_map' {β} [MeasurableSpace β] {μ' : Measure β} (f : α →ₛ ℝ≥0∞) (g : β →ₛ ℝ≥0∞)
-    (m' : α → β) (eq : ∀ a, f a = g (m' a)) (h : ∀ s, MeasurableSet s → μ' s = μ (m' ⁻¹' s)) :
-    f.lintegral μ = g.lintegral μ' :=
-  lintegral_eq_of_measure_preimage fun y =>
-    by
-    simp only [preimage, Eq]
-    exact (h (g ⁻¹' {y}) (g.measurable_set_preimage _)).symm
-#align measure_theory.simple_func.lintegral_map' MeasureTheory.SimpleFunc.lintegral_map'
-
-theorem lintegral_map {β} [MeasurableSpace β] (g : β →ₛ ℝ≥0∞) {f : α → β} (hf : Measurable f) :
-    g.lintegral (Measure.map f μ) = (g.comp f hf).lintegral μ :=
-  Eq.symm <| lintegral_map' _ _ f (fun a => rfl) fun s hs => Measure.map_apply hf hs
-#align measure_theory.simple_func.lintegral_map MeasureTheory.SimpleFunc.lintegral_map
-
-end Measure
-
-section FinMeasSupp
-
-open Finset Function
-
-theorem support_eq [MeasurableSpace α] [Zero β] (f : α →ₛ β) :
-    support f = ⋃ y ∈ f.range.filterₓ fun y => y ≠ 0, f ⁻¹' {y} :=
-  Set.ext fun x => by
-    simp only [mem_support, Set.mem_preimage, mem_filter, mem_range_self, true_and_iff, exists_prop,
-      mem_Union, Set.mem_range, mem_singleton_iff, exists_eq_right']
-#align measure_theory.simple_func.support_eq MeasureTheory.SimpleFunc.support_eq
-
-variable {m : MeasurableSpace α} [Zero β] [Zero γ] {μ : Measure α} {f : α →ₛ β}
-
-theorem measurableSet_support [MeasurableSpace α] (f : α →ₛ β) : MeasurableSet (support f) :=
-  by
-  rw [f.support_eq]
-  exact Finset.measurableSet_bunionᵢ _ fun y hy => measurable_set_fiber _ _
-#align measure_theory.simple_func.measurable_set_support MeasureTheory.SimpleFunc.measurableSet_support
-
-/-- A `simple_func` has finite measure support if it is equal to `0` outside of a set of finite
-measure. -/
-protected def FinMeasSupp {m : MeasurableSpace α} (f : α →ₛ β) (μ : Measure α) : Prop :=
-  f =ᶠ[μ.cofinite] 0
-#align measure_theory.simple_func.fin_meas_supp MeasureTheory.SimpleFunc.FinMeasSupp
-
-theorem finMeasSupp_iff_support : f.FinMeasSupp μ ↔ μ (support f) < ∞ :=
-  Iff.rfl
-#align measure_theory.simple_func.fin_meas_supp_iff_support MeasureTheory.SimpleFunc.finMeasSupp_iff_support
-
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (y «expr ≠ » 0) -/
-theorem finMeasSupp_iff : f.FinMeasSupp μ ↔ ∀ (y) (_ : y ≠ 0), μ (f ⁻¹' {y}) < ∞ :=
-  by
-  constructor
-  · refine' fun h y hy => lt_of_le_of_lt (measure_mono _) h
-    exact fun x hx (H : f x = 0) => hy <| H ▸ Eq.symm hx
-  · intro H
-    rw [fin_meas_supp_iff_support, support_eq]
-    refine' lt_of_le_of_lt (measure_bUnion_finset_le _ _) (sum_lt_top _)
-    exact fun y hy => (H y (Finset.mem_filter.1 hy).2).Ne
-#align measure_theory.simple_func.fin_meas_supp_iff MeasureTheory.SimpleFunc.finMeasSupp_iff
-
-namespace FinMeasSupp
-
-theorem meas_preimage_singleton_ne_zero (h : f.FinMeasSupp μ) {y : β} (hy : y ≠ 0) :
-    μ (f ⁻¹' {y}) < ∞ :=
-  finMeasSupp_iff.1 h y hy
-#align measure_theory.simple_func.fin_meas_supp.meas_preimage_singleton_ne_zero MeasureTheory.SimpleFunc.FinMeasSupp.meas_preimage_singleton_ne_zero
-
-protected theorem map {g : β → γ} (hf : f.FinMeasSupp μ) (hg : g 0 = 0) : (f.map g).FinMeasSupp μ :=
-  flip lt_of_le_of_lt hf (measure_mono <| support_comp_subset hg f)
-#align measure_theory.simple_func.fin_meas_supp.map MeasureTheory.SimpleFunc.FinMeasSupp.map
-
-theorem ofMap {g : β → γ} (h : (f.map g).FinMeasSupp μ) (hg : ∀ b, g b = 0 → b = 0) :
-    f.FinMeasSupp μ :=
-  flip lt_of_le_of_lt h <| measure_mono <| support_subset_comp hg _
-#align measure_theory.simple_func.fin_meas_supp.of_map MeasureTheory.SimpleFunc.FinMeasSupp.ofMap
-
-theorem map_iff {g : β → γ} (hg : ∀ {b}, g b = 0 ↔ b = 0) :
-    (f.map g).FinMeasSupp μ ↔ f.FinMeasSupp μ :=
-  ⟨fun h => h.of_map fun b => hg.1, fun h => h.map <| hg.2 rfl⟩
-#align measure_theory.simple_func.fin_meas_supp.map_iff MeasureTheory.SimpleFunc.FinMeasSupp.map_iff
-
-protected theorem pair {g : α →ₛ γ} (hf : f.FinMeasSupp μ) (hg : g.FinMeasSupp μ) :
-    (pair f g).FinMeasSupp μ :=
-  calc
-    μ (support <| pair f g) = μ (support f ∪ support g) := congr_arg μ <| support_prod_mk f g
-    _ ≤ μ (support f) + μ (support g) := (measure_union_le _ _)
-    _ < _ := add_lt_top.2 ⟨hf, hg⟩
-    
-#align measure_theory.simple_func.fin_meas_supp.pair MeasureTheory.SimpleFunc.FinMeasSupp.pair
-
-protected theorem map₂ [Zero δ] (hf : f.FinMeasSupp μ) {g : α →ₛ γ} (hg : g.FinMeasSupp μ)
-    {op : β → γ → δ} (H : op 0 0 = 0) : ((pair f g).map (Function.uncurry op)).FinMeasSupp μ :=
-  (hf.pair hg).map H
-#align measure_theory.simple_func.fin_meas_supp.map₂ MeasureTheory.SimpleFunc.FinMeasSupp.map₂
-
-protected theorem add {β} [AddMonoid β] {f g : α →ₛ β} (hf : f.FinMeasSupp μ)
-    (hg : g.FinMeasSupp μ) : (f + g).FinMeasSupp μ :=
-  by
-  rw [add_eq_map₂]
-  exact hf.map₂ hg (zero_add 0)
-#align measure_theory.simple_func.fin_meas_supp.add MeasureTheory.SimpleFunc.FinMeasSupp.add
-
-protected theorem mul {β} [MonoidWithZero β] {f g : α →ₛ β} (hf : f.FinMeasSupp μ)
-    (hg : g.FinMeasSupp μ) : (f * g).FinMeasSupp μ :=
-  by
-  rw [mul_eq_map₂]
-  exact hf.map₂ hg (MulZeroClass.zero_mul 0)
-#align measure_theory.simple_func.fin_meas_supp.mul MeasureTheory.SimpleFunc.FinMeasSupp.mul
-
-theorem lintegral_lt_top {f : α →ₛ ℝ≥0∞} (hm : f.FinMeasSupp μ) (hf : ∀ᵐ a ∂μ, f a ≠ ∞) :
-    f.lintegral μ < ∞ := by
-  refine' sum_lt_top fun a ha => _
-  rcases eq_or_ne a ∞ with (rfl | ha)
-  · simp only [ae_iff, Ne.def, Classical.not_not] at hf
-    simp [Set.preimage, hf]
-  · by_cases ha0 : a = 0
-    · subst a
-      rwa [MulZeroClass.zero_mul]
-    · exact mul_ne_top ha (fin_meas_supp_iff.1 hm _ ha0).Ne
-#align measure_theory.simple_func.fin_meas_supp.lintegral_lt_top MeasureTheory.SimpleFunc.FinMeasSupp.lintegral_lt_top
-
-theorem ofLintegralNeTop {f : α →ₛ ℝ≥0∞} (h : f.lintegral μ ≠ ∞) : f.FinMeasSupp μ :=
-  by
-  refine' fin_meas_supp_iff.2 fun b hb => _
-  rw [f.lintegral_eq_of_subset' (Finset.subset_insert b _)] at h
-  refine' ENNReal.lt_top_of_mul_ne_top_right _ hb
-  exact (lt_top_of_sum_ne_top h (Finset.mem_insert_self _ _)).Ne
-#align measure_theory.simple_func.fin_meas_supp.of_lintegral_ne_top MeasureTheory.SimpleFunc.FinMeasSupp.ofLintegralNeTop
-
-theorem iff_lintegral_lt_top {f : α →ₛ ℝ≥0∞} (hf : ∀ᵐ a ∂μ, f a ≠ ∞) :
-    f.FinMeasSupp μ ↔ f.lintegral μ < ∞ :=
-  ⟨fun h => h.lintegral_lt_top hf, fun h => ofLintegralNeTop h.Ne⟩
-#align measure_theory.simple_func.fin_meas_supp.iff_lintegral_lt_top MeasureTheory.SimpleFunc.FinMeasSupp.iff_lintegral_lt_top
-
-end FinMeasSupp
-
-end FinMeasSupp
-
-/-- To prove something for an arbitrary simple function, it suffices to show
-that the property holds for (multiples of) characteristic functions and is closed under
-addition (of functions with disjoint support).
-
-It is possible to make the hypotheses in `h_add` a bit stronger, and such conditions can be added
-once we need them (for example it is only necessary to consider the case where `g` is a multiple
-of a characteristic function, and that this multiple doesn't appear in the image of `f`) -/
-@[elab_as_elim]
-protected theorem induction {α γ} [MeasurableSpace α] [AddMonoid γ] {P : SimpleFunc α γ → Prop}
-    (h_ind :
-      ∀ (c) {s} (hs : MeasurableSet s),
-        P (SimpleFunc.piecewise s hs (SimpleFunc.const _ c) (SimpleFunc.const _ 0)))
-    (h_add : ∀ ⦃f g : SimpleFunc α γ⦄, Disjoint (support f) (support g) → P f → P g → P (f + g))
-    (f : SimpleFunc α γ) : P f :=
-  by
-  generalize h : f.range \ {0} = s
-  rw [← Finset.coe_inj, Finset.coe_sdiff, Finset.coe_singleton, simple_func.coe_range] at h
-  revert s f h; refine' Finset.induction _ _
-  · intro f hf
-    rw [Finset.coe_empty, diff_eq_empty, range_subset_singleton] at hf
-    convert h_ind 0 MeasurableSet.univ
-    ext x
-    simp [hf]
-  · intro x s hxs ih f hf
-    have mx := f.measurable_set_preimage {x}
-    let g := simple_func.piecewise (f ⁻¹' {x}) mx 0 f
-    have Pg : P g := by
-      apply ih
-      simp only [g, simple_func.coe_piecewise, range_piecewise]
-      rw [image_compl_preimage, union_diff_distrib, diff_diff_comm, hf, Finset.coe_insert,
-        insert_diff_self_of_not_mem, diff_eq_empty.mpr, Set.empty_union]
-      · rw [Set.image_subset_iff]
-        convert Set.subset_univ _
-        exact preimage_const_of_mem (mem_singleton _)
-      · rwa [Finset.mem_coe]
-    convert h_add _ Pg (h_ind x mx)
-    · ext1 y
-      by_cases hy : y ∈ f ⁻¹' {x} <;> [simpa [hy] , simp [hy]]
-    rw [disjoint_iff_inf_le]
-    rintro y
-    by_cases hy : y ∈ f ⁻¹' {x} <;> simp [hy]
-#align measure_theory.simple_func.induction MeasureTheory.SimpleFunc.induction
-
-end SimpleFunc
+variable {α β γ δ : Type _}
 
 section Lintegral
 
@@ -3114,41 +1831,9 @@ theorem aeMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurab
 
 end Lintegral
 
-end MeasureTheory
-
-open MeasureTheory MeasureTheory.SimpleFunc
-
-/-- To prove something for an arbitrary measurable function into `ℝ≥0∞`, it suffices to show
-that the property holds for (multiples of) characteristic functions and is closed under addition
-and supremum of increasing sequences of functions.
-
-It is possible to make the hypotheses in the induction steps a bit stronger, and such conditions
-can be added once we need them (for example in `h_add` it is only necessary to consider the sum of
-a simple function with a multiple of a characteristic function and that the intersection
-of their images is a subset of `{0}`. -/
-@[elab_as_elim]
-theorem Measurable.eNNReal_induction {α} [MeasurableSpace α] {P : (α → ℝ≥0∞) → Prop}
-    (h_ind : ∀ (c : ℝ≥0∞) ⦃s⦄, MeasurableSet s → P (indicator s fun _ => c))
-    (h_add :
-      ∀ ⦃f g : α → ℝ≥0∞⦄,
-        Disjoint (support f) (support g) → Measurable f → Measurable g → P f → P g → P (f + g))
-    (h_supr :
-      ∀ ⦃f : ℕ → α → ℝ≥0∞⦄ (hf : ∀ n, Measurable (f n)) (h_mono : Monotone f) (hP : ∀ n, P (f n)),
-        P fun x => ⨆ n, f n x)
-    ⦃f : α → ℝ≥0∞⦄ (hf : Measurable f) : P f :=
-  by
-  convert h_supr (fun n => (eapprox f n).Measurable) (monotone_eapprox f) _
-  · ext1 x
-    rw [supr_eapprox_apply f hf]
-  ·
-    exact fun n =>
-      simple_func.induction (fun c s hs => h_ind c hs)
-        (fun f g hfg hf hg => h_add hfg f.Measurable g.Measurable hf hg) (eapprox f n)
-#align measurable.ennreal_induction Measurable.eNNReal_induction
-
-namespace MeasureTheory
+open MeasureTheory.SimpleFunc
 
-variable {α : Type _} {m m0 : MeasurableSpace α}
+variable {m m0 : MeasurableSpace α}
 
 include m
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
+! leanprover-community/mathlib commit f231b9d8ce4970789c592af9508e06a0884f72d1
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -2206,23 +2206,33 @@ theorem lintegral_supᵢ_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measura
     
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_supᵢ_ae
 
-theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
+theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AeMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
   by
   refine' ENNReal.eq_sub_of_add_eq hg_fin _
-  rw [← lintegral_add_right _ hg]
+  rw [← lintegral_add_right' _ hg]
   exact lintegral_congr_ae (h_le.mono fun x hx => tsub_add_cancel_of_le hx)
+#align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'
+
+theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
+    (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
+  lintegral_sub' hg.AeMeasurable hg_fin h_le
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
 
-theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
+theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AeMeasurable f μ) :
     ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
   by
   rw [tsub_le_iff_right]
   by_cases hfi : (∫⁻ x, f x ∂μ) = ∞
   · rw [hfi, add_top]
     exact le_top
-  · rw [← lintegral_add_right _ hf]
+  · rw [← lintegral_add_right' _ hf]
     exact lintegral_mono fun x => le_tsub_add
+#align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
+
+theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
+    ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
+  lintegral_sub_le' f g hf.AeMeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
 
 theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AeMeasurable g μ)
Diff
@@ -1527,7 +1527,7 @@ theorem supᵢ_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
 theorem supr₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ :=
   by
-  convert (monotone_lintegral μ).le_map_supᵢ₂ f
+  convert(monotone_lintegral μ).le_map_supᵢ₂ f
   ext1 a
   simp only [supᵢ_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.supr₂_lintegral_le
@@ -1542,7 +1542,7 @@ theorem le_infᵢ_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
 theorem le_infi₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ :=
   by
-  convert (monotone_lintegral μ).map_infᵢ₂_le f
+  convert(monotone_lintegral μ).map_infᵢ₂_le f
   ext1 a
   simp only [infᵢ_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_infi₂_lintegral
Diff
@@ -1074,7 +1074,7 @@ theorem restrict_lintegral (f : α →ₛ ℝ≥0∞) {s : Set α} (hs : Measura
     _ = ∑ r in f.range, r * μ (f ⁻¹' {r} ∩ s) :=
       Finset.sum_congr rfl <|
         forall_range_iff.2 fun b =>
-          if hb : f b = 0 then by simp only [hb, zero_mul]
+          if hb : f b = 0 then by simp only [hb, MulZeroClass.zero_mul]
           else by rw [restrict_preimage_singleton _ hs hb, inter_comm]
     
 #align measure_theory.simple_func.restrict_lintegral MeasureTheory.SimpleFunc.restrict_lintegral
@@ -1255,7 +1255,7 @@ protected theorem mul {β} [MonoidWithZero β] {f g : α →ₛ β} (hf : f.FinM
     (hg : g.FinMeasSupp μ) : (f * g).FinMeasSupp μ :=
   by
   rw [mul_eq_map₂]
-  exact hf.map₂ hg (zero_mul 0)
+  exact hf.map₂ hg (MulZeroClass.zero_mul 0)
 #align measure_theory.simple_func.fin_meas_supp.mul MeasureTheory.SimpleFunc.FinMeasSupp.mul
 
 theorem lintegral_lt_top {f : α →ₛ ℝ≥0∞} (hm : f.FinMeasSupp μ) (hf : ∀ᵐ a ∂μ, f a ≠ ∞) :
@@ -1266,7 +1266,7 @@ theorem lintegral_lt_top {f : α →ₛ ℝ≥0∞} (hm : f.FinMeasSupp μ) (hf
     simp [Set.preimage, hf]
   · by_cases ha0 : a = 0
     · subst a
-      rwa [zero_mul]
+      rwa [MulZeroClass.zero_mul]
     · exact mul_ne_top ha (fin_meas_supp_iff.1 hm _ ha0).Ne
 #align measure_theory.simple_func.fin_meas_supp.lintegral_lt_top MeasureTheory.SimpleFunc.FinMeasSupp.lintegral_lt_top
 
@@ -1648,7 +1648,7 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
     have : s x ≠ 0 := by
       refine' mt _ this
       intro h
-      rw [h, mul_zero]
+      rw [h, MulZeroClass.mul_zero]
     have : (rs.map c) x < ⨆ n : ℕ, f n x :=
       by
       refine' lt_of_lt_of_le (ENNReal.coe_lt_coe.2 _) (hsf x)
@@ -3200,7 +3200,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
         filter_upwards [ae_restrict_mem M]
         intro x hx
         simp only [Classical.not_not, mem_set_of_eq, mem_compl_iff] at hx
-        simp only [hx, zero_mul, Pi.mul_apply]
+        simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply]
     _ = ∫⁻ a : α, (f * g) a ∂μ := by
       apply lintegral_congr_ae
       filter_upwards [hf.ae_eq_mk]
@@ -3245,7 +3245,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
   intro x h'x
   rcases eq_or_ne (f x) 0 with (hx | hx)
   · have := hi x
-    simp only [hx, zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this
+    simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this
     simp [this]
   · apply le_of_eq _
     dsimp
@@ -3447,7 +3447,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       coe_indicator, Function.const_apply] at hL
     have c_ne_zero : c ≠ 0 := by
       intro hc
-      simpa only [hc, ENNReal.coe_zero, zero_mul, not_lt_zero] using hL
+      simpa only [hc, ENNReal.coe_zero, MulZeroClass.zero_mul, not_lt_zero] using hL
     have : L / c < μ s := by
       rwa [ENNReal.div_lt_iff, mul_comm]
       · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
Diff
@@ -1504,7 +1504,7 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
   by
   rw [lintegral_eq_nnreal] at h
   have := ENNReal.lt_add_right h hε
-  erw [ENNReal.bsupr_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
+  erw [ENNReal.bsupᵢ_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
   simp_rw [lt_supᵢ_iff, supᵢ_lt_iff, supᵢ_le_iff] at this
   rcases this with ⟨φ, hle : ∀ x, ↑(φ x) ≤ f x, b, hbφ, hb⟩
   refine' ⟨φ, hle, fun ψ hψ => _⟩
@@ -1805,7 +1805,7 @@ of their sum. The other inequality needs one of these functions to be (a.e.-)mea
 theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ) ≤ ∫⁻ a, f a + g a ∂μ :=
   by
   dsimp only [lintegral]
-  refine' ENNReal.bsupr_add_bsupr_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
+  refine' ENNReal.bsupᵢ_add_bsupᵢ_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
   exact le_supᵢ₂_of_le (f' + g') (add_le_add hf' hg') (add_lintegral _ _).ge
 #align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_add
 
Diff
@@ -1020,7 +1020,8 @@ theorem const_mul_lintegral (f : α →ₛ ℝ≥0∞) (x : ℝ≥0∞) :
     (const α x * f).lintegral μ = x * f.lintegral μ :=
   calc
     (f.map fun a => x * a).lintegral μ = ∑ r in f.range, x * r * μ (f ⁻¹' {r}) := map_lintegral _ _
-    _ = ∑ r in f.range, x * (r * μ (f ⁻¹' {r})) := Finset.sum_congr rfl fun a ha => mul_assoc _ _ _
+    _ = ∑ r in f.range, x * (r * μ (f ⁻¹' {r})) :=
+      (Finset.sum_congr rfl fun a ha => mul_assoc _ _ _)
     _ = x * f.lintegral μ := Finset.mul_sum.symm
     
 #align measure_theory.simple_func.const_mul_lintegral MeasureTheory.SimpleFunc.const_mul_lintegral
@@ -1127,7 +1128,7 @@ theorem lintegral_mono {f g : α →ₛ ℝ≥0∞} (hfg : f ≤ g) (hμν : μ
     f.lintegral μ ≤ g.lintegral ν :=
   calc
     f.lintegral μ ≤ f.lintegral μ ⊔ g.lintegral μ := le_sup_left
-    _ ≤ (f ⊔ g).lintegral μ := le_sup_lintegral _ _
+    _ ≤ (f ⊔ g).lintegral μ := (le_sup_lintegral _ _)
     _ = g.lintegral μ := by rw [sup_of_le_right hfg]
     _ ≤ g.lintegral ν :=
       Finset.sum_le_sum fun y hy => ENNReal.mul_left_mono <| hμν _ (g.measurableSet_preimage _)
@@ -1196,7 +1197,7 @@ theorem finMeasSupp_iff_support : f.FinMeasSupp μ ↔ μ (support f) < ∞ :=
   Iff.rfl
 #align measure_theory.simple_func.fin_meas_supp_iff_support MeasureTheory.SimpleFunc.finMeasSupp_iff_support
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (y «expr ≠ » 0) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (y «expr ≠ » 0) -/
 theorem finMeasSupp_iff : f.FinMeasSupp μ ↔ ∀ (y) (_ : y ≠ 0), μ (f ⁻¹' {y}) < ∞ :=
   by
   constructor
@@ -1233,7 +1234,7 @@ protected theorem pair {g : α →ₛ γ} (hf : f.FinMeasSupp μ) (hg : g.FinMea
     (pair f g).FinMeasSupp μ :=
   calc
     μ (support <| pair f g) = μ (support f ∪ support g) := congr_arg μ <| support_prod_mk f g
-    _ ≤ μ (support f) + μ (support g) := measure_union_le _ _
+    _ ≤ μ (support f) + μ (support g) := (measure_union_le _ _)
     _ < _ := add_lt_top.2 ⟨hf, hg⟩
     
 #align measure_theory.simple_func.fin_meas_supp.pair MeasureTheory.SimpleFunc.FinMeasSupp.pair
@@ -1670,8 +1671,8 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
     _ = ∑ r in (rs.map c).range, r * μ (⋃ n, rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) := by
       simp only [(Eq _).symm]
     _ = ∑ r in (rs.map c).range, ⨆ n, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
-      Finset.sum_congr rfl fun x hx => by
-        rw [measure_Union_eq_supr (directed_of_sup <| mono x), ENNReal.mul_supᵢ]
+      (Finset.sum_congr rfl fun x hx => by
+        rw [measure_Union_eq_supr (directed_of_sup <| mono x), ENNReal.mul_supᵢ])
     _ = ⨆ n, ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
       by
       rw [ENNReal.finset_sum_supᵢ_nat]
@@ -1777,12 +1778,12 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
       refine' add_le_add le_rfl (le_trans _ (hφ _ hψ).le)
       exact simple_func.lintegral_mono le_rfl measure.restrict_le_self
     _ ≤ (simple_func.const α (C : ℝ≥0∞)).lintegral (μ.restrict s) + ε₁ :=
-      add_le_add (simple_func.lintegral_mono (fun x => coe_le_coe.2 (hC x)) le_rfl) le_rfl
+      (add_le_add (simple_func.lintegral_mono (fun x => coe_le_coe.2 (hC x)) le_rfl) le_rfl)
     _ = C * μ s + ε₁ := by
       simp only [← simple_func.lintegral_eq_lintegral, coe_const, lintegral_const,
         measure.restrict_apply, MeasurableSet.univ, univ_inter]
-    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := add_le_add_right (mul_le_mul_left' hs.le _) _
-    _ ≤ ε₂ - ε₁ + ε₁ := add_le_add mul_div_le le_rfl
+    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := (add_le_add_right (mul_le_mul_left' hs.le _) _)
+    _ ≤ ε₂ - ε₁ + ε₁ := (add_le_add mul_div_le le_rfl)
     _ = ε₂ := tsub_add_cancel_of_le hε₁₂.le
     
 #align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt
@@ -1853,8 +1854,8 @@ theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α 
   rcases exists_measurable_le_lintegral_eq μ fun a => f a + g a with ⟨φ, hφm, hφ_le, hφ_eq⟩
   calc
     (∫⁻ a, f a + g a ∂μ) = ∫⁻ a, φ a ∂μ := hφ_eq
-    _ ≤ ∫⁻ a, f a + (φ a - f a) ∂μ := lintegral_mono fun a => le_add_tsub
-    _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, φ a - f a ∂μ := lintegral_add_aux hf (hφm.sub hf)
+    _ ≤ ∫⁻ a, f a + (φ a - f a) ∂μ := (lintegral_mono fun a => le_add_tsub)
+    _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, φ a - f a ∂μ := (lintegral_add_aux hf (hφm.sub hf))
     _ ≤ (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
       add_le_add_left (lintegral_mono fun a => tsub_le_iff_left.2 <| hφ_le a) _
     
@@ -2103,8 +2104,8 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
     (∫⁻ x, f x ∂μ) + ε * μ { x | f x + ε ≤ g x } = (∫⁻ x, φ x ∂μ) + ε * μ { x | f x + ε ≤ g x } :=
       by rw [hφ_eq]
     _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ { x | φ x + ε ≤ g x } :=
-      add_le_add_left
-        (mul_le_mul_left' (measure_mono fun x => (add_le_add_right (hφ_le _) _).trans) _) _
+      (add_le_add_left
+        (mul_le_mul_left' (measure_mono fun x => (add_le_add_right (hφ_le _) _).trans) _) _)
     _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ :=
       by
       rw [lintegral_add_left hφm, lintegral_indicator₀, set_lintegral_const]
@@ -2195,12 +2196,12 @@ theorem lintegral_supᵢ_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measura
     (∫⁻ a, ⨆ n, f n a ∂μ) = ∫⁻ a, ⨆ n, g n a ∂μ :=
       lintegral_congr_ae <| g_eq_f.mono fun a ha => by simp only [ha]
     _ = ⨆ n, ∫⁻ a, g n a ∂μ :=
-      lintegral_supᵢ (fun n => measurable_const.piecewise hs.2.1 (hf n))
+      (lintegral_supᵢ (fun n => measurable_const.piecewise hs.2.1 (hf n))
         (monotone_nat_of_le_succ fun n a =>
           by_cases (fun h : a ∈ s => by simp [g, if_pos h]) fun h : a ∉ s =>
             by
             simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this; have := mt (this a) h
-            simp only [Classical.not_not, mem_set_of_eq] at this; exact this n)
+            simp only [Classical.not_not, mem_set_of_eq] at this; exact this n))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun a ha => ha _)]
     
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_supᵢ_ae
@@ -2267,12 +2268,12 @@ theorem lintegral_infᵢ_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Mea
           (lintegral_sub (measurable_infᵢ h_meas)
               (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => infᵢ_le _ _)
               (ae_of_all _ fun a => infᵢ_le _ _)).symm
-        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := congr rfl (funext fun a => ENNReal.sub_infᵢ)
+        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := (congr rfl (funext fun a => ENNReal.sub_infᵢ))
         _ = ⨆ n, ∫⁻ a, f 0 a - f n a ∂μ :=
-          lintegral_supᵢ_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
-            (h_mono n).mono fun a ha => tsub_le_tsub le_rfl ha
+          (lintegral_supᵢ_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
+            (h_mono n).mono fun a ha => tsub_le_tsub le_rfl ha)
         _ = ⨆ n, (∫⁻ a, f 0 a ∂μ) - ∫⁻ a, f n a ∂μ :=
-          have h_mono : ∀ᵐ a ∂μ, ∀ n : ℕ, f n.succ a ≤ f n a := ae_all_iff.2 h_mono
+          (have h_mono : ∀ᵐ a ∂μ, ∀ n : ℕ, f n.succ a ≤ f n a := ae_all_iff.2 h_mono
           have h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f 0 a := fun n =>
             h_mono.mono fun a h => by
               induction' n with n ih
@@ -2280,7 +2281,7 @@ theorem lintegral_infᵢ_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Mea
           congr_arg supᵢ <|
             funext fun n =>
               lintegral_sub (h_meas _) (ne_top_of_le_ne_top h_fin <| lintegral_mono_ae <| h_mono n)
-                (h_mono n)
+                (h_mono n))
         _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_infᵢ.symm
         
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_infᵢ_ae
@@ -2298,9 +2299,9 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Ae
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
       simp only [liminf_eq_supr_infi_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
-      lintegral_supr' (fun n => aeMeasurableBinfi _ (to_countable _) h_meas)
-        (ae_of_all μ fun a n m hnm => infᵢ_le_infᵢ_of_subset fun i hi => le_trans hnm hi)
-    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := supᵢ_mono fun n => le_infi₂_lintegral _
+      (lintegral_supr' (fun n => aeMeasurableBinfi _ (to_countable _) h_meas)
+        (ae_of_all μ fun a n m hnm => infᵢ_le_infᵢ_of_subset fun i hi => le_trans hnm hi))
+    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (supᵢ_mono fun n => le_infi₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_supᵢ_infᵢ_of_nat.symm
     
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
@@ -2317,7 +2318,7 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
   calc
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop = ⨅ n : ℕ, ⨆ i ≥ n, ∫⁻ a, f i a ∂μ :=
       limsup_eq_infᵢ_supᵢ_of_nat
-    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := infᵢ_mono fun n => supr₂_lintegral_le _
+    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := (infᵢ_mono fun n => supr₂_lintegral_le _)
     _ = ∫⁻ a, ⨅ n : ℕ, ⨆ i ≥ n, f i a ∂μ :=
       by
       refine' (lintegral_infi _ _ _).symm
@@ -2425,7 +2426,7 @@ theorem lintegral_supᵢ_directed_of_measurable [Countable β] {f : β → α 
   calc
     (∫⁻ a, ⨆ b, f b a ∂μ) = ∫⁻ a, ⨆ n, f (h_directed.sequence f n) a ∂μ := by simp only [this]
     _ = ⨆ n, ∫⁻ a, f (h_directed.sequence f n) a ∂μ :=
-      lintegral_supr (fun n => hf _) h_directed.sequence_mono
+      (lintegral_supr (fun n => hf _) h_directed.sequence_mono)
     _ = ⨆ b, ∫⁻ a, f b a ∂μ :=
       by
       refine' le_antisymm (supᵢ_le fun n => _) (supᵢ_le fun b => _)
@@ -2434,7 +2435,7 @@ theorem lintegral_supᵢ_directed_of_measurable [Countable β] {f : β → α 
     
 #align measure_theory.lintegral_supr_directed_of_measurable MeasureTheory.lintegral_supᵢ_directed_of_measurable
 
-/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:75:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
+/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], ["with", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args -/
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AeMeasurable (f b) μ)
     (h_directed : Directed (· ≤ ·) f) : (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
@@ -2444,7 +2445,7 @@ theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞}
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x :=
     by
     trace
-      "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:75:38: in filter_upwards #[[], [\"with\", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args"
+      "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:72:38: in filter_upwards #[[], [\"with\", ident x, ident i, ident j], []]: ./././Mathport/Syntax/Translate/Basic.lean:349:22: unsupported: parse error @ arg 0: next failed, no more args"
     obtain ⟨z, hz₁, hz₂⟩ := h_directed i j
     exact ⟨z, hz₁ x, hz₂ x⟩
   have h_ae_seq_directed : Directed LE.le (aeSeq hf p) :=
@@ -2585,8 +2586,8 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
       by
       congr 1
       exact measure.map_congr hg.ae_eq_mk
-    _ = ∫⁻ a, hf.mk f (hg.mk g a) ∂μ := lintegral_map hf.measurable_mk hg.measurable_mk
-    _ = ∫⁻ a, hf.mk f (g a) ∂μ := lintegral_congr_ae <| hg.ae_eq_mk.symm.fun_comp _
+    _ = ∫⁻ a, hf.mk f (hg.mk g a) ∂μ := (lintegral_map hf.measurable_mk hg.measurable_mk)
+    _ = ∫⁻ a, hf.mk f (g a) ∂μ := (lintegral_congr_ae <| hg.ae_eq_mk.symm.fun_comp _)
     _ = ∫⁻ a, f (g a) ∂μ := lintegral_congr_ae (ae_eq_comp hg hf.ae_eq_mk.symm)
     
 #align measure_theory.lintegral_map' MeasureTheory.lintegral_map'
@@ -2765,7 +2766,7 @@ theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞
   calc
     (∫⁻ a in s, f a ∂μ) = ∫⁻ a in ⋃ x ∈ s, {x}, f a ∂μ := by rw [bUnion_of_singleton]
     _ = ∑' a : s, ∫⁻ x in {a}, f x ∂μ :=
-      lintegral_bUnion hs (fun _ _ => measurableSet_singleton _) (pairwise_disjoint_fiber id s) _
+      (lintegral_bUnion hs (fun _ _ => measurableSet_singleton _) (pairwise_disjoint_fiber id s) _)
     _ = ∑' a : s, f a * μ {(a : α)} := by simp only [lintegral_singleton]
     
 #align measure_theory.lintegral_countable MeasureTheory.lintegral_countable
@@ -3185,7 +3186,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
   calc
     (∫⁻ a, g a ∂μ.with_density f') = ∫⁻ a, g' a ∂μ.with_density f' := lintegral_congr_ae hg.ae_eq_mk
     _ = ∫⁻ a, (f' * g') a ∂μ :=
-      lintegral_with_density_eq_lintegral_mul _ hf.measurable_mk hg.measurable_mk
+      (lintegral_with_density_eq_lintegral_mul _ hf.measurable_mk hg.measurable_mk)
     _ = ∫⁻ a, (f' * g) a ∂μ := by
       apply lintegral_congr_ae
       apply ae_of_ae_restrict_of_ae_restrict_compl { x | f' x ≠ 0 }
Diff
@@ -462,10 +462,10 @@ instance [Div β] : Div (α →ₛ β) :=
 instance [Inv β] : Inv (α →ₛ β) :=
   ⟨fun f => f.map Inv.inv⟩
 
-instance [HasSup β] : HasSup (α →ₛ β) :=
+instance [Sup β] : Sup (α →ₛ β) :=
   ⟨fun f g => (f.map (· ⊔ ·)).seq g⟩
 
-instance [HasInf β] : HasInf (α →ₛ β) :=
+instance [Inf β] : Inf (α →ₛ β) :=
   ⟨fun f g => (f.map (· ⊓ ·)).seq g⟩
 
 instance [LE β] : LE (α →ₛ β) :=
@@ -507,12 +507,12 @@ theorem coe_le [Preorder β] {f g : α →ₛ β} : (f : α → β) ≤ g ↔ f
 #align measure_theory.simple_func.coe_le MeasureTheory.SimpleFunc.coe_le
 
 @[simp, norm_cast]
-theorem coe_sup [HasSup β] (f g : α →ₛ β) : ⇑(f ⊔ g) = f ⊔ g :=
+theorem coe_sup [Sup β] (f g : α →ₛ β) : ⇑(f ⊔ g) = f ⊔ g :=
   rfl
 #align measure_theory.simple_func.coe_sup MeasureTheory.SimpleFunc.coe_sup
 
 @[simp, norm_cast]
-theorem coe_inf [HasInf β] (f g : α →ₛ β) : ⇑(f ⊓ g) = f ⊓ g :=
+theorem coe_inf [Inf β] (f g : α →ₛ β) : ⇑(f ⊓ g) = f ⊓ g :=
   rfl
 #align measure_theory.simple_func.coe_inf MeasureTheory.SimpleFunc.coe_inf
 
@@ -534,11 +534,11 @@ theorem inv_apply [Inv β] (f : α →ₛ β) (x : α) : f⁻¹ x = (f x)⁻¹ :
 #align measure_theory.simple_func.inv_apply MeasureTheory.SimpleFunc.inv_apply
 #align measure_theory.simple_func.neg_apply MeasureTheory.SimpleFunc.neg_apply
 
-theorem sup_apply [HasSup β] (f g : α →ₛ β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
+theorem sup_apply [Sup β] (f g : α →ₛ β) (a : α) : (f ⊔ g) a = f a ⊔ g a :=
   rfl
 #align measure_theory.simple_func.sup_apply MeasureTheory.SimpleFunc.sup_apply
 
-theorem inf_apply [HasInf β] (f g : α →ₛ β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
+theorem inf_apply [Inf β] (f g : α →ₛ β) (a : α) : (f ⊓ g) a = f a ⊓ g a :=
   rfl
 #align measure_theory.simple_func.inf_apply MeasureTheory.SimpleFunc.inf_apply
 
@@ -570,7 +570,7 @@ theorem mul_eq_map₂ [Mul β] (f g : α →ₛ β) : f * g = (pair f g).map fun
 #align measure_theory.simple_func.mul_eq_map₂ MeasureTheory.SimpleFunc.mul_eq_map₂
 #align measure_theory.simple_func.add_eq_map₂ MeasureTheory.SimpleFunc.add_eq_map₂
 
-theorem sup_eq_map₂ [HasSup β] (f g : α →ₛ β) : f ⊔ g = (pair f g).map fun p : β × β => p.1 ⊔ p.2 :=
+theorem sup_eq_map₂ [Sup β] (f g : α →ₛ β) : f ⊔ g = (pair f g).map fun p : β × β => p.1 ⊔ p.2 :=
   rfl
 #align measure_theory.simple_func.sup_eq_map₂ MeasureTheory.SimpleFunc.sup_eq_map₂
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit 31a8a27684ce9a5749914f4248c3f7bf76605d41
+! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -1781,7 +1781,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
     _ = C * μ s + ε₁ := by
       simp only [← simple_func.lintegral_eq_lintegral, coe_const, lintegral_const,
         measure.restrict_apply, MeasurableSet.univ, univ_inter]
-    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := add_le_add_right (ENNReal.mul_le_mul le_rfl hs.le) _
+    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := add_le_add_right (mul_le_mul_left' hs.le _) _
     _ ≤ ε₂ - ε₁ + ε₁ := add_le_add mul_div_le le_rfl
     _ = ε₂ := tsub_add_cancel_of_le hε₁₂.le
     
@@ -2218,7 +2218,7 @@ theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
   by
   rw [tsub_le_iff_right]
   by_cases hfi : (∫⁻ x, f x ∂μ) = ∞
-  · rw [hfi, ENNReal.add_top]
+  · rw [hfi, add_top]
     exact le_top
   · rw [← lintegral_add_right _ hf]
     exact lintegral_mono fun x => le_tsub_add
@@ -3160,8 +3160,7 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
   · intro g h h_univ h_mea_g h_mea_h h_ind_g h_ind_h
     simp [mul_add, *, Measurable.mul]
   · intro g h_mea_g h_mono_g h_ind
-    have : Monotone fun n a => f a * g n a := fun m n hmn x =>
-      ENNReal.mul_le_mul le_rfl (h_mono_g hmn x)
+    have : Monotone fun n a => f a * g n a := fun m n hmn x => mul_le_mul_left' (h_mono_g hmn x) _
     simp [lintegral_supr, ENNReal.mul_supᵢ, h_mf.mul (h_mea_g _), *]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mul
 
@@ -3220,7 +3219,7 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
   by
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
   refine' supᵢ₂_le fun i i_meas => supᵢ_le fun hi => _
-  have A : f * i ≤ f * g := fun x => ENNReal.mul_le_mul le_rfl (hi x)
+  have A : f * i ≤ f * g := fun x => mul_le_mul_left' (hi x) _
   refine' le_supᵢ₂_of_le (f * i) (f_meas.mul i_meas) _
   exact le_supᵢ_of_le A (le_of_eq (lintegral_with_density_eq_lintegral_mul _ f_meas i_meas))
 #align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mul
@@ -3514,7 +3513,7 @@ theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ
   by
   obtain ⟨g, gpos, gmeas, hg⟩ :
     ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ (∫⁻ x : α, ↑(g x) ∂μ) < 1 :=
-    exists_pos_lintegral_lt_of_sigma_finite μ ENNReal.zero_lt_one.ne'
+    exists_pos_lintegral_lt_of_sigma_finite μ one_ne_zero
   refine' ⟨μ.with_density fun x => g x, is_finite_measure_with_density hg.ne_top, _⟩
   have : μ = (μ.with_density fun x => g x).withDensity fun x => (g x)⁻¹ :=
     by
Diff
@@ -44,11 +44,11 @@ noncomputable section
 
 open Set hiding restrict restrict_apply
 
-open Filter Ennreal
+open Filter ENNReal
 
 open Function (support)
 
-open Classical Topology BigOperators NNReal Ennreal MeasureTheory
+open Classical Topology BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
@@ -759,10 +759,10 @@ theorem map_restrict_of_zero [Zero γ] {g : β → γ} (hg : g 0 = 0) (f : α 
     else by simp [restrict_of_not_measurable hs, hg]
 #align measure_theory.simple_func.map_restrict_of_zero MeasureTheory.SimpleFunc.map_restrict_of_zero
 
-theorem map_coe_ennreal_restrict (f : α →ₛ ℝ≥0) (s : Set α) :
+theorem map_coe_eNNReal_restrict (f : α →ₛ ℝ≥0) (s : Set α) :
     (f.restrict s).map (coe : ℝ≥0 → ℝ≥0∞) = (f.map coe).restrict s :=
-  map_restrict_of_zero Ennreal.coe_zero _ _
-#align measure_theory.simple_func.map_coe_ennreal_restrict MeasureTheory.SimpleFunc.map_coe_ennreal_restrict
+  map_restrict_of_zero ENNReal.coe_zero _ _
+#align measure_theory.simple_func.map_coe_ennreal_restrict MeasureTheory.SimpleFunc.map_coe_eNNReal_restrict
 
 theorem map_coe_nNReal_restrict (f : α →ₛ ℝ≥0) (s : Set α) :
     (f.restrict s).map (coe : ℝ≥0 → ℝ) = (f.map coe).restrict s :=
@@ -868,7 +868,7 @@ section Eapprox
 
 /-- A sequence of `ℝ≥0∞`s such that its range is the set of non-negative rational numbers. -/
 def ennrealRatEmbed (n : ℕ) : ℝ≥0∞ :=
-  Ennreal.ofReal ((Encodable.decode ℚ n).getD (0 : ℚ))
+  ENNReal.ofReal ((Encodable.decode ℚ n).getD (0 : ℚ))
 #align measure_theory.simple_func.ennreal_rat_embed MeasureTheory.SimpleFunc.ennrealRatEmbed
 
 theorem ennrealRatEmbed_encode (q : ℚ) : ennrealRatEmbed (Encodable.encode q) = Real.toNNReal q :=
@@ -883,7 +883,7 @@ def eapprox : (α → ℝ≥0∞) → ℕ → α →ₛ ℝ≥0∞ :=
 theorem eapprox_lt_top (f : α → ℝ≥0∞) (n : ℕ) (a : α) : eapprox f n a < ∞ :=
   by
   simp only [eapprox, approx, finset_sup_apply, Finset.sup_lt_iff, WithTop.zero_lt_top,
-    Finset.mem_range, Ennreal.bot_eq_zero, restrict]
+    Finset.mem_range, ENNReal.bot_eq_zero, restrict]
   intro b hb
   split_ifs
   · simp only [coe_zero, coe_piecewise, piecewise_eq_indicator, coe_const]
@@ -891,7 +891,7 @@ theorem eapprox_lt_top (f : α → ℝ≥0∞) (n : ℕ) (a : α) : eapprox f n
       { a : α | ennreal_rat_embed b ≤ f a }.indicator (fun x => ennreal_rat_embed b) a ≤
           ennreal_rat_embed b :=
         indicator_le_self _ _ a
-      _ < ⊤ := Ennreal.coe_lt_top
+      _ < ⊤ := ENNReal.coe_lt_top
       
   · exact WithTop.zero_lt_top
 #align measure_theory.simple_func.eapprox_lt_top MeasureTheory.SimpleFunc.eapprox_lt_top
@@ -907,7 +907,7 @@ theorem supᵢ_eapprox_apply (f : α → ℝ≥0∞) (hf : Measurable f) (a : α
   rw [eapprox, supr_approx_apply ennreal_rat_embed f a hf rfl]
   refine' le_antisymm (supᵢ_le fun i => supᵢ_le fun hi => hi) (le_of_not_gt _)
   intro h
-  rcases Ennreal.lt_iff_exists_rat_btwn.1 h with ⟨q, hq, lt_q, q_lt⟩
+  rcases ENNReal.lt_iff_exists_rat_btwn.1 h with ⟨q, hq, lt_q, q_lt⟩
   have :
     (Real.toNNReal q : ℝ≥0∞) ≤ ⨆ (k : ℕ) (h : ennreal_rat_embed k ≤ f a), ennreal_rat_embed k :=
     by
@@ -926,8 +926,8 @@ theorem eapprox_comp [MeasurableSpace γ] {f : γ → ℝ≥0∞} {g : α → γ
 /-- Approximate a function `α → ℝ≥0∞` by a series of simple functions taking their values
 in `ℝ≥0`. -/
 def eapproxDiff (f : α → ℝ≥0∞) : ∀ n : ℕ, α →ₛ ℝ≥0
-  | 0 => (eapprox f 0).map Ennreal.toNnreal
-  | n + 1 => (eapprox f (n + 1) - eapprox f n).map Ennreal.toNnreal
+  | 0 => (eapprox f 0).map ENNReal.toNNReal
+  | n + 1 => (eapprox f (n + 1) - eapprox f n).map ENNReal.toNNReal
 #align measure_theory.simple_func.eapprox_diff MeasureTheory.SimpleFunc.eapproxDiff
 
 theorem sum_eapproxDiff (f : α → ℝ≥0∞) (n : ℕ) (a : α) :
@@ -937,7 +937,7 @@ theorem sum_eapproxDiff (f : α → ℝ≥0∞) (n : ℕ) (a : α) :
   · simp only [Nat.zero_eq, Finset.sum_singleton, Finset.range_one]
     rfl
   · rw [Finset.sum_range_succ, Nat.succ_eq_add_one, IH, eapprox_diff, coe_map, Function.comp_apply,
-      coe_sub, Pi.sub_apply, Ennreal.coe_toNnreal,
+      coe_sub, Pi.sub_apply, ENNReal.coe_toNNReal,
       add_tsub_cancel_of_le (monotone_eapprox f (Nat.le_succ _) _)]
     apply (lt_of_le_of_lt _ (eapprox_lt_top f (n + 1) a)).Ne
     rw [tsub_le_iff_right]
@@ -946,7 +946,7 @@ theorem sum_eapproxDiff (f : α → ℝ≥0∞) (n : ℕ) (a : α) :
 
 theorem tsum_eapproxDiff (f : α → ℝ≥0∞) (hf : Measurable f) (a : α) :
     (∑' n, (eapproxDiff f n a : ℝ≥0∞)) = f a := by
-  simp_rw [Ennreal.tsum_eq_supᵢ_nat' (tendsto_add_at_top_nat 1), sum_eapprox_diff,
+  simp_rw [ENNReal.tsum_eq_supᵢ_nat' (tendsto_add_at_top_nat 1), sum_eapprox_diff,
     supr_eapprox_apply f hf a]
 #align measure_theory.simple_func.tsum_eapprox_diff MeasureTheory.SimpleFunc.tsum_eapproxDiff
 
@@ -1058,8 +1058,8 @@ theorem lintegral_sum {m : MeasurableSpace α} {ι} (f : α →ₛ ℝ≥0∞) (
     f.lintegral (Measure.sum μ) = ∑' i, f.lintegral (μ i) :=
   by
   simp only [lintegral, measure.sum_apply, f.measurable_set_preimage, ← Finset.tsum_subtype, ←
-    Ennreal.tsum_mul_left]
-  apply Ennreal.tsum_comm
+    ENNReal.tsum_mul_left]
+  apply ENNReal.tsum_comm
 #align measure_theory.simple_func.lintegral_sum MeasureTheory.SimpleFunc.lintegral_sum
 
 theorem restrict_lintegral (f : α →ₛ ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
@@ -1130,7 +1130,7 @@ theorem lintegral_mono {f g : α →ₛ ℝ≥0∞} (hfg : f ≤ g) (hμν : μ
     _ ≤ (f ⊔ g).lintegral μ := le_sup_lintegral _ _
     _ = g.lintegral μ := by rw [sup_of_le_right hfg]
     _ ≤ g.lintegral ν :=
-      Finset.sum_le_sum fun y hy => Ennreal.mul_left_mono <| hμν _ (g.measurableSet_preimage _)
+      Finset.sum_le_sum fun y hy => ENNReal.mul_left_mono <| hμν _ (g.measurableSet_preimage _)
     
 #align measure_theory.simple_func.lintegral_mono MeasureTheory.SimpleFunc.lintegral_mono
 
@@ -1273,7 +1273,7 @@ theorem ofLintegralNeTop {f : α →ₛ ℝ≥0∞} (h : f.lintegral μ ≠ ∞)
   by
   refine' fin_meas_supp_iff.2 fun b hb => _
   rw [f.lintegral_eq_of_subset' (Finset.subset_insert b _)] at h
-  refine' Ennreal.lt_top_of_mul_ne_top_right _ hb
+  refine' ENNReal.lt_top_of_mul_ne_top_right _ hb
   exact (lt_top_of_sum_ne_top h (Finset.mem_insert_self _ _)).Ne
 #align measure_theory.simple_func.fin_meas_supp.of_lintegral_ne_top MeasureTheory.SimpleFunc.FinMeasSupp.ofLintegralNeTop
 
@@ -1379,7 +1379,7 @@ theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : (∫⁻ a
 #align measure_theory.lintegral_mono MeasureTheory.lintegral_mono
 
 theorem lintegral_mono_nNReal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
-  lintegral_mono fun a => Ennreal.coe_le_coe.2 (h a)
+  lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nNReal
 
 theorem supᵢ_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
@@ -1432,7 +1432,7 @@ theorem set_lintegral_one (s) : (∫⁻ a in s, 1 ∂μ) = μ s := by rw [set_li
 theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
     (∫⁻ a in s, c ∂μ) < ∞ := by
   rw [lintegral_const]
-  exact Ennreal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
+  exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
 theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ a, c ∂μ) < ∞ := by
@@ -1477,18 +1477,18 @@ theorem lintegral_eq_nNReal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
   refine'
     le_antisymm (supᵢ₂_le fun φ hφ => _) (supᵢ_mono' fun φ => ⟨φ.map (coe : ℝ≥0 → ℝ≥0∞), le_rfl⟩)
   by_cases h : ∀ᵐ a ∂μ, φ a ≠ ∞
-  · let ψ := φ.map Ennreal.toNnreal
-    replace h : ψ.map (coe : ℝ≥0 → ℝ≥0∞) =ᵐ[μ] φ := h.mono fun a => Ennreal.coe_toNnreal
-    have : ∀ x, ↑(ψ x) ≤ f x := fun x => le_trans Ennreal.coe_toNnreal_le_self (hφ x)
+  · let ψ := φ.map ENNReal.toNNReal
+    replace h : ψ.map (coe : ℝ≥0 → ℝ≥0∞) =ᵐ[μ] φ := h.mono fun a => ENNReal.coe_toNNReal
+    have : ∀ x, ↑(ψ x) ≤ f x := fun x => le_trans ENNReal.coe_toNNReal_le_self (hφ x)
     exact
-      le_supᵢ_of_le (φ.map Ennreal.toNnreal) (le_supᵢ_of_le this (ge_of_eq <| lintegral_congr h))
+      le_supᵢ_of_le (φ.map ENNReal.toNNReal) (le_supᵢ_of_le this (ge_of_eq <| lintegral_congr h))
   · have h_meas : μ (φ ⁻¹' {∞}) ≠ 0 := mt measure_zero_iff_ae_nmem.1 h
     refine' le_trans le_top (ge_of_eq <| (supᵢ_eq_top _).2 fun b hb => _)
     obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞})
     exact exists_nat_mul_gt h_meas (ne_of_lt hb)
     use (const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
     simp only [lt_supᵢ_iff, exists_prop, coe_restrict, φ.measurable_set_preimage, coe_const,
-      Ennreal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, Ennreal.coe_nat,
+      ENNReal.coe_indicator, map_coe_ennreal_restrict, simple_func.map_const, ENNReal.coe_nat,
       restrict_const_lintegral]
     refine' ⟨indicator_le fun x hx => le_trans _ (hφ _), hn⟩
     simp only [mem_preimage, mem_singleton_iff] at hx
@@ -1502,13 +1502,13 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
         ∀ ψ : α →ₛ ℝ≥0, (∀ x, ↑(ψ x) ≤ f x) → (map coe (ψ - φ)).lintegral μ < ε :=
   by
   rw [lintegral_eq_nnreal] at h
-  have := Ennreal.lt_add_right h hε
-  erw [Ennreal.bsupr_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
+  have := ENNReal.lt_add_right h hε
+  erw [ENNReal.bsupr_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
   simp_rw [lt_supᵢ_iff, supᵢ_lt_iff, supᵢ_le_iff] at this
   rcases this with ⟨φ, hle : ∀ x, ↑(φ x) ≤ f x, b, hbφ, hb⟩
   refine' ⟨φ, hle, fun ψ hψ => _⟩
   have : (map coe φ).lintegral μ ≠ ∞ := ne_top_of_le_ne_top h (le_supᵢ₂ φ hle)
-  rw [← Ennreal.add_lt_add_iff_left this, ← add_lintegral, ← map_add @Ennreal.coe_add]
+  rw [← ENNReal.add_lt_add_iff_left this, ← add_lintegral, ← map_add @ENNReal.coe_add]
   refine' (hb _ fun x => le_trans _ (max_le (hle x) (hψ x))).trans_lt hbφ
   norm_cast
   simp only [add_apply, sub_apply, add_tsub_eq_max]
@@ -1592,24 +1592,24 @@ theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : Mea
 #align measure_theory.set_lintegral_congr_fun MeasureTheory.set_lintegral_congr_fun
 
 theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
-    (∫⁻ x, Ennreal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ‖f x‖₊ ∂μ :=
+    (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ‖f x‖₊ ∂μ :=
   by
   simp_rw [← ofReal_norm_eq_coe_nnnorm]
-  refine' lintegral_mono fun x => Ennreal.ofReal_le_ofReal _
+  refine' lintegral_mono fun x => ENNReal.ofReal_le_ofReal _
   rw [Real.norm_eq_abs]
   exact le_abs_self (f x)
 #align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm
 
 theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
-    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, Ennreal.ofReal (f x) ∂μ :=
+    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   by
   apply lintegral_congr_ae
   filter_upwards [h_nonneg]with x hx
-  rw [Real.nnnorm_of_nonneg hx, Ennreal.ofReal_eq_coe_nNReal hx]
+  rw [Real.nnnorm_of_nonneg hx, ENNReal.ofReal_eq_coe_nnreal hx]
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
 
 theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
-    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, Ennreal.ofReal (f x) ∂μ :=
+    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   lintegral_nnnorm_eq_of_ae_nonneg (Filter.eventually_of_forall h_nonneg)
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
 
@@ -1626,9 +1626,9 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
   refine' le_antisymm _ (supr_lintegral_le _)
   rw [lintegral_eq_nnreal]
   refine' supᵢ_le fun s => supᵢ_le fun hsf => _
-  refine' Ennreal.le_of_forall_lt_one_mul_le fun a ha => _
-  rcases Ennreal.lt_iff_exists_coe.1 ha with ⟨r, rfl, ha⟩
-  have ha : r < 1 := Ennreal.coe_lt_coe.1 ha
+  refine' ENNReal.le_of_forall_lt_one_mul_le fun a ha => _
+  rcases ENNReal.lt_iff_exists_coe.1 ha with ⟨r, rfl, ha⟩
+  have ha : r < 1 := ENNReal.coe_lt_coe.1 ha
   let rs := s.map fun a => r * a
   have eq_rs : (const α r : α →ₛ ℝ≥0∞) * map c s = rs.map c :=
     by
@@ -1643,14 +1643,14 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
     · simp [p_eq]
     simp at hx
     subst hx
-    have : r * s x ≠ 0 := by rwa [(· ≠ ·), ← Ennreal.coe_eq_zero]
+    have : r * s x ≠ 0 := by rwa [(· ≠ ·), ← ENNReal.coe_eq_zero]
     have : s x ≠ 0 := by
       refine' mt _ this
       intro h
       rw [h, mul_zero]
     have : (rs.map c) x < ⨆ n : ℕ, f n x :=
       by
-      refine' lt_of_lt_of_le (Ennreal.coe_lt_coe.2 _) (hsf x)
+      refine' lt_of_lt_of_le (ENNReal.coe_lt_coe.2 _) (hsf x)
       suffices : r * s x < 1 * s x
       simpa [rs]
       exact mul_lt_mul_of_pos_right ha (pos_iff_ne_zero.2 this)
@@ -1671,10 +1671,10 @@ theorem lintegral_supᵢ {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable
       simp only [(Eq _).symm]
     _ = ∑ r in (rs.map c).range, ⨆ n, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
       Finset.sum_congr rfl fun x hx => by
-        rw [measure_Union_eq_supr (directed_of_sup <| mono x), Ennreal.mul_supᵢ]
+        rw [measure_Union_eq_supr (directed_of_sup <| mono x), ENNReal.mul_supᵢ]
     _ = ⨆ n, ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
       by
-      rw [Ennreal.finset_sum_supᵢ_nat]
+      rw [ENNReal.finset_sum_supᵢ_nat]
       intro p i j h
       exact mul_le_mul_left' (measure_mono <| mono p h) _
     _ ≤ ⨆ n : ℕ, ((rs.map c).restrict { a | (rs.map c) a ≤ f n a }).lintegral μ :=
@@ -1760,7 +1760,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
   rcases exists_between hε₂0 with ⟨ε₁, hε₁0, hε₁₂⟩
   rcases exists_simple_func_forall_lintegral_sub_lt_of_pos h hε₁0.ne' with ⟨φ, hle, hφ⟩
   rcases φ.exists_forall_le with ⟨C, hC⟩
-  use (ε₂ - ε₁) / C, Ennreal.div_pos_iff.2 ⟨(tsub_pos_iff_lt.2 hε₁₂).ne', Ennreal.coe_ne_top⟩
+  use (ε₂ - ε₁) / C, ENNReal.div_pos_iff.2 ⟨(tsub_pos_iff_lt.2 hε₁₂).ne', ENNReal.coe_ne_top⟩
   refine' fun s hs => lt_of_le_of_lt _ hε₂ε
   simp only [lintegral_eq_nnreal, supᵢ_le_iff]
   intro ψ hψ
@@ -1768,7 +1768,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
     (map coe ψ).lintegral (μ.restrict s) ≤
         (map coe φ).lintegral (μ.restrict s) + (map coe (ψ - φ)).lintegral (μ.restrict s) :=
       by
-      rw [← simple_func.add_lintegral, ← simple_func.map_add @Ennreal.coe_add]
+      rw [← simple_func.add_lintegral, ← simple_func.map_add @ENNReal.coe_add]
       refine' simple_func.lintegral_mono (fun x => _) le_rfl
       simp only [add_tsub_eq_max, le_max_right, coe_map, Function.comp_apply, simple_func.coe_add,
         simple_func.coe_sub, Pi.add_apply, Pi.sub_apply, WithTop.coe_max]
@@ -1781,7 +1781,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
     _ = C * μ s + ε₁ := by
       simp only [← simple_func.lintegral_eq_lintegral, coe_const, lintegral_const,
         measure.restrict_apply, MeasurableSet.univ, univ_inter]
-    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := add_le_add_right (Ennreal.mul_le_mul le_rfl hs.le) _
+    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := add_le_add_right (ENNReal.mul_le_mul le_rfl hs.le) _
     _ ≤ ε₂ - ε₁ + ε₁ := add_le_add mul_div_le le_rfl
     _ = ε₂ := tsub_add_cancel_of_le hε₁₂.le
     
@@ -1793,7 +1793,7 @@ theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x,
     {s : ι → Set α} (hl : Tendsto (μ ∘ s) l (𝓝 0)) :
     Tendsto (fun i => ∫⁻ x in s i, f x ∂μ) l (𝓝 0) :=
   by
-  simp only [Ennreal.nhds_zero, tendsto_infi, tendsto_principal, mem_Iio, ← pos_iff_ne_zero] at hl⊢
+  simp only [ENNReal.nhds_zero, tendsto_infi, tendsto_principal, mem_Iio, ← pos_iff_ne_zero] at hl⊢
   intro ε ε0
   rcases exists_pos_set_lintegral_lt_of_measure_lt h ε0.ne' with ⟨δ, δ0, hδ⟩
   exact (hl δ δ0).mono fun i => hδ _
@@ -1804,7 +1804,7 @@ of their sum. The other inequality needs one of these functions to be (a.e.-)mea
 theorem le_lintegral_add (f g : α → ℝ≥0∞) : ((∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ) ≤ ∫⁻ a, f a + g a ∂μ :=
   by
   dsimp only [lintegral]
-  refine' Ennreal.bsupr_add_bsupr_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
+  refine' ENNReal.bsupr_add_bsupr_le' ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
   exact le_supᵢ₂_of_le (f' + g') (add_le_add hf' hg') (add_lintegral _ _).ge
 #align measure_theory.le_lintegral_add MeasureTheory.le_lintegral_add
 
@@ -1818,7 +1818,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
     _ = ∫⁻ a, ⨆ n, (eapprox f n + eapprox g n : α → ℝ≥0∞) a ∂μ :=
       by
       congr ; funext a
-      rw [Ennreal.supᵢ_add_supᵢ_of_monotone]; · rfl
+      rw [ENNReal.supᵢ_add_supᵢ_of_monotone]; · rfl
       · intro i j h
         exact monotone_eapprox _ h a
       · intro i j h
@@ -1834,7 +1834,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       · intro i j h a
         exact add_le_add (monotone_eapprox _ h _) (monotone_eapprox _ h _)
     _ = (⨆ n, (eapprox f n).lintegral μ) + ⨆ n, (eapprox g n).lintegral μ := by
-      refine' (Ennreal.supᵢ_add_supᵢ_of_monotone _ _).symm <;>
+      refine' (ENNReal.supᵢ_add_supᵢ_of_monotone _ _).symm <;>
         · intro i j h
           exact simple_func.lintegral_mono (monotone_eapprox _ h) (le_refl μ)
     _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
@@ -1882,21 +1882,21 @@ theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg
 
 @[simp]
 theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂c • μ) = c * ∫⁻ a, f a ∂μ :=
-  by simp only [lintegral, supᵢ_subtype', simple_func.lintegral_smul, Ennreal.mul_supᵢ, smul_eq_mul]
+  by simp only [lintegral, supᵢ_subtype', simple_func.lintegral_smul, ENNReal.mul_supᵢ, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     (∫⁻ a, f a ∂Measure.sum μ) = ∑' i, ∫⁻ a, f a ∂μ i :=
   by
-  simp only [lintegral, supᵢ_subtype', simple_func.lintegral_sum, Ennreal.tsum_eq_supᵢ_sum]
+  simp only [lintegral, supᵢ_subtype', simple_func.lintegral_sum, ENNReal.tsum_eq_supᵢ_sum]
   rw [supᵢ_comm]
   congr ; funext s
   induction' s using Finset.induction_on with i s hi hs;
   · apply bot_unique
     simp
   simp only [Finset.sum_insert hi, ← hs]
-  refine' (Ennreal.supᵢ_add_supᵢ _).symm
+  refine' (ENNReal.supᵢ_add_supᵢ _).symm
   intro φ ψ
   exact
     ⟨⟨φ ⊔ ψ, fun x => sup_le (φ.2 x) (ψ.2 x)⟩,
@@ -1906,7 +1906,7 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
 
 theorem hasSum_lintegral_measure {ι} {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     HasSum (fun i => ∫⁻ a, f a ∂μ i) (∫⁻ a, f a ∂Measure.sum μ) :=
-  (lintegral_sum_measure f μ).symm ▸ Ennreal.summable.HasSum
+  (lintegral_sum_measure f μ).symm ▸ ENNReal.summable.HasSum
 #align measure_theory.has_sum_lintegral_measure MeasureTheory.hasSum_lintegral_measure
 
 @[simp]
@@ -1966,7 +1966,7 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
       by
       congr
       funext a
-      rw [← supr_eapprox_apply f hf, Ennreal.mul_supᵢ]
+      rw [← supr_eapprox_apply f hf, ENNReal.mul_supᵢ]
       rfl
     _ = ⨆ n, r * (eapprox f n).lintegral μ :=
       by
@@ -1978,7 +1978,7 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
         exact simple_func.measurable _
       · intro i j h a
         exact mul_le_mul_left' (monotone_eapprox _ h _) _
-    _ = r * ∫⁻ a, f a ∂μ := by rw [← Ennreal.mul_supᵢ, lintegral_eq_supr_eapprox_lintegral hf]
+    _ = r * ∫⁻ a, f a ∂μ := by rw [← ENNReal.mul_supᵢ, lintegral_eq_supr_eapprox_lintegral hf]
     
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
@@ -1993,9 +1993,9 @@ theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AeM
 
 theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (r * ∫⁻ a, f a ∂μ) ≤ ∫⁻ a, r * f a ∂μ :=
   by
-  rw [lintegral, Ennreal.mul_supᵢ]
+  rw [lintegral, ENNReal.mul_supᵢ]
   refine' supᵢ_le fun s => _
-  rw [Ennreal.mul_supᵢ]
+  rw [ENNReal.mul_supᵢ]
   simp only [supᵢ_le_iff]
   intro hs
   rw [← simple_func.const_mul_lintegral, lintegral]
@@ -2009,7 +2009,7 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   by_cases h : r = 0
   · simp [h]
   apply le_antisymm _ (lintegral_const_mul_le r f)
-  have rinv : r * r⁻¹ = 1 := Ennreal.mul_inv_cancel h hr
+  have rinv : r * r⁻¹ = 1 := ENNReal.mul_inv_cancel h hr
   have rinv' : r⁻¹ * r = 1 := by
     rw [mul_comm]
     exact rinv
@@ -2141,7 +2141,7 @@ theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AeM
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
     (hε' : ε ≠ ∞) : μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε :=
-  (Ennreal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <|
+  (ENNReal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <|
     by
     rw [mul_comm]
     exact mul_meas_ge_le_lintegral₀ hf ε
@@ -2155,13 +2155,13 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     simp only [ae_iff, not_lt]
     have : (∫⁻ x, f x ∂μ) + (↑n)⁻¹ * μ { x : α | f x + n⁻¹ ≤ g x } ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
-    rw [(Ennreal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
-    exact this.resolve_left (Ennreal.inv_ne_zero.2 (Ennreal.nat_ne_top _))
+    rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
+    exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
   refine' hfg.mp ((ae_all_iff.2 this).mono fun x hlt hle => hle.antisymm _)
   suffices : tendsto (fun n : ℕ => f x + n⁻¹) at_top (𝓝 (f x))
   exact ge_of_tendsto' this fun i => (hlt i).le
   simpa only [inv_top, add_zero] using
-    tendsto_const_nhds.add (Ennreal.tendsto_inv_iff.2 Ennreal.tendsto_nat_nhds_top)
+    tendsto_const_nhds.add (ENNReal.tendsto_inv_iff.2 ENNReal.tendsto_nat_nhds_top)
 #align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_le
 
 @[simp]
@@ -2208,7 +2208,7 @@ theorem lintegral_supᵢ_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measura
 theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
     (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
   by
-  refine' Ennreal.eq_sub_of_add_eq hg_fin _
+  refine' ENNReal.eq_sub_of_add_eq hg_fin _
   rw [← lintegral_add_right _ hg]
   exact lintegral_congr_ae (h_le.mono fun x hx => tsub_add_cancel_of_le hx)
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
@@ -2218,7 +2218,7 @@ theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
   by
   rw [tsub_le_iff_right]
   by_cases hfi : (∫⁻ x, f x ∂μ) = ∞
-  · rw [hfi, Ennreal.add_top]
+  · rw [hfi, ENNReal.add_top]
     exact le_top
   · rw [← lintegral_add_right _ hf]
     exact lintegral_mono fun x => le_tsub_add
@@ -2260,14 +2260,14 @@ theorem lintegral_infᵢ_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Mea
   have fn_le_f0 : (∫⁻ a, ⨅ n, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ :=
     lintegral_mono fun a => infᵢ_le_of_le 0 le_rfl
   have fn_le_f0' : (⨅ n, ∫⁻ a, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ := infᵢ_le_of_le 0 le_rfl
-  (Ennreal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 <|
+  (ENNReal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 <|
     show ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ from
       calc
         ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
           (lintegral_sub (measurable_infᵢ h_meas)
               (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => infᵢ_le _ _)
               (ae_of_all _ fun a => infᵢ_le _ _)).symm
-        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := congr rfl (funext fun a => Ennreal.sub_infᵢ)
+        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := congr rfl (funext fun a => ENNReal.sub_infᵢ)
         _ = ⨆ n, ∫⁻ a, f 0 a - f n a ∂μ :=
           lintegral_supᵢ_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
             (h_mono n).mono fun a ha => tsub_le_tsub le_rfl ha
@@ -2281,7 +2281,7 @@ theorem lintegral_infᵢ_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Mea
             funext fun n =>
               lintegral_sub (h_meas _) (ne_top_of_le_ne_top h_fin <| lintegral_mono_ae <| h_mono n)
                 (h_mono n)
-        _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := Ennreal.sub_infᵢ.symm
+        _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_infᵢ.symm
         
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_infᵢ_ae
 
@@ -2440,7 +2440,7 @@ theorem lintegral_supᵢ_directed [Countable β] {f : β → α → ℝ≥0∞}
     (h_directed : Directed (· ≤ ·) f) : (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ :=
   by
   simp_rw [← supᵢ_apply]
-  let p : α → (β → Ennreal) → Prop := fun x f' => Directed LE.le f'
+  let p : α → (β → ENNReal) → Prop := fun x f' => Directed LE.le f'
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x :=
     by
     trace
@@ -2473,7 +2473,7 @@ end
 theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AeMeasurable (f i) μ) :
     (∫⁻ a, ∑' i, f i a ∂μ) = ∑' i, ∫⁻ a, f i a ∂μ :=
   by
-  simp only [Ennreal.tsum_eq_supᵢ_sum]
+  simp only [ENNReal.tsum_eq_supᵢ_sum]
   rw [lintegral_supr_directed]
   · simp [lintegral_finset_sum' _ fun i _ => hf i]
   · intro b
@@ -2703,19 +2703,19 @@ theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
   exact funext fun a => lintegral_dirac a f
 #align measure_theory.lintegral_count MeasureTheory.lintegral_count
 
-theorem Ennreal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
+theorem ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
     (∑' i : α, c) = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
-#align ennreal.tsum_const_eq Ennreal.tsum_const_eq
+#align ennreal.tsum_const_eq ENNReal.tsum_const_eq
 
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
-theorem Ennreal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
+theorem ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
     (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
     (ε_ne_top : ε ≠ ∞) : Measure.count { i : α | ε ≤ a i } ≤ c / ε :=
   by
   rw [← lintegral_count] at tsum_le_c
   apply (MeasureTheory.meas_ge_le_lintegral_div a_mble.ae_measurable ε_ne_zero ε_ne_top).trans
-  exact Ennreal.div_le_div tsum_le_c rfl.le
-#align ennreal.count_const_le_le_of_tsum_le Ennreal.count_const_le_le_of_tsum_le
+  exact ENNReal.div_le_div tsum_le_c rfl.le
+#align ennreal.count_const_le_le_of_tsum_le ENNReal.count_const_le_le_of_tsum_le
 
 /-- Markov's inequality for counting measure with hypothesis using `tsum` in `ℝ≥0`. -/
 theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0}
@@ -2725,12 +2725,12 @@ theorem NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : 
   rw [show (fun i => ε ≤ a i) = fun i => (ε : ℝ≥0∞) ≤ (coe ∘ a) i
       by
       funext i
-      simp only [Ennreal.coe_le_coe]]
+      simp only [ENNReal.coe_le_coe]]
   apply
-    Ennreal.count_const_le_le_of_tsum_le (measurable_coe_nnreal_ennreal.comp a_mble) _
-      (by exact_mod_cast ε_ne_zero) (@Ennreal.coe_ne_top ε)
+    ENNReal.count_const_le_le_of_tsum_le (measurable_coe_nnreal_ennreal.comp a_mble) _
+      (by exact_mod_cast ε_ne_zero) (@ENNReal.coe_ne_top ε)
   convert ennreal.coe_le_coe.mpr tsum_le_c
-  rw [Ennreal.tsum_coe_eq a_summable.has_sum]
+  rw [ENNReal.tsum_coe_eq a_summable.has_sum]
 #align nnreal.count_const_le_le_of_tsum_le NNReal.count_const_le_le_of_tsum_le
 
 end DiracAndCount
@@ -2799,7 +2799,7 @@ end Countable
 
 theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ := by
-  simp_rw [ae_iff, Ennreal.not_lt_top]
+  simp_rw [ae_iff, ENNReal.not_lt_top]
   by_contra h
   apply h2f.lt_top.not_le
   have : (f ⁻¹' {∞}).indicator ⊤ ≤ f := by
@@ -2807,7 +2807,7 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
     by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [hx] , simp [hx]]
   convert lintegral_mono this
   rw [lintegral_indicator _ (hf (measurable_set_singleton ∞))]
-  simp [Ennreal.top_mul, preimage, h]
+  simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
 
 theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AeMeasurable f μ) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
@@ -2825,7 +2825,7 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
     lt_of_le_of_lt (set_lintegral_mono hf.coe_nnreal_ennreal (@measurable_const _ _ _ _ ↑M) _) _
   · simpa using hM
   · rw [lintegral_const]
-    refine' Ennreal.mul_lt_top ennreal.coe_lt_top.ne _
+    refine' ENNReal.mul_lt_top ennreal.coe_lt_top.ne _
     simp [hs]
 #align measure_theory.set_lintegral_lt_top_of_bdd_above MeasureTheory.set_lintegral_lt_top_of_bddAbove
 
@@ -2835,14 +2835,14 @@ theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurable
   set_lintegral_lt_top_of_bddAbove hs hf.Measurable (hsc.image hf).BddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
-theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal {α : Type _} [MeasurableSpace α]
+theorem IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _} [MeasurableSpace α]
     (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞} (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) :
     (∫⁻ x, f x ∂μ) < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
   rw [lintegral_const]
-  exact Ennreal.mul_lt_top ennreal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
-#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal
+  exact ENNReal.mul_lt_top ennreal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
+#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal
 
 /-- Given a measure `μ : measure α` and a function `f : α → ℝ≥0∞`, `μ.with_density f` is the
 measure such that for a measurable set `s` we have `μ.with_density f s = ∫⁻ a in s, f a ∂μ`. -/
@@ -2946,7 +2946,7 @@ theorem withDensity_tsum {f : ℕ → α → ℝ≥0∞} (h : ∀ i, Measurable
   simp_rw [sum_apply _ hs, with_density_apply _ hs]
   change (∫⁻ x in s, (∑' n, f n) x ∂μ) = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s
   rw [← lintegral_tsum fun i => (h i).AeMeasurable]
-  refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => Ennreal.summable)
+  refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)
 #align measure_theory.with_density_tsum MeasureTheory.withDensity_tsum
 
 theorem withDensity_indicator {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
@@ -2963,18 +2963,18 @@ theorem withDensity_indicator_one {s : Set α} (hs : MeasurableSet s) :
 #align measure_theory.with_density_indicator_one MeasureTheory.withDensity_indicator_one
 
 theorem withDensityOfRealMutuallySingular {f : α → ℝ} (hf : Measurable f) :
-    (μ.withDensity fun x => Ennreal.ofReal <| f x) ⟂ₘ
-      μ.withDensity fun x => Ennreal.ofReal <| -f x :=
+    (μ.withDensity fun x => ENNReal.ofReal <| f x) ⟂ₘ
+      μ.withDensity fun x => ENNReal.ofReal <| -f x :=
   by
   set S : Set α := { x | f x < 0 } with hSdef
   have hS : MeasurableSet S := measurableSet_lt hf measurable_const
   refine' ⟨S, hS, _, _⟩
   · rw [with_density_apply _ hS, lintegral_eq_zero_iff hf.ennreal_of_real, eventually_eq]
-    exact (ae_restrict_mem hS).mono fun x hx => Ennreal.ofReal_eq_zero.2 (le_of_lt hx)
+    exact (ae_restrict_mem hS).mono fun x hx => ENNReal.ofReal_eq_zero.2 (le_of_lt hx)
   · rw [with_density_apply _ hS.compl, lintegral_eq_zero_iff hf.neg.ennreal_of_real, eventually_eq]
     exact
       (ae_restrict_mem hS.compl).mono fun x hx =>
-        Ennreal.ofReal_eq_zero.2 (not_lt.1 <| mt neg_pos.1 hx)
+        ENNReal.ofReal_eq_zero.2 (not_lt.1 <| mt neg_pos.1 hx)
 #align measure_theory.with_density_of_real_mutually_singular MeasureTheory.withDensityOfRealMutuallySingular
 
 theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
@@ -3074,7 +3074,7 @@ theorem aeMeasurable_withDensity_iff {E : Type _} [NormedAddCommGroup E] [Normed
     simpa only [NNReal.coe_eq_zero, Ne.def] using h'x
 #align measure_theory.ae_measurable_with_density_iff MeasureTheory.aeMeasurable_withDensity_iff
 
-theorem aeMeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
+theorem aeMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
     AeMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
       AeMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ :=
   by
@@ -3098,8 +3098,8 @@ theorem aeMeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurab
     rw [eventually_eq, ae_with_density_iff hf.coe_nnreal_ennreal]
     filter_upwards [hg']
     intro x hx h'x
-    rw [← hx, ← mul_assoc, Ennreal.inv_mul_cancel h'x Ennreal.coe_ne_top, one_mul]
-#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aeMeasurable_withDensity_ennreal_iff
+    rw [← hx, ← mul_assoc, ENNReal.inv_mul_cancel h'x ENNReal.coe_ne_top, one_mul]
+#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aeMeasurable_withDensity_eNNReal_iff
 
 end Lintegral
 
@@ -3116,7 +3116,7 @@ can be added once we need them (for example in `h_add` it is only necessary to c
 a simple function with a multiple of a characteristic function and that the intersection
 of their images is a subset of `{0}`. -/
 @[elab_as_elim]
-theorem Measurable.ennreal_induction {α} [MeasurableSpace α] {P : (α → ℝ≥0∞) → Prop}
+theorem Measurable.eNNReal_induction {α} [MeasurableSpace α] {P : (α → ℝ≥0∞) → Prop}
     (h_ind : ∀ (c : ℝ≥0∞) ⦃s⦄, MeasurableSet s → P (indicator s fun _ => c))
     (h_add :
       ∀ ⦃f g : α → ℝ≥0∞⦄,
@@ -3133,7 +3133,7 @@ theorem Measurable.ennreal_induction {α} [MeasurableSpace α] {P : (α → ℝ
     exact fun n =>
       simple_func.induction (fun c s hs => h_ind c hs)
         (fun f g hfg hf hg => h_add hfg f.Measurable g.Measurable hf hg) (eapprox f n)
-#align measurable.ennreal_induction Measurable.ennreal_induction
+#align measurable.ennreal_induction Measurable.eNNReal_induction
 
 namespace MeasureTheory
 
@@ -3154,15 +3154,15 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
     (h_mf : Measurable f) :
     ∀ {g : α → ℝ≥0∞}, Measurable g → (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
   by
-  apply Measurable.ennreal_induction
+  apply Measurable.eNNReal_induction
   · intro c s h_ms
     simp [*, mul_comm _ c, ← indicator_mul_right]
   · intro g h h_univ h_mea_g h_mea_h h_ind_g h_ind_h
     simp [mul_add, *, Measurable.mul]
   · intro g h_mea_g h_mono_g h_ind
     have : Monotone fun n a => f a * g n a := fun m n hmn x =>
-      Ennreal.mul_le_mul le_rfl (h_mono_g hmn x)
-    simp [lintegral_supr, Ennreal.mul_supᵢ, h_mf.mul (h_mea_g _), *]
+      ENNReal.mul_le_mul le_rfl (h_mono_g hmn x)
+    simp [lintegral_supr, ENNReal.mul_supᵢ, h_mf.mul (h_mea_g _), *]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mul
 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
@@ -3220,7 +3220,7 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
   by
   rw [← supr_lintegral_measurable_le_eq_lintegral, ← supr_lintegral_measurable_le_eq_lintegral]
   refine' supᵢ₂_le fun i i_meas => supᵢ_le fun hi => _
-  have A : f * i ≤ f * g := fun x => Ennreal.mul_le_mul le_rfl (hi x)
+  have A : f * i ≤ f * g := fun x => ENNReal.mul_le_mul le_rfl (hi x)
   refine' le_supᵢ₂_of_le (f * i) (f_meas.mul i_meas) _
   exact le_supᵢ_of_le A (le_of_eq (lintegral_with_density_eq_lintegral_mul _ f_meas i_meas))
 #align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mul
@@ -3249,7 +3249,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
     simp [this]
   · apply le_of_eq _
     dsimp
-    rw [← mul_assoc, Ennreal.mul_inv_cancel hx h'x.ne, one_mul]
+    rw [← mul_assoc, ENNReal.mul_inv_cancel hx h'x.ne, one_mul]
 #align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable
 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
@@ -3308,7 +3308,7 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
   have : ∀ n, μ (s n) < ∞ := fun n =>
     (measure_mono <| disjointed_subset _ _).trans_lt (measure_spanning_sets_lt_top μ n)
   obtain ⟨δ, δpos, δsum⟩ : ∃ δ : ℕ → ℝ≥0, (∀ i, 0 < δ i) ∧ (∑' i, μ (s i) * δ i) < ε
-  exact Ennreal.exists_pos_tsum_mul_lt_of_countable ε0 _ fun n => (this n).Ne
+  exact ENNReal.exists_pos_tsum_mul_lt_of_countable ε0 _ fun n => (this n).Ne
   set N : α → ℕ := spanning_sets_index μ
   have hN_meas : Measurable N := measurable_spanning_sets_index μ
   have hNs : ∀ n, N ⁻¹' {n} = s n := preimage_spanning_sets_index_singleton μ
@@ -3321,7 +3321,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
     (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ :=
   by
   refine'
-    @Measurable.ennreal_induction α m (fun f => (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ) _ _ _ f hf
+    @Measurable.eNNReal_induction α m (fun f => (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ) _ _ _ f hf
   · intro c s hs
     rw [lintegral_indicator _ hs, lintegral_indicator _ (hm s hs), set_lintegral_const,
       set_lintegral_const]
@@ -3447,9 +3447,9 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       coe_indicator, Function.const_apply] at hL
     have c_ne_zero : c ≠ 0 := by
       intro hc
-      simpa only [hc, Ennreal.coe_zero, zero_mul, not_lt_zero] using hL
+      simpa only [hc, ENNReal.coe_zero, zero_mul, not_lt_zero] using hL
     have : L / c < μ s := by
-      rwa [Ennreal.div_lt_iff, mul_comm]
+      rwa [ENNReal.div_lt_iff, mul_comm]
       · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
     obtain ⟨t, ht, ts, mut, t_top⟩ :
@@ -3461,11 +3461,11 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
     ·
       simp only [ht, const_zero, coe_piecewise, coe_const, simple_func.coe_zero, univ_inter,
         piecewise_eq_indicator, coe_indicator, Function.const_apply, lintegral_indicator,
-        lintegral_const, measure.restrict_apply', Ennreal.mul_lt_top Ennreal.coe_ne_top t_top.ne]
+        lintegral_const, measure.restrict_apply', ENNReal.mul_lt_top ENNReal.coe_ne_top t_top.ne]
     · simp only [ht, const_zero, coe_piecewise, coe_const, simple_func.coe_zero,
         piecewise_eq_indicator, coe_indicator, Function.const_apply, lintegral_indicator,
         lintegral_const, measure.restrict_apply', univ_inter]
-      rwa [mul_comm, ← Ennreal.div_lt_iff]
+      rwa [mul_comm, ← ENNReal.div_lt_iff]
       · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
   · replace hL : L < (∫⁻ x, f₁ x ∂μ) + ∫⁻ x, f₂ x ∂μ
@@ -3482,14 +3482,14 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       simp only [simple_func.coe_add, Pi.add_apply, le_add_iff_nonneg_right, zero_le']
     obtain ⟨L₁, L₂, hL₁, hL₂, hL⟩ :
       ∃ L₁ L₂ : ℝ≥0∞, (L₁ < ∫⁻ x, f₁ x ∂μ) ∧ (L₂ < ∫⁻ x, f₂ x ∂μ) ∧ L < L₁ + L₂ :=
-      Ennreal.exists_lt_add_of_lt_add hL hf₁ hf₂
+      ENNReal.exists_lt_add_of_lt_add hL hf₁ hf₂
     rcases h₁ hL₁ with ⟨g₁, g₁_le, g₁_top, hg₁⟩
     rcases h₂ hL₂ with ⟨g₂, g₂_le, g₂_top, hg₂⟩
     refine' ⟨g₁ + g₂, fun x => add_le_add (g₁_le x) (g₂_le x), _, _⟩
     · apply lt_of_le_of_lt _ (add_lt_top.2 ⟨g₁_top, g₂_top⟩)
       rw [← lintegral_add_left g₁.measurable.coe_nnreal_ennreal]
       exact le_rfl
-    · apply hL.trans ((Ennreal.add_lt_add hg₁ hg₂).trans_le _)
+    · apply hL.trans ((ENNReal.add_lt_add hg₁ hg₂).trans_le _)
       rw [← lintegral_add_left g₁.measurable.coe_nnreal_ennreal]
       exact le_rfl
 #align measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral
@@ -3514,14 +3514,14 @@ theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ
   by
   obtain ⟨g, gpos, gmeas, hg⟩ :
     ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ (∫⁻ x : α, ↑(g x) ∂μ) < 1 :=
-    exists_pos_lintegral_lt_of_sigma_finite μ Ennreal.zero_lt_one.ne'
+    exists_pos_lintegral_lt_of_sigma_finite μ ENNReal.zero_lt_one.ne'
   refine' ⟨μ.with_density fun x => g x, is_finite_measure_with_density hg.ne_top, _⟩
   have : μ = (μ.with_density fun x => g x).withDensity fun x => (g x)⁻¹ :=
     by
     have A : ((fun x : α => (g x : ℝ≥0∞)) * fun x : α => (↑(g x))⁻¹) = 1 :=
       by
       ext1 x
-      exact Ennreal.mul_inv_cancel (Ennreal.coe_ne_zero.2 (gpos x).ne') Ennreal.coe_ne_top
+      exact ENNReal.mul_inv_cancel (ENNReal.coe_ne_zero.2 (gpos x).ne') ENNReal.coe_ne_top
     rw [← with_density_mul _ gmeas.coe_nnreal_ennreal gmeas.coe_nnreal_ennreal.inv, A,
       with_density_one]
   conv_lhs => rw [this]

Changes in mathlib4

mathlib3
mathlib4
chore: adapt to multiple goal linter 1 (#12338)

A PR accompanying #12339.

Zulip discussion

Diff
@@ -805,8 +805,8 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
     ∫⁻ x in { x | f x = r }, f x ∂μ = r * μ { x | f x = r } := by
   have : ∀ᵐ x ∂μ, x ∈ { x | f x = r } → f x = r := ae_of_all μ fun _ hx => hx
   rw [set_lintegral_congr_fun _ this]
-  rw [lintegral_const, Measure.restrict_apply MeasurableSet.univ, Set.univ_inter]
-  exact hf (measurableSet_singleton r)
+  · rw [lintegral_const, Measure.restrict_apply MeasurableSet.univ, Set.univ_inter]
+  · exact hf (measurableSet_singleton r)
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 
 theorem lintegral_indicator_one_le (s : Set α) : ∫⁻ a, s.indicator 1 a ∂μ ≤ μ s :=
@@ -1264,7 +1264,7 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
     refine' ⟨z, _, _⟩ <;>
       · intro x
         by_cases hx : x ∈ aeSeqSet hf p
-        · repeat' rw [aeSeq.aeSeq_eq_fun_of_mem_aeSeqSet hf hx]
+        · repeat rw [aeSeq.aeSeq_eq_fun_of_mem_aeSeqSet hf hx]
           apply_rules [hz₁, hz₂]
         · simp only [aeSeq, hx, if_false]
           exact le_rfl
feat: FastSubsingleton and FastIsEmpty to speed up congr!/convert (#12495)

This is a PR that's a temporary measure to improve performance of congr!/convert, and the implementation may change in a future PR with a new version of congr!.

Introduces two typeclasses that are meant to quickly evaluate in common cases of Subsingleton and IsEmpty. Makes congr! use these typeclasses rather than Subsingleton.

Local Subsingleton/IsEmpty instances are included as Fast instances. To get congr!/convert to reason about subsingleton types, you can add such instances to the local context. Or, you can apply Subsingleton.elim yourself.

Zulip discussion

Diff
@@ -630,7 +630,9 @@ theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞)
 
 @[simp]
 theorem lintegral_of_isEmpty {α} [MeasurableSpace α] [IsEmpty α] (μ : Measure α) (f : α → ℝ≥0∞) :
-    ∫⁻ x, f x ∂μ = 0 := by convert lintegral_zero_measure f
+    ∫⁻ x, f x ∂μ = 0 := by
+  have : Subsingleton (Measure α) := inferInstance
+  convert lintegral_zero_measure f
 
 theorem set_lintegral_empty (f : α → ℝ≥0∞) : ∫⁻ x in ∅, f x ∂μ = 0 := by
   rw [Measure.restrict_empty, lintegral_zero_measure]
chore: tidy various files (#12121)
Diff
@@ -363,10 +363,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     simp only [coe_map, mem_preimage, Function.comp_apply, mem_singleton_iff] at hx
     subst hx
     have : r * s x ≠ 0 := by rwa [Ne, ← ENNReal.coe_eq_zero]
-    have : s x ≠ 0 := by
-      refine' mt _ this
-      intro h
-      rw [h, mul_zero]
+    have : s x ≠ 0 := right_ne_zero_of_mul this
     have : (rs.map c) x < ⨆ n : ℕ, f n x := by
       refine' lt_of_lt_of_le (ENNReal.coe_lt_coe.2 _) (hsf x)
       suffices r * s x < 1 * s x by simpa
@@ -375,8 +372,9 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     exact mem_iUnion.2 ⟨i, le_of_lt hi⟩
   have mono : ∀ r : ℝ≥0∞, Monotone fun n => rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a } := by
     intro r i j h
-    refine' inter_subset_inter (Subset.refl _) _
-    intro x (hx : r ≤ f i x)
+    refine inter_subset_inter_right _ ?_
+    simp_rw [subset_def, mem_setOf]
+    intro x hx
     exact le_trans hx (h_mono h x)
   have h_meas : ∀ n, MeasurableSet {a : α | map c rs a ≤ f n a} := fun n =>
     measurableSet_le (SimpleFunc.measurable _) (hf n)
@@ -419,13 +417,12 @@ theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurabl
     intro n m hnm x
     by_cases hx : x ∈ aeSeqSet hf p
     · exact aeSeq.prop_of_mem_aeSeqSet hf hx hnm
-    · simp only [aeSeq, hx, if_false]
-      exact le_rfl
+    · simp only [aeSeq, hx, if_false, le_rfl]
   rw [lintegral_congr_ae (aeSeq.iSup hf hp).symm]
   simp_rw [iSup_apply]
-  rw [@lintegral_iSup _ _ μ _ (aeSeq.measurable hf p) h_ae_seq_mono]
-  congr
-  exact funext fun n => lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae hf hp n)
+  rw [lintegral_iSup (aeSeq.measurable hf p) h_ae_seq_mono]
+  congr with n
+  exact lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae hf hp n)
 #align measure_theory.lintegral_supr' MeasureTheory.lintegral_iSup'
 
 /-- Monotone convergence theorem expressed with limits -/
@@ -440,9 +437,8 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
     exact tendsto_atTop_iSup this
   rw [← lintegral_iSup' hf h_mono]
   refine' lintegral_congr_ae _
-  filter_upwards [h_mono,
-    h_tendsto] with _ hx_mono hx_tendsto using tendsto_nhds_unique hx_tendsto
-      (tendsto_atTop_iSup hx_mono)
+  filter_upwards [h_mono, h_tendsto] with _ hx_mono hx_tendsto using
+    tendsto_nhds_unique hx_tendsto (tendsto_atTop_iSup hx_mono)
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
 
 theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
@@ -451,7 +447,7 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
     ∫⁻ a, f a ∂μ = ∫⁻ a, ⨆ n, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
       congr; ext a; rw [iSup_eapprox_apply f hf]
     _ = ⨆ n, ∫⁻ a, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
-      rw [lintegral_iSup]
+      apply lintegral_iSup
       · measurability
       · intro i j h
         exact monotone_eapprox f h
@@ -463,7 +459,7 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
 to zero as `μ s` tends to zero. This lemma states states this fact in terms of `ε` and `δ`. -/
 theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞) {ε : ℝ≥0∞}
     (hε : ε ≠ 0) : ∃ δ > 0, ∀ s, μ s < δ → ∫⁻ x in s, f x ∂μ < ε := by
-  rcases exists_between hε.bot_lt with ⟨ε₂, hε₂0 : 0 < ε₂, hε₂ε⟩
+  rcases exists_between (pos_iff_ne_zero.mpr hε) with ⟨ε₂, hε₂0, hε₂ε⟩
   rcases exists_between hε₂0 with ⟨ε₁, hε₁0, hε₁₂⟩
   rcases exists_simpleFunc_forall_lintegral_sub_lt_of_pos h hε₁0.ne' with ⟨φ, _, hφ⟩
   rcases φ.exists_forall_le with ⟨C, hC⟩
@@ -523,7 +519,8 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       by simp only [iSup_eapprox_apply, hf, hg]
     _ = ∫⁻ a, ⨆ n, (eapprox f n + eapprox g n : α → ℝ≥0∞) a ∂μ := by
       congr; funext a
-      rw [ENNReal.iSup_add_iSup_of_monotone]; · rfl
+      rw [ENNReal.iSup_add_iSup_of_monotone]
+      · simp only [Pi.add_apply]
       · intro i j h
         exact monotone_eapprox _ h a
       · intro i j h
@@ -582,8 +579,8 @@ theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
 
 @[simp]
-theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : ∫⁻ a, f a ∂c • μ = c * ∫⁻ a, f a ∂μ :=
-  by simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
+theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : ∫⁻ a, f a ∂c • μ = c * ∫⁻ a, f a ∂μ := by
+  simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
 lemma set_lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) (s : Set α) :
@@ -597,8 +594,7 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
   rw [iSup_comm]
   congr; funext s
   induction' s using Finset.induction_on with i s hi hs
-  · apply bot_unique
-    simp
+  · simp
   simp only [Finset.sum_insert hi, ← hs]
   refine' (ENNReal.iSup_add_iSup _).symm
   intro φ ψ
@@ -623,13 +619,13 @@ theorem lintegral_add_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) (
 theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset ι) (f : α → ℝ≥0∞)
     (μ : ι → Measure α) : ∫⁻ a, f a ∂(∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i := by
   rw [← Measure.sum_coe_finset, lintegral_sum_measure, ← Finset.tsum_subtype']
-  rfl
+  simp only [Finset.coe_sort_coe]
 #align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measure
 
 @[simp]
 theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂(0 : Measure α)) = 0 :=
-  bot_unique <| by simp [lintegral]
+    ∫⁻ a, f a ∂(0 : Measure α) = 0 := by
+  simp [lintegral]
 #align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measure
 
 @[simp]
@@ -673,7 +669,7 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
       congr
       funext a
       rw [← iSup_eapprox_apply f hf, ENNReal.mul_iSup]
-      rfl
+      simp
     _ = ⨆ n, r * (eapprox f n).lintegral μ := by
       rw [lintegral_iSup]
       · congr
@@ -695,11 +691,10 @@ theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEM
 #align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''
 
 theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) :
-    (r * ∫⁻ a, f a ∂μ) ≤ ∫⁻ a, r * f a ∂μ := by
+    r * ∫⁻ a, f a ∂μ ≤ ∫⁻ a, r * f a ∂μ := by
   rw [lintegral, ENNReal.mul_iSup]
   refine' iSup_le fun s => _
-  rw [ENNReal.mul_iSup]
-  simp only [iSup_le_iff]
+  rw [ENNReal.mul_iSup, iSup_le_iff]
   intro hs
   rw [← SimpleFunc.const_mul_lintegral, lintegral]
   refine' le_iSup_of_le (const α r * s) (le_iSup_of_le (fun x => _) le_rfl)
@@ -729,8 +724,9 @@ theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEM
     ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
 #align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''
 
-theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂μ) * r ≤ ∫⁻ a, f a * r ∂μ :=
-  by simp_rw [mul_comm, lintegral_const_mul_le r f]
+theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) :
+    (∫⁻ a, f a ∂μ) * r ≤ ∫⁻ a, f a * r ∂μ := by
+  simp_rw [mul_comm, lintegral_const_mul_le r f]
 #align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_le
 
 theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
@@ -940,7 +936,7 @@ theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
 
 /-- Weaker version of the monotone convergence theorem-/
 theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
-    (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ :=
+    (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ := by
   let ⟨s, hs⟩ := exists_measurable_superset_of_null (ae_iff.1 (ae_all_iff.2 h_mono))
   let g n a := if a ∈ s then 0 else f n a
   have g_eq_f : ∀ᵐ a ∂μ, ∀ n, g n a = f n a :=
@@ -950,11 +946,14 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
       lintegral_congr_ae <| g_eq_f.mono fun a ha => by simp only [ha]
     _ = ⨆ n, ∫⁻ a, g n a ∂μ :=
       (lintegral_iSup (fun n => measurable_const.piecewise hs.2.1 (hf n))
-        (monotone_nat_of_le_succ fun n a =>
-          _root_.by_cases (fun h : a ∈ s => by simp [g, if_pos h]) fun h : a ∉ s => by
-            simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this; have := mt (this a) h
-            simp only [Classical.not_not, mem_setOf_eq] at this; exact this n))
+        (monotone_nat_of_le_succ fun n a => ?_))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun _a ha => ha _)]
+  simp only [g]
+  split_ifs with h
+  · rfl
+  · have := Set.not_mem_subset hs.1 h
+    simp only [not_forall, not_le, mem_setOf_eq, not_exists, not_lt] at this
+    exact this n
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 
 theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : ∫⁻ a, g a ∂μ ≠ ∞)
@@ -970,7 +969,7 @@ theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : 
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
 
 theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
-    (∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ := by
+    ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ := by
   rw [tsub_le_iff_right]
   by_cases hfi : ∫⁻ x, f x ∂μ = ∞
   · rw [hfi, add_top]
@@ -981,7 +980,7 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
 #align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
 
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
-    (∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
+    ∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ ≤ ∫⁻ x, g x - f x ∂μ :=
   lintegral_sub_le' f g hf.aemeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
 
@@ -1077,17 +1076,8 @@ theorem lintegral_iInf_directed_of_measurable {mα : MeasurableSpace α} [Counta
     ∫⁻ a, ⨅ b, f b a ∂μ = ⨅ b, ∫⁻ a, f b a ∂μ := by
   cases nonempty_encodable β
   cases isEmpty_or_nonempty β
-  · -- Porting note: the next `simp only` doesn't do anything, so added a workaround below.
-    -- simp only [WithTop.iInf_empty, lintegral_const]
-    conv =>
-      lhs
-      congr
-      · skip
-      · ext x
-        rw [WithTop.iInf_empty]
-    rw [WithTop.iInf_empty, lintegral_const]
-    rw [ENNReal.top_mul', if_neg]
-    simp only [Measure.measure_univ_eq_zero, hμ, not_false_iff]
+  · simp only [iInf_of_empty, lintegral_const,
+      ENNReal.top_mul (Measure.measure_univ_ne_zero.mpr hμ)]
   inhabit β
   have : ∀ a, ⨅ b, f b a = ⨅ n, f (h_directed.sequence f n) a := by
     refine' fun a =>
@@ -1408,7 +1398,7 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
 #align measure_theory.lintegral_map' MeasureTheory.lintegral_map'
 
 theorem lintegral_map_le {mβ : MeasurableSpace β} (f : β → ℝ≥0∞) {g : α → β} (hg : Measurable g) :
-    (∫⁻ a, f a ∂Measure.map g μ) ≤ ∫⁻ a, f (g a) ∂μ := by
+    ∫⁻ a, f a ∂Measure.map g μ ≤ ∫⁻ a, f (g a) ∂μ := by
   rw [← iSup_lintegral_measurable_le_eq_lintegral, ← iSup_lintegral_measurable_le_eq_lintegral]
   refine' iSup₂_le fun i hi => iSup_le fun h'i => _
   refine' le_iSup₂_of_le (i ∘ g) (hi.comp hg) _
@@ -1502,8 +1492,8 @@ theorem set_lintegral_subtype {s : Set α} (hs : MeasurableSet s) (t : Set s) (f
 section DiracAndCount
 variable [MeasurableSpace α]
 
-theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂dirac a = f a :=
-  by simp [lintegral_congr_ae (ae_eq_dirac' hf)]
+theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂dirac a = f a := by
+  simp [lintegral_congr_ae (ae_eq_dirac' hf)]
 #align measure_theory.lintegral_dirac' MeasureTheory.lintegral_dirac'
 
 theorem lintegral_dirac [MeasurableSingletonClass α] (a : α) (f : α → ℝ≥0∞) :
@@ -1836,8 +1826,8 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
   · intro f hf hf_mono hf_prop
     rw [lintegral_iSup hf hf_mono]
     rw [lintegral_iSup (fun n => Measurable.mono (hf n) hm le_rfl) hf_mono]
-    congr
-    exact funext fun n => hf_prop n
+    congr with n
+    exact hf_prop n
 #align measure_theory.lintegral_trim MeasureTheory.lintegral_trim
 
 theorem lintegral_trim_ae {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
@@ -2021,8 +2011,7 @@ lemma tendsto_measure_of_ae_tendsto_indicator {μ : Measure α} (A_mble : Measur
   · filter_upwards [As_le_B] with i hi
     exact eventually_of_forall (fun x ↦ indicator_le_indicator_of_subset hi (by simp) x)
   · rwa [← lintegral_indicator_one B_mble] at B_finmeas
-  · simpa only [show (OfNat.ofNat 1 : α → ℝ≥0∞) = (fun _ ↦ 1) by rfl,
-                tendsto_indicator_const_apply_iff_eventually] using h_lim
+  · simpa only [Pi.one_def, tendsto_indicator_const_apply_iff_eventually] using h_lim
 
 /-- If `μ` is a finite measure and the indicators of measurable sets `Aᵢ` tend pointwise
 almost everywhere to the indicator of a measurable set `A`, then the measures `μ Aᵢ` tend to
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -555,8 +555,8 @@ theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α 
   rcases exists_measurable_le_lintegral_eq μ fun a => f a + g a with ⟨φ, hφm, hφ_le, hφ_eq⟩
   calc
     ∫⁻ a, f a + g a ∂μ = ∫⁻ a, φ a ∂μ := hφ_eq
-    _ ≤ ∫⁻ a, f a + (φ a - f a) ∂μ := (lintegral_mono fun a => le_add_tsub)
-    _ = ∫⁻ a, f a ∂μ + ∫⁻ a, φ a - f a ∂μ := (lintegral_add_aux hf (hφm.sub hf))
+    _ ≤ ∫⁻ a, f a + (φ a - f a) ∂μ := lintegral_mono fun a => le_add_tsub
+    _ = ∫⁻ a, f a ∂μ + ∫⁻ a, φ a - f a ∂μ := lintegral_add_aux hf (hφm.sub hf)
     _ ≤ ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
       add_le_add_left (lintegral_mono fun a => tsub_le_iff_left.2 <| hφ_le a) _
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
@@ -1027,7 +1027,7 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
           (lintegral_sub (measurable_iInf h_meas)
               (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => iInf_le _ _)
               (ae_of_all _ fun a => iInf_le _ _)).symm
-        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := (congr rfl (funext fun a => ENNReal.sub_iInf))
+        _ = ∫⁻ a, ⨆ n, f 0 a - f n a ∂μ := congr rfl (funext fun a => ENNReal.sub_iInf)
         _ = ⨆ n, ∫⁻ a, f 0 a - f n a ∂μ :=
           (lintegral_iSup_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
             (h_mono n).mono fun a ha => tsub_le_tsub le_rfl ha)
@@ -1117,7 +1117,7 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
       (lintegral_iSup' (fun n => aemeasurable_biInf _ (to_countable _) (fun i _ ↦ h_meas i))
         (ae_of_all μ fun a n m hnm => iInf_le_iInf_of_subset fun i hi => le_trans hnm hi))
-    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_iInf₂_lintegral _)
+    _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := iSup_mono fun n => le_iInf₂_lintegral _
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
 
@@ -1133,7 +1133,7 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
   calc
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop = ⨅ n : ℕ, ⨆ i ≥ n, ∫⁻ a, f i a ∂μ :=
       limsup_eq_iInf_iSup_of_nat
-    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := (iInf_mono fun n => iSup₂_lintegral_le _)
+    _ ≤ ⨅ n : ℕ, ∫⁻ a, ⨆ i ≥ n, f i a ∂μ := iInf_mono fun n => iSup₂_lintegral_le _
     _ = ∫⁻ a, ⨅ n : ℕ, ⨆ i ≥ n, f i a ∂μ := by
       refine' (lintegral_iInf _ _ _).symm
       · intro n
@@ -1402,8 +1402,8 @@ theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : 
     _ = ∫⁻ a, hf.mk f a ∂Measure.map (hg.mk g) μ := by
       congr 1
       exact Measure.map_congr hg.ae_eq_mk
-    _ = ∫⁻ a, hf.mk f (hg.mk g a) ∂μ := (lintegral_map hf.measurable_mk hg.measurable_mk)
-    _ = ∫⁻ a, hf.mk f (g a) ∂μ := (lintegral_congr_ae <| hg.ae_eq_mk.symm.fun_comp _)
+    _ = ∫⁻ a, hf.mk f (hg.mk g a) ∂μ := lintegral_map hf.measurable_mk hg.measurable_mk
+    _ = ∫⁻ a, hf.mk f (g a) ∂μ := lintegral_congr_ae <| hg.ae_eq_mk.symm.fun_comp _
     _ = ∫⁻ a, f (g a) ∂μ := lintegral_congr_ae (ae_eq_comp hg hf.ae_eq_mk.symm)
 #align measure_theory.lintegral_map' MeasureTheory.lintegral_map'
 
chore: Rename coe_nat/coe_int/coe_rat to natCast/intCast/ratCast (#11499)

This is less exhaustive than its sibling #11486 because edge cases are harder to classify. No fundamental difficulty, just me being a bit fast and lazy.

Reduce the diff of #11203

Diff
@@ -212,7 +212,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
     obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞}) := exists_nat_mul_gt h_meas (ne_of_lt hb)
     use (const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
     simp only [lt_iSup_iff, exists_prop, coe_restrict, φ.measurableSet_preimage, coe_const,
-      ENNReal.coe_indicator, map_coe_ennreal_restrict, SimpleFunc.map_const, ENNReal.coe_nat,
+      ENNReal.coe_indicator, map_coe_ennreal_restrict, SimpleFunc.map_const, ENNReal.coe_natCast,
       restrict_const_lintegral]
     refine' ⟨indicator_le fun x hx => le_trans _ (hφ _), hn⟩
     simp only [mem_preimage, mem_singleton_iff] at hx
@@ -910,7 +910,7 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     have : ∫⁻ x, f x ∂μ + (↑n)⁻¹ * μ { x : α | f x + (n : ℝ≥0∞)⁻¹ ≤ g x } ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
     rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
-    exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
+    exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.natCast_ne_top _))
   refine' hfg.mp ((ae_all_iff.2 this).mono fun x hlt hle => hle.antisymm _)
   suffices Tendsto (fun n : ℕ => f x + (n : ℝ≥0∞)⁻¹) atTop (𝓝 (f x)) from
     ge_of_tendsto' this fun i => (hlt i).le
chore: remove mathport name: <expression> lines (#11928)

Quoting [@digama0](https://github.com/digama0):

These were actually never meant to go in the file, they are basically debugging information and only useful on significantly broken mathport files. You can safely remove all of them.

Diff
@@ -47,7 +47,6 @@ open Topology BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
--- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
 variable {α β γ δ : Type*}
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -990,7 +990,7 @@ theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0
     (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
     ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ := by
   contrapose! h
-  simp only [not_frequently, Ne.def, Classical.not_not]
+  simp only [not_frequently, Ne, Classical.not_not]
   exact ae_eq_of_ae_le_of_lintegral_le h_le hfi hg h
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
 
@@ -1003,7 +1003,7 @@ theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg
 
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
     (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ := by
-  rw [Ne.def, ← Measure.measure_univ_eq_zero] at hμ
+  rw [Ne, ← Measure.measure_univ_eq_zero] at hμ
   refine' lintegral_strict_mono_of_ae_le_of_ae_lt_on hg hfi (ae_le_of_ae_lt h) hμ _
   simpa using h
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
@@ -1943,8 +1943,8 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       simp only [hc, ENNReal.coe_zero, zero_mul, not_lt_zero] at hL
     have : L / c < μ s := by
       rwa [ENNReal.div_lt_iff, mul_comm]
-      · simp only [c_ne_zero, Ne.def, ENNReal.coe_eq_zero, not_false_iff, true_or_iff]
-      · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
+      · simp only [c_ne_zero, Ne, ENNReal.coe_eq_zero, not_false_iff, true_or_iff]
+      · simp only [Ne, coe_ne_top, not_false_iff, true_or_iff]
     obtain ⟨t, ht, ts, mlt, t_top⟩ :
       ∃ t : Set α, MeasurableSet t ∧ t ⊆ s ∧ L / ↑c < μ t ∧ μ t < ∞ :=
       Measure.exists_subset_measure_lt_top hs this
@@ -1958,8 +1958,8 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
         piecewise_eq_indicator, ENNReal.coe_indicator, Function.const_apply, lintegral_indicator,
         lintegral_const, Measure.restrict_apply', univ_inter]
       rwa [mul_comm, ← ENNReal.div_lt_iff]
-      · simp only [c_ne_zero, Ne.def, ENNReal.coe_eq_zero, not_false_iff, true_or_iff]
-      · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
+      · simp only [c_ne_zero, Ne, ENNReal.coe_eq_zero, not_false_iff, true_or_iff]
+      · simp only [Ne, coe_ne_top, not_false_iff, true_or_iff]
   · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ := by
       rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
     by_cases hf₁ : ∫⁻ x, f₁ x ∂μ = 0
chore: tidy various files (#11135)
Diff
@@ -1102,7 +1102,7 @@ theorem lintegral_iInf_directed_of_measurable {mα : MeasurableSpace α} [Counta
     _ = ⨅ n, ∫⁻ a, (f ∘ h_directed.sequence f) n a ∂μ := by
       rw [lintegral_iInf ?_ h_directed.sequence_anti]
       · exact hf_int _
-      · exact (fun n => hf _)
+      · exact fun n => hf _
     _ = ⨅ b, ∫⁻ a, f b a ∂μ := by
       refine' le_antisymm (le_iInf fun b => _) (le_iInf fun n => _)
       · exact iInf_le_of_le (Encodable.encode b + 1) (lintegral_mono <| h_directed.sequence_le b)
feat: tendsto_of_integral_tendsto_of_monotone (#11167)

Add tendsto_of_integral_tendsto_of_monotone, as well as ...of_antitone and the corresponding results for lintegral.

Also:

  • move some results about measurability of limits of (E)NNReal valued functions from BorelSpace.Metrizable to BorelSpace.Basic to make them available in Integral.Lebesgue.
  • add lintegral_iInf', a version of lintegral_iInf for a.e.-measurable functions. We already have the corresponding lintegral_iSup'.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr>

Diff
@@ -1052,6 +1052,25 @@ theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurab
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
+theorem lintegral_iInf' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ)
+    (h_anti : ∀ᵐ a ∂μ, Antitone (fun i ↦ f i a)) (h_fin : ∫⁻ a, f 0 a ∂μ ≠ ∞) :
+    ∫⁻ a, ⨅ n, f n a ∂μ = ⨅ n, ∫⁻ a, f n a ∂μ := by
+  simp_rw [← iInf_apply]
+  let p : α → (ℕ → ℝ≥0∞) → Prop := fun _ f' => Antitone f'
+  have hp : ∀ᵐ x ∂μ, p x fun i => f i x := h_anti
+  have h_ae_seq_mono : Antitone (aeSeq h_meas p) := by
+    intro n m hnm x
+    by_cases hx : x ∈ aeSeqSet h_meas p
+    · exact aeSeq.prop_of_mem_aeSeqSet h_meas hx hnm
+    · simp only [aeSeq, hx, if_false]
+      exact le_rfl
+  rw [lintegral_congr_ae (aeSeq.iInf h_meas hp).symm]
+  simp_rw [iInf_apply]
+  rw [lintegral_iInf (aeSeq.measurable h_meas p) h_ae_seq_mono]
+  · congr
+    exact funext fun n ↦ lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae h_meas hp n)
+  · rwa [lintegral_congr_ae (aeSeq.aeSeq_n_eq_fun_n_ae h_meas hp 0)]
+
 /-- Monotone convergence for an infimum over a directed family and indexed by a countable type -/
 theorem lintegral_iInf_directed_of_measurable {mα : MeasurableSpace α} [Countable β]
     {f : β → α → ℝ≥0∞} {μ : Measure α} (hμ : μ ≠ 0) (hf : ∀ b, Measurable (f b))
@@ -1198,6 +1217,21 @@ theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
     assumption
 #align measure_theory.tendsto_lintegral_filter_of_dominated_convergence MeasureTheory.tendsto_lintegral_filter_of_dominated_convergence
 
+theorem lintegral_tendsto_of_tendsto_of_antitone {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞}
+    (hf : ∀ n, AEMeasurable (f n) μ) (h_anti : ∀ᵐ x ∂μ, Antitone fun n ↦ f n x)
+    (h0 : ∫⁻ a, f 0 a ∂μ ≠ ∞)
+    (h_tendsto : ∀ᵐ x ∂μ, Tendsto (fun n ↦ f n x) atTop (𝓝 (F x))) :
+    Tendsto (fun n ↦ ∫⁻ x, f n x ∂μ) atTop (𝓝 (∫⁻ x, F x ∂μ)) := by
+  have : Antitone fun n ↦ ∫⁻ x, f n x ∂μ := fun i j hij ↦
+    lintegral_mono_ae (h_anti.mono fun x hx ↦ hx hij)
+  suffices key : ∫⁻ x, F x ∂μ = ⨅ n, ∫⁻ x, f n x ∂μ by
+    rw [key]
+    exact tendsto_atTop_iInf this
+  rw [← lintegral_iInf' hf h_anti h0]
+  refine lintegral_congr_ae ?_
+  filter_upwards [h_anti, h_tendsto] with _ hx_anti hx_tendsto
+    using tendsto_nhds_unique hx_tendsto (tendsto_atTop_iInf hx_anti)
+
 section
 
 open Encodable
@@ -1641,6 +1675,126 @@ theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal {α : Type
   exact ENNReal.mul_lt_top ENNReal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
 #align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal
 
+/-- If a monotone sequence of functions has an upper bound and the sequence of integrals of these
+functions tends to the integral of the upper bound, then the sequence of functions converges
+almost everywhere to the upper bound. Auxiliary version assuming moreover that the
+functions in the sequence are ae measurable. -/
+lemma tendsto_of_lintegral_tendsto_of_monotone_aux {α : Type*} {mα : MeasurableSpace α}
+    {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞} {μ : Measure α}
+    (hf_meas : ∀ n, AEMeasurable (f n) μ) (hF_meas : AEMeasurable F μ)
+    (hf_tendsto : Tendsto (fun i ↦ ∫⁻ a, f i a ∂μ) atTop (𝓝 (∫⁻ a, F a ∂μ)))
+    (hf_mono : ∀ᵐ a ∂μ, Monotone (fun i ↦ f i a))
+    (h_bound : ∀ᵐ a ∂μ, ∀ i, f i a ≤ F a) (h_int_finite : ∫⁻ a, F a ∂μ ≠ ∞) :
+    ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F a)) := by
+  have h_bound_finite : ∀ᵐ a ∂μ, F a ≠ ∞ := by
+    filter_upwards [ae_lt_top' hF_meas h_int_finite] with a ha using ha.ne
+  have h_exists : ∀ᵐ a ∂μ, ∃ l, Tendsto (fun i ↦ f i a) atTop (𝓝 l) := by
+    filter_upwards [h_bound, h_bound_finite, hf_mono] with a h_le h_fin h_mono
+    have h_tendsto : Tendsto (fun i ↦ f i a) atTop atTop ∨
+        ∃ l, Tendsto (fun i ↦ f i a) atTop (𝓝 l) := tendsto_of_monotone h_mono
+    cases' h_tendsto with h_absurd h_tendsto
+    · rw [tendsto_atTop_atTop_iff_of_monotone h_mono] at h_absurd
+      obtain ⟨i, hi⟩ := h_absurd (F a + 1)
+      refine absurd (hi.trans (h_le _)) (not_le.mpr ?_)
+      exact ENNReal.lt_add_right h_fin one_ne_zero
+    · exact h_tendsto
+  classical
+  let F' : α → ℝ≥0∞ := fun a ↦ if h : ∃ l, Tendsto (fun i ↦ f i a) atTop (𝓝 l)
+    then h.choose else ∞
+  have hF'_tendsto : ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F' a)) := by
+    filter_upwards [h_exists] with a ha
+    simp_rw [F', dif_pos ha]
+    exact ha.choose_spec
+  suffices F' =ᵐ[μ] F by
+    filter_upwards [this, hF'_tendsto] with a h_eq h_tendsto using h_eq ▸ h_tendsto
+  have hF'_le : F' ≤ᵐ[μ] F := by
+    filter_upwards [h_bound, hF'_tendsto] with a h_le h_tendsto
+    exact le_of_tendsto' h_tendsto (fun m ↦ h_le _)
+  suffices ∫⁻ a, F' a ∂μ = ∫⁻ a, F a ∂μ from
+    ae_eq_of_ae_le_of_lintegral_le hF'_le (this ▸ h_int_finite) hF_meas this.symm.le
+  refine tendsto_nhds_unique ?_ hf_tendsto
+  exact lintegral_tendsto_of_tendsto_of_monotone hf_meas hf_mono hF'_tendsto
+
+/-- If a monotone sequence of functions has an upper bound and the sequence of integrals of these
+functions tends to the integral of the upper bound, then the sequence of functions converges
+almost everywhere to the upper bound. -/
+lemma tendsto_of_lintegral_tendsto_of_monotone {α : Type*} {mα : MeasurableSpace α}
+    {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞} {μ : Measure α}
+    (hF_meas : AEMeasurable F μ)
+    (hf_tendsto : Tendsto (fun i ↦ ∫⁻ a, f i a ∂μ) atTop (𝓝 (∫⁻ a, F a ∂μ)))
+    (hf_mono : ∀ᵐ a ∂μ, Monotone (fun i ↦ f i a))
+    (h_bound : ∀ᵐ a ∂μ, ∀ i, f i a ≤ F a) (h_int_finite : ∫⁻ a, F a ∂μ ≠ ∞) :
+    ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F a)) := by
+  have : ∀ n, ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f n ∧ ∫⁻ a, f n a ∂μ = ∫⁻ a, g a ∂μ :=
+    fun n ↦ exists_measurable_le_lintegral_eq _ _
+  choose g gmeas gf hg using this
+  let g' : ℕ → α → ℝ≥0∞ := Nat.rec (g 0) (fun n I x ↦ max (g (n+1) x) (I x))
+  have M n : Measurable (g' n) := by
+    induction n with
+    | zero => simp [g', gmeas 0]
+    | succ n ih => exact Measurable.max (gmeas (n+1)) ih
+  have I : ∀ n x, g n x ≤ g' n x := by
+    intro n x
+    cases n with | zero | succ => simp [g']
+  have I' : ∀ᵐ x ∂μ, ∀ n, g' n x ≤ f n x := by
+    filter_upwards [hf_mono] with x hx n
+    induction n with
+    | zero => simpa [g'] using gf 0 x
+    | succ n ih => exact max_le (gf (n+1) x) (ih.trans (hx (Nat.le_succ n)))
+  have Int_eq n : ∫⁻ x, g' n x ∂μ = ∫⁻ x, f n x ∂μ := by
+    apply le_antisymm
+    · apply lintegral_mono_ae
+      filter_upwards [I'] with x hx using hx n
+    · rw [hg n]
+      exact lintegral_mono (I n)
+  have : ∀ᵐ a ∂μ, Tendsto (fun i ↦ g' i a) atTop (𝓝 (F a)) := by
+    apply tendsto_of_lintegral_tendsto_of_monotone_aux _ hF_meas _ _ _ h_int_finite
+    · exact fun n ↦ (M n).aemeasurable
+    · simp_rw [Int_eq]
+      exact hf_tendsto
+    · exact eventually_of_forall (fun x ↦ monotone_nat_of_le_succ (fun n ↦ le_max_right _ _))
+    · filter_upwards [h_bound, I'] with x h'x hx n using (hx n).trans (h'x n)
+  filter_upwards [this, I', h_bound] with x hx h'x h''x
+  exact tendsto_of_tendsto_of_tendsto_of_le_of_le hx tendsto_const_nhds h'x h''x
+
+/-- If an antitone sequence of functions has a lower bound and the sequence of integrals of these
+functions tends to the integral of the lower bound, then the sequence of functions converges
+almost everywhere to the lower bound. -/
+lemma tendsto_of_lintegral_tendsto_of_antitone {α : Type*} {mα : MeasurableSpace α}
+    {f : ℕ → α → ℝ≥0∞} {F : α → ℝ≥0∞} {μ : Measure α}
+    (hf_meas : ∀ n, AEMeasurable (f n) μ)
+    (hf_tendsto : Tendsto (fun i ↦ ∫⁻ a, f i a ∂μ) atTop (𝓝 (∫⁻ a, F a ∂μ)))
+    (hf_mono : ∀ᵐ a ∂μ, Antitone (fun i ↦ f i a))
+    (h_bound : ∀ᵐ a ∂μ, ∀ i, F a ≤ f i a) (h0 : ∫⁻ a, f 0 a ∂μ ≠ ∞) :
+    ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F a)) := by
+  have h_int_finite : ∫⁻ a, F a ∂μ ≠ ∞ := by
+    refine ((lintegral_mono_ae ?_).trans_lt h0.lt_top).ne
+    filter_upwards [h_bound] with a ha using ha 0
+  have h_exists : ∀ᵐ a ∂μ, ∃ l, Tendsto (fun i ↦ f i a) atTop (𝓝 l) := by
+    filter_upwards [hf_mono] with a h_mono
+    rcases tendsto_of_antitone h_mono with h | h
+    · refine ⟨0, h.mono_right ?_⟩
+      rw [OrderBot.atBot_eq]
+      exact pure_le_nhds _
+    · exact h
+  classical
+  let F' : α → ℝ≥0∞ := fun a ↦ if h : ∃ l, Tendsto (fun i ↦ f i a) atTop (𝓝 l)
+    then h.choose else ∞
+  have hF'_tendsto : ∀ᵐ a ∂μ, Tendsto (fun i ↦ f i a) atTop (𝓝 (F' a)) := by
+    filter_upwards [h_exists] with a ha
+    simp_rw [F', dif_pos ha]
+    exact ha.choose_spec
+  suffices F' =ᵐ[μ] F by
+    filter_upwards [this, hF'_tendsto] with a h_eq h_tendsto using h_eq ▸ h_tendsto
+  have hF'_le : F ≤ᵐ[μ] F' := by
+    filter_upwards [h_bound, hF'_tendsto] with a h_le h_tendsto
+    exact ge_of_tendsto' h_tendsto (fun m ↦ h_le _)
+  suffices ∫⁻ a, F' a ∂μ = ∫⁻ a, F a ∂μ by
+    refine (ae_eq_of_ae_le_of_lintegral_le hF'_le h_int_finite ?_ this.le).symm
+    exact ENNReal.aemeasurable_of_tendsto hf_meas hF'_tendsto
+  refine tendsto_nhds_unique ?_ hf_tendsto
+  exact lintegral_tendsto_of_tendsto_of_antitone hf_meas hf_mono h0 hF'_tendsto
+
 end Lintegral
 
 open MeasureTheory.SimpleFunc
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -42,7 +42,8 @@ open Filter ENNReal
 
 open Function (support)
 
-open Classical Topology BigOperators NNReal ENNReal MeasureTheory
+open scoped Classical
+open Topology BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
chore: remove stream-of-conciousness syntax for obtain (#11045)

This covers many instances, but is not exhaustive.

Independently of whether that syntax should be avoided (similar to #10534), I think all these changes are small improvements.

Diff
@@ -209,8 +209,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
       le_iSup_of_le (φ.map ENNReal.toNNReal) (le_iSup_of_le this (ge_of_eq <| lintegral_congr h))
   · have h_meas : μ (φ ⁻¹' {∞}) ≠ 0 := mt measure_zero_iff_ae_nmem.1 h
     refine' le_trans le_top (ge_of_eq <| (iSup_eq_top _).2 fun b hb => _)
-    obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞})
-    exact exists_nat_mul_gt h_meas (ne_of_lt hb)
+    obtain ⟨n, hn⟩ : ∃ n : ℕ, b < n * μ (φ ⁻¹' {∞}) := exists_nat_mul_gt h_meas (ne_of_lt hb)
     use (const α (n : ℝ≥0)).restrict (φ ⁻¹' {∞})
     simp only [lt_iSup_iff, exists_prop, coe_restrict, φ.measurableSet_preimage, coe_const,
       ENNReal.coe_indicator, map_coe_ennreal_restrict, SimpleFunc.map_const, ENNReal.coe_nat,
@@ -1657,8 +1656,8 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
   set s : ℕ → Set α := disjointed (spanningSets μ)
   have : ∀ n, μ (s n) < ∞ := fun n =>
     (measure_mono <| disjointed_subset _ _).trans_lt (measure_spanningSets_lt_top μ n)
-  obtain ⟨δ, δpos, δsum⟩ : ∃ δ : ℕ → ℝ≥0, (∀ i, 0 < δ i) ∧ (∑' i, μ (s i) * δ i) < ε
-  exact ENNReal.exists_pos_tsum_mul_lt_of_countable ε0 _ fun n => (this n).ne
+  obtain ⟨δ, δpos, δsum⟩ : ∃ δ : ℕ → ℝ≥0, (∀ i, 0 < δ i) ∧ (∑' i, μ (s i) * δ i) < ε :=
+    ENNReal.exists_pos_tsum_mul_lt_of_countable ε0 _ fun n => (this n).ne
   set N : α → ℕ := spanningSetsIndex μ
   have hN_meas : Measurable N := measurable_spanningSetsIndex μ
   have hNs : ∀ n, N ⁻¹' {n} = s n := preimage_spanningSetsIndex_singleton μ
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -952,8 +952,8 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
     _ = ⨆ n, ∫⁻ a, g n a ∂μ :=
       (lintegral_iSup (fun n => measurable_const.piecewise hs.2.1 (hf n))
         (monotone_nat_of_le_succ fun n a =>
-          _root_.by_cases (fun h : a ∈ s => by simp [if_pos h]) fun h : a ∉ s => by
-            simp only [if_neg h]; have := hs.1; rw [subset_def] at this; have := mt (this a) h
+          _root_.by_cases (fun h : a ∈ s => by simp [g, if_pos h]) fun h : a ∉ s => by
+            simp only [g, if_neg h]; have := hs.1; rw [subset_def] at this; have := mt (this a) h
             simp only [Classical.not_not, mem_setOf_eq] at this; exact this n))
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun _a ha => ha _)]
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
@@ -1664,7 +1664,7 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
   have hNs : ∀ n, N ⁻¹' {n} = s n := preimage_spanningSetsIndex_singleton μ
   refine' ⟨δ ∘ N, fun x => δpos _, measurable_from_nat.comp hN_meas, _⟩
   erw [lintegral_comp measurable_from_nat.coe_nnreal_ennreal hN_meas]
-  simpa [hNs, lintegral_countable', measurable_spanningSetsIndex, mul_comm] using δsum
+  simpa [N, hNs, lintegral_countable', measurable_spanningSetsIndex, mul_comm] using δsum
 #align measure_theory.exists_pos_lintegral_lt_of_sigma_finite MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite
 
 theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : Measurable[m] f) :
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -1250,7 +1250,7 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
     ext1 b
     rw [lintegral_congr_ae]
     apply EventuallyEq.symm
-    refine' aeSeq.aeSeq_n_eq_fun_n_ae hf hp _
+    exact aeSeq.aeSeq_n_eq_fun_n_ae hf hp _
 #align measure_theory.lintegral_supr_directed MeasureTheory.lintegral_iSup_directed
 
 end
chore: classify simp can do this porting notes (#10619)

Classify by adding issue number (#10618) to porting notes claiming anything semantically equivalent to simp can prove this or simp can simplify this.

Diff
@@ -146,7 +146,7 @@ theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
   lintegral_zero
 #align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_fun
 
--- @[simp] -- Porting note: simp can prove this
+-- @[simp] -- Porting note (#10618): simp can prove this
 theorem lintegral_one : ∫⁻ _, (1 : ℝ≥0∞) ∂μ = μ univ := by rw [lintegral_const, one_mul]
 #align measure_theory.lintegral_one MeasureTheory.lintegral_one
 
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -436,8 +436,8 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
     Tendsto (fun n => ∫⁻ x, f n x ∂μ) atTop (𝓝 <| ∫⁻ x, F x ∂μ) := by
   have : Monotone fun n => ∫⁻ x, f n x ∂μ := fun i j hij =>
     lintegral_mono_ae (h_mono.mono fun x hx => hx hij)
-  suffices key : ∫⁻ x, F x ∂μ = ⨆ n, ∫⁻ x, f n x ∂μ
-  · rw [key]
+  suffices key : ∫⁻ x, F x ∂μ = ⨆ n, ∫⁻ x, f n x ∂μ by
+    rw [key]
     exact tendsto_atTop_iSup this
   rw [← lintegral_iSup' hf h_mono]
   refine' lintegral_congr_ae _
@@ -1674,8 +1674,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
   · intro c s hs
     rw [lintegral_indicator _ hs, lintegral_indicator _ (hm s hs), set_lintegral_const,
       set_lintegral_const]
-    suffices h_trim_s : μ.trim hm s = μ s
-    · rw [h_trim_s]
+    suffices h_trim_s : μ.trim hm s = μ s by rw [h_trim_s]
     exact trim_measurableSet_eq hm hs
   · intro f g _ hf _ hf_prop hg_prop
     have h_m := lintegral_add_left (μ := Measure.trim μ hm) hf g
@@ -1807,8 +1806,8 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       rwa [mul_comm, ← ENNReal.div_lt_iff]
       · simp only [c_ne_zero, Ne.def, ENNReal.coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
-  · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ
-    · rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
+  · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ := by
+      rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
     by_cases hf₁ : ∫⁻ x, f₁ x ∂μ = 0
     · simp only [hf₁, zero_add] at hL
       rcases h₂ hL with ⟨g, g_le, g_top, gL⟩
feat: Complete NNReal coercion lemmas (#10214)

Add a few missing lemmas about the coercion NNReal → Real. Remove a bunch of protected on the existing coercion lemmas (so that it matches the convention for other coercions). Rename NNReal.coe_eq to NNReal.coe_inj

From LeanAPAP

Diff
@@ -1790,7 +1790,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       simp only [hc, ENNReal.coe_zero, zero_mul, not_lt_zero] at hL
     have : L / c < μ s := by
       rwa [ENNReal.div_lt_iff, mul_comm]
-      · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
+      · simp only [c_ne_zero, Ne.def, ENNReal.coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
     obtain ⟨t, ht, ts, mlt, t_top⟩ :
       ∃ t : Set α, MeasurableSet t ∧ t ⊆ s ∧ L / ↑c < μ t ∧ μ t < ∞ :=
@@ -1805,7 +1805,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
         piecewise_eq_indicator, ENNReal.coe_indicator, Function.const_apply, lintegral_indicator,
         lintegral_const, Measure.restrict_apply', univ_inter]
       rwa [mul_comm, ← ENNReal.div_lt_iff]
-      · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
+      · simp only [c_ne_zero, Ne.def, ENNReal.coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
   · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ
     · rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
feat: Make the coercion ℝ≥0 → ℝ≥0∞ commute defeqly with nsmul and pow (#10225)

by tweaking the definition of the AddMonoid and MonoidWithZero instances for WithTop. Also unprotect ENNReal.coe_injective and rename ENNReal.coe_eq_coe → ENNReal.coe_inj.

From LeanAPAP

Diff
@@ -354,9 +354,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
   rcases ENNReal.lt_iff_exists_coe.1 ha with ⟨r, rfl, _⟩
   have ha : r < 1 := ENNReal.coe_lt_coe.1 ha
   let rs := s.map fun a => r * a
-  have eq_rs : (const α r : α →ₛ ℝ≥0∞) * map c s = rs.map c := by
-    ext1 a
-    exact ENNReal.coe_mul.symm
+  have eq_rs : rs.map c = (const α r : α →ₛ ℝ≥0∞) * map c s := rfl
   have eq : ∀ p, rs.map c ⁻¹' {p} = ⋃ n, rs.map c ⁻¹' {p} ∩ { a | p ≤ f n a } := by
     intro p
     rw [← inter_iUnion]; nth_rw 1 [← inter_univ (map c rs ⁻¹' {p})]
@@ -381,7 +379,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     refine' inter_subset_inter (Subset.refl _) _
     intro x (hx : r ≤ f i x)
     exact le_trans hx (h_mono h x)
-  have h_meas : ∀ n, MeasurableSet { a : α | (⇑(map c rs)) a ≤ f n a } := fun n =>
+  have h_meas : ∀ n, MeasurableSet {a : α | map c rs a ≤ f n a} := fun n =>
     measurableSet_le (SimpleFunc.measurable _) (hf n)
   calc
     (r : ℝ≥0∞) * (s.map c).lintegral μ = ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r}) := by
refactor(Probability/Kernel/CondCdf): mv lintegral_iInf_directed_of_measurable (#10041)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -1054,6 +1054,44 @@ theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurab
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
+/-- Monotone convergence for an infimum over a directed family and indexed by a countable type -/
+theorem lintegral_iInf_directed_of_measurable {mα : MeasurableSpace α} [Countable β]
+    {f : β → α → ℝ≥0∞} {μ : Measure α} (hμ : μ ≠ 0) (hf : ∀ b, Measurable (f b))
+    (hf_int : ∀ b, ∫⁻ a, f b a ∂μ ≠ ∞) (h_directed : Directed (· ≥ ·) f) :
+    ∫⁻ a, ⨅ b, f b a ∂μ = ⨅ b, ∫⁻ a, f b a ∂μ := by
+  cases nonempty_encodable β
+  cases isEmpty_or_nonempty β
+  · -- Porting note: the next `simp only` doesn't do anything, so added a workaround below.
+    -- simp only [WithTop.iInf_empty, lintegral_const]
+    conv =>
+      lhs
+      congr
+      · skip
+      · ext x
+        rw [WithTop.iInf_empty]
+    rw [WithTop.iInf_empty, lintegral_const]
+    rw [ENNReal.top_mul', if_neg]
+    simp only [Measure.measure_univ_eq_zero, hμ, not_false_iff]
+  inhabit β
+  have : ∀ a, ⨅ b, f b a = ⨅ n, f (h_directed.sequence f n) a := by
+    refine' fun a =>
+      le_antisymm (le_iInf fun n => iInf_le _ _)
+        (le_iInf fun b => iInf_le_of_le (Encodable.encode b + 1) _)
+    exact h_directed.sequence_le b a
+  -- Porting note: used `∘` below to deal with its reduced reducibility
+  calc
+    ∫⁻ a, ⨅ b, f b a ∂μ
+    _ = ∫⁻ a, ⨅ n, (f ∘ h_directed.sequence f) n a ∂μ := by simp only [this, Function.comp_apply]
+    _ = ⨅ n, ∫⁻ a, (f ∘ h_directed.sequence f) n a ∂μ := by
+      rw [lintegral_iInf ?_ h_directed.sequence_anti]
+      · exact hf_int _
+      · exact (fun n => hf _)
+    _ = ⨅ b, ∫⁻ a, f b a ∂μ := by
+      refine' le_antisymm (le_iInf fun b => _) (le_iInf fun n => _)
+      · exact iInf_le_of_le (Encodable.encode b + 1) (lintegral_mono <| h_directed.sequence_le b)
+      · exact iInf_le (fun b => ∫⁻ a, f b a ∂μ) _
+#align lintegral_infi_directed_of_measurable MeasureTheory.lintegral_iInf_directed_of_measurable
+
 /-- Known as Fatou's lemma, version with `AEMeasurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
     ∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
chore(*): replace $ with <| (#9319)

See Zulip thread for the discussion.

Diff
@@ -815,15 +815,15 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 
 theorem lintegral_indicator_one_le (s : Set α) : ∫⁻ a, s.indicator 1 a ∂μ ≤ μ s :=
-  (lintegral_indicator_const_le _ _).trans $ (one_mul _).le
+  (lintegral_indicator_const_le _ _).trans <| (one_mul _).le
 
 @[simp]
 theorem lintegral_indicator_one₀ (hs : NullMeasurableSet s μ) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
-  (lintegral_indicator_const₀ hs _).trans $ one_mul _
+  (lintegral_indicator_const₀ hs _).trans <| one_mul _
 
 @[simp]
 theorem lintegral_indicator_one (hs : MeasurableSet s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
-  (lintegral_indicator_const hs _).trans $ one_mul _
+  (lintegral_indicator_const hs _).trans <| one_mul _
 #align measure_theory.lintegral_indicator_one MeasureTheory.lintegral_indicator_one
 
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
@@ -883,8 +883,8 @@ theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf :
 
 theorem setLintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
     (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0) : ∫⁻ x in s, f x ∂μ = ∞ :=
-  lintegral_eq_top_of_measure_eq_top_ne_zero hf $
-    mt (eq_bot_mono $ by rw [← setOf_inter_eq_sep]; exact Measure.le_restrict_apply _ _) hμf
+  lintegral_eq_top_of_measure_eq_top_ne_zero hf <|
+    mt (eq_bot_mono <| by rw [← setOf_inter_eq_sep]; exact Measure.le_restrict_apply _ _) hμf
 #align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero
 
 theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
@@ -894,7 +894,7 @@ theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫
 
 theorem measure_eq_top_of_setLintegral_ne_top (hf : AEMeasurable f (μ.restrict s))
     (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) : μ ({x ∈ s | f x = ∞}) = 0 :=
-  of_not_not fun h => hμf $ setLintegral_eq_top_of_measure_eq_top_ne_zero hf h
+  of_not_not fun h => hμf <| setLintegral_eq_top_of_measure_eq_top_ne_zero hf h
 #align measure_theory.measure_eq_top_of_set_lintegral_ne_top MeasureTheory.measure_eq_top_of_setLintegral_ne_top
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
chore(*): golf, mostly dropping unused haves (#9292)
Diff
@@ -347,7 +347,6 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ := by
   set c : ℝ≥0 → ℝ≥0∞ := (↑)
   set F := fun a : α => ⨆ n, f n a
-  have _ : Measurable F := measurable_iSup hf
   refine' le_antisymm _ (iSup_lintegral_le _)
   rw [lintegral_eq_nnreal]
   refine' iSup_le fun s => iSup_le fun hsf => _
chore: remove uses of cases' (#9171)

I literally went through and regex'd some uses of cases', replacing them with rcases; this is meant to be a low effort PR as I hope that tools can do this in the future.

rcases is an easier replacement than cases, though with better tools we could in future do a second pass converting simple rcases added here (and existing ones) to cases.

Diff
@@ -175,7 +175,7 @@ variable (μ)
 integral. -/
 theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
     ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ := by
-  cases' eq_or_ne (∫⁻ a, f a ∂μ) 0 with h₀ h₀
+  rcases eq_or_ne (∫⁻ a, f a ∂μ) 0 with h₀ | h₀
   · exact ⟨0, measurable_zero, zero_le f, h₀.trans lintegral_zero.symm⟩
   rcases exists_seq_strictMono_tendsto' h₀.bot_lt with ⟨L, _, hLf, hL_tendsto⟩
   have : ∀ n, ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ L n < ∫⁻ a, g a ∂μ := by
chore: Remove nonterminal simp at (#7795)

Removes nonterminal uses of simp at. Replaces most of these with instances of simp? ... says.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -720,7 +720,8 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
     rw [mul_comm]
     exact rinv
   have := lintegral_const_mul_le (μ := μ) r⁻¹ fun x => r * f x
-  simp [(mul_assoc _ _ _).symm, rinv'] at this
+  simp? [(mul_assoc _ _ _).symm, rinv'] at this says
+    simp only [(mul_assoc _ _ _).symm, rinv', one_mul] at this
   simpa [(mul_assoc _ _ _).symm, rinv] using mul_le_mul_left' this r
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
 
feat: Discrete measurable spaces (#8859)

Adds a typeclass for measurable spaces where all sets are measurable Proves several instances relating these to other classes

Co-authored-by: Yaël Dillies <yael.dillies@gmail.com>

Diff
@@ -1431,13 +1431,6 @@ theorem set_lintegral_subtype {s : Set α} (hs : MeasurableSet s) (t : Set s) (f
     restrict_restrict hs, inter_eq_right.2 (Subtype.coe_image_subset _ _)]
 
 section DiracAndCount
-
-instance (priority := 10) _root_.MeasurableSpace.Top.measurableSingletonClass {α : Type*} :
-    @MeasurableSingletonClass α (⊤ : MeasurableSpace α) :=
-  @MeasurableSingletonClass.mk α (⊤ : MeasurableSpace α) <|
-    fun _ => MeasurableSpace.measurableSet_top
-#align measurable_space.top.measurable_singleton_class MeasurableSpace.Top.measurableSingletonClass
-
 variable [MeasurableSpace α]
 
 theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂dirac a = f a :=
doc: Mark named theorems (#8749)
Diff
@@ -341,7 +341,7 @@ theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
   lintegral_nnnorm_eq_of_ae_nonneg (Filter.eventually_of_forall h_nonneg)
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
 
-/-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
+/-- **Monotone convergence theorem** -- sometimes called **Beppo-Levi convergence**.
 See `lintegral_iSup_directed` for a more general form. -/
 theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n)) (h_mono : Monotone f) :
     ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ := by
chore: tidy various files (#8560)
Diff
@@ -95,7 +95,7 @@ theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν
 -- workaround for the known eta-reduction issue with `@[gcongr]`
 @[gcongr] theorem lintegral_mono_fn' ⦃f g : α → ℝ≥0∞⦄ (hfg : ∀ x, f x ≤ g x) (h2 : μ ≤ ν) :
     lintegral μ f ≤ lintegral ν g :=
-lintegral_mono' h2 hfg
+  lintegral_mono' h2 hfg
 
 theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono' (le_refl μ) hfg
@@ -104,7 +104,7 @@ theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : ∫⁻ a,
 -- workaround for the known eta-reduction issue with `@[gcongr]`
 @[gcongr] theorem lintegral_mono_fn ⦃f g : α → ℝ≥0∞⦄ (hfg : ∀ x, f x ≤ g x) :
     lintegral μ f ≤ lintegral μ g :=
-lintegral_mono hfg
+  lintegral_mono hfg
 
 theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
chore: space after (#8178)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -884,7 +884,7 @@ theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf :
 theorem setLintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
     (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0) : ∫⁻ x in s, f x ∂μ = ∞ :=
   lintegral_eq_top_of_measure_eq_top_ne_zero hf $
-    mt (eq_bot_mono $ by rw [←setOf_inter_eq_sep]; exact Measure.le_restrict_apply _ _) hμf
+    mt (eq_bot_mono $ by rw [← setOf_inter_eq_sep]; exact Measure.le_restrict_apply _ _) hμf
 #align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero
 
 theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
feat: golf using gcongr throughout the library (#8752)

Following on from previous gcongr golfing PRs #4702 and #4784.

This is a replacement for #7901: this round of golfs, first introduced there, there exposed some performance issues in gcongr, hopefully fixed by #8731, and I am opening a new PR so that the performance can be checked against current master rather than master at the time of #7901.

Diff
@@ -397,16 +397,16 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       intro p i j h
       exact mul_le_mul_left' (measure_mono <| mono p h) _
     _ ≤ ⨆ n : ℕ, ((rs.map c).restrict { a | (rs.map c) a ≤ f n a }).lintegral μ := by
-      refine' iSup_mono fun n => _
+      gcongr with n
       rw [restrict_lintegral _ (h_meas n)]
       · refine' le_of_eq (Finset.sum_congr rfl fun r _ => _)
         congr 2 with a
         refine' and_congr_right _
         simp (config := { contextual := true })
     _ ≤ ⨆ n, ∫⁻ a, f n a ∂μ := by
-      refine' iSup_mono fun n => _
+      gcongr with n
       rw [← SimpleFunc.lintegral_eq_lintegral]
-      refine' lintegral_mono fun a => _
+      gcongr with a
       simp only [map_apply] at h_meas
       simp only [coe_map, restrict_apply _ (h_meas _), (· ∘ ·)]
       exact indicator_apply_le id
@@ -483,7 +483,8 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : 
       simp only [add_tsub_eq_max, le_max_right, coe_map, Function.comp_apply, SimpleFunc.coe_add,
         SimpleFunc.coe_sub, Pi.add_apply, Pi.sub_apply, ENNReal.coe_max (φ x) (ψ x)]
     _ ≤ (map (↑) φ).lintegral (μ.restrict s) + ε₁ := by
-      refine' add_le_add le_rfl (le_trans _ (hφ _ hψ).le)
+      gcongr
+      refine' le_trans _ (hφ _ hψ).le
       exact SimpleFunc.lintegral_mono le_rfl Measure.restrict_le_self
     _ ≤ (SimpleFunc.const α (C : ℝ≥0∞)).lintegral (μ.restrict s) + ε₁ :=
       (add_le_add (SimpleFunc.lintegral_mono (fun x => by exact coe_le_coe.2 (hC x)) le_rfl) le_rfl)
@@ -978,7 +979,8 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
   · rw [hfi, add_top]
     exact le_top
   · rw [← lintegral_add_right' _ hf]
-    exact lintegral_mono fun x => le_tsub_add
+    gcongr
+    exact le_tsub_add
 #align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
 
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
chore: better phrasing of pointwise convergence of indicators (#8331)

In some recently added results, pointwise convergence of constant indicators of sets was phrased in terms of Tendsto in the product topology. The relevant notion is more elementary, however: it is (usually) equivalent to eventually constantness of the set membership of any point; in particular the topology of the underlying set plays almost no role (apart from mild separation axioms). This PR adds equivalences between the conditions and refactors some results.

Co-authored-by: Floris van Doorn <@fpvandoorn>.

Diff
@@ -7,6 +7,7 @@ import Mathlib.Dynamics.Ergodic.MeasurePreserving
 import Mathlib.MeasureTheory.Function.SimpleFunc
 import Mathlib.MeasureTheory.Measure.MutuallySingular
 import Mathlib.MeasureTheory.Measure.Count
+import Mathlib.Topology.IndicatorConstPointwise
 
 #align_import measure_theory.integral.lebesgue from "leanprover-community/mathlib"@"c14c8fcde993801fca8946b0d80131a1a81d1520"
 
@@ -1827,26 +1828,25 @@ the measures of `Aᵢ` tend to the measure of `A`. -/
 lemma tendsto_measure_of_ae_tendsto_indicator {μ : Measure α} (A_mble : MeasurableSet A)
     (As_mble : ∀ i, MeasurableSet (As i)) {B : Set α} (B_mble : MeasurableSet B)
     (B_finmeas : μ B ≠ ∞) (As_le_B : ∀ᶠ i in L, As i ⊆ B)
-    (h_lim : ∀ᵐ x ∂μ, Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞) x)
-      L (𝓝 (A.indicator 1 x))) :
+    (h_lim : ∀ᵐ x ∂μ, ∀ᶠ i in L, x ∈ As i ↔ x ∈ A) :
     Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) := by
   simp_rw [← MeasureTheory.lintegral_indicator_one A_mble,
            ← MeasureTheory.lintegral_indicator_one (As_mble _)]
   refine tendsto_lintegral_filter_of_dominated_convergence (B.indicator (1 : α → ℝ≥0∞))
-          (eventually_of_forall ?_) ?_ ?_ h_lim
+          (eventually_of_forall ?_) ?_ ?_ ?_
   · exact fun i ↦ Measurable.indicator measurable_const (As_mble i)
   · filter_upwards [As_le_B] with i hi
     exact eventually_of_forall (fun x ↦ indicator_le_indicator_of_subset hi (by simp) x)
   · rwa [← lintegral_indicator_one B_mble] at B_finmeas
+  · simpa only [show (OfNat.ofNat 1 : α → ℝ≥0∞) = (fun _ ↦ 1) by rfl,
+                tendsto_indicator_const_apply_iff_eventually] using h_lim
 
 /-- If `μ` is a finite measure and the indicators of measurable sets `Aᵢ` tend pointwise
 almost everywhere to the indicator of a measurable set `A`, then the measures `μ Aᵢ` tend to
 the measure `μ A`. -/
 lemma tendsto_measure_of_ae_tendsto_indicator_of_isFiniteMeasure [IsCountablyGenerated L]
     {μ : Measure α} [IsFiniteMeasure μ] (A_mble : MeasurableSet A)
-    (As_mble : ∀ i, MeasurableSet (As i))
-    (h_lim : ∀ᵐ x ∂μ, Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞) x)
-      L (𝓝 (A.indicator 1 x))) :
+    (As_mble : ∀ i, MeasurableSet (As i)) (h_lim : ∀ᵐ x ∂μ, ∀ᶠ i in L, x ∈ As i ↔ x ∈ A) :
     Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) :=
   tendsto_measure_of_ae_tendsto_indicator L A_mble As_mble MeasurableSet.univ
     (measure_ne_top μ univ) (eventually_of_forall (fun i ↦ subset_univ (As i))) h_lim
chore: replace exact_mod_cast tactic with mod_cast elaborator where possible (#8404)

We still have the exact_mod_cast tactic, used in a few places, which somehow (?) works a little bit harder to prevent the expected type influencing the elaboration of the term. I would like to get to the bottom of this, and it will be easier once the only usages of exact_mod_cast are the ones that don't work using the term elaborator by itself.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -1497,7 +1497,7 @@ theorem _root_.NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α]
       simp only [ENNReal.coe_le_coe, Function.comp]]
   apply
     ENNReal.count_const_le_le_of_tsum_le (measurable_coe_nnreal_ennreal.comp a_mble) _
-      (by exact_mod_cast ε_ne_zero) (@ENNReal.coe_ne_top ε)
+      (mod_cast ε_ne_zero) (@ENNReal.coe_ne_top ε)
   convert ENNReal.coe_le_coe.mpr tsum_le_c
   simp_rw [Function.comp_apply]
   rw [ENNReal.tsum_coe_eq a_summable.hasSum]
chore(Data/Real/ENNReal): rename some to ofNNReal (#8276)

The some name feels like an implementation detail.

Diff
@@ -480,7 +480,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : 
       rw [← SimpleFunc.add_lintegral, ← SimpleFunc.map_add @ENNReal.coe_add]
       refine' SimpleFunc.lintegral_mono (fun x => _) le_rfl
       simp only [add_tsub_eq_max, le_max_right, coe_map, Function.comp_apply, SimpleFunc.coe_add,
-        SimpleFunc.coe_sub, Pi.add_apply, Pi.sub_apply, WithTop.coe_max (φ x) (ψ x), ENNReal.some]
+        SimpleFunc.coe_sub, Pi.add_apply, Pi.sub_apply, ENNReal.coe_max (φ x) (ψ x)]
     _ ≤ (map (↑) φ).lintegral (μ.restrict s) + ε₁ := by
       refine' add_le_add le_rfl (le_trans _ (hφ _ hψ).le)
       exact SimpleFunc.lintegral_mono le_rfl Measure.restrict_le_self
feat: bound the measure of a set by the integral of a function, from above and from below (#8123)

Also weaken some T2 space assumptions in some integration lemmas.


Co-authored-by: Heather Macbeth <25316162+hrmacbeth@users.noreply.github.com>

Diff
@@ -758,19 +758,30 @@ theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁
   lintegral_congr_ae <| h₁.mp <| h₂.mono fun _ h₂ h₁ => by dsimp only; rw [h₁, h₂]
 #align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂
 
+theorem lintegral_indicator_le (f : α → ℝ≥0∞) (s : Set α) :
+    ∫⁻ a, s.indicator f a ∂μ ≤ ∫⁻ a in s, f a ∂μ := by
+  simp only [lintegral]
+  apply iSup_le (fun g ↦ (iSup_le (fun hg ↦ ?_)))
+  have : g ≤ f := hg.trans (indicator_le_self s f)
+  refine le_iSup_of_le g (le_iSup_of_le this (le_of_eq ?_))
+  rw [lintegral_restrict, SimpleFunc.lintegral]
+  congr with t
+  by_cases H : t = 0
+  · simp [H]
+  congr with x
+  simp only [mem_preimage, mem_singleton_iff, mem_inter_iff, iff_self_and]
+  rintro rfl
+  contrapose! H
+  simpa [H] using hg x
+
 @[simp]
 theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
     ∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ := by
+  apply le_antisymm (lintegral_indicator_le f s)
   simp only [lintegral, ← restrict_lintegral_eq_lintegral_restrict _ hs, iSup_subtype']
-  apply le_antisymm <;> refine' iSup_mono' (Subtype.forall.2 fun φ hφ => _)
-  · refine' ⟨⟨φ, le_trans hφ (indicator_le_self _ _)⟩, _⟩
-    refine' SimpleFunc.lintegral_mono (fun x => _) le_rfl
-    by_cases hx : x ∈ s
-    · simp [hx, hs, le_refl]
-    · apply le_trans (hφ x)
-      simp [hx, hs, le_refl]
-  · refine' ⟨⟨φ.restrict s, fun x => _⟩, le_rfl⟩
-    simp [hφ x, hs, indicator_le_indicator]
+  refine' iSup_mono' (Subtype.forall.2 fun φ hφ => _)
+  refine' ⟨⟨φ.restrict s, fun x => _⟩, le_rfl⟩
+  simp [hφ x, hs, indicator_le_indicator]
 #align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicator
 
 theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMeasurableSet s μ) :
@@ -780,6 +791,10 @@ theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMe
     Measure.restrict_congr_set hs.toMeasurable_ae_eq]
 #align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀
 
+theorem lintegral_indicator_const_le (s : Set α) (c : ℝ≥0∞) :
+    ∫⁻ a, s.indicator (fun _ => c) a ∂μ ≤ c * μ s :=
+  (lintegral_indicator_le _ _).trans (set_lintegral_const s c).le
+
 theorem lintegral_indicator_const₀ {s : Set α} (hs : NullMeasurableSet s μ) (c : ℝ≥0∞) :
     ∫⁻ a, s.indicator (fun _ => c) a ∂μ = c * μ s := by
   rw [lintegral_indicator₀ _ hs, set_lintegral_const]
@@ -797,6 +812,13 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
   exact hf (measurableSet_singleton r)
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 
+theorem lintegral_indicator_one_le (s : Set α) : ∫⁻ a, s.indicator 1 a ∂μ ≤ μ s :=
+  (lintegral_indicator_const_le _ _).trans $ (one_mul _).le
+
+@[simp]
+theorem lintegral_indicator_one₀ (hs : NullMeasurableSet s μ) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
+  (lintegral_indicator_const₀ hs _).trans $ one_mul _
+
 @[simp]
 theorem lintegral_indicator_one (hs : MeasurableSet s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
   (lintegral_indicator_const hs _).trans $ one_mul _
@@ -836,6 +858,19 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
   mul_meas_ge_le_lintegral₀ hf.aemeasurable ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
+lemma meas_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
+    {s : Set α} (hs : ∀ x ∈ s, 1 ≤ f x) : μ s ≤ ∫⁻ a, f a ∂μ := by
+  apply le_trans _ (mul_meas_ge_le_lintegral₀ hf 1)
+  rw [one_mul]
+  exact measure_mono hs
+
+lemma lintegral_le_meas {s : Set α} {f : α → ℝ≥0∞} (hf : ∀ a, f a ≤ 1) (h'f : ∀ a ∈ sᶜ, f a = 0) :
+    ∫⁻ a, f a ∂μ ≤ μ s := by
+  apply (lintegral_mono (fun x ↦ ?_)).trans (lintegral_indicator_one_le s)
+  by_cases hx : x ∈ s
+  · simpa [hx] using hf x
+  · simpa [hx] using h'f x hx
+
 theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hμf : μ {x | f x = ∞} ≠ 0) : ∫⁻ x, f x ∂μ = ∞ :=
   eq_top_iff.mpr <|
feat(MeasureTheory/Integral/Lebesgue): add set_lintegral_subtype (#7679)
  • Add MeasureTheory.set_lintegral_eq_subtype and MeasureTheory.set_lintegral_subtype.
  • Add MeasurableEmbedding.comap_map, MeasurableEmbedding.comap_restrict, and MeasurableEmbedding.restrict_comap.
  • Drop measurability assumption in MeasurableEmbedding.comap_preimage.
  • Remove some empty lines.
Diff
@@ -1383,6 +1383,15 @@ theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν :
   rw [← hg.set_lintegral_comp_preimage_emb hge, preimage_image_eq _ hge.injective]
 #align measure_theory.measure_preserving.set_lintegral_comp_emb MeasureTheory.MeasurePreserving.set_lintegral_comp_emb
 
+theorem lintegral_subtype_comap {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
+    ∫⁻ x : s, f x ∂(μ.comap (↑)) = ∫⁻ x in s, f x ∂μ := by
+  rw [← (MeasurableEmbedding.subtype_coe hs).lintegral_map, map_comap_subtype_coe hs]
+
+theorem set_lintegral_subtype {s : Set α} (hs : MeasurableSet s) (t : Set s) (f : α → ℝ≥0∞) :
+    ∫⁻ x in t, f x ∂(μ.comap (↑)) = ∫⁻ x in (↑) '' t, f x ∂μ := by
+  rw [(MeasurableEmbedding.subtype_coe hs).restrict_comap, lintegral_subtype_comap hs,
+    restrict_restrict hs, inter_eq_right.2 (Subtype.coe_image_subset _ _)]
+
 section DiracAndCount
 
 instance (priority := 10) _root_.MeasurableSpace.Top.measurableSingletonClass {α : Type*} :
feat: generalize some lemmas to directed types (#7852)

New lemmas / instances

  • An archimedean ordered semiring is directed upwards.
  • Filter.hasAntitoneBasis_atTop;
  • Filter.HasAntitoneBasis.iInf_principal;

Fix typos

  • Docstrings: "if the agree" -> "if they agree".
  • ProbabilityTheory.measure_eq_zero_or_one_of_indepSetCat_self -> ProbabilityTheory.measure_eq_zero_or_one_of_indepSet_self.

Weaken typeclass assumptions

From a semilattice to a directed type

  • MeasureTheory.tendsto_measure_iUnion;
  • MeasureTheory.tendsto_measure_iInter;
  • Monotone.directed_le, Monotone.directed_ge;
  • Antitone.directed_le, Antitone.directed_ge;
  • directed_of_sup, renamed to directed_of_isDirected_le;
  • directed_of_inf, renamed to directed_of_isDirected_ge;

From a strict ordered semiring to an ordered semiring

  • tendsto_nat_cast_atTop_atTop;
  • Filter.Eventually.nat_cast_atTop;
  • atTop_hasAntitoneBasis_of_archimedean;
Diff
@@ -390,7 +390,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       simp only [(eq _).symm]
     _ = ∑ r in (rs.map c).range, ⨆ n, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) :=
       (Finset.sum_congr rfl fun x _ => by
-        rw [measure_iUnion_eq_iSup (directed_of_sup <| mono x), ENNReal.mul_iSup])
+        rw [measure_iUnion_eq_iSup (mono x).directed_le, ENNReal.mul_iSup])
     _ = ⨆ n, ∑ r in (rs.map c).range, r * μ (rs.map c ⁻¹' {r} ∩ { a | r ≤ f n a }) := by
       rw [ENNReal.finset_sum_iSup_nat]
       intro p i j h
chore: gcongr tagging (#7889)

Tag lemmas about tsub (truncated subtraction), nnreal and ennreal powers, and measures for gcongr.

Diff
@@ -813,7 +813,7 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
       by rw [hφ_eq]
     _ ≤ ∫⁻ x, φ x ∂μ + ε * μ { x | φ x + ε ≤ g x } := by
       gcongr
-      exact measure_mono fun x => (add_le_add_right (hφ_le _) _).trans
+      exact fun x => (add_le_add_right (hφ_le _) _).trans
     _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ := by
       rw [lintegral_add_left hφm, lintegral_indicator₀, set_lintegral_const]
       exact measurableSet_le (hφm.nullMeasurable.measurable'.add_const _) hg.nullMeasurable
chore: missing spaces after rcases, convert and congrm (#7725)

Replace rcases( with rcases (. Same thing for convert( and congrm(. No other change.

Diff
@@ -258,7 +258,7 @@ theorem le_iInf_lintegral {ι : Sort*} (f : ι → α → ℝ≥0∞) :
 
 theorem le_iInf₂_lintegral {ι : Sort*} {ι' : ι → Sort*} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     ∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
-  convert(monotone_lintegral μ).map_iInf₂_le f with a
+  convert (monotone_lintegral μ).map_iInf₂_le f with a
   simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
 
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -331,7 +331,7 @@ theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
 theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
     ∫⁻ x, ‖f x‖₊ ∂μ = ∫⁻ x, ENNReal.ofReal (f x) ∂μ := by
   apply lintegral_congr_ae
-  filter_upwards [h_nonneg]with x hx
+  filter_upwards [h_nonneg] with x hx
   rw [Real.nnnorm_of_nonneg hx, ENNReal.ofReal_eq_coe_nnreal hx]
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
 
feat: simple lemmas about withDensity (#7714)

Co-authored-by: Rémy Degenne <remydegenne@gmail.com>

Diff
@@ -588,6 +588,10 @@ theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : ∫⁻
   by simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
+lemma set_lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) (s : Set α) :
+    ∫⁻ a in s, f a ∂(c • μ) = c * ∫⁻ a in s, f a ∂μ := by
+  rw [Measure.restrict_smul, lintegral_smul_measure]
+
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
     ∫⁻ a, f a ∂Measure.sum μ = ∑' i, ∫⁻ a, f a ∂μ i := by
feat: lemmas about Lebesgue integral (#7681)
  • From the Sobolev project

Co-authored-by: Heather Macbeth 25316162+hrmacbeth@users.noreply.github.com

Diff
@@ -91,10 +91,20 @@ theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν
   exact iSup_mono fun φ => iSup_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
 #align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'
 
+-- workaround for the known eta-reduction issue with `@[gcongr]`
+@[gcongr] theorem lintegral_mono_fn' ⦃f g : α → ℝ≥0∞⦄ (hfg : ∀ x, f x ≤ g x) (h2 : μ ≤ ν) :
+    lintegral μ f ≤ lintegral ν g :=
+lintegral_mono' h2 hfg
+
 theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono' (le_refl μ) hfg
 #align measure_theory.lintegral_mono MeasureTheory.lintegral_mono
 
+-- workaround for the known eta-reduction issue with `@[gcongr]`
+@[gcongr] theorem lintegral_mono_fn ⦃f g : α → ℝ≥0∞⦄ (hfg : ∀ x, f x ≤ g x) :
+    lintegral μ f ≤ lintegral μ g :=
+lintegral_mono hfg
+
 theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
@@ -620,6 +630,10 @@ theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞)
   bot_unique <| by simp [lintegral]
 #align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measure
 
+@[simp]
+theorem lintegral_of_isEmpty {α} [MeasurableSpace α] [IsEmpty α] (μ : Measure α) (f : α → ℝ≥0∞) :
+    ∫⁻ x, f x ∂μ = 0 := by convert lintegral_zero_measure f
+
 theorem set_lintegral_empty (f : α → ℝ≥0∞) : ∫⁻ x in ∅, f x ∂μ = 0 := by
   rw [Measure.restrict_empty, lintegral_zero_measure]
 #align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_empty
@@ -1332,6 +1346,11 @@ theorem lintegral_map_equiv [MeasurableSpace β] (f : β → ℝ≥0∞) (g : α
   g.measurableEmbedding.lintegral_map f
 #align measure_theory.lintegral_map_equiv MeasureTheory.lintegral_map_equiv
 
+protected theorem MeasurePreserving.lintegral_map_equiv [MeasurableSpace β] {ν : Measure β}
+    (f : β → ℝ≥0∞) (g : α ≃ᵐ β) (hg : MeasurePreserving g μ ν) :
+    ∫⁻ a, f a ∂ν = ∫⁻ a, f (g a) ∂μ := by
+  rw [← MeasureTheory.lintegral_map_equiv f g, hg.map_eq]
+
 theorem MeasurePreserving.lintegral_comp {mb : MeasurableSpace β} {ν : Measure β} {g : α → β}
     (hg : MeasurePreserving g μ ν) {f : β → ℝ≥0∞} (hf : Measurable f) :
     ∫⁻ a, f (g a) ∂μ = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, lintegral_map hf hg.measurable]
feat: remove sigma-finiteness assumption in layercake formula (#7454)

Currently, the layercake formula for the Lebesgue integral assumes sigma-finiteness of the measure, while the layercake formula for the Bochner integral (and integrable functions) doesn't. At the cost of a more complicated proof, we remove the sigma-finiteness also from the Lebesgue measure case.

Co-authored-by: Kalle <kalle.kytola@aalto.fi>

Diff
@@ -287,6 +287,10 @@ theorem set_lintegral_mono' {s : Set α} {f g : α → ℝ≥0∞} (hs : Measura
     (hfg : ∀ x ∈ s, f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
   set_lintegral_mono_ae' hs (ae_of_all _ hfg)
 
+theorem set_lintegral_le_lintegral (s : Set α) (f : α → ℝ≥0∞) :
+    ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x, f x ∂μ :=
+  lintegral_mono' Measure.restrict_le_self le_rfl
+
 theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ :=
   le_antisymm (lintegral_mono_ae <| h.le) (lintegral_mono_ae <| h.symm.le)
 #align measure_theory.lintegral_congr_ae MeasureTheory.lintegral_congr_ae
chore: put Measure.withDensity into a new file (#7508)

It was in Integral.Lebesgue, which is about the definition of the Lebesgue integral.

Diff
@@ -1538,366 +1538,12 @@ theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal {α : Type
   exact ENNReal.mul_lt_top ENNReal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
 #align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal
 
-/-- Given a measure `μ : Measure α` and a function `f : α → ℝ≥0∞`, `μ.withDensity f` is the
-measure such that for a measurable set `s` we have `μ.withDensity f s = ∫⁻ a in s, f a ∂μ`. -/
-def Measure.withDensity {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) : Measure α :=
-  Measure.ofMeasurable (fun s _ => ∫⁻ a in s, f a ∂μ) (by simp) fun s hs hd =>
-    lintegral_iUnion hs hd _
-#align measure_theory.measure.with_density MeasureTheory.Measure.withDensity
-
-@[simp]
-theorem withDensity_apply (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
-    μ.withDensity f s = ∫⁻ a in s, f a ∂μ :=
-  Measure.ofMeasurable_apply s hs
-#align measure_theory.with_density_apply MeasureTheory.withDensity_apply
-
-theorem withDensity_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) :
-    μ.withDensity f = μ.withDensity g := by
-  refine Measure.ext fun s hs => ?_
-  rw [withDensity_apply _ hs, withDensity_apply _ hs]
-  exact lintegral_congr_ae (ae_restrict_of_ae h)
-#align measure_theory.with_density_congr_ae MeasureTheory.withDensity_congr_ae
-
-theorem withDensity_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α → ℝ≥0∞) :
-    μ.withDensity (f + g) = μ.withDensity f + μ.withDensity g := by
-  refine' Measure.ext fun s hs => _
-  rw [withDensity_apply _ hs, Measure.add_apply, withDensity_apply _ hs, withDensity_apply _ hs,
-    ← lintegral_add_left hf]
-  simp only [Pi.add_apply]
-#align measure_theory.with_density_add_left MeasureTheory.withDensity_add_left
-
-theorem withDensity_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : Measurable g) :
-    μ.withDensity (f + g) = μ.withDensity f + μ.withDensity g := by
-  simpa only [add_comm] using withDensity_add_left hg f
-#align measure_theory.with_density_add_right MeasureTheory.withDensity_add_right
-
-theorem withDensity_add_measure {m : MeasurableSpace α} (μ ν : Measure α) (f : α → ℝ≥0∞) :
-    (μ + ν).withDensity f = μ.withDensity f + ν.withDensity f := by
-  ext1 s hs
-  simp only [withDensity_apply f hs, restrict_add, lintegral_add_measure, Measure.add_apply]
-#align measure_theory.with_density_add_measure MeasureTheory.withDensity_add_measure
-
-theorem withDensity_sum {ι : Type*} {m : MeasurableSpace α} (μ : ι → Measure α) (f : α → ℝ≥0∞) :
-    (sum μ).withDensity f = sum fun n => (μ n).withDensity f := by
-  ext1 s hs
-  simp_rw [sum_apply _ hs, withDensity_apply f hs, restrict_sum μ hs, lintegral_sum_measure]
-#align measure_theory.with_density_sum MeasureTheory.withDensity_sum
-
-theorem withDensity_smul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
-    μ.withDensity (r • f) = r • μ.withDensity f := by
-  refine' Measure.ext fun s hs => _
-  rw [withDensity_apply _ hs, Measure.coe_smul, Pi.smul_apply, withDensity_apply _ hs,
-    smul_eq_mul, ← lintegral_const_mul r hf]
-  simp only [Pi.smul_apply, smul_eq_mul]
-#align measure_theory.with_density_smul MeasureTheory.withDensity_smul
-
-theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
-    μ.withDensity (r • f) = r • μ.withDensity f := by
-  refine' Measure.ext fun s hs => _
-  rw [withDensity_apply _ hs, Measure.coe_smul, Pi.smul_apply, withDensity_apply _ hs,
-    smul_eq_mul, ← lintegral_const_mul' r f hr]
-  simp only [Pi.smul_apply, smul_eq_mul]
-#align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
-
-theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : ∫⁻ a, f a ∂μ ≠ ∞) :
-    IsFiniteMeasure (μ.withDensity f) :=
-  { measure_univ_lt_top := by
-      rwa [withDensity_apply _ MeasurableSet.univ, Measure.restrict_univ, lt_top_iff_ne_top] }
-#align measure_theory.is_finite_measure_with_density MeasureTheory.isFiniteMeasure_withDensity
-
-theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
-    μ.withDensity f ≪ μ := by
-  refine' AbsolutelyContinuous.mk fun s hs₁ hs₂ => _
-  rw [withDensity_apply _ hs₁]
-  exact set_lintegral_measure_zero _ _ hs₂
-#align measure_theory.with_density_absolutely_continuous MeasureTheory.withDensity_absolutelyContinuous
-
-@[simp]
-theorem withDensity_zero : μ.withDensity 0 = 0 := by
-  ext1 s hs
-  simp [withDensity_apply _ hs]
-#align measure_theory.with_density_zero MeasureTheory.withDensity_zero
-
-@[simp]
-theorem withDensity_one : μ.withDensity 1 = μ := by
-  ext1 s hs
-  simp [withDensity_apply _ hs]
-#align measure_theory.with_density_one MeasureTheory.withDensity_one
-
-theorem withDensity_tsum {f : ℕ → α → ℝ≥0∞} (h : ∀ i, Measurable (f i)) :
-    μ.withDensity (∑' n, f n) = sum fun n => μ.withDensity (f n) := by
-  ext1 s hs
-  simp_rw [sum_apply _ hs, withDensity_apply _ hs]
-  change ∫⁻ x in s, (∑' n, f n) x ∂μ = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s
-  rw [← lintegral_tsum fun i => (h i).aemeasurable]
-  refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)
-#align measure_theory.with_density_tsum MeasureTheory.withDensity_tsum
-
-theorem withDensity_indicator {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
-    μ.withDensity (s.indicator f) = (μ.restrict s).withDensity f := by
-  ext1 t ht
-  rw [withDensity_apply _ ht, lintegral_indicator _ hs, restrict_comm hs, ←
-    withDensity_apply _ ht]
-#align measure_theory.with_density_indicator MeasureTheory.withDensity_indicator
-
-theorem withDensity_indicator_one {s : Set α} (hs : MeasurableSet s) :
-    μ.withDensity (s.indicator 1) = μ.restrict s := by
-  rw [withDensity_indicator hs, withDensity_one]
-#align measure_theory.with_density_indicator_one MeasureTheory.withDensity_indicator_one
-
-theorem withDensity_ofReal_mutuallySingular {f : α → ℝ} (hf : Measurable f) :
-    (μ.withDensity fun x => ENNReal.ofReal <| f x) ⟂ₘ
-      μ.withDensity fun x => ENNReal.ofReal <| -f x := by
-  set S : Set α := { x | f x < 0 }
-  have hS : MeasurableSet S := measurableSet_lt hf measurable_const
-  refine' ⟨S, hS, _, _⟩
-  · rw [withDensity_apply _ hS, lintegral_eq_zero_iff hf.ennreal_ofReal, EventuallyEq]
-    exact (ae_restrict_mem hS).mono fun x hx => ENNReal.ofReal_eq_zero.2 (le_of_lt hx)
-  · rw [withDensity_apply _ hS.compl, lintegral_eq_zero_iff hf.neg.ennreal_ofReal, EventuallyEq]
-    exact
-      (ae_restrict_mem hS.compl).mono fun x hx =>
-        ENNReal.ofReal_eq_zero.2 (not_lt.1 <| mt neg_pos.1 hx)
-#align measure_theory.with_density_of_real_mutually_singular MeasureTheory.withDensity_ofReal_mutuallySingular
-
-theorem restrict_withDensity {s : Set α} (hs : MeasurableSet s) (f : α → ℝ≥0∞) :
-    (μ.withDensity f).restrict s = (μ.restrict s).withDensity f := by
-  ext1 t ht
-  rw [restrict_apply ht, withDensity_apply _ ht, withDensity_apply _ (ht.inter hs),
-    restrict_restrict ht]
-#align measure_theory.restrict_with_density MeasureTheory.restrict_withDensity
-
-theorem withDensity_eq_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h : μ.withDensity f = 0) :
-    f =ᵐ[μ] 0 := by
-  rw [← lintegral_eq_zero_iff' hf, ← set_lintegral_univ, ← withDensity_apply _ MeasurableSet.univ,
-    h, Measure.coe_zero, Pi.zero_apply]
-#align measure_theory.with_density_eq_zero MeasureTheory.withDensity_eq_zero
-
-theorem withDensity_apply_eq_zero {f : α → ℝ≥0∞} {s : Set α} (hf : Measurable f) :
-    μ.withDensity f s = 0 ↔ μ ({ x | f x ≠ 0 } ∩ s) = 0 := by
-  constructor
-  · intro hs
-    let t := toMeasurable (μ.withDensity f) s
-    apply measure_mono_null (inter_subset_inter_right _ (subset_toMeasurable (μ.withDensity f) s))
-    have A : μ.withDensity f t = 0 := by rw [measure_toMeasurable, hs]
-    rw [withDensity_apply f (measurableSet_toMeasurable _ s), lintegral_eq_zero_iff hf,
-      EventuallyEq, ae_restrict_iff, ae_iff] at A
-    swap
-    · exact hf (measurableSet_singleton 0)
-    simp only [Pi.zero_apply, mem_setOf_eq, Filter.mem_mk] at A
-    convert A using 2
-    ext x
-    simp only [and_comm, exists_prop, mem_inter_iff, iff_self_iff, mem_setOf_eq, mem_compl_iff,
-      not_forall]
-  · intro hs
-    let t := toMeasurable μ ({ x | f x ≠ 0 } ∩ s)
-    have A : s ⊆ t ∪ { x | f x = 0 } := by
-      intro x hx
-      rcases eq_or_ne (f x) 0 with (fx | fx)
-      · simp only [fx, mem_union, mem_setOf_eq, eq_self_iff_true, or_true_iff]
-      · left
-        apply subset_toMeasurable _ _
-        exact ⟨fx, hx⟩
-    apply measure_mono_null A (measure_union_null _ _)
-    · apply withDensity_absolutelyContinuous
-      rwa [measure_toMeasurable]
-    · have M : MeasurableSet { x : α | f x = 0 } := hf (measurableSet_singleton _)
-      rw [withDensity_apply _ M, lintegral_eq_zero_iff hf]
-      filter_upwards [ae_restrict_mem M]
-      simp only [imp_self, Pi.zero_apply, imp_true_iff]
-#align measure_theory.with_density_apply_eq_zero MeasureTheory.withDensity_apply_eq_zero
-
-theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ, f x ≠ 0 → p x := by
-  rw [ae_iff, ae_iff, withDensity_apply_eq_zero hf, iff_iff_eq]
-  congr
-  ext x
-  simp only [exists_prop, mem_inter_iff, iff_self_iff, mem_setOf_eq, not_forall]
-#align measure_theory.ae_with_density_iff MeasureTheory.ae_withDensity_iff
-
-theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ.restrict { x | f x ≠ 0 }, p x := by
-  rw [ae_withDensity_iff hf, ae_restrict_iff']
-  · simp only [mem_setOf]
-  · exact hf (measurableSet_singleton 0).compl
-#align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
-
-theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
-    AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
-      AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ := by
-  constructor
-  · rintro ⟨g', g'meas, hg'⟩
-    have A : MeasurableSet { x : α | f x ≠ 0 } := (hf (measurableSet_singleton 0)).compl
-    refine' ⟨fun x => f x * g' x, hf.coe_nnreal_ennreal.smul g'meas, _⟩
-    apply ae_of_ae_restrict_of_ae_restrict_compl { x | f x ≠ 0 }
-    · rw [EventuallyEq, ae_withDensity_iff hf.coe_nnreal_ennreal] at hg'
-      rw [ae_restrict_iff' A]
-      filter_upwards [hg']
-      intro a ha h'a
-      have : (f a : ℝ≥0∞) ≠ 0 := by simpa only [Ne.def, coe_eq_zero] using h'a
-      rw [ha this]
-    · filter_upwards [ae_restrict_mem A.compl]
-      intro x hx
-      simp only [Classical.not_not, mem_setOf_eq, mem_compl_iff] at hx
-      simp [hx]
-  · rintro ⟨g', g'meas, hg'⟩
-    refine' ⟨fun x => ((f x)⁻¹ : ℝ≥0∞) * g' x, hf.coe_nnreal_ennreal.inv.smul g'meas, _⟩
-    rw [EventuallyEq, ae_withDensity_iff hf.coe_nnreal_ennreal]
-    filter_upwards [hg']
-    intro x hx h'x
-    rw [← hx, ← mul_assoc, ENNReal.inv_mul_cancel h'x ENNReal.coe_ne_top, one_mul]
-#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aemeasurable_withDensity_ennreal_iff
-
 end Lintegral
 
 open MeasureTheory.SimpleFunc
 
 variable {m m0 : MeasurableSpace α}
 
-/-- This is Exercise 1.2.1 from [tao2010]. It allows you to express integration of a measurable
-function with respect to `(μ.withDensity f)` as an integral with respect to `μ`, called the base
-measure. `μ` is often the Lebesgue measure, and in this circumstance `f` is the probability density
-function, and `(μ.withDensity f)` represents any continuous random variable as a
-probability measure, such as the uniform distribution between 0 and 1, the Gaussian distribution,
-the exponential distribution, the Beta distribution, or the Cauchy distribution (see Section 2.4
-of [wasserman2004]). Thus, this method shows how to one can calculate expectations, variances,
-and other moments as a function of the probability density function.
- -/
-theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
-    (h_mf : Measurable f) :
-    ∀ {g : α → ℝ≥0∞}, Measurable g → ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
-  apply Measurable.ennreal_induction
-  · intro c s h_ms
-    simp [*, mul_comm _ c, ← indicator_mul_right]
-  · intro g h _ h_mea_g _ h_ind_g h_ind_h
-    simp [mul_add, *, Measurable.mul]
-  · intro g h_mea_g h_mono_g h_ind
-    have : Monotone fun n a => f a * g n a := fun m n hmn x => mul_le_mul_left' (h_mono_g hmn x) _
-    simp [lintegral_iSup, ENNReal.mul_iSup, h_mf.mul (h_mea_g _), *]
-#align measure_theory.lintegral_with_density_eq_lintegral_mul MeasureTheory.lintegral_withDensity_eq_lintegral_mul
-
-theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
-    (hf : Measurable f) (hg : Measurable g) {s : Set α} (hs : MeasurableSet s) :
-    ∫⁻ x in s, g x ∂μ.withDensity f = ∫⁻ x in s, (f * g) x ∂μ := by
-  rw [restrict_withDensity hs, lintegral_withDensity_eq_lintegral_mul _ hf hg]
-#align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul
-
-/-- The Lebesgue integral of `g` with respect to the measure `μ.withDensity f` coincides with
-the integral of `f * g`. This version assumes that `g` is almost everywhere measurable. For a
-version without conditions on `g` but requiring that `f` is almost everywhere finite, see
-`lintegral_withDensity_eq_lintegral_mul_non_measurable` -/
-theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g (μ.withDensity f)) :
-    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
-  let f' := hf.mk f
-  have : μ.withDensity f = μ.withDensity f' := withDensity_congr_ae hf.ae_eq_mk
-  rw [this] at hg ⊢
-  let g' := hg.mk g
-  calc
-    ∫⁻ a, g a ∂μ.withDensity f' = ∫⁻ a, g' a ∂μ.withDensity f' := lintegral_congr_ae hg.ae_eq_mk
-    _ = ∫⁻ a, (f' * g') a ∂μ :=
-      (lintegral_withDensity_eq_lintegral_mul _ hf.measurable_mk hg.measurable_mk)
-    _ = ∫⁻ a, (f' * g) a ∂μ := by
-      apply lintegral_congr_ae
-      apply ae_of_ae_restrict_of_ae_restrict_compl { x | f' x ≠ 0 }
-      · have Z := hg.ae_eq_mk
-        rw [EventuallyEq, ae_withDensity_iff_ae_restrict hf.measurable_mk] at Z
-        filter_upwards [Z]
-        intro x hx
-        simp only [hx, Pi.mul_apply]
-      · have M : MeasurableSet { x : α | f' x ≠ 0 }ᶜ :=
-          (hf.measurable_mk (measurableSet_singleton 0).compl).compl
-        filter_upwards [ae_restrict_mem M]
-        intro x hx
-        simp only [Classical.not_not, mem_setOf_eq, mem_compl_iff] at hx
-        simp only [hx, zero_mul, Pi.mul_apply]
-    _ = ∫⁻ a : α, (f * g) a ∂μ := by
-      apply lintegral_congr_ae
-      filter_upwards [hf.ae_eq_mk]
-      intro x hx
-      simp only [hx, Pi.mul_apply]
-#align measure_theory.lintegral_with_density_eq_lintegral_mul₀' MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'
-
-theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
-    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
-  lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensity_absolutelyContinuous μ f))
-#align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀
-
-theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
-    (f_meas : Measurable f) (g : α → ℝ≥0∞) : (∫⁻ a, g a ∂μ.withDensity f) ≤ ∫⁻ a, (f * g) a ∂μ := by
-  rw [← iSup_lintegral_measurable_le_eq_lintegral, ← iSup_lintegral_measurable_le_eq_lintegral]
-  refine' iSup₂_le fun i i_meas => iSup_le fun hi => _
-  have A : f * i ≤ f * g := fun x => mul_le_mul_left' (hi x) _
-  refine' le_iSup₂_of_le (f * i) (f_meas.mul i_meas) _
-  exact le_iSup_of_le A (le_of_eq (lintegral_withDensity_eq_lintegral_mul _ f_meas i_meas))
-#align measure_theory.lintegral_with_density_le_lintegral_mul MeasureTheory.lintegral_withDensity_le_lintegral_mul
-
-theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
-    (f_meas : Measurable f) (hf : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
-    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
-  refine' le_antisymm (lintegral_withDensity_le_lintegral_mul μ f_meas g) _
-  rw [← iSup_lintegral_measurable_le_eq_lintegral, ← iSup_lintegral_measurable_le_eq_lintegral]
-  refine' iSup₂_le fun i i_meas => iSup_le fun hi => _
-  have A : (fun x => (f x)⁻¹ * i x) ≤ g := by
-    intro x
-    dsimp
-    rw [mul_comm, ← div_eq_mul_inv]
-    exact div_le_of_le_mul' (hi x)
-  refine' le_iSup_of_le (fun x => (f x)⁻¹ * i x) (le_iSup_of_le (f_meas.inv.mul i_meas) _)
-  refine' le_iSup_of_le A _
-  rw [lintegral_withDensity_eq_lintegral_mul _ f_meas (f_meas.inv.mul i_meas)]
-  apply lintegral_mono_ae
-  filter_upwards [hf]
-  intro x h'x
-  rcases eq_or_ne (f x) 0 with (hx | hx)
-  · have := hi x
-    simp only [hx, zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this
-    simp [this]
-  · apply le_of_eq _
-    dsimp
-    rw [← mul_assoc, ENNReal.mul_inv_cancel hx h'x.ne, one_mul]
-#align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable
-
-theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
-    (f_meas : Measurable f) (g : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s)
-    (hf : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
-    ∫⁻ a in s, g a ∂μ.withDensity f = ∫⁻ a in s, (f * g) a ∂μ := by
-  rw [restrict_withDensity hs, lintegral_withDensity_eq_lintegral_mul_non_measurable _ f_meas hf]
-#align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable
-
-theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure α) {f : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
-    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
-  let f' := hf.mk f
-  calc
-    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, g a ∂μ.withDensity f' := by
-      rw [withDensity_congr_ae hf.ae_eq_mk]
-    _ = ∫⁻ a, (f' * g) a ∂μ := by
-      apply lintegral_withDensity_eq_lintegral_mul_non_measurable _ hf.measurable_mk
-      filter_upwards [h'f, hf.ae_eq_mk]
-      intro x hx h'x
-      rwa [← h'x]
-    _ = ∫⁻ a, (f * g) a ∂μ := by
-      apply lintegral_congr_ae
-      filter_upwards [hf.ae_eq_mk]
-      intro x hx
-      simp only [hx, Pi.mul_apply]
-#align measure_theory.lintegral_with_density_eq_lintegral_mul_non_measurable₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul_non_measurable₀
-
-theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ (μ : Measure α)
-    {f : α → ℝ≥0∞} {s : Set α} (hf : AEMeasurable f (μ.restrict s)) (g : α → ℝ≥0∞)
-    (hs : MeasurableSet s) (h'f : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
-    ∫⁻ a in s, g a ∂μ.withDensity f = ∫⁻ a in s, (f * g) a ∂μ := by
-  rw [restrict_withDensity hs, lintegral_withDensity_eq_lintegral_mul_non_measurable₀ _ hf h'f]
-#align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable₀ MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀
-
-theorem withDensity_mul (μ : Measure α) {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
-    μ.withDensity (f * g) = (μ.withDensity f).withDensity g := by
-  ext1 s hs
-  simp [withDensity_apply _ hs, restrict_withDensity hs,
-    lintegral_withDensity_eq_lintegral_mul _ hf hg]
-#align measure_theory.with_density_mul MeasureTheory.withDensity_mul
-
 /-- In a sigma-finite measure space, there exists an integrable function which is
 positive everywhere (and with an arbitrarily small integral). -/
 theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ] {ε : ℝ≥0∞}
@@ -2097,23 +1743,6 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
   exact ⟨g, fun x => (hg x).trans (coe_le_coe.1 (hg₀ x)), gL, gtop⟩
 #align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
-/-- A sigma-finite measure is absolutely continuous with respect to some finite measure. -/
-theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ : Measure α)
-    [SigmaFinite μ] : ∃ ν : Measure α, IsFiniteMeasure ν ∧ μ ≪ ν := by
-  obtain ⟨g, gpos, gmeas, hg⟩ :
-    ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ ∫⁻ x : α, ↑(g x) ∂μ < 1 :=
-    exists_pos_lintegral_lt_of_sigmaFinite μ one_ne_zero
-  refine' ⟨μ.withDensity fun x => g x, isFiniteMeasure_withDensity hg.ne_top, _⟩
-  have : μ = (μ.withDensity fun x => g x).withDensity fun x => (g x)⁻¹ := by
-    have A : ((fun x : α => (g x : ℝ≥0∞)) * fun x : α => (g x : ℝ≥0∞)⁻¹) = 1 := by
-      ext1 x
-      exact ENNReal.mul_inv_cancel (ENNReal.coe_ne_zero.2 (gpos x).ne') ENNReal.coe_ne_top
-    rw [← withDensity_mul _ gmeas.coe_nnreal_ennreal gmeas.coe_nnreal_ennreal.inv, A,
-      withDensity_one]
-  nth_rw 1 [this]
-  exact withDensity_absolutelyContinuous _ _
-#align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_isFiniteMeasure
-
 end SigmaFinite
 
 section TendstoIndicator
chore: tidy various files (#7137)
Diff
@@ -349,7 +349,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     refine' Set.ext fun x => and_congr_right fun hx => true_iff_iff.2 _
     by_cases p_eq : p = 0
     · simp [p_eq]
-    simp [-ENNReal.coe_mul] at hx
+    simp only [coe_map, mem_preimage, Function.comp_apply, mem_singleton_iff] at hx
     subst hx
     have : r * s x ≠ 0 := by rwa [Ne, ← ENNReal.coe_eq_zero]
     have : s x ≠ 0 := by
@@ -358,8 +358,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
       rw [h, mul_zero]
     have : (rs.map c) x < ⨆ n : ℕ, f n x := by
       refine' lt_of_lt_of_le (ENNReal.coe_lt_coe.2 _) (hsf x)
-      suffices : r * s x < 1 * s x
-      simpa
+      suffices r * s x < 1 * s x by simpa
       exact mul_lt_mul_of_pos_right ha (pos_iff_ne_zero.2 this)
     rcases lt_iSup_iff.1 this with ⟨i, hi⟩
     exact mem_iUnion.2 ⟨i, le_of_lt hi⟩
@@ -522,7 +521,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       · congr
         funext n
         rw [← SimpleFunc.add_lintegral, ← SimpleFunc.lintegral_eq_lintegral]
-        rfl
+        simp only [Pi.add_apply, SimpleFunc.coe_add]
       · measurability
       · intro i j h a
         exact add_le_add (monotone_eapprox _ h _) (monotone_eapprox _ h _)
@@ -1429,7 +1428,8 @@ theorem _root_.NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α]
     ENNReal.count_const_le_le_of_tsum_le (measurable_coe_nnreal_ennreal.comp a_mble) _
       (by exact_mod_cast ε_ne_zero) (@ENNReal.coe_ne_top ε)
   convert ENNReal.coe_le_coe.mpr tsum_le_c
-  erw [ENNReal.tsum_coe_eq a_summable.hasSum]
+  simp_rw [Function.comp_apply]
+  rw [ENNReal.tsum_coe_eq a_summable.hasSum]
 #align nnreal.count_const_le_le_of_tsum_le NNReal.count_const_le_le_of_tsum_le
 
 end DiracAndCount
@@ -1717,7 +1717,7 @@ theorem ae_withDensity_iff {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measu
 theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞} (hf : Measurable f) :
     (∀ᵐ x ∂μ.withDensity f, p x) ↔ ∀ᵐ x ∂μ.restrict { x | f x ≠ 0 }, p x := by
   rw [ae_withDensity_iff hf, ae_restrict_iff']
-  · rfl
+  · simp only [mem_setOf]
   · exact hf (measurableSet_singleton 0).compl
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
 
@@ -2081,7 +2081,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       exact le_rfl
     · apply hL.trans ((ENNReal.add_lt_add hg₁ hg₂).trans_le _)
       rw [← lintegral_add_left g₁.measurable.coe_nnreal_ennreal]
-      exact le_rfl
+      simp only [coe_add, Pi.add_apply, ENNReal.coe_add, le_rfl]
 #align measure_theory.simple_func.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
 theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α} {μ : Measure α}
chore: tidy various files (#7035)
Diff
@@ -259,10 +259,13 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
   rw [lintegral, lintegral]
   refine' iSup_le fun s => iSup_le fun hfs => le_iSup_of_le (s.restrict tᶜ) <| le_iSup_of_le _ _
   · intro a
-    by_cases h : a ∈ t <;> simp [h, restrict_apply s ht.compl, ht.compl]
+    by_cases h : a ∈ t <;>
+      simp only [restrict_apply s ht.compl, mem_compl_iff, h, not_true, not_false_eq_true,
+        indicator_of_not_mem, zero_le, not_false_eq_true, indicator_of_mem]
     exact le_trans (hfs a) (_root_.by_contradiction fun hnfg => h (hts hnfg))
   · refine' le_of_eq (SimpleFunc.lintegral_congr <| this.mono fun a hnt => _)
-    by_cases hat : a ∈ t <;> simp [hat, restrict_apply s ht.compl]
+    by_cases hat : a ∈ t <;> simp only [restrict_apply s ht.compl, mem_compl_iff, hat, not_true,
+      not_false_eq_true, indicator_of_not_mem, not_false_eq_true, indicator_of_mem]
     exact (hnt hat).elim
 #align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_ae
 
@@ -578,7 +581,7 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
   simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_sum, ENNReal.tsum_eq_iSup_sum]
   rw [iSup_comm]
   congr; funext s
-  induction' s using Finset.induction_on with i s hi hs;
+  induction' s using Finset.induction_on with i s hi hs
   · apply bot_unique
     simp
   simp only [Finset.sum_insert hi, ← hs]
@@ -854,8 +857,8 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
     rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
     exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
   refine' hfg.mp ((ae_all_iff.2 this).mono fun x hlt hle => hle.antisymm _)
-  suffices : Tendsto (fun n : ℕ => f x + (n : ℝ≥0∞)⁻¹) atTop (𝓝 (f x))
-  exact ge_of_tendsto' this fun i => (hlt i).le
+  suffices Tendsto (fun n : ℕ => f x + (n : ℝ≥0∞)⁻¹) atTop (𝓝 (f x)) from
+    ge_of_tendsto' this fun i => (hlt i).le
   simpa only [inv_top, add_zero] using
     tendsto_const_nhds.add (ENNReal.tendsto_inv_iff.2 ENNReal.tendsto_nat_nhds_top)
 #align measure_theory.ae_eq_of_ae_le_of_lintegral_le MeasureTheory.ae_eq_of_ae_le_of_lintegral_le
@@ -977,7 +980,8 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
           have h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f 0 a := fun n =>
             h_mono.mono fun a h => by
               induction' n with n ih
-              · { exact le_rfl }; · { exact le_trans (h n) ih }
+              · exact le_rfl
+              · exact le_trans (h n) ih
           congr_arg iSup <|
             funext fun n =>
               lintegral_sub (h_meas _) (ne_top_of_le_ne_top h_fin <| lintegral_mono_ae <| h_mono n)
@@ -1002,7 +1006,6 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
         (ae_of_all μ fun a n m hnm => iInf_le_iInf_of_subset fun i hi => le_trans hnm hi))
     _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_iInf₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
-
 #align measure_theory.lintegral_liminf_le' MeasureTheory.lintegral_liminf_le'
 
 /-- Known as Fatou's lemma -/
@@ -1526,14 +1529,14 @@ theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurable
   set_lintegral_lt_top_of_bddAbove hs hf.measurable (hsc.image hf).bddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
-theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type*}
+theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal {α : Type*}
     [MeasurableSpace α] (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞}
     (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) : ∫⁻ x, f x ∂μ < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
   rw [lintegral_const]
   exact ENNReal.mul_lt_top ENNReal.coe_lt_top.ne μ_fin.measure_univ_lt_top.ne
-#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal
+#align is_finite_measure.lintegral_lt_top_of_bounded_to_ennreal IsFiniteMeasure.lintegral_lt_top_of_bounded_to_ennreal
 
 /-- Given a measure `μ : Measure α` and a function `f : α → ℝ≥0∞`, `μ.withDensity f` is the
 measure such that for a measurable set `s` we have `μ.withDensity f s = ∫⁻ a in s, f a ∂μ`. -/
@@ -1560,7 +1563,7 @@ theorem withDensity_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α
   refine' Measure.ext fun s hs => _
   rw [withDensity_apply _ hs, Measure.add_apply, withDensity_apply _ hs, withDensity_apply _ hs,
     ← lintegral_add_left hf]
-  rfl
+  simp only [Pi.add_apply]
 #align measure_theory.with_density_add_left MeasureTheory.withDensity_add_left
 
 theorem withDensity_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : Measurable g) :
@@ -1585,7 +1588,7 @@ theorem withDensity_smul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurab
   refine' Measure.ext fun s hs => _
   rw [withDensity_apply _ hs, Measure.coe_smul, Pi.smul_apply, withDensity_apply _ hs,
     smul_eq_mul, ← lintegral_const_mul r hf]
-  rfl
+  simp only [Pi.smul_apply, smul_eq_mul]
 #align measure_theory.with_density_smul MeasureTheory.withDensity_smul
 
 theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
@@ -1593,7 +1596,7 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   refine' Measure.ext fun s hs => _
   rw [withDensity_apply _ hs, Measure.coe_smul, Pi.smul_apply, withDensity_apply _ hs,
     smul_eq_mul, ← lintegral_const_mul' r f hr]
-  rfl
+  simp only [Pi.smul_apply, smul_eq_mul]
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
 theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : ∫⁻ a, f a ∂μ ≠ ∞) :
@@ -2088,8 +2091,8 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
   rcases hL with ⟨g₀, hg₀, g₀L⟩
   have h'L : L < ∫⁻ x, g₀ x ∂μ := by
     convert g₀L
-    rw [← SimpleFunc.lintegral_eq_lintegral]
-    rfl
+    rw [← SimpleFunc.lintegral_eq_lintegral, coe_map]
+    simp only [Function.comp_apply]
   rcases SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral h'L with ⟨g, hg, gL, gtop⟩
   exact ⟨g, fun x => (hg x).trans (coe_le_coe.1 (hg₀ x)), gL, gtop⟩
 #align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral
feat: sups and limsups are measurable in conditionally complete linear orders (#6979)

Currently, we only have that sups and limsups are measurable in complete linear orders, which excludes the main case of the real line. With more complicated proofs, these measurability results can be extended to all conditionally complete linear orders, without any further assumption in the statements.

Diff
@@ -998,7 +998,7 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
     ∫⁻ a, liminf (fun n => f n a) atTop ∂μ = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
       simp only [liminf_eq_iSup_iInf_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
-      (lintegral_iSup' (fun n => aemeasurable_biInf _ (to_countable _) h_meas)
+      (lintegral_iSup' (fun n => aemeasurable_biInf _ (to_countable _) (fun i _ ↦ h_meas i))
         (ae_of_all μ fun a n m hnm => iInf_le_iInf_of_subset fun i hi => le_trans hnm hi))
     _ ≤ ⨆ n : ℕ, ⨅ i ≥ n, ∫⁻ a, f i a ∂μ := (iSup_mono fun n => le_iInf₂_lintegral _)
     _ = atTop.liminf fun n => ∫⁻ a, f n a ∂μ := Filter.liminf_eq_iSup_iInf_of_nat.symm
@@ -1021,7 +1021,7 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
     _ = ∫⁻ a, ⨅ n : ℕ, ⨆ i ≥ n, f i a ∂μ := by
       refine' (lintegral_iInf _ _ _).symm
       · intro n
-        exact measurable_biSup _ (to_countable _) hf_meas
+        exact measurable_biSup _ (to_countable _) (fun i _ ↦ hf_meas i)
       · intro n m hnm a
         exact iSup_le_iSup_of_subset fun i hi => le_trans hnm hi
       · refine' ne_top_of_le_ne_top h_fin (lintegral_mono_ae _)
chore: Undo adding a heavy import in MeasureTheory.Integral.Lebesgue. (#6850)

Create a new file MeasureTheory.Integral.Indicator to undo adding the import of MeasureTheory.Constructions.BorelSpace.Metrizable in MeasureTheory.Integral.Lebesgue introduced in #6225.

Diff
@@ -7,7 +7,6 @@ import Mathlib.Dynamics.Ergodic.MeasurePreserving
 import Mathlib.MeasureTheory.Function.SimpleFunc
 import Mathlib.MeasureTheory.Measure.MutuallySingular
 import Mathlib.MeasureTheory.Measure.Count
-import Mathlib.MeasureTheory.Constructions.BorelSpace.Metrizable
 
 #align_import measure_theory.integral.lebesgue from "leanprover-community/mathlib"@"c14c8fcde993801fca8946b0d80131a1a81d1520"
 
@@ -30,6 +29,8 @@ We introduce the following notation for the lower Lebesgue integral of a functio
 
 -/
 
+assert_not_exists NormedSpace
+
 set_option autoImplicit true
 
 noncomputable section
@@ -2114,8 +2115,8 @@ end SigmaFinite
 
 section TendstoIndicator
 
-variable {α : Type _} [MeasurableSpace α] {A : Set α}
-variable {ι : Type _} (L : Filter ι) [IsCountablyGenerated L] {As : ι → Set α}
+variable {α : Type*} [MeasurableSpace α] {A : Set α}
+variable {ι : Type*} (L : Filter ι) [IsCountablyGenerated L] {As : ι → Set α}
 
 /-- If the indicators of measurable sets `Aᵢ` tend pointwise almost everywhere to the indicator
 of a measurable set `A` and we eventually have `Aᵢ ⊆ B` for some set `B` of finite measure, then
@@ -2147,28 +2148,6 @@ lemma tendsto_measure_of_ae_tendsto_indicator_of_isFiniteMeasure [IsCountablyGen
   tendsto_measure_of_ae_tendsto_indicator L A_mble As_mble MeasurableSet.univ
     (measure_ne_top μ univ) (eventually_of_forall (fun i ↦ subset_univ (As i))) h_lim
 
-/-- If the indicators of measurable sets `Aᵢ` tend pointwise to the indicator of a set `A`
-and we eventually have `Aᵢ ⊆ B` for some set `B` of finite measure, then the measures of `Aᵢ`
-tend to the measure of `A`. -/
-lemma tendsto_measure_of_tendsto_indicator [NeBot L] {μ : Measure α}
-    (As_mble : ∀ i, MeasurableSet (As i)) {B : Set α} (B_mble : MeasurableSet B)
-    (B_finmeas : μ B ≠ ∞) (As_le_B : ∀ᶠ i in L, As i ⊆ B)
-    (h_lim : Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞)) L (𝓝 (A.indicator 1))) :
-    Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) := by
-  apply tendsto_measure_of_ae_tendsto_indicator L ?_ As_mble B_mble B_finmeas As_le_B
-  · exact eventually_of_forall (by simpa only [tendsto_pi_nhds] using h_lim)
-  · exact measurableSet_of_tendsto_indicator L As_mble h_lim
-
-/-- If `μ` is a finite measure and the indicators of measurable sets `Aᵢ` tend pointwise to
-the indicator of a set `A`, then the measures `μ Aᵢ` tend to the measure `μ A`. -/
-lemma tendsto_measure_of_tendsto_indicator_of_isFiniteMeasure [NeBot L]
-    (μ : Measure α) [IsFiniteMeasure μ] (As_mble : ∀ i, MeasurableSet (As i))
-    (h_lim : Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞)) L (𝓝 (A.indicator 1))) :
-    Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) := by
-  apply tendsto_measure_of_ae_tendsto_indicator_of_isFiniteMeasure L ?_ As_mble
-  · exact eventually_of_forall (by simpa only [tendsto_pi_nhds] using h_lim)
-  · exact measurableSet_of_tendsto_indicator L As_mble h_lim
-
 end TendstoIndicator -- section
 
 end MeasureTheory
feat: Results about convergence of measures of sets assuming convergence of indicator functions. (#6225)

Adding results about convergence of measures of sets assuming convergence of indicator functions.

Co-authored-by: kkytola <“kalle.kytola@aalto.fi”> Co-authored-by: kkytola <39528102+kkytola@users.noreply.github.com>

Diff
@@ -7,6 +7,7 @@ import Mathlib.Dynamics.Ergodic.MeasurePreserving
 import Mathlib.MeasureTheory.Function.SimpleFunc
 import Mathlib.MeasureTheory.Measure.MutuallySingular
 import Mathlib.MeasureTheory.Measure.Count
+import Mathlib.MeasureTheory.Constructions.BorelSpace.Metrizable
 
 #align_import measure_theory.integral.lebesgue from "leanprover-community/mathlib"@"c14c8fcde993801fca8946b0d80131a1a81d1520"
 
@@ -2111,4 +2112,63 @@ theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ
 
 end SigmaFinite
 
+section TendstoIndicator
+
+variable {α : Type _} [MeasurableSpace α] {A : Set α}
+variable {ι : Type _} (L : Filter ι) [IsCountablyGenerated L] {As : ι → Set α}
+
+/-- If the indicators of measurable sets `Aᵢ` tend pointwise almost everywhere to the indicator
+of a measurable set `A` and we eventually have `Aᵢ ⊆ B` for some set `B` of finite measure, then
+the measures of `Aᵢ` tend to the measure of `A`. -/
+lemma tendsto_measure_of_ae_tendsto_indicator {μ : Measure α} (A_mble : MeasurableSet A)
+    (As_mble : ∀ i, MeasurableSet (As i)) {B : Set α} (B_mble : MeasurableSet B)
+    (B_finmeas : μ B ≠ ∞) (As_le_B : ∀ᶠ i in L, As i ⊆ B)
+    (h_lim : ∀ᵐ x ∂μ, Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞) x)
+      L (𝓝 (A.indicator 1 x))) :
+    Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) := by
+  simp_rw [← MeasureTheory.lintegral_indicator_one A_mble,
+           ← MeasureTheory.lintegral_indicator_one (As_mble _)]
+  refine tendsto_lintegral_filter_of_dominated_convergence (B.indicator (1 : α → ℝ≥0∞))
+          (eventually_of_forall ?_) ?_ ?_ h_lim
+  · exact fun i ↦ Measurable.indicator measurable_const (As_mble i)
+  · filter_upwards [As_le_B] with i hi
+    exact eventually_of_forall (fun x ↦ indicator_le_indicator_of_subset hi (by simp) x)
+  · rwa [← lintegral_indicator_one B_mble] at B_finmeas
+
+/-- If `μ` is a finite measure and the indicators of measurable sets `Aᵢ` tend pointwise
+almost everywhere to the indicator of a measurable set `A`, then the measures `μ Aᵢ` tend to
+the measure `μ A`. -/
+lemma tendsto_measure_of_ae_tendsto_indicator_of_isFiniteMeasure [IsCountablyGenerated L]
+    {μ : Measure α} [IsFiniteMeasure μ] (A_mble : MeasurableSet A)
+    (As_mble : ∀ i, MeasurableSet (As i))
+    (h_lim : ∀ᵐ x ∂μ, Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞) x)
+      L (𝓝 (A.indicator 1 x))) :
+    Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) :=
+  tendsto_measure_of_ae_tendsto_indicator L A_mble As_mble MeasurableSet.univ
+    (measure_ne_top μ univ) (eventually_of_forall (fun i ↦ subset_univ (As i))) h_lim
+
+/-- If the indicators of measurable sets `Aᵢ` tend pointwise to the indicator of a set `A`
+and we eventually have `Aᵢ ⊆ B` for some set `B` of finite measure, then the measures of `Aᵢ`
+tend to the measure of `A`. -/
+lemma tendsto_measure_of_tendsto_indicator [NeBot L] {μ : Measure α}
+    (As_mble : ∀ i, MeasurableSet (As i)) {B : Set α} (B_mble : MeasurableSet B)
+    (B_finmeas : μ B ≠ ∞) (As_le_B : ∀ᶠ i in L, As i ⊆ B)
+    (h_lim : Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞)) L (𝓝 (A.indicator 1))) :
+    Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) := by
+  apply tendsto_measure_of_ae_tendsto_indicator L ?_ As_mble B_mble B_finmeas As_le_B
+  · exact eventually_of_forall (by simpa only [tendsto_pi_nhds] using h_lim)
+  · exact measurableSet_of_tendsto_indicator L As_mble h_lim
+
+/-- If `μ` is a finite measure and the indicators of measurable sets `Aᵢ` tend pointwise to
+the indicator of a set `A`, then the measures `μ Aᵢ` tend to the measure `μ A`. -/
+lemma tendsto_measure_of_tendsto_indicator_of_isFiniteMeasure [NeBot L]
+    (μ : Measure α) [IsFiniteMeasure μ] (As_mble : ∀ i, MeasurableSet (As i))
+    (h_lim : Tendsto (fun i ↦ (As i).indicator (1 : α → ℝ≥0∞)) L (𝓝 (A.indicator 1))) :
+    Tendsto (fun i ↦ μ (As i)) L (𝓝 (μ A)) := by
+  apply tendsto_measure_of_ae_tendsto_indicator_of_isFiniteMeasure L ?_ As_mble
+  · exact eventually_of_forall (by simpa only [tendsto_pi_nhds] using h_lim)
+  · exact measurableSet_of_tendsto_indicator L As_mble h_lim
+
+end TendstoIndicator -- section
+
 end MeasureTheory
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -350,7 +350,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
     have : s x ≠ 0 := by
       refine' mt _ this
       intro h
-      rw [h, MulZeroClass.mul_zero]
+      rw [h, mul_zero]
     have : (rs.map c) x < ⨆ n : ℕ, f n x := by
       refine' lt_of_lt_of_le (ENNReal.coe_lt_coe.2 _) (hsf x)
       suffices : r * s x < 1 * s x
@@ -1804,7 +1804,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
         filter_upwards [ae_restrict_mem M]
         intro x hx
         simp only [Classical.not_not, mem_setOf_eq, mem_compl_iff] at hx
-        simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply]
+        simp only [hx, zero_mul, Pi.mul_apply]
     _ = ∫⁻ a : α, (f * g) a ∂μ := by
       apply lintegral_congr_ae
       filter_upwards [hf.ae_eq_mk]
@@ -1846,7 +1846,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
   intro x h'x
   rcases eq_or_ne (f x) 0 with (hx | hx)
   · have := hi x
-    simp only [hx, MulZeroClass.zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this
+    simp only [hx, zero_mul, Pi.mul_apply, nonpos_iff_eq_zero] at this
     simp [this]
   · apply le_of_eq _
     dsimp
@@ -2033,7 +2033,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       ENNReal.coe_indicator, Function.const_apply] at hL
     have c_ne_zero : c ≠ 0 := by
       intro hc
-      simp only [hc, ENNReal.coe_zero, MulZeroClass.zero_mul, not_lt_zero] at hL
+      simp only [hc, ENNReal.coe_zero, zero_mul, not_lt_zero] at hL
     have : L / c < μ s := by
       rwa [ENNReal.div_lt_iff, mul_comm]
       · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
chore: remove unused simps (#6632)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -767,7 +767,6 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
     ∫⁻ x in { x | f x = r }, f x ∂μ = r * μ { x | f x = r } := by
   have : ∀ᵐ x ∂μ, x ∈ { x | f x = r } → f x = r := ae_of_all μ fun _ hx => hx
   rw [set_lintegral_congr_fun _ this]
-  dsimp
   rw [lintegral_const, Measure.restrict_apply MeasurableSet.univ, Set.univ_inter]
   exact hf (measurableSet_singleton r)
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
fix: disable autoImplicit globally (#6528)

Autoimplicits are highly controversial and also defeat the performance-improving work in #6474.

The intent of this PR is to make autoImplicit opt-in on a per-file basis, by disabling it in the lakefile and enabling it again with set_option autoImplicit true in the few files that rely on it.

That also keeps this PR small, as opposed to attempting to "fix" files to not need it any more.

I claim that many of the uses of autoImplicit in these files are accidental; situations such as:

  • Assuming variables are in scope, but pasting the lemma in the wrong section
  • Pasting in a lemma from a scratch file without checking to see if the variable names are consistent with the rest of the file
  • Making a copy-paste error between lemmas and forgetting to add an explicit arguments.

Having set_option autoImplicit false as the default prevents these types of mistake being made in the 90% of files where autoImplicits are not used at all, and causes them to be caught by CI during review.

I think there were various points during the port where we encouraged porters to delete the universes u v lines; I think having autoparams for universe variables only would cover a lot of the cases we actually use them, while avoiding any real shortcomings.

A Zulip poll (after combining overlapping votes accordingly) was in favor of this change with 5:5:18 as the no:dontcare:yes vote ratio.

While this PR was being reviewed, a handful of files gained some more likely-accidental autoImplicits. In these places, set_option autoImplicit true has been placed locally within a section, rather than at the top of the file.

Diff
@@ -29,6 +29,7 @@ We introduce the following notation for the lower Lebesgue integral of a functio
 
 -/
 
+set_option autoImplicit true
 
 noncomputable section
 
chore(LpSpace): golf, generalize (#6553)
  • drop mostly unused section variables;
  • generalize MeasureTheory.lintegral_indicator_const and MeasureTheory.snorm_indicator_const to a NullMeasurableSet;
  • golf a proof.
Diff
@@ -753,9 +753,13 @@ theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMe
     Measure.restrict_congr_set hs.toMeasurable_ae_eq]
 #align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀
 
-theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ≥0∞) :
+theorem lintegral_indicator_const₀ {s : Set α} (hs : NullMeasurableSet s μ) (c : ℝ≥0∞) :
     ∫⁻ a, s.indicator (fun _ => c) a ∂μ = c * μ s := by
-  rw [lintegral_indicator _ hs, set_lintegral_const]
+  rw [lintegral_indicator₀ _ hs, set_lintegral_const]
+
+theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ≥0∞) :
+    ∫⁻ a, s.indicator (fun _ => c) a ∂μ = c * μ s :=
+  lintegral_indicator_const₀ hs.nullMeasurableSet c
 #align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_const
 
 theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r : ℝ≥0∞) :
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -45,7 +45,7 @@ namespace MeasureTheory
 -- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
-variable {α β γ δ : Type _}
+variable {α β γ δ : Type*}
 
 section Lintegral
 
@@ -225,25 +225,25 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
   rfl
 #align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos
 
-theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
+theorem iSup_lintegral_le {ι : Sort*} (f : ι → α → ℝ≥0∞) :
     ⨆ i, ∫⁻ a, f i a ∂μ ≤ ∫⁻ a, ⨆ i, f i a ∂μ := by
   simp only [← iSup_apply]
   exact (monotone_lintegral μ).le_map_iSup
 #align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_le
 
-theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
+theorem iSup₂_lintegral_le {ι : Sort*} {ι' : ι → Sort*} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     ⨆ (i) (j), ∫⁻ a, f i j a ∂μ ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ := by
   convert (monotone_lintegral μ).le_map_iSup₂ f with a
   simp only [iSup_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
 
-theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
+theorem le_iInf_lintegral {ι : Sort*} (f : ι → α → ℝ≥0∞) :
     ∫⁻ a, ⨅ i, f i a ∂μ ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by
   simp only [← iInf_apply]
   exact (monotone_lintegral μ).map_iInf_le
 #align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
 
-theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
+theorem le_iInf₂_lintegral {ι : Sort*} {ι' : ι → Sort*} (f : ∀ i, ι' i → α → ℝ≥0∞) :
     ∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
   convert(monotone_lintegral μ).map_iInf₂_le f with a
   simp only [iInf_apply]
@@ -1350,7 +1350,7 @@ theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν :
 
 section DiracAndCount
 
-instance (priority := 10) _root_.MeasurableSpace.Top.measurableSingletonClass {α : Type _} :
+instance (priority := 10) _root_.MeasurableSpace.Top.measurableSingletonClass {α : Type*} :
     @MeasurableSingletonClass α (⊤ : MeasurableSpace α) :=
   @MeasurableSingletonClass.mk α (⊤ : MeasurableSpace α) <|
     fun _ => MeasurableSpace.measurableSet_top
@@ -1520,7 +1520,7 @@ theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurable
   set_lintegral_lt_top_of_bddAbove hs hf.measurable (hsc.image hf).bddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
-theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _}
+theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type*}
     [MeasurableSpace α] (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞}
     (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) : ∫⁻ x, f x ∂μ < ∞ := by
   cases' f_bdd with c hc
@@ -1568,7 +1568,7 @@ theorem withDensity_add_measure {m : MeasurableSpace α} (μ ν : Measure α) (f
   simp only [withDensity_apply f hs, restrict_add, lintegral_add_measure, Measure.add_apply]
 #align measure_theory.with_density_add_measure MeasureTheory.withDensity_add_measure
 
-theorem withDensity_sum {ι : Type _} {m : MeasurableSpace α} (μ : ι → Measure α) (f : α → ℝ≥0∞) :
+theorem withDensity_sum {ι : Type*} {m : MeasurableSpace α} (μ : ι → Measure α) (f : α → ℝ≥0∞) :
     (sum μ).withDensity f = sum fun n => (μ n).withDensity f := by
   ext1 s hs
   simp_rw [sum_apply _ hs, withDensity_apply f hs, restrict_sum μ hs, lintegral_sum_measure]
@@ -1938,7 +1938,7 @@ theorem lintegral_trim_ae {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0
 
 section SigmaFinite
 
-variable {E : Type _} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E]
+variable {E : Type*} [NormedAddCommGroup E] [MeasurableSpace E] [OpensMeasurableSpace E]
 
 theorem univ_le_of_forall_fin_meas_le {μ : Measure α} (hm : m ≤ m0) [SigmaFinite (μ.trim hm)]
     (C : ℝ≥0∞) {f : Set α → ℝ≥0∞} (hf : ∀ s, MeasurableSet[m] s → μ s ≠ ∞ → f s ≤ C)
chore(MeasureSpace): move dirac and count to new files (#6116)
Diff
@@ -6,6 +6,7 @@ Authors: Mario Carneiro, Johannes Hölzl
 import Mathlib.Dynamics.Ergodic.MeasurePreserving
 import Mathlib.MeasureTheory.Function.SimpleFunc
 import Mathlib.MeasureTheory.Measure.MutuallySingular
+import Mathlib.MeasureTheory.Measure.Count
 
 #align_import measure_theory.integral.lebesgue from "leanprover-community/mathlib"@"c14c8fcde993801fca8946b0d80131a1a81d1520"
 
@@ -41,42 +42,6 @@ open Classical Topology BigOperators NNReal ENNReal MeasureTheory
 
 namespace MeasureTheory
 
-section MoveThis
-
-variable {m : MeasurableSpace α} {μ ν : Measure α} {f : α → ℝ≥0∞} {s : Set α}
-
--- todo after the port: move to measure_theory/measure/measure_space
-theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
-    (Measure.dirac a).restrict s = if a ∈ s then Measure.dirac a else 0 := by
-  ext1 t ht
-  classical
-    simp only [Measure.restrict_apply ht, Measure.dirac_apply' _ (ht.inter hs), Set.indicator_apply,
-      Set.mem_inter_iff, Pi.one_apply]
-    by_cases has : a ∈ s
-    · simp only [has, and_true_iff, if_true]
-      split_ifs with hat
-      · rw [Measure.dirac_apply_of_mem hat]
-      · simp only [Measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
-    · simp only [has, and_false_iff, if_false, Measure.coe_zero, Pi.zero_apply]
-#align measure_theory.restrict_dirac' MeasureTheory.restrict_dirac'
-
--- todo after the port: move to measure_theory/measure/measure_space
-theorem restrict_dirac [MeasurableSingletonClass α] [Decidable (a ∈ s)] :
-    (Measure.dirac a).restrict s = if a ∈ s then Measure.dirac a else 0 := by
-  ext1 t ht
-  classical
-    simp only [Measure.restrict_apply ht, Measure.dirac_apply a, Set.indicator_apply,
-      Set.mem_inter_iff, Pi.one_apply]
-    by_cases has : a ∈ s
-    · simp only [has, and_true_iff, if_true]
-      split_ifs with hat
-      · rw [Measure.dirac_apply_of_mem hat]
-      · simp only [Measure.dirac_apply' _ ht, Set.indicator_apply, hat, if_false]
-    · simp only [has, and_false_iff, if_false, Measure.coe_zero, Pi.zero_apply]
-#align measure_theory.restrict_dirac MeasureTheory.restrict_dirac
-
-end MoveThis
-
 -- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2018 Mario Carneiro. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
-
-! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit c14c8fcde993801fca8946b0d80131a1a81d1520
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Dynamics.Ergodic.MeasurePreserving
 import Mathlib.MeasureTheory.Function.SimpleFunc
 import Mathlib.MeasureTheory.Measure.MutuallySingular
 
+#align_import measure_theory.integral.lebesgue from "leanprover-community/mathlib"@"c14c8fcde993801fca8946b0d80131a1a81d1520"
+
 /-!
 # Lower Lebesgue integral for `ℝ≥0∞`-valued functions
 
feat: Lebesgue average (#5810)

Match https://github.com/leanprover-community/mathlib/pull/19199

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Mario Carneiro, Johannes Hölzl
 
 ! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
-! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
+! leanprover-community/mathlib commit c14c8fcde993801fca8946b0d80131a1a81d1520
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -46,7 +46,7 @@ namespace MeasureTheory
 
 section MoveThis
 
-variable {α : Type _} {mα : MeasurableSpace α} {a : α} {s : Set α}
+variable {m : MeasurableSpace α} {μ ν : Measure α} {f : α → ℝ≥0∞} {s : Set α}
 
 -- todo after the port: move to measure_theory/measure/measure_space
 theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
@@ -805,6 +805,11 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
   exact hf (measurableSet_singleton r)
 #align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
 
+@[simp]
+theorem lintegral_indicator_one (hs : MeasurableSet s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
+  (lintegral_indicator_const hs _).trans $ one_mul _
+#align measure_theory.lintegral_indicator_one MeasureTheory.lintegral_indicator_one
+
 /-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
@@ -839,13 +844,29 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
   mul_meas_ge_le_lintegral₀ hf.aemeasurable ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
-theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
-    (hμf : 0 < μ { x | f x = ∞ }) : ∫⁻ x, f x ∂μ = ∞ :=
+theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
+    (hμf : μ {x | f x = ∞} ≠ 0) : ∫⁻ x, f x ∂μ = ∞ :=
   eq_top_iff.mpr <|
     calc
-      ∞ = ∞ * μ { x | ∞ ≤ f x } := by simp [mul_eq_top, hμf.ne.symm]
+      ∞ = ∞ * μ { x | ∞ ≤ f x } := by simp [mul_eq_top, hμf]
       _ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
-#align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
+#align measure_theory.lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.lintegral_eq_top_of_measure_eq_top_ne_zero
+
+theorem setLintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
+    (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0) : ∫⁻ x in s, f x ∂μ = ∞ :=
+  lintegral_eq_top_of_measure_eq_top_ne_zero hf $
+    mt (eq_bot_mono $ by rw [←setOf_inter_eq_sep]; exact Measure.le_restrict_apply _ _) hμf
+#align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero
+
+theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
+    μ {x | f x = ∞} = 0 :=
+  of_not_not fun h => hμf <| lintegral_eq_top_of_measure_eq_top_ne_zero hf h
+#align measure_theory.measure_eq_top_of_lintegral_ne_top MeasureTheory.measure_eq_top_of_lintegral_ne_top
+
+theorem measure_eq_top_of_setLintegral_ne_top (hf : AEMeasurable f (μ.restrict s))
+    (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) : μ ({x ∈ s | f x = ∞}) = 0 :=
+  of_not_not fun h => hμf $ setLintegral_eq_top_of_measure_eq_top_ne_zero hf h
+#align measure_theory.measure_eq_top_of_set_lintegral_ne_top MeasureTheory.measure_eq_top_of_setLintegral_ne_top
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. -/
 theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) {ε : ℝ≥0∞} (hε : ε ≠ 0)
chore: remove occurrences of semicolon after space (#5713)

This is the second half of the changes originally in #5699, removing all occurrences of ; after a space and implementing a linter rule to enforce it.

In most cases this 2-character substring has a space after it, so the following command was run first:

find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;

The remaining cases were few enough in number that they were done manually.

Diff
@@ -543,7 +543,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
         ∫⁻ a, (⨆ n, (eapprox f n : α → ℝ≥0∞) a) + ⨆ n, (eapprox g n : α → ℝ≥0∞) a ∂μ :=
       by simp only [iSup_eapprox_apply, hf, hg]
     _ = ∫⁻ a, ⨆ n, (eapprox f n + eapprox g n : α → ℝ≥0∞) a ∂μ := by
-      congr ; funext a
+      congr; funext a
       rw [ENNReal.iSup_add_iSup_of_monotone]; · rfl
       · intro i j h
         exact monotone_eapprox _ h a
@@ -612,7 +612,7 @@ theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0
     ∫⁻ a, f a ∂Measure.sum μ = ∑' i, ∫⁻ a, f a ∂μ i := by
   simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_sum, ENNReal.tsum_eq_iSup_sum]
   rw [iSup_comm]
-  congr ; funext s
+  congr; funext s
   induction' s using Finset.induction_on with i s hi hs;
   · apply bot_unique
     simp
chore: fix grammar in docs (#5668)
Diff
@@ -757,13 +757,13 @@ theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f :
   simp [lintegral_const_mul'' _ hg, lintegral_mul_const'' _ hf]
 #align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mul
 
--- TODO: Need a better way of rewriting inside of a integral
+-- TODO: Need a better way of rewriting inside of an integral
 theorem lintegral_rw₁ {f f' : α → β} (h : f =ᵐ[μ] f') (g : β → ℝ≥0∞) :
     ∫⁻ a, g (f a) ∂μ = ∫⁻ a, g (f' a) ∂μ :=
   lintegral_congr_ae <| h.mono fun a h => by dsimp only; rw [h]
 #align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁
 
--- TODO: Need a better way of rewriting inside of a integral
+-- TODO: Need a better way of rewriting inside of an integral
 theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁ : f₁ =ᵐ[μ] f₁') (h₂ : f₂ =ᵐ[μ] f₂')
     (g : β → γ → ℝ≥0∞) : ∫⁻ a, g (f₁ a) (f₂ a) ∂μ = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
   lintegral_congr_ae <| h₁.mp <| h₂.mono fun _ h₂ h₁ => by dsimp only; rw [h₁, h₂]
fix: ∑' precedence (#5615)
  • Also remove most superfluous parentheses around big operators (, and variants).
  • roughly the used regex: ([^a-zA-Zα-ωΑ-Ω'𝓝ℳ₀𝕂ₛ)]) \(([∑∏][^()∑∏]*,[^()∑∏:]*)\) ([⊂⊆=<≤]) replaced by $1 $2 $3
Diff
@@ -1414,12 +1414,12 @@ theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
 #align measure_theory.lintegral_count MeasureTheory.lintegral_count
 
 theorem _root_.ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
-    (∑' _ : α, c) = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
+    ∑' _ : α, c = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
 #align ennreal.tsum_const_eq ENNReal.tsum_const_eq
 
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
 theorem _root_.ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0∞}
-    (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : (∑' i, a i) ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
+    (a_mble : Measurable a) {c : ℝ≥0∞} (tsum_le_c : ∑' i, a i ≤ c) {ε : ℝ≥0∞} (ε_ne_zero : ε ≠ 0)
     (ε_ne_top : ε ≠ ∞) : Measure.count { i : α | ε ≤ a i } ≤ c / ε := by
   rw [← lintegral_count] at tsum_le_c
   apply (MeasureTheory.meas_ge_le_lintegral_div a_mble.aemeasurable ε_ne_zero ε_ne_top).trans
@@ -1428,7 +1428,7 @@ theorem _root_.ENNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α
 
 /-- Markov's inequality for counting measure with hypothesis using `tsum` in `ℝ≥0`. -/
 theorem _root_.NNReal.count_const_le_le_of_tsum_le [MeasurableSingletonClass α] {a : α → ℝ≥0}
-    (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : (∑' i, a i) ≤ c)
+    (a_mble : Measurable a) (a_summable : Summable a) {c : ℝ≥0} (tsum_le_c : ∑' i, a i ≤ c)
     {ε : ℝ≥0} (ε_ne_zero : ε ≠ 0) : Measure.count { i : α | ε ≤ a i } ≤ c / ε := by
   rw [show (fun i => ε ≤ a i) = fun i => (ε : ℝ≥0∞) ≤ ((↑) ∘ a) i by
       funext i
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -135,7 +135,7 @@ theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : ∫⁻ a, f
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
 
 theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
-    (⨆ (g : α → ℝ≥0∞) (_ : Measurable g) (_ : g ≤ f), ∫⁻ a, g a ∂μ) = ∫⁻ a, f a ∂μ := by
+    ⨆ (g : α → ℝ≥0∞) (_ : Measurable g) (_ : g ≤ f), ∫⁻ a, g a ∂μ = ∫⁻ a, f a ∂μ := by
   apply le_antisymm
   · exact iSup_le fun i => iSup_le fun _ => iSup_le fun h'i => lintegral_mono h'i
   · rw [lintegral]
@@ -264,13 +264,13 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
 #align measure_theory.exists_simple_func_forall_lintegral_sub_lt_of_pos MeasureTheory.exists_simpleFunc_forall_lintegral_sub_lt_of_pos
 
 theorem iSup_lintegral_le {ι : Sort _} (f : ι → α → ℝ≥0∞) :
-    (⨆ i, ∫⁻ a, f i a ∂μ) ≤ ∫⁻ a, ⨆ i, f i a ∂μ := by
+    ⨆ i, ∫⁻ a, f i a ∂μ ≤ ∫⁻ a, ⨆ i, f i a ∂μ := by
   simp only [← iSup_apply]
   exact (monotone_lintegral μ).le_map_iSup
 #align measure_theory.supr_lintegral_le MeasureTheory.iSup_lintegral_le
 
 theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
-    (⨆ (i) (j), ∫⁻ a, f i j a ∂μ) ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ := by
+    ⨆ (i) (j), ∫⁻ a, f i j a ∂μ ≤ ∫⁻ a, ⨆ (i) (j), f i j a ∂μ := by
   convert (monotone_lintegral μ).le_map_iSup₂ f with a
   simp only [iSup_apply]
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
@@ -971,7 +971,7 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
     ∫⁻ a, ⨅ n, f n a ∂μ = ⨅ n, ∫⁻ a, f n a ∂μ :=
   have fn_le_f0 : ∫⁻ a, ⨅ n, f n a ∂μ ≤ ∫⁻ a, f 0 a ∂μ :=
     lintegral_mono fun a => iInf_le_of_le 0 le_rfl
-  have fn_le_f0' : (⨅ n, ∫⁻ a, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ := iInf_le_of_le 0 le_rfl
+  have fn_le_f0' : ⨅ n, ∫⁻ a, f n a ∂μ ≤ ∫⁻ a, f 0 a ∂μ := iInf_le_of_le 0 le_rfl
   (ENNReal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 <|
     show ∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ from
       calc
@@ -1123,7 +1123,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
   cases isEmpty_or_nonempty β
   · simp [iSup_of_empty]
   inhabit β
-  have : ∀ a, (⨆ b, f b a) = ⨆ n, f (h_directed.sequence f n) a := by
+  have : ∀ a, ⨆ b, f b a = ⨆ n, f (h_directed.sequence f n) a := by
     intro a
     refine' le_antisymm (iSup_le fun b => _) (iSup_le fun n => le_iSup (fun n => f n a) _)
     exact le_iSup_of_le (encode b + 1) (h_directed.le_sequence b a)
@@ -1984,7 +1984,7 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
   rw [← lintegral_indicator]
   swap
   · exact hm (⋃ n, S n) (@MeasurableSet.iUnion _ _ m _ _ hS_meas)
-  have h_integral_indicator : (⨆ n, ∫⁻ x in S n, f x ∂μ) = ⨆ n, ∫⁻ x, (S n).indicator f x ∂μ := by
+  have h_integral_indicator : ⨆ n, ∫⁻ x in S n, f x ∂μ = ⨆ n, ∫⁻ x, (S n).indicator f x ∂μ := by
     congr
     ext1 n
     rw [lintegral_indicator _ (hm _ (hS_meas n))]
fix: change compl precedence (#5586)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Diff
@@ -292,7 +292,7 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
   rcases exists_measurable_superset_of_null h with ⟨t, hts, ht, ht0⟩
   have : ∀ᵐ x ∂μ, x ∉ t := measure_zero_iff_ae_nmem.1 ht0
   rw [lintegral, lintegral]
-  refine' iSup_le fun s => iSup_le fun hfs => le_iSup_of_le (s.restrict (tᶜ)) <| le_iSup_of_le _ _
+  refine' iSup_le fun s => iSup_le fun hfs => le_iSup_of_le (s.restrict tᶜ) <| le_iSup_of_le _ _
   · intro a
     by_cases h : a ∈ t <;> simp [h, restrict_apply s ht.compl, ht.compl]
     exact le_trans (hfs a) (_root_.by_contradiction fun hnfg => h (hts hnfg))
@@ -1812,7 +1812,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
         filter_upwards [Z]
         intro x hx
         simp only [hx, Pi.mul_apply]
-      · have M : MeasurableSet ({ x : α | f' x ≠ 0 }ᶜ) :=
+      · have M : MeasurableSet { x : α | f' x ≠ 0 }ᶜ :=
           (hf.measurable_mk (measurableSet_singleton 0).compl).compl
         filter_upwards [ae_restrict_mem M]
         intro x hx
chore: remove superfluous parentheses around integrals (#5591)
Diff
@@ -603,13 +603,13 @@ theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
 
 @[simp]
-theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂c • μ) = c * ∫⁻ a, f a ∂μ :=
+theorem lintegral_smul_measure (c : ℝ≥0∞) (f : α → ℝ≥0∞) : ∫⁻ a, f a ∂c • μ = c * ∫⁻ a, f a ∂μ :=
   by simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_smul, ENNReal.mul_iSup, smul_eq_mul]
 #align measure_theory.lintegral_smul_measure MeasureTheory.lintegral_smul_measure
 
 @[simp]
 theorem lintegral_sum_measure {m : MeasurableSpace α} {ι} (f : α → ℝ≥0∞) (μ : ι → Measure α) :
-    (∫⁻ a, f a ∂Measure.sum μ) = ∑' i, ∫⁻ a, f a ∂μ i := by
+    ∫⁻ a, f a ∂Measure.sum μ = ∑' i, ∫⁻ a, f a ∂μ i := by
   simp only [lintegral, iSup_subtype', SimpleFunc.lintegral_sum, ENNReal.tsum_eq_iSup_sum]
   rw [iSup_comm]
   congr ; funext s
@@ -753,7 +753,7 @@ theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
   is a product of integrals -/
 theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f : α → ℝ≥0∞}
     {g : β → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g ν) :
-    (∫⁻ x, ∫⁻ y, f x * g y ∂ν ∂μ) = (∫⁻ x, f x ∂μ) * ∫⁻ y, g y ∂ν := by
+    ∫⁻ x, ∫⁻ y, f x * g y ∂ν ∂μ = (∫⁻ x, f x ∂μ) * ∫⁻ y, g y ∂ν := by
   simp [lintegral_const_mul'' _ hg, lintegral_mul_const'' _ hf]
 #align measure_theory.lintegral_lintegral_mul MeasureTheory.lintegral_lintegral_mul
 
@@ -973,9 +973,9 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
     lintegral_mono fun a => iInf_le_of_le 0 le_rfl
   have fn_le_f0' : (⨅ n, ∫⁻ a, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ := iInf_le_of_le 0 le_rfl
   (ENNReal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 <|
-    show (∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ from
+    show ∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ from
       calc
-        (∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
+        ∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
           (lintegral_sub (measurable_iInf h_meas)
               (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => iInf_le _ _)
               (ae_of_all _ fun a => iInf_le _ _)).symm
@@ -1238,12 +1238,12 @@ theorem lintegral_union_le (f : α → ℝ≥0∞) (s t : Set α) :
   exact lintegral_mono' (restrict_union_le _ _) le_rfl
 
 theorem lintegral_inter_add_diff {B : Set α} (f : α → ℝ≥0∞) (A : Set α) (hB : MeasurableSet B) :
-    (∫⁻ x in A ∩ B, f x ∂μ + ∫⁻ x in A \ B, f x ∂μ) = ∫⁻ x in A, f x ∂μ := by
+    ∫⁻ x in A ∩ B, f x ∂μ + ∫⁻ x in A \ B, f x ∂μ = ∫⁻ x in A, f x ∂μ := by
   rw [← lintegral_add_measure, restrict_inter_add_diff _ hB]
 #align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diff
 
 theorem lintegral_add_compl (f : α → ℝ≥0∞) {A : Set α} (hA : MeasurableSet A) :
-    (∫⁻ x in A, f x ∂μ + ∫⁻ x in Aᶜ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
+    ∫⁻ x in A, f x ∂μ + ∫⁻ x in Aᶜ, f x ∂μ = ∫⁻ x, f x ∂μ := by
   rw [← lintegral_add_measure, Measure.restrict_add_restrict_compl hA]
 #align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_compl
 
@@ -1266,7 +1266,7 @@ theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
 #align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_max
 
 theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
-    (hg : Measurable g) : (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ := by
+    (hg : Measurable g) : ∫⁻ a, f a ∂map g μ = ∫⁻ a, f (g a) ∂μ := by
   erw [lintegral_eq_iSup_eapprox_lintegral hf, lintegral_eq_iSup_eapprox_lintegral (hf.comp hg)]
   congr with n : 1
   convert SimpleFunc.lintegral_map _ hg
@@ -1275,9 +1275,9 @@ theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α
 
 theorem lintegral_map' {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β}
     (hf : AEMeasurable f (Measure.map g μ)) (hg : AEMeasurable g μ) :
-    (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, f (g a) ∂μ :=
+    ∫⁻ a, f a ∂Measure.map g μ = ∫⁻ a, f (g a) ∂μ :=
   calc
-    (∫⁻ a, f a ∂Measure.map g μ) = ∫⁻ a, hf.mk f a ∂Measure.map g μ :=
+    ∫⁻ a, f a ∂Measure.map g μ = ∫⁻ a, hf.mk f a ∂Measure.map g μ :=
       lintegral_congr_ae hf.ae_eq_mk
     _ = ∫⁻ a, hf.mk f a ∂Measure.map (hg.mk g) μ := by
       congr 1
@@ -1302,7 +1302,7 @@ theorem lintegral_comp [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α →
 
 theorem set_lintegral_map [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α → β} {s : Set β}
     (hs : MeasurableSet s) (hf : Measurable f) (hg : Measurable g) :
-    (∫⁻ y in s, f y ∂map g μ) = ∫⁻ x in g ⁻¹' s, f (g x) ∂μ := by
+    ∫⁻ y in s, f y ∂map g μ = ∫⁻ x in g ⁻¹' s, f (g x) ∂μ := by
   rw [restrict_map hg hs, lintegral_map hf hg]
 #align measure_theory.set_lintegral_map MeasureTheory.set_lintegral_map
 
@@ -1317,7 +1317,7 @@ theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β
 measurable), then `∫⁻ a, f a ∂(map g μ) = ∫⁻ a, f (g a) ∂μ`. Compare with `lintegral_map` which
 applies to any measurable `g : α → β` but requires that `f` is measurable as well. -/
 theorem _root_.MeasurableEmbedding.lintegral_map [MeasurableSpace β] {g : α → β}
-    (hg : MeasurableEmbedding g) (f : β → ℝ≥0∞) : (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ := by
+    (hg : MeasurableEmbedding g) (f : β → ℝ≥0∞) : ∫⁻ a, f a ∂map g μ = ∫⁻ a, f (g a) ∂μ := by
   rw [lintegral, lintegral]
   refine' le_antisymm (iSup₂_le fun f₀ hf₀ => _) (iSup₂_le fun f₀ hf₀ => _)
   · rw [SimpleFunc.lintegral_map _ hg.measurable]
@@ -1333,7 +1333,7 @@ theorem _root_.MeasurableEmbedding.lintegral_map [MeasurableSpace β] {g : α 
 (Compare `lintegral_map`, which applies to a wider class of functions `g : α → β`, but requires
 measurability of the function being integrated.) -/
 theorem lintegral_map_equiv [MeasurableSpace β] (f : β → ℝ≥0∞) (g : α ≃ᵐ β) :
-    (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ :=
+    ∫⁻ a, f a ∂map g μ = ∫⁻ a, f (g a) ∂μ :=
   g.measurableEmbedding.lintegral_map f
 #align measure_theory.lintegral_map_equiv MeasureTheory.lintegral_map_equiv
 
@@ -1375,17 +1375,17 @@ instance (priority := 10) _root_.MeasurableSpace.Top.measurableSingletonClass {
 
 variable [MeasurableSpace α]
 
-theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂dirac a) = f a :=
+theorem lintegral_dirac' (a : α) {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂dirac a = f a :=
   by simp [lintegral_congr_ae (ae_eq_dirac' hf)]
 #align measure_theory.lintegral_dirac' MeasureTheory.lintegral_dirac'
 
 theorem lintegral_dirac [MeasurableSingletonClass α] (a : α) (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂dirac a) = f a := by simp [lintegral_congr_ae (ae_eq_dirac f)]
+    ∫⁻ a, f a ∂dirac a = f a := by simp [lintegral_congr_ae (ae_eq_dirac f)]
 #align measure_theory.lintegral_dirac MeasureTheory.lintegral_dirac
 
 theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f) {s : Set α}
     (hs : MeasurableSet s) [Decidable (a ∈ s)] :
-    (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 := by
+    ∫⁻ x in s, f x ∂Measure.dirac a = if a ∈ s then f a else 0 := by
   rw [restrict_dirac' hs]
   split_ifs
   · exact lintegral_dirac' _ hf
@@ -1393,21 +1393,21 @@ theorem set_lintegral_dirac' {a : α} {f : α → ℝ≥0∞} (hf : Measurable f
 #align measure_theory.set_lintegral_dirac' MeasureTheory.set_lintegral_dirac'
 
 theorem set_lintegral_dirac {a : α} (f : α → ℝ≥0∞) (s : Set α) [MeasurableSingletonClass α]
-    [Decidable (a ∈ s)] : (∫⁻ x in s, f x ∂Measure.dirac a) = if a ∈ s then f a else 0 := by
+    [Decidable (a ∈ s)] : ∫⁻ x in s, f x ∂Measure.dirac a = if a ∈ s then f a else 0 := by
   rw [restrict_dirac]
   split_ifs
   · exact lintegral_dirac _ _
   · exact lintegral_zero_measure _
 #align measure_theory.set_lintegral_dirac MeasureTheory.set_lintegral_dirac
 
-theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂count) = ∑' a, f a := by
+theorem lintegral_count' {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂count = ∑' a, f a := by
   rw [count, lintegral_sum_measure]
   congr
   exact funext fun a => lintegral_dirac' a hf
 #align measure_theory.lintegral_count' MeasureTheory.lintegral_count'
 
 theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂count) = ∑' a, f a := by
+    ∫⁻ a, f a ∂count = ∑' a, f a := by
   rw [count, lintegral_sum_measure]
   congr
   exact funext fun a => lintegral_dirac a f
@@ -1772,7 +1772,7 @@ and other moments as a function of the probability density function.
  -/
 theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ≥0∞}
     (h_mf : Measurable f) :
-    ∀ {g : α → ℝ≥0∞}, Measurable g → (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ := by
+    ∀ {g : α → ℝ≥0∞}, Measurable g → ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
   apply Measurable.ennreal_induction
   · intro c s h_ms
     simp [*, mul_comm _ c, ← indicator_mul_right]
@@ -1785,7 +1785,7 @@ theorem lintegral_withDensity_eq_lintegral_mul (μ : Measure α) {f : α → ℝ
 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : Measurable f) (hg : Measurable g) {s : Set α} (hs : MeasurableSet s) :
-    (∫⁻ x in s, g x ∂μ.withDensity f) = ∫⁻ x in s, (f * g) x ∂μ := by
+    ∫⁻ x in s, g x ∂μ.withDensity f = ∫⁻ x in s, (f * g) x ∂μ := by
   rw [restrict_withDensity hs, lintegral_withDensity_eq_lintegral_mul _ hf hg]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul
 
@@ -1795,13 +1795,13 @@ version without conditions on `g` but requiring that `f` is almost everywhere fi
 `lintegral_withDensity_eq_lintegral_mul_non_measurable` -/
 theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g (μ.withDensity f)) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ := by
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
   let f' := hf.mk f
   have : μ.withDensity f = μ.withDensity f' := withDensity_congr_ae hf.ae_eq_mk
   rw [this] at hg ⊢
   let g' := hg.mk g
   calc
-    (∫⁻ a, g a ∂μ.withDensity f') = ∫⁻ a, g' a ∂μ.withDensity f' := lintegral_congr_ae hg.ae_eq_mk
+    ∫⁻ a, g a ∂μ.withDensity f' = ∫⁻ a, g' a ∂μ.withDensity f' := lintegral_congr_ae hg.ae_eq_mk
     _ = ∫⁻ a, (f' * g') a ∂μ :=
       (lintegral_withDensity_eq_lintegral_mul _ hf.measurable_mk hg.measurable_mk)
     _ = ∫⁻ a, (f' * g) a ∂μ := by
@@ -1827,7 +1827,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
 
 theorem lintegral_withDensity_eq_lintegral_mul₀ {μ : Measure α} {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ :=
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ :=
   lintegral_withDensity_eq_lintegral_mul₀' hf (hg.mono' (withDensity_absolutelyContinuous μ f))
 #align measure_theory.lintegral_with_density_eq_lintegral_mul₀ MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀
 
@@ -1842,7 +1842,7 @@ theorem lintegral_withDensity_le_lintegral_mul (μ : Measure α) {f : α → ℝ
 
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (hf : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ := by
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
   refine' le_antisymm (lintegral_withDensity_le_lintegral_mul μ f_meas g) _
   rw [← iSup_lintegral_measurable_le_eq_lintegral, ← iSup_lintegral_measurable_le_eq_lintegral]
   refine' iSup₂_le fun i i_meas => iSup_le fun hi => _
@@ -1869,16 +1869,16 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable (μ : Measure α)
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable (μ : Measure α) {f : α → ℝ≥0∞}
     (f_meas : Measurable f) (g : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s)
     (hf : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
-    (∫⁻ a in s, g a ∂μ.withDensity f) = ∫⁻ a in s, (f * g) a ∂μ := by
+    ∫⁻ a in s, g a ∂μ.withDensity f = ∫⁻ a in s, (f * g) a ∂μ := by
   rw [restrict_withDensity hs, lintegral_withDensity_eq_lintegral_mul_non_measurable _ f_meas hf]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable
 
 theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure α) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (h'f : ∀ᵐ x ∂μ, f x < ∞) (g : α → ℝ≥0∞) :
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ := by
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, (f * g) a ∂μ := by
   let f' := hf.mk f
   calc
-    (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, g a ∂μ.withDensity f' := by
+    ∫⁻ a, g a ∂μ.withDensity f = ∫⁻ a, g a ∂μ.withDensity f' := by
       rw [withDensity_congr_ae hf.ae_eq_mk]
     _ = ∫⁻ a, (f' * g) a ∂μ := by
       apply lintegral_withDensity_eq_lintegral_mul_non_measurable _ hf.measurable_mk
@@ -1895,7 +1895,7 @@ theorem lintegral_withDensity_eq_lintegral_mul_non_measurable₀ (μ : Measure 
 theorem set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀ (μ : Measure α)
     {f : α → ℝ≥0∞} {s : Set α} (hf : AEMeasurable f (μ.restrict s)) (g : α → ℝ≥0∞)
     (hs : MeasurableSet s) (h'f : ∀ᵐ x ∂μ.restrict s, f x < ∞) :
-    (∫⁻ a in s, g a ∂μ.withDensity f) = ∫⁻ a in s, (f * g) a ∂μ := by
+    ∫⁻ a in s, g a ∂μ.withDensity f = ∫⁻ a in s, (f * g) a ∂μ := by
   rw [restrict_withDensity hs, lintegral_withDensity_eq_lintegral_mul_non_measurable₀ _ hf h'f]
 #align measure_theory.set_lintegral_with_density_eq_set_lintegral_mul_non_measurable₀ MeasureTheory.set_lintegral_withDensity_eq_set_lintegral_mul_non_measurable₀
 
@@ -1927,9 +1927,9 @@ theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ
 #align measure_theory.exists_pos_lintegral_lt_of_sigma_finite MeasureTheory.exists_pos_lintegral_lt_of_sigmaFinite
 
 theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞} (hf : Measurable[m] f) :
-    (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ := by
+    ∫⁻ a, f a ∂μ.trim hm = ∫⁻ a, f a ∂μ := by
   refine'
-    @Measurable.ennreal_induction α m (fun f => (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ) _ _ _ f hf
+    @Measurable.ennreal_induction α m (fun f => ∫⁻ a, f a ∂μ.trim hm = ∫⁻ a, f a ∂μ) _ _ _ f hf
   · intro c s hs
     rw [lintegral_indicator _ hs, lintegral_indicator _ (hm s hs), set_lintegral_const,
       set_lintegral_const]
@@ -1948,7 +1948,7 @@ theorem lintegral_trim {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
 #align measure_theory.lintegral_trim MeasureTheory.lintegral_trim
 
 theorem lintegral_trim_ae {μ : Measure α} (hm : m ≤ m0) {f : α → ℝ≥0∞}
-    (hf : AEMeasurable f (μ.trim hm)) : (∫⁻ a, f a ∂μ.trim hm) = ∫⁻ a, f a ∂μ := by
+    (hf : AEMeasurable f (μ.trim hm)) : ∫⁻ a, f a ∂μ.trim hm = ∫⁻ a, f a ∂μ := by
   rw [lintegral_congr_ae (ae_eq_of_ae_eq_trim hf.ae_eq_mk), lintegral_congr_ae hf.ae_eq_mk,
     lintegral_trim hm hf.measurable_mk]
 #align measure_theory.lintegral_trim_ae MeasureTheory.lintegral_trim_ae
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -1798,7 +1798,7 @@ theorem lintegral_withDensity_eq_lintegral_mul₀' {μ : Measure α} {f : α →
     (∫⁻ a, g a ∂μ.withDensity f) = ∫⁻ a, (f * g) a ∂μ := by
   let f' := hf.mk f
   have : μ.withDensity f = μ.withDensity f' := withDensity_congr_ae hf.ae_eq_mk
-  rw [this] at hg⊢
+  rw [this] at hg ⊢
   let g' := hg.mk g
   calc
     (∫⁻ a, g a ∂μ.withDensity f') = ∫⁻ a, g' a ∂μ.withDensity f' := lintegral_congr_ae hg.ae_eq_mk
@@ -1999,7 +1999,7 @@ theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm :
       · by_cases hxi : x ∈ S i <;> simp [hxi]
     · simp only [hx_mem, if_false]
       rw [mem_iUnion] at hx_mem
-      push_neg  at hx_mem
+      push_neg at hx_mem
       refine' le_antisymm (zero_le _) (iSup_le fun n => _)
       simp only [hx_mem n, if_false, nonpos_iff_eq_zero]
   · exact fun n => hf_meas.indicator (hm _ (hS_meas n))
feat: port Analysis.SpecialFunctions.JapaneseBracket (#4924)
Diff
@@ -311,6 +311,14 @@ theorem set_lintegral_mono {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurab
   set_lintegral_mono_ae hf hg (ae_of_all _ hfg)
 #align measure_theory.set_lintegral_mono MeasureTheory.set_lintegral_mono
 
+theorem set_lintegral_mono_ae' {s : Set α} {f g : α → ℝ≥0∞} (hs : MeasurableSet s)
+    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
+  lintegral_mono_ae <| (ae_restrict_iff' hs).2 hfg
+
+theorem set_lintegral_mono' {s : Set α} {f g : α → ℝ≥0∞} (hs : MeasurableSet s)
+    (hfg : ∀ x ∈ s, f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
+  set_lintegral_mono_ae' hs (ae_of_all _ hfg)
+
 theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ :=
   le_antisymm (lintegral_mono_ae <| h.le) (lintegral_mono_ae <| h.symm.le)
 #align measure_theory.lintegral_congr_ae MeasureTheory.lintegral_congr_ae
@@ -1224,6 +1232,11 @@ theorem lintegral_union {f : α → ℝ≥0∞} {A B : Set α} (hB : MeasurableS
   rw [restrict_union hAB hB, lintegral_add_measure]
 #align measure_theory.lintegral_union MeasureTheory.lintegral_union
 
+theorem lintegral_union_le (f : α → ℝ≥0∞) (s t : Set α) :
+    ∫⁻ a in s ∪ t, f a ∂μ ≤ ∫⁻ a in s, f a ∂μ + ∫⁻ a in t, f a ∂μ := by
+  rw [← lintegral_add_measure]
+  exact lintegral_mono' (restrict_union_le _ _) le_rfl
+
 theorem lintegral_inter_add_diff {B : Set α} (f : α → ℝ≥0∞) (A : Set α) (hB : MeasurableSet B) :
     (∫⁻ x in A ∩ B, f x ∂μ + ∫⁻ x in A \ B, f x ∂μ) = ∫⁻ x in A, f x ∂μ := by
   rw [← lintegral_add_measure, restrict_inter_add_diff _ hB]
chore: copy integral notation precedence from mathport (#4963)

Also drop some of the parentheses that are no longer needed.

Diff
@@ -100,42 +100,37 @@ irreducible_def lintegral {_ : MeasurableSpace α} (μ : Measure α) (f : α →
   and needs parentheses. We do not set the binding power of `r` to `0`, because then
   `∫⁻ x, f x = 0` will be parsed incorrectly. -/
 
-
--- mathport name: «expr∫⁻ , ∂ »
 @[inherit_doc MeasureTheory.lintegral]
-notation3 "∫⁻ "(...)", "r:(scoped f => f)" ∂"μ => lintegral μ r
+notation3 "∫⁻ "(...)", "r:60:(scoped f => f)" ∂"μ:70 => lintegral μ r
 
--- mathport name: «expr∫⁻ , »
 @[inherit_doc MeasureTheory.lintegral]
-notation3 "∫⁻ "(...)", "r:(scoped f => lintegral volume f) => r
+notation3 "∫⁻ "(...)", "r:60:(scoped f => lintegral volume f) => r
 
--- mathport name: «expr∫⁻ in , ∂ »
 @[inherit_doc MeasureTheory.lintegral]
-notation3 "∫⁻ "(...)" in "s", "r:(scoped f => f)" ∂"μ => lintegral (Measure.restrict μ s) r
+notation3"∫⁻ "(...)" in "s", "r:60:(scoped f => f)" ∂"μ:70 => lintegral (Measure.restrict μ s) r
 
--- mathport name: «expr∫⁻ in , »
 @[inherit_doc MeasureTheory.lintegral]
-notation3 "∫⁻ "(...)" in "s", "r:(scoped f => lintegral (Measure.restrict volume s) f) => r
+notation3"∫⁻ "(...)" in "s", "r:60:(scoped f => lintegral (Measure.restrict volume s) f) => r
 
 theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →ₛ ℝ≥0∞) (μ : Measure α) :
-    (∫⁻ a, f a ∂μ) = f.lintegral μ := by
+    ∫⁻ a, f a ∂μ = f.lintegral μ := by
   rw [MeasureTheory.lintegral]
-  exact
-    le_antisymm (iSup₂_le fun g hg => lintegral_mono hg <| le_rfl) (le_iSup₂_of_le f le_rfl le_rfl)
+  exact le_antisymm (iSup₂_le fun g hg => lintegral_mono hg <| le_rfl)
+    (le_iSup₂_of_le f le_rfl le_rfl)
 #align measure_theory.simple_func.lintegral_eq_lintegral MeasureTheory.SimpleFunc.lintegral_eq_lintegral
 
 @[mono]
 theorem lintegral_mono' {m : MeasurableSpace α} ⦃μ ν : Measure α⦄ (hμν : μ ≤ ν) ⦃f g : α → ℝ≥0∞⦄
-    (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂ν := by
+    (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂ν := by
   rw [lintegral, lintegral]
   exact iSup_mono fun φ => iSup_mono' fun hφ => ⟨le_trans hφ hfg, lintegral_mono (le_refl φ) hμν⟩
 #align measure_theory.lintegral_mono' MeasureTheory.lintegral_mono'
 
-theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
+theorem lintegral_mono ⦃f g : α → ℝ≥0∞⦄ (hfg : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono' (le_refl μ) hfg
 #align measure_theory.lintegral_mono MeasureTheory.lintegral_mono
 
-theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ :=
+theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ :=
   lintegral_mono fun a => ENNReal.coe_le_coe.2 (h a)
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
 
@@ -149,12 +144,12 @@ theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
 #align measure_theory.supr_lintegral_measurable_le_eq_lintegral MeasureTheory.iSup_lintegral_measurable_le_eq_lintegral
 
 theorem lintegral_mono_set {_ : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
-    (hst : s ⊆ t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
+    (hst : s ⊆ t) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set MeasureTheory.lintegral_mono_set
 
 theorem lintegral_mono_set' {_ : MeasurableSpace α} ⦃μ : Measure α⦄ {s t : Set α} {f : α → ℝ≥0∞}
-    (hst : s ≤ᵐ[μ] t) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in t, f x ∂μ :=
+    (hst : s ≤ᵐ[μ] t) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in t, f x ∂μ :=
   lintegral_mono' (Measure.restrict_mono' hst (le_refl μ)) (le_refl f)
 #align measure_theory.lintegral_mono_set' MeasureTheory.lintegral_mono_set'
 
@@ -163,12 +158,12 @@ theorem monotone_lintegral {_ : MeasurableSpace α} (μ : Measure α) : Monotone
 #align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegral
 
 @[simp]
-theorem lintegral_const (c : ℝ≥0∞) : (∫⁻ _, c ∂μ) = c * μ univ := by
+theorem lintegral_const (c : ℝ≥0∞) : ∫⁻ _, c ∂μ = c * μ univ := by
   rw [← SimpleFunc.const_lintegral, ← SimpleFunc.lintegral_eq_lintegral, SimpleFunc.coe_const]
   rfl
 #align measure_theory.lintegral_const MeasureTheory.lintegral_const
 
-theorem lintegral_zero : (∫⁻ _ : α, 0 ∂μ) = 0 := by simp
+theorem lintegral_zero : ∫⁻ _ : α, 0 ∂μ = 0 := by simp
 #align measure_theory.lintegral_zero MeasureTheory.lintegral_zero
 
 theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
@@ -176,23 +171,23 @@ theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
 #align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_fun
 
 -- @[simp] -- Porting note: simp can prove this
-theorem lintegral_one : (∫⁻ _, (1 : ℝ≥0∞) ∂μ) = μ univ := by rw [lintegral_const, one_mul]
+theorem lintegral_one : ∫⁻ _, (1 : ℝ≥0∞) ∂μ = μ univ := by rw [lintegral_const, one_mul]
 #align measure_theory.lintegral_one MeasureTheory.lintegral_one
 
-theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ _ in s, c ∂μ) = c * μ s := by
+theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : ∫⁻ _ in s, c ∂μ = c * μ s := by
   rw [lintegral_const, Measure.restrict_apply_univ]
 #align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_const
 
-theorem set_lintegral_one (s) : (∫⁻ _ in s, 1 ∂μ) = μ s := by rw [set_lintegral_const, one_mul]
+theorem set_lintegral_one (s) : ∫⁻ _ in s, 1 ∂μ = μ s := by rw [set_lintegral_const, one_mul]
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 
 theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
-    (∫⁻ _ in s, c ∂μ) < ∞ := by
+    ∫⁻ _ in s, c ∂μ < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
-theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ _, c ∂μ) < ∞ := by
+theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : ∫⁻ _, c ∂μ < ∞ := by
   simpa only [Measure.restrict_univ] using set_lintegral_const_lt_top (univ : Set α) hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
 
@@ -203,7 +198,7 @@ variable (μ)
 /-- For any function `f : α → ℝ≥0∞`, there exists a measurable function `g ≤ f` with the same
 integral. -/
 theorem exists_measurable_le_lintegral_eq (f : α → ℝ≥0∞) :
-    ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ := by
+    ∃ g : α → ℝ≥0∞, Measurable g ∧ g ≤ f ∧ ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ := by
   cases' eq_or_ne (∫⁻ a, f a ∂μ) 0 with h₀ h₀
   · exact ⟨0, measurable_zero, zero_le f, h₀.trans lintegral_zero.symm⟩
   rcases exists_seq_strictMono_tendsto' h₀.bot_lt with ⟨L, _, hLf, hL_tendsto⟩
@@ -225,7 +220,7 @@ end
 `φ : α →ₛ ℝ≥0∞` such that `φ ≤ f`. This lemma says that it suffices to take
 functions `φ : α →ₛ ℝ≥0`. -/
 theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : Measure α) :
-    (∫⁻ a, f a ∂μ) =
+    ∫⁻ a, f a ∂μ =
       ⨆ (φ : α →ₛ ℝ≥0) (_ : ∀ x, ↑(φ x) ≤ f x), (φ.map ((↑) : ℝ≥0 → ℝ≥0∞)).lintegral μ := by
   rw [lintegral]
   refine'
@@ -249,7 +244,7 @@ theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ
     simp only [hx, le_top]
 #align measure_theory.lintegral_eq_nnreal MeasureTheory.lintegral_eq_nnreal
 
-theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞)
+theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞)
     {ε : ℝ≥0∞} (hε : ε ≠ 0) :
     ∃ φ : α →ₛ ℝ≥0,
       (∀ x, ↑(φ x) ≤ f x) ∧
@@ -281,19 +276,19 @@ theorem iSup₂_lintegral_le {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι'
 #align measure_theory.supr₂_lintegral_le MeasureTheory.iSup₂_lintegral_le
 
 theorem le_iInf_lintegral {ι : Sort _} (f : ι → α → ℝ≥0∞) :
-    (∫⁻ a, ⨅ i, f i a ∂μ) ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by
+    ∫⁻ a, ⨅ i, f i a ∂μ ≤ ⨅ i, ∫⁻ a, f i a ∂μ := by
   simp only [← iInf_apply]
   exact (monotone_lintegral μ).map_iInf_le
 #align measure_theory.le_infi_lintegral MeasureTheory.le_iInf_lintegral
 
 theorem le_iInf₂_lintegral {ι : Sort _} {ι' : ι → Sort _} (f : ∀ i, ι' i → α → ℝ≥0∞) :
-    (∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ) ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
+    ∫⁻ a, ⨅ (i) (h : ι' i), f i h a ∂μ ≤ ⨅ (i) (h : ι' i), ∫⁻ a, f i h a ∂μ := by
   convert(monotone_lintegral μ).map_iInf₂_le f with a
   simp only [iInf_apply]
 #align measure_theory.le_infi₂_lintegral MeasureTheory.le_iInf₂_lintegral
 
 theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤ g a) :
-    (∫⁻ a, f a ∂μ) ≤ ∫⁻ a, g a ∂μ := by
+    ∫⁻ a, f a ∂μ ≤ ∫⁻ a, g a ∂μ := by
   rcases exists_measurable_superset_of_null h with ⟨t, hts, ht, ht0⟩
   have : ∀ᵐ x ∂μ, x ∉ t := measure_zero_iff_ae_nmem.1 ht0
   rw [lintegral, lintegral]
@@ -307,36 +302,36 @@ theorem lintegral_mono_ae {f g : α → ℝ≥0∞} (h : ∀ᵐ a ∂μ, f a ≤
 #align measure_theory.lintegral_mono_ae MeasureTheory.lintegral_mono_ae
 
 theorem set_lintegral_mono_ae {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
-    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
+    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
   lintegral_mono_ae <| (ae_restrict_iff <| measurableSet_le hf hg).2 hfg
 #align measure_theory.set_lintegral_mono_ae MeasureTheory.set_lintegral_mono_ae
 
 theorem set_lintegral_mono {s : Set α} {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g)
-    (hfg : ∀ x ∈ s, f x ≤ g x) : (∫⁻ x in s, f x ∂μ) ≤ ∫⁻ x in s, g x ∂μ :=
+    (hfg : ∀ x ∈ s, f x ≤ g x) : ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ :=
   set_lintegral_mono_ae hf hg (ae_of_all _ hfg)
 #align measure_theory.set_lintegral_mono MeasureTheory.set_lintegral_mono
 
-theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ :=
+theorem lintegral_congr_ae {f g : α → ℝ≥0∞} (h : f =ᵐ[μ] g) : ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ :=
   le_antisymm (lintegral_mono_ae <| h.le) (lintegral_mono_ae <| h.symm.le)
 #align measure_theory.lintegral_congr_ae MeasureTheory.lintegral_congr_ae
 
-theorem lintegral_congr {f g : α → ℝ≥0∞} (h : ∀ a, f a = g a) : (∫⁻ a, f a ∂μ) = ∫⁻ a, g a ∂μ := by
+theorem lintegral_congr {f g : α → ℝ≥0∞} (h : ∀ a, f a = g a) : ∫⁻ a, f a ∂μ = ∫⁻ a, g a ∂μ := by
   simp only [h]
 #align measure_theory.lintegral_congr MeasureTheory.lintegral_congr
 
 theorem set_lintegral_congr {f : α → ℝ≥0∞} {s t : Set α} (h : s =ᵐ[μ] t) :
-    (∫⁻ x in s, f x ∂μ) = ∫⁻ x in t, f x ∂μ := by rw [Measure.restrict_congr_set h]
+    ∫⁻ x in s, f x ∂μ = ∫⁻ x in t, f x ∂μ := by rw [Measure.restrict_congr_set h]
 #align measure_theory.set_lintegral_congr MeasureTheory.set_lintegral_congr
 
 theorem set_lintegral_congr_fun {f g : α → ℝ≥0∞} {s : Set α} (hs : MeasurableSet s)
-    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : (∫⁻ x in s, f x ∂μ) = ∫⁻ x in s, g x ∂μ := by
+    (hfg : ∀ᵐ x ∂μ, x ∈ s → f x = g x) : ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ := by
   rw [lintegral_congr_ae]
   rw [EventuallyEq]
   rwa [ae_restrict_iff' hs]
 #align measure_theory.set_lintegral_congr_fun MeasureTheory.set_lintegral_congr_fun
 
 theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
-    (∫⁻ x, ENNReal.ofReal (f x) ∂μ) ≤ ∫⁻ x, ‖f x‖₊ ∂μ := by
+    ∫⁻ x, ENNReal.ofReal (f x) ∂μ ≤ ∫⁻ x, ‖f x‖₊ ∂μ := by
   simp_rw [← ofReal_norm_eq_coe_nnnorm]
   refine' lintegral_mono fun x => ENNReal.ofReal_le_ofReal _
   rw [Real.norm_eq_abs]
@@ -344,21 +339,21 @@ theorem lintegral_ofReal_le_lintegral_nnnorm (f : α → ℝ) :
 #align measure_theory.lintegral_of_real_le_lintegral_nnnorm MeasureTheory.lintegral_ofReal_le_lintegral_nnnorm
 
 theorem lintegral_nnnorm_eq_of_ae_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ᵐ[μ] f) :
-    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ := by
+    ∫⁻ x, ‖f x‖₊ ∂μ = ∫⁻ x, ENNReal.ofReal (f x) ∂μ := by
   apply lintegral_congr_ae
   filter_upwards [h_nonneg]with x hx
   rw [Real.nnnorm_of_nonneg hx, ENNReal.ofReal_eq_coe_nnreal hx]
 #align measure_theory.lintegral_nnnorm_eq_of_ae_nonneg MeasureTheory.lintegral_nnnorm_eq_of_ae_nonneg
 
 theorem lintegral_nnnorm_eq_of_nonneg {f : α → ℝ} (h_nonneg : 0 ≤ f) :
-    (∫⁻ x, ‖f x‖₊ ∂μ) = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
+    ∫⁻ x, ‖f x‖₊ ∂μ = ∫⁻ x, ENNReal.ofReal (f x) ∂μ :=
   lintegral_nnnorm_eq_of_ae_nonneg (Filter.eventually_of_forall h_nonneg)
 #align measure_theory.lintegral_nnnorm_eq_of_nonneg MeasureTheory.lintegral_nnnorm_eq_of_nonneg
 
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence.
 See `lintegral_iSup_directed` for a more general form. -/
 theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n)) (h_mono : Monotone f) :
-    (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ := by
+    ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ := by
   set c : ℝ≥0 → ℝ≥0∞ := (↑)
   set F := fun a : α => ⨆ n, f n a
   have _ : Measurable F := measurable_iSup hf
@@ -430,7 +425,7 @@ theorem lintegral_iSup {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (
 /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. Version with
 ae_measurable functions. -/
 theorem lintegral_iSup' {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, AEMeasurable (f n) μ)
-    (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ := by
+    (h_mono : ∀ᵐ x ∂μ, Monotone fun n => f n x) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ := by
   simp_rw [← iSup_apply]
   let p : α → (ℕ → ℝ≥0∞) → Prop := fun _ f' => Monotone f'
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x := h_mono
@@ -454,7 +449,7 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
     Tendsto (fun n => ∫⁻ x, f n x ∂μ) atTop (𝓝 <| ∫⁻ x, F x ∂μ) := by
   have : Monotone fun n => ∫⁻ x, f n x ∂μ := fun i j hij =>
     lintegral_mono_ae (h_mono.mono fun x hx => hx hij)
-  suffices key : (∫⁻ x, F x ∂μ) = ⨆ n, ∫⁻ x, f n x ∂μ
+  suffices key : ∫⁻ x, F x ∂μ = ⨆ n, ∫⁻ x, f n x ∂μ
   · rw [key]
     exact tendsto_atTop_iSup this
   rw [← lintegral_iSup' hf h_mono]
@@ -465,9 +460,9 @@ theorem lintegral_tendsto_of_tendsto_of_monotone {f : ℕ → α → ℝ≥0∞}
 #align measure_theory.lintegral_tendsto_of_tendsto_of_monotone MeasureTheory.lintegral_tendsto_of_tendsto_of_monotone
 
 theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, f a ∂μ) = ⨆ n, (eapprox f n).lintegral μ :=
+    ∫⁻ a, f a ∂μ = ⨆ n, (eapprox f n).lintegral μ :=
   calc
-    (∫⁻ a, f a ∂μ) = ∫⁻ a, ⨆ n, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
+    ∫⁻ a, f a ∂μ = ∫⁻ a, ⨆ n, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
       congr; ext a; rw [iSup_eapprox_apply f hf]
     _ = ⨆ n, ∫⁻ a, (eapprox f n : α → ℝ≥0∞) a ∂μ := by
       rw [lintegral_iSup]
@@ -480,8 +475,8 @@ theorem lintegral_eq_iSup_eapprox_lintegral {f : α → ℝ≥0∞} (hf : Measur
 
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. This lemma states states this fact in terms of `ε` and `δ`. -/
-theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {ε : ℝ≥0∞}
-    (hε : ε ≠ 0) : ∃ δ > 0, ∀ s, μ s < δ → (∫⁻ x in s, f x ∂μ) < ε := by
+theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞) {ε : ℝ≥0∞}
+    (hε : ε ≠ 0) : ∃ δ > 0, ∀ s, μ s < δ → ∫⁻ x in s, f x ∂μ < ε := by
   rcases exists_between hε.bot_lt with ⟨ε₂, hε₂0 : 0 < ε₂, hε₂ε⟩
   rcases exists_between hε₂0 with ⟨ε₁, hε₁0, hε₁₂⟩
   rcases exists_simpleFunc_forall_lintegral_sub_lt_of_pos h hε₁0.ne' with ⟨φ, _, hφ⟩
@@ -512,7 +507,7 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
 
 /-- If `f` has finite integral, then `∫⁻ x in s, f x ∂μ` is absolutely continuous in `s`: it tends
 to zero as `μ s` tends to zero. -/
-theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x, f x ∂μ) ≠ ∞) {l : Filter ι}
+theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : ∫⁻ x, f x ∂μ ≠ ∞) {l : Filter ι}
     {s : ι → Set α} (hl : Tendsto (μ ∘ s) l (𝓝 0)) :
     Tendsto (fun i => ∫⁻ x in s i, f x ∂μ) l (𝓝 0) := by
   simp only [ENNReal.nhds_zero, tendsto_iInf, tendsto_principal, mem_Iio,
@@ -525,7 +520,7 @@ theorem tendsto_set_lintegral_zero {ι} {f : α → ℝ≥0∞} (h : (∫⁻ x,
 /-- The sum of the lower Lebesgue integrals of two functions is less than or equal to the integral
 of their sum. The other inequality needs one of these functions to be (a.e.-)measurable. -/
 theorem le_lintegral_add (f g : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂μ) + (∫⁻ a, g a ∂μ) ≤ ∫⁻ a, f a + g a ∂μ := by
+    ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ ≤ ∫⁻ a, f a + g a ∂μ := by
   simp only [lintegral]
   refine' ENNReal.biSup_add_biSup_le' (p := fun h : α →ₛ ℝ≥0∞ => h ≤ f)
     (q := fun h : α →ₛ ℝ≥0∞ => h ≤ g) ⟨0, zero_le f⟩ ⟨0, zero_le g⟩ fun f' hf' g' hg' => _
@@ -534,9 +529,9 @@ theorem le_lintegral_add (f g : α → ℝ≥0∞) :
 
 -- Use stronger lemmas `lintegral_add_left`/`lintegral_add_right` instead
 theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
   calc
-    (∫⁻ a, f a + g a ∂μ) =
+    ∫⁻ a, f a + g a ∂μ =
         ∫⁻ a, (⨆ n, (eapprox f n : α → ℝ≥0∞) a) + ⨆ n, (eapprox g n : α → ℝ≥0∞) a ∂μ :=
       by simp only [iSup_eapprox_apply, hf, hg]
     _ = ∫⁻ a, ⨆ n, (eapprox f n + eapprox g n : α → ℝ≥0∞) a ∂μ := by
@@ -559,7 +554,7 @@ theorem lintegral_add_aux {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
       refine' (ENNReal.iSup_add_iSup_of_monotone _ _).symm <;>
         · intro i j h
           exact SimpleFunc.lintegral_mono (monotone_eapprox _ h) (le_refl μ)
-    _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
+    _ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
       rw [lintegral_eq_iSup_eapprox_lintegral hf, lintegral_eq_iSup_eapprox_lintegral hg]
 #align measure_theory.lintegral_add_aux MeasureTheory.lintegral_add_aux
 
@@ -568,25 +563,25 @@ integral of `f + g` equals the sum of integrals. This lemma assumes that `f` is
 `MeasureTheory.lintegral_add_right` and primed versions of these lemmas. -/
 @[simp]
 theorem lintegral_add_left {f : α → ℝ≥0∞} (hf : Measurable f) (g : α → ℝ≥0∞) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
   refine' le_antisymm _ (le_lintegral_add _ _)
   rcases exists_measurable_le_lintegral_eq μ fun a => f a + g a with ⟨φ, hφm, hφ_le, hφ_eq⟩
   calc
-    (∫⁻ a, f a + g a ∂μ) = ∫⁻ a, φ a ∂μ := hφ_eq
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, φ a ∂μ := hφ_eq
     _ ≤ ∫⁻ a, f a + (φ a - f a) ∂μ := (lintegral_mono fun a => le_add_tsub)
-    _ = (∫⁻ a, f a ∂μ) + ∫⁻ a, φ a - f a ∂μ := (lintegral_add_aux hf (hφm.sub hf))
-    _ ≤ (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
+    _ = ∫⁻ a, f a ∂μ + ∫⁻ a, φ a - f a ∂μ := (lintegral_add_aux hf (hφm.sub hf))
+    _ ≤ ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
       add_le_add_left (lintegral_mono fun a => tsub_le_iff_left.2 <| hφ_le a) _
 #align measure_theory.lintegral_add_left MeasureTheory.lintegral_add_left
 
 theorem lintegral_add_left' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (g : α → ℝ≥0∞) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
   rw [lintegral_congr_ae hf.ae_eq_mk, ← lintegral_add_left hf.measurable_mk,
     lintegral_congr_ae (hf.ae_eq_mk.add (ae_eq_refl g))]
 #align measure_theory.lintegral_add_left' MeasureTheory.lintegral_add_left'
 
 theorem lintegral_add_right' (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : AEMeasurable g μ) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ := by
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ := by
   simpa only [add_comm] using lintegral_add_left' hg f
 #align measure_theory.lintegral_add_right' MeasureTheory.lintegral_add_right'
 
@@ -595,7 +590,7 @@ integral of `f + g` equals the sum of integrals. This lemma assumes that `g` is
 `MeasureTheory.lintegral_add_left` and primed versions of these lemmas. -/
 @[simp]
 theorem lintegral_add_right (f : α → ℝ≥0∞) {g : α → ℝ≥0∞} (hg : Measurable g) :
-    (∫⁻ a, f a + g a ∂μ) = (∫⁻ a, f a ∂μ) + ∫⁻ a, g a ∂μ :=
+    ∫⁻ a, f a + g a ∂μ = ∫⁻ a, f a ∂μ + ∫⁻ a, g a ∂μ :=
   lintegral_add_right' f hg.aemeasurable
 #align measure_theory.lintegral_add_right MeasureTheory.lintegral_add_right
 
@@ -629,13 +624,13 @@ theorem hasSum_lintegral_measure {ι} {_ : MeasurableSpace α} (f : α → ℝ
 
 @[simp]
 theorem lintegral_add_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ ν : Measure α) :
-    (∫⁻ a, f a ∂μ + ν) = (∫⁻ a, f a ∂μ) + ∫⁻ a, f a ∂ν := by
+    ∫⁻ a, f a ∂(μ + ν) = ∫⁻ a, f a ∂μ + ∫⁻ a, f a ∂ν := by
   simpa [tsum_fintype] using lintegral_sum_measure f fun b => cond b μ ν
 #align measure_theory.lintegral_add_measure MeasureTheory.lintegral_add_measure
 
 @[simp]
 theorem lintegral_finset_sum_measure {ι} {m : MeasurableSpace α} (s : Finset ι) (f : α → ℝ≥0∞)
-    (μ : ι → Measure α) : (∫⁻ a, f a ∂∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i := by
+    (μ : ι → Measure α) : ∫⁻ a, f a ∂(∑ i in s, μ i) = ∑ i in s, ∫⁻ a, f a ∂μ i := by
   rw [← Measure.sum_coe_finset, lintegral_sum_measure, ← Finset.tsum_subtype']
   rfl
 #align measure_theory.lintegral_finset_sum_measure MeasureTheory.lintegral_finset_sum_measure
@@ -646,23 +641,23 @@ theorem lintegral_zero_measure {m : MeasurableSpace α} (f : α → ℝ≥0∞)
   bot_unique <| by simp [lintegral]
 #align measure_theory.lintegral_zero_measure MeasureTheory.lintegral_zero_measure
 
-theorem set_lintegral_empty (f : α → ℝ≥0∞) : (∫⁻ x in ∅, f x ∂μ) = 0 := by
+theorem set_lintegral_empty (f : α → ℝ≥0∞) : ∫⁻ x in ∅, f x ∂μ = 0 := by
   rw [Measure.restrict_empty, lintegral_zero_measure]
 #align measure_theory.set_lintegral_empty MeasureTheory.set_lintegral_empty
 
-theorem set_lintegral_univ (f : α → ℝ≥0∞) : (∫⁻ x in univ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
+theorem set_lintegral_univ (f : α → ℝ≥0∞) : ∫⁻ x in univ, f x ∂μ = ∫⁻ x, f x ∂μ := by
   rw [Measure.restrict_univ]
 #align measure_theory.set_lintegral_univ MeasureTheory.set_lintegral_univ
 
 theorem set_lintegral_measure_zero (s : Set α) (f : α → ℝ≥0∞) (hs' : μ s = 0) :
-    (∫⁻ x in s, f x ∂μ) = 0 := by
+    ∫⁻ x in s, f x ∂μ = 0 := by
   convert lintegral_zero_measure _
   exact Measure.restrict_eq_zero.2 hs'
 #align measure_theory.set_lintegral_measure_zero MeasureTheory.set_lintegral_measure_zero
 
 theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
     (hf : ∀ b ∈ s, AEMeasurable (f b) μ) :
-    (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ := by
+    ∫⁻ a, ∑ b in s, f b a ∂μ = ∑ b in s, ∫⁻ a, f b a ∂μ := by
   induction' s using Finset.induction_on with a s has ih
   · simp
   · simp only [Finset.sum_insert has]
@@ -671,15 +666,15 @@ theorem lintegral_finset_sum' (s : Finset β) {f : β → α → ℝ≥0∞}
 #align measure_theory.lintegral_finset_sum' MeasureTheory.lintegral_finset_sum'
 
 theorem lintegral_finset_sum (s : Finset β) {f : β → α → ℝ≥0∞} (hf : ∀ b ∈ s, Measurable (f b)) :
-    (∫⁻ a, ∑ b in s, f b a ∂μ) = ∑ b in s, ∫⁻ a, f b a ∂μ :=
+    ∫⁻ a, ∑ b in s, f b a ∂μ = ∑ b in s, ∫⁻ a, f b a ∂μ :=
   lintegral_finset_sum' s fun b hb => (hf b hb).aemeasurable
 #align measure_theory.lintegral_finset_sum MeasureTheory.lintegral_finset_sum
 
 @[simp]
 theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ :=
+    ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ :=
   calc
-    (∫⁻ a, r * f a ∂μ) = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ := by
+    ∫⁻ a, r * f a ∂μ = ∫⁻ a, ⨆ n, (const α r * eapprox f n) a ∂μ := by
       congr
       funext a
       rw [← iSup_eapprox_apply f hf, ENNReal.mul_iSup]
@@ -697,9 +692,9 @@ theorem lintegral_const_mul (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measu
 #align measure_theory.lintegral_const_mul MeasureTheory.lintegral_const_mul
 
 theorem lintegral_const_mul'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
-    (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ := by
-  have A : (∫⁻ a, f a ∂μ) = ∫⁻ a, hf.mk f a ∂μ := lintegral_congr_ae hf.ae_eq_mk
-  have B : (∫⁻ a, r * f a ∂μ) = ∫⁻ a, r * hf.mk f a ∂μ :=
+    ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ := by
+  have A : ∫⁻ a, f a ∂μ = ∫⁻ a, hf.mk f a ∂μ := lintegral_congr_ae hf.ae_eq_mk
+  have B : ∫⁻ a, r * f a ∂μ = ∫⁻ a, r * hf.mk f a ∂μ :=
     lintegral_congr_ae (EventuallyEq.fun_comp hf.ae_eq_mk _)
   rw [A, B, lintegral_const_mul _ hf.measurable_mk]
 #align measure_theory.lintegral_const_mul'' MeasureTheory.lintegral_const_mul''
@@ -717,7 +712,7 @@ theorem lintegral_const_mul_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) :
 #align measure_theory.lintegral_const_mul_le MeasureTheory.lintegral_const_mul_le
 
 theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
-    (∫⁻ a, r * f a ∂μ) = r * ∫⁻ a, f a ∂μ := by
+    ∫⁻ a, r * f a ∂μ = r * ∫⁻ a, f a ∂μ := by
   by_cases h : r = 0
   · simp [h]
   apply le_antisymm _ (lintegral_const_mul_le r f)
@@ -731,11 +726,11 @@ theorem lintegral_const_mul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r 
 #align measure_theory.lintegral_const_mul' MeasureTheory.lintegral_const_mul'
 
 theorem lintegral_mul_const (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
+    ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul r hf]
 #align measure_theory.lintegral_mul_const MeasureTheory.lintegral_mul_const
 
 theorem lintegral_mul_const'' (r : ℝ≥0∞) {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
-    (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
+    ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul'' r hf]
 #align measure_theory.lintegral_mul_const'' MeasureTheory.lintegral_mul_const''
 
 theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫⁻ a, f a ∂μ) * r ≤ ∫⁻ a, f a * r ∂μ :=
@@ -743,7 +738,7 @@ theorem lintegral_mul_const_le (r : ℝ≥0∞) (f : α → ℝ≥0∞) : (∫
 #align measure_theory.lintegral_mul_const_le MeasureTheory.lintegral_mul_const_le
 
 theorem lintegral_mul_const' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ ∞) :
-    (∫⁻ a, f a * r ∂μ) = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul' r f hr]
+    ∫⁻ a, f a * r ∂μ = (∫⁻ a, f a ∂μ) * r := by simp_rw [mul_comm, lintegral_const_mul' r f hr]
 #align measure_theory.lintegral_mul_const' MeasureTheory.lintegral_mul_const'
 
 /- A double integral of a product where each factor contains only one variable
@@ -756,19 +751,19 @@ theorem lintegral_lintegral_mul {β} [MeasurableSpace β] {ν : Measure β} {f :
 
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₁ {f f' : α → β} (h : f =ᵐ[μ] f') (g : β → ℝ≥0∞) :
-    (∫⁻ a, g (f a) ∂μ) = ∫⁻ a, g (f' a) ∂μ :=
+    ∫⁻ a, g (f a) ∂μ = ∫⁻ a, g (f' a) ∂μ :=
   lintegral_congr_ae <| h.mono fun a h => by dsimp only; rw [h]
 #align measure_theory.lintegral_rw₁ MeasureTheory.lintegral_rw₁
 
 -- TODO: Need a better way of rewriting inside of a integral
 theorem lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁ : f₁ =ᵐ[μ] f₁') (h₂ : f₂ =ᵐ[μ] f₂')
-    (g : β → γ → ℝ≥0∞) : (∫⁻ a, g (f₁ a) (f₂ a) ∂μ) = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
+    (g : β → γ → ℝ≥0∞) : ∫⁻ a, g (f₁ a) (f₂ a) ∂μ = ∫⁻ a, g (f₁' a) (f₂' a) ∂μ :=
   lintegral_congr_ae <| h₁.mp <| h₂.mono fun _ h₂ h₁ => by dsimp only; rw [h₁, h₂]
 #align measure_theory.lintegral_rw₂ MeasureTheory.lintegral_rw₂
 
 @[simp]
 theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : MeasurableSet s) :
-    (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ := by
+    ∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ := by
   simp only [lintegral, ← restrict_lintegral_eq_lintegral_restrict _ hs, iSup_subtype']
   apply le_antisymm <;> refine' iSup_mono' (Subtype.forall.2 fun φ hφ => _)
   · refine' ⟨⟨φ, le_trans hφ (indicator_le_self _ _)⟩, _⟩
@@ -782,19 +777,19 @@ theorem lintegral_indicator (f : α → ℝ≥0∞) {s : Set α} (hs : Measurabl
 #align measure_theory.lintegral_indicator MeasureTheory.lintegral_indicator
 
 theorem lintegral_indicator₀ (f : α → ℝ≥0∞) {s : Set α} (hs : NullMeasurableSet s μ) :
-    (∫⁻ a, s.indicator f a ∂μ) = ∫⁻ a in s, f a ∂μ := by
+    ∫⁻ a, s.indicator f a ∂μ = ∫⁻ a in s, f a ∂μ := by
   rw [← lintegral_congr_ae (indicator_ae_eq_of_ae_eq_set hs.toMeasurable_ae_eq),
     lintegral_indicator _ (measurableSet_toMeasurable _ _),
     Measure.restrict_congr_set hs.toMeasurable_ae_eq]
 #align measure_theory.lintegral_indicator₀ MeasureTheory.lintegral_indicator₀
 
 theorem lintegral_indicator_const {s : Set α} (hs : MeasurableSet s) (c : ℝ≥0∞) :
-    (∫⁻ a, s.indicator (fun _ => c) a ∂μ) = c * μ s := by
+    ∫⁻ a, s.indicator (fun _ => c) a ∂μ = c * μ s := by
   rw [lintegral_indicator _ hs, set_lintegral_const]
 #align measure_theory.lintegral_indicator_const MeasureTheory.lintegral_indicator_const
 
 theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r : ℝ≥0∞) :
-    (∫⁻ x in { x | f x = r }, f x ∂μ) = r * μ { x | f x = r } := by
+    ∫⁻ x in { x | f x = r }, f x ∂μ = r * μ { x | f x = r } := by
   have : ∀ᵐ x ∂μ, x ∈ { x | f x = r } → f x = r := ae_of_all μ fun _ hx => hx
   rw [set_lintegral_congr_fun _ this]
   dsimp
@@ -806,12 +801,12 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
 Markov's inequality because we only assume measurability of `g`, not `f`. -/
 theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hle : f ≤ᵐ[μ] g)
     (hg : AEMeasurable g μ) (ε : ℝ≥0∞) :
-    (∫⁻ a, f a ∂μ) + ε * μ { x | f x + ε ≤ g x } ≤ ∫⁻ a, g a ∂μ := by
+    ∫⁻ a, f a ∂μ + ε * μ { x | f x + ε ≤ g x } ≤ ∫⁻ a, g a ∂μ := by
   rcases exists_measurable_le_lintegral_eq μ f with ⟨φ, hφm, hφ_le, hφ_eq⟩
   calc
-    (∫⁻ x, f x ∂μ) + ε * μ { x | f x + ε ≤ g x } = (∫⁻ x, φ x ∂μ) + ε * μ { x | f x + ε ≤ g x } :=
+    ∫⁻ x, f x ∂μ + ε * μ { x | f x + ε ≤ g x } = ∫⁻ x, φ x ∂μ + ε * μ { x | f x + ε ≤ g x } :=
       by rw [hφ_eq]
-    _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ { x | φ x + ε ≤ g x } := by
+    _ ≤ ∫⁻ x, φ x ∂μ + ε * μ { x | φ x + ε ≤ g x } := by
       gcongr
       exact measure_mono fun x => (add_le_add_right (hφ_le _) _).trans
     _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ := by
@@ -837,7 +832,7 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
 #align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
 
 theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
-    (hμf : 0 < μ { x | f x = ∞ }) : (∫⁻ x, f x ∂μ) = ∞ :=
+    (hμf : 0 < μ { x | f x = ∞ }) : ∫⁻ x, f x ∂μ = ∞ :=
   eq_top_iff.mpr <|
     calc
       ∞ = ∞ * μ { x | ∞ ≤ f x } := by simp [mul_eq_top, hμf.ne.symm]
@@ -852,12 +847,12 @@ theorem meas_ge_le_lintegral_div {f : α → ℝ≥0∞} (hf : AEMeasurable f μ
     exact mul_meas_ge_le_lintegral₀ hf ε
 #align measure_theory.meas_ge_le_lintegral_div MeasureTheory.meas_ge_le_lintegral_div
 
-theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : (∫⁻ x, f x ∂μ) ≠ ∞)
-    (hg : AEMeasurable g μ) (hgf : (∫⁻ x, g x ∂μ) ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g := by
+theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ[μ] g) (hf : ∫⁻ x, f x ∂μ ≠ ∞)
+    (hg : AEMeasurable g μ) (hgf : ∫⁻ x, g x ∂μ ≤ ∫⁻ x, f x ∂μ) : f =ᵐ[μ] g := by
   have : ∀ n : ℕ, ∀ᵐ x ∂μ, g x < f x + (n : ℝ≥0∞)⁻¹ := by
     intro n
     simp only [ae_iff, not_lt]
-    have : (∫⁻ x, f x ∂μ) + (↑n)⁻¹ * μ { x : α | f x + (n : ℝ≥0∞)⁻¹ ≤ g x } ≤ ∫⁻ x, f x ∂μ :=
+    have : ∫⁻ x, f x ∂μ + (↑n)⁻¹ * μ { x : α | f x + (n : ℝ≥0∞)⁻¹ ≤ g x } ≤ ∫⁻ x, f x ∂μ :=
       (lintegral_add_mul_meas_add_le_le_lintegral hfg hg n⁻¹).trans hgf
     rw [(ENNReal.cancel_of_ne hf).add_le_iff_nonpos_right, nonpos_iff_eq_zero, mul_eq_zero] at this
     exact this.resolve_left (ENNReal.inv_ne_zero.2 (ENNReal.nat_ne_top _))
@@ -870,8 +865,8 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
 
 @[simp]
 theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
-    (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
-  have : (∫⁻ _ : α, 0 ∂μ) ≠ ∞ := by simp [lintegral_zero, zero_ne_top]
+    ∫⁻ a, f a ∂μ = 0 ↔ f =ᵐ[μ] 0 :=
+  have : ∫⁻ _ : α, 0 ∂μ ≠ ∞ := by simp [lintegral_zero, zero_ne_top]
   ⟨fun h =>
     (ae_eq_of_ae_le_of_lintegral_le (ae_of_all _ <| zero_le f) this hf
         (h.trans lintegral_zero.symm).le).symm,
@@ -879,7 +874,7 @@ theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ)
 #align measure_theory.lintegral_eq_zero_iff' MeasureTheory.lintegral_eq_zero_iff'
 
 @[simp]
-theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
+theorem lintegral_eq_zero_iff {f : α → ℝ≥0∞} (hf : Measurable f) : ∫⁻ a, f a ∂μ = 0 ↔ f =ᵐ[μ] 0 :=
   lintegral_eq_zero_iff' hf.aemeasurable
 #align measure_theory.lintegral_eq_zero_iff MeasureTheory.lintegral_eq_zero_iff
 
@@ -890,13 +885,13 @@ theorem lintegral_pos_iff_support {f : α → ℝ≥0∞} (hf : Measurable f) :
 
 /-- Weaker version of the monotone convergence theorem-/
 theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurable (f n))
-    (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : (∫⁻ a, ⨆ n, f n a ∂μ) = ⨆ n, ∫⁻ a, f n a ∂μ :=
+    (h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f n.succ a) : ∫⁻ a, ⨆ n, f n a ∂μ = ⨆ n, ∫⁻ a, f n a ∂μ :=
   let ⟨s, hs⟩ := exists_measurable_superset_of_null (ae_iff.1 (ae_all_iff.2 h_mono))
   let g n a := if a ∈ s then 0 else f n a
   have g_eq_f : ∀ᵐ a ∂μ, ∀ n, g n a = f n a :=
     (measure_zero_iff_ae_nmem.1 hs.2.2).mono fun a ha n => if_neg ha
   calc
-    (∫⁻ a, ⨆ n, f n a ∂μ) = ∫⁻ a, ⨆ n, g n a ∂μ :=
+    ∫⁻ a, ⨆ n, f n a ∂μ = ∫⁻ a, ⨆ n, g n a ∂μ :=
       lintegral_congr_ae <| g_eq_f.mono fun a ha => by simp only [ha]
     _ = ⨆ n, ∫⁻ a, g n a ∂μ :=
       (lintegral_iSup (fun n => measurable_const.piecewise hs.2.1 (hf n))
@@ -907,22 +902,22 @@ theorem lintegral_iSup_ae {f : ℕ → α → ℝ≥0∞} (hf : ∀ n, Measurabl
     _ = ⨆ n, ∫⁻ a, f n a ∂μ := by simp only [lintegral_congr_ae (g_eq_f.mono fun _a ha => ha _)]
 #align measure_theory.lintegral_supr_ae MeasureTheory.lintegral_iSup_ae
 
-theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
-    (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ := by
+theorem lintegral_sub' {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ) (hg_fin : ∫⁻ a, g a ∂μ ≠ ∞)
+    (h_le : g ≤ᵐ[μ] f) : ∫⁻ a, f a - g a ∂μ = ∫⁻ a, f a ∂μ - ∫⁻ a, g a ∂μ := by
   refine' ENNReal.eq_sub_of_add_eq hg_fin _
   rw [← lintegral_add_right' _ hg]
   exact lintegral_congr_ae (h_le.mono fun x hx => tsub_add_cancel_of_le hx)
 #align measure_theory.lintegral_sub' MeasureTheory.lintegral_sub'
 
-theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : (∫⁻ a, g a ∂μ) ≠ ∞)
-    (h_le : g ≤ᵐ[μ] f) : (∫⁻ a, f a - g a ∂μ) = (∫⁻ a, f a ∂μ) - ∫⁻ a, g a ∂μ :=
+theorem lintegral_sub {f g : α → ℝ≥0∞} (hg : Measurable g) (hg_fin : ∫⁻ a, g a ∂μ ≠ ∞)
+    (h_le : g ≤ᵐ[μ] f) : ∫⁻ a, f a - g a ∂μ = ∫⁻ a, f a ∂μ - ∫⁻ a, g a ∂μ :=
   lintegral_sub' hg.aemeasurable hg_fin h_le
 #align measure_theory.lintegral_sub MeasureTheory.lintegral_sub
 
 theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
-    ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ := by
+    (∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ := by
   rw [tsub_le_iff_right]
-  by_cases hfi : (∫⁻ x, f x ∂μ) = ∞
+  by_cases hfi : ∫⁻ x, f x ∂μ = ∞
   · rw [hfi, add_top]
     exact le_top
   · rw [← lintegral_add_right' _ hf]
@@ -930,49 +925,49 @@ theorem lintegral_sub_le' (f g : α → ℝ≥0∞) (hf : AEMeasurable f μ) :
 #align measure_theory.lintegral_sub_le' MeasureTheory.lintegral_sub_le'
 
 theorem lintegral_sub_le (f g : α → ℝ≥0∞) (hf : Measurable f) :
-    ((∫⁻ x, g x ∂μ) - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
+    (∫⁻ x, g x ∂μ - ∫⁻ x, f x ∂μ) ≤ ∫⁻ x, g x - f x ∂μ :=
   lintegral_sub_le' f g hf.aemeasurable
 #align measure_theory.lintegral_sub_le MeasureTheory.lintegral_sub_le
 
 theorem lintegral_strict_mono_of_ae_le_of_frequently_ae_lt {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
-    (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
-    (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ := by
+    (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g) (h : ∃ᵐ x ∂μ, f x ≠ g x) :
+    ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ := by
   contrapose! h
   simp only [not_frequently, Ne.def, Classical.not_not]
   exact ae_eq_of_ae_le_of_lintegral_le h_le hfi hg h
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt MeasureTheory.lintegral_strict_mono_of_ae_le_of_frequently_ae_lt
 
 theorem lintegral_strict_mono_of_ae_le_of_ae_lt_on {f g : α → ℝ≥0∞} (hg : AEMeasurable g μ)
-    (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
-    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ :=
+    (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h_le : f ≤ᵐ[μ] g) {s : Set α} (hμs : μ s ≠ 0)
+    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ :=
   lintegral_strict_mono_of_ae_le_of_frequently_ae_lt hg hfi h_le <|
     ((frequently_ae_mem_iff.2 hμs).and_eventually h).mono fun _x hx => (hx.2 hx.1).ne
 #align measure_theory.lintegral_strict_mono_of_ae_le_of_ae_lt_on MeasureTheory.lintegral_strict_mono_of_ae_le_of_ae_lt_on
 
 theorem lintegral_strict_mono {f g : α → ℝ≥0∞} (hμ : μ ≠ 0) (hg : AEMeasurable g μ)
-    (hfi : (∫⁻ x, f x ∂μ) ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : (∫⁻ x, f x ∂μ) < ∫⁻ x, g x ∂μ := by
+    (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (h : ∀ᵐ x ∂μ, f x < g x) : ∫⁻ x, f x ∂μ < ∫⁻ x, g x ∂μ := by
   rw [Ne.def, ← Measure.measure_univ_eq_zero] at hμ
   refine' lintegral_strict_mono_of_ae_le_of_ae_lt_on hg hfi (ae_le_of_ae_lt h) hμ _
   simpa using h
 #align measure_theory.lintegral_strict_mono MeasureTheory.lintegral_strict_mono
 
 theorem set_lintegral_strict_mono {f g : α → ℝ≥0∞} {s : Set α} (hsm : MeasurableSet s)
-    (hs : μ s ≠ 0) (hg : Measurable g) (hfi : (∫⁻ x in s, f x ∂μ) ≠ ∞)
-    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : (∫⁻ x in s, f x ∂μ) < ∫⁻ x in s, g x ∂μ :=
+    (hs : μ s ≠ 0) (hg : Measurable g) (hfi : ∫⁻ x in s, f x ∂μ ≠ ∞)
+    (h : ∀ᵐ x ∂μ, x ∈ s → f x < g x) : ∫⁻ x in s, f x ∂μ < ∫⁻ x in s, g x ∂μ :=
   lintegral_strict_mono (by simp [hs]) hg.aemeasurable hfi ((ae_restrict_iff' hsm).mpr h)
 #align measure_theory.set_lintegral_strict_mono MeasureTheory.set_lintegral_strict_mono
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n))
-    (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) :
-    (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
-  have fn_le_f0 : (∫⁻ a, ⨅ n, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ :=
+    (h_mono : ∀ n : ℕ, f n.succ ≤ᵐ[μ] f n) (h_fin : ∫⁻ a, f 0 a ∂μ ≠ ∞) :
+    ∫⁻ a, ⨅ n, f n a ∂μ = ⨅ n, ∫⁻ a, f n a ∂μ :=
+  have fn_le_f0 : ∫⁻ a, ⨅ n, f n a ∂μ ≤ ∫⁻ a, f 0 a ∂μ :=
     lintegral_mono fun a => iInf_le_of_le 0 le_rfl
   have fn_le_f0' : (⨅ n, ∫⁻ a, f n a ∂μ) ≤ ∫⁻ a, f 0 a ∂μ := iInf_le_of_le 0 le_rfl
   (ENNReal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 <|
-    show ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ from
+    show (∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ from
       calc
-        ((∫⁻ a, f 0 a ∂μ) - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
+        (∫⁻ a, f 0 a ∂μ - ∫⁻ a, ⨅ n, f n a ∂μ) = ∫⁻ a, f 0 a - ⨅ n, f n a ∂μ :=
           (lintegral_sub (measurable_iInf h_meas)
               (ne_top_of_le_ne_top h_fin <| lintegral_mono fun a => iInf_le _ _)
               (ae_of_all _ fun a => iInf_le _ _)).symm
@@ -980,7 +975,7 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
         _ = ⨆ n, ∫⁻ a, f 0 a - f n a ∂μ :=
           (lintegral_iSup_ae (fun n => (h_meas 0).sub (h_meas n)) fun n =>
             (h_mono n).mono fun a ha => tsub_le_tsub le_rfl ha)
-        _ = ⨆ n, (∫⁻ a, f 0 a ∂μ) - ∫⁻ a, f n a ∂μ :=
+        _ = ⨆ n, ∫⁻ a, f 0 a ∂μ - ∫⁻ a, f n a ∂μ :=
           (have h_mono : ∀ᵐ a ∂μ, ∀ n : ℕ, f n.succ a ≤ f n a := ae_all_iff.2 h_mono
           have h_mono : ∀ n, ∀ᵐ a ∂μ, f n a ≤ f 0 a := fun n =>
             h_mono.mono fun a h => by
@@ -990,20 +985,20 @@ theorem lintegral_iInf_ae {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measu
             funext fun n =>
               lintegral_sub (h_meas _) (ne_top_of_le_ne_top h_fin <| lintegral_mono_ae <| h_mono n)
                 (h_mono n))
-        _ = (∫⁻ a, f 0 a ∂μ) - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_iInf.symm
+        _ = ∫⁻ a, f 0 a ∂μ - ⨅ n, ∫⁻ a, f n a ∂μ := ENNReal.sub_iInf.symm
 #align measure_theory.lintegral_infi_ae MeasureTheory.lintegral_iInf_ae
 
 /-- Monotone convergence theorem for nonincreasing sequences of functions -/
 theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) (h_anti : Antitone f)
-    (h_fin : (∫⁻ a, f 0 a ∂μ) ≠ ∞) : (∫⁻ a, ⨅ n, f n a ∂μ) = ⨅ n, ∫⁻ a, f n a ∂μ :=
+    (h_fin : ∫⁻ a, f 0 a ∂μ ≠ ∞) : ∫⁻ a, ⨅ n, f n a ∂μ = ⨅ n, ∫⁻ a, f n a ∂μ :=
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
 /-- Known as Fatou's lemma, version with `AEMeasurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
-    (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
+    ∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   calc
-    (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
+    ∫⁻ a, liminf (fun n => f n a) atTop ∂μ = ∫⁻ a, ⨆ n : ℕ, ⨅ i ≥ n, f i a ∂μ := by
       simp only [liminf_eq_iSup_iInf_of_nat]
     _ = ⨆ n : ℕ, ∫⁻ a, ⨅ i ≥ n, f i a ∂μ :=
       (lintegral_iSup' (fun n => aemeasurable_biInf _ (to_countable _) h_meas)
@@ -1015,12 +1010,12 @@ theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AE
 
 /-- Known as Fatou's lemma -/
 theorem lintegral_liminf_le {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurable (f n)) :
-    (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
+    ∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   lintegral_liminf_le' fun n => (h_meas n).aemeasurable
 #align measure_theory.lintegral_liminf_le MeasureTheory.lintegral_liminf_le
 
 theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0∞} (hf_meas : ∀ n, Measurable (f n))
-    (h_bound : ∀ n, f n ≤ᵐ[μ] g) (h_fin : (∫⁻ a, g a ∂μ) ≠ ∞) :
+    (h_bound : ∀ n, f n ≤ᵐ[μ] g) (h_fin : ∫⁻ a, g a ∂μ ≠ ∞) :
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop ≤ ∫⁻ a, limsup (fun n => f n a) atTop ∂μ :=
   calc
     limsup (fun n => ∫⁻ a, f n a ∂μ) atTop = ⨅ n : ℕ, ⨆ i ≥ n, ∫⁻ a, f i a ∂μ :=
@@ -1041,11 +1036,11 @@ theorem limsup_lintegral_le {f : ℕ → α → ℝ≥0∞} {g : α → ℝ≥0
 /-- Dominated convergence theorem for nonnegative functions -/
 theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
     (bound : α → ℝ≥0∞) (hF_meas : ∀ n, Measurable (F n)) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
-    (h_fin : (∫⁻ a, bound a ∂μ) ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
+    (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
     Tendsto (fun n => ∫⁻ a, F n a ∂μ) atTop (𝓝 (∫⁻ a, f a ∂μ)) :=
   tendsto_of_le_liminf_of_limsup_le
     (calc
-      (∫⁻ a, f a ∂μ) = ∫⁻ a, liminf (fun n : ℕ => F n a) atTop ∂μ :=
+      ∫⁻ a, f a ∂μ = ∫⁻ a, liminf (fun n : ℕ => F n a) atTop ∂μ :=
         lintegral_congr_ae <| h_lim.mono fun a h => h.liminf_eq.symm
       _ ≤ liminf (fun n => ∫⁻ a, F n a ∂μ) atTop := lintegral_liminf_le hF_meas
       )
@@ -1060,9 +1055,9 @@ theorem tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ℝ≥0
 measurable. -/
 theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0∞} {f : α → ℝ≥0∞}
     (bound : α → ℝ≥0∞) (hF_meas : ∀ n, AEMeasurable (F n) μ) (h_bound : ∀ n, F n ≤ᵐ[μ] bound)
-    (h_fin : (∫⁻ a, bound a ∂μ) ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
+    (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) atTop (𝓝 (f a))) :
     Tendsto (fun n => ∫⁻ a, F n a ∂μ) atTop (𝓝 (∫⁻ a, f a ∂μ)) := by
-  have : ∀ n, (∫⁻ a, F n a ∂μ) = ∫⁻ a, (hF_meas n).mk (F n) a ∂μ := fun n =>
+  have : ∀ n, ∫⁻ a, F n a ∂μ = ∫⁻ a, (hF_meas n).mk (F n) a ∂μ := fun n =>
     lintegral_congr_ae (hF_meas n).ae_eq_mk
   simp_rw [this]
   apply
@@ -1081,7 +1076,7 @@ theorem tendsto_lintegral_of_dominated_convergence' {F : ℕ → α → ℝ≥0
 theorem tendsto_lintegral_filter_of_dominated_convergence {ι} {l : Filter ι}
     [l.IsCountablyGenerated] {F : ι → α → ℝ≥0∞} {f : α → ℝ≥0∞} (bound : α → ℝ≥0∞)
     (hF_meas : ∀ᶠ n in l, Measurable (F n)) (h_bound : ∀ᶠ n in l, ∀ᵐ a ∂μ, F n a ≤ bound a)
-    (h_fin : (∫⁻ a, bound a ∂μ) ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a))) :
+    (h_fin : ∫⁻ a, bound a ∂μ ≠ ∞) (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => F n a) l (𝓝 (f a))) :
     Tendsto (fun n => ∫⁻ a, F n a ∂μ) l (𝓝 <| ∫⁻ a, f a ∂μ) := by
   rw [tendsto_iff_seq_tendsto]
   intro x xl
@@ -1115,7 +1110,7 @@ open Encodable
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type -/
 theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α → ℝ≥0∞}
     (hf : ∀ b, Measurable (f b)) (h_directed : Directed (· ≤ ·) f) :
-    (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ := by
+    ∫⁻ a, ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ a, f b a ∂μ := by
   cases nonempty_encodable β
   cases isEmpty_or_nonempty β
   · simp [iSup_of_empty]
@@ -1125,7 +1120,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
     refine' le_antisymm (iSup_le fun b => _) (iSup_le fun n => le_iSup (fun n => f n a) _)
     exact le_iSup_of_le (encode b + 1) (h_directed.le_sequence b a)
   calc
-    (∫⁻ a, ⨆ b, f b a ∂μ) = ∫⁻ a, ⨆ n, f (h_directed.sequence f n) a ∂μ := by simp only [this]
+    ∫⁻ a, ⨆ b, f b a ∂μ = ∫⁻ a, ⨆ n, f (h_directed.sequence f n) a ∂μ := by simp only [this]
     _ = ⨆ n, ∫⁻ a, f (h_directed.sequence f n) a ∂μ :=
       (lintegral_iSup (fun n => hf _) h_directed.sequence_mono)
     _ = ⨆ b, ∫⁻ a, f b a ∂μ := by
@@ -1136,7 +1131,7 @@ theorem lintegral_iSup_directed_of_measurable [Countable β] {f : β → α →
 
 /-- Monotone convergence for a supremum over a directed family and indexed by a countable type. -/
 theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ b, AEMeasurable (f b) μ)
-    (h_directed : Directed (· ≤ ·) f) : (∫⁻ a, ⨆ b, f b a ∂μ) = ⨆ b, ∫⁻ a, f b a ∂μ := by
+    (h_directed : Directed (· ≤ ·) f) : ∫⁻ a, ⨆ b, f b a ∂μ = ⨆ b, ∫⁻ a, f b a ∂μ := by
   simp_rw [← iSup_apply]
   let p : α → (β → ENNReal) → Prop := fun x f' => Directed LE.le f'
   have hp : ∀ᵐ x ∂μ, p x fun i => f i x := by
@@ -1166,7 +1161,7 @@ theorem lintegral_iSup_directed [Countable β] {f : β → α → ℝ≥0∞} (h
 end
 
 theorem lintegral_tsum [Countable β] {f : β → α → ℝ≥0∞} (hf : ∀ i, AEMeasurable (f i) μ) :
-    (∫⁻ a, ∑' i, f i a ∂μ) = ∑' i, ∫⁻ a, f i a ∂μ := by
+    ∫⁻ a, ∑' i, f i a ∂μ = ∑' i, ∫⁻ a, f i a ∂μ := by
   simp only [ENNReal.tsum_eq_iSup_sum]
   rw [lintegral_iSup_directed]
   · simp [lintegral_finset_sum' _ fun i _ => hf i]
@@ -1183,65 +1178,65 @@ open Measure
 
 theorem lintegral_iUnion₀ [Countable β] {s : β → Set α} (hm : ∀ i, NullMeasurableSet (s i) μ)
     (hd : Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ := by
+    ∫⁻ a in ⋃ i, s i, f a ∂μ = ∑' i, ∫⁻ a in s i, f a ∂μ := by
   simp only [Measure.restrict_iUnion_ae hd hm, lintegral_sum_measure]
 #align measure_theory.lintegral_Union₀ MeasureTheory.lintegral_iUnion₀
 
 theorem lintegral_iUnion [Countable β] {s : β → Set α} (hm : ∀ i, MeasurableSet (s i))
     (hd : Pairwise (Disjoint on s)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i, s i, f a ∂μ) = ∑' i, ∫⁻ a in s i, f a ∂μ :=
+    ∫⁻ a in ⋃ i, s i, f a ∂μ = ∑' i, ∫⁻ a in s i, f a ∂μ :=
   lintegral_iUnion₀ (fun i => (hm i).nullMeasurableSet) hd.aedisjoint f
 #align measure_theory.lintegral_Union MeasureTheory.lintegral_iUnion
 
 theorem lintegral_biUnion₀ {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, NullMeasurableSet (s i) μ) (hd : t.Pairwise (AEDisjoint μ on s)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ := by
+    ∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ = ∑' i : t, ∫⁻ a in s i, f a ∂μ := by
   haveI := ht.toEncodable
   rw [biUnion_eq_iUnion, lintegral_iUnion₀ (SetCoe.forall'.1 hm) (hd.subtype _ _)]
 #align measure_theory.lintegral_bUnion₀ MeasureTheory.lintegral_biUnion₀
 
 theorem lintegral_biUnion {t : Set β} {s : β → Set α} (ht : t.Countable)
     (hm : ∀ i ∈ t, MeasurableSet (s i)) (hd : t.PairwiseDisjoint s) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ) = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
+    ∫⁻ a in ⋃ i ∈ t, s i, f a ∂μ = ∑' i : t, ∫⁻ a in s i, f a ∂μ :=
   lintegral_biUnion₀ ht (fun i hi => (hm i hi).nullMeasurableSet) hd.aedisjoint f
 #align measure_theory.lintegral_bUnion MeasureTheory.lintegral_biUnion
 
 theorem lintegral_biUnion_finset₀ {s : Finset β} {t : β → Set α}
     (hd : Set.Pairwise (↑s) (AEDisjoint μ on t)) (hm : ∀ b ∈ s, NullMeasurableSet (t b) μ)
-    (f : α → ℝ≥0∞) : (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
+    (f : α → ℝ≥0∞) : ∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ = ∑ b in s, ∫⁻ a in t b, f a ∂μ := by
   simp only [← Finset.mem_coe, lintegral_biUnion₀ s.countable_toSet hm hd, ← Finset.tsum_subtype']
 #align measure_theory.lintegral_bUnion_finset₀ MeasureTheory.lintegral_biUnion_finset₀
 
 theorem lintegral_biUnion_finset {s : Finset β} {t : β → Set α} (hd : Set.PairwiseDisjoint (↑s) t)
     (hm : ∀ b ∈ s, MeasurableSet (t b)) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ) = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
+    ∫⁻ a in ⋃ b ∈ s, t b, f a ∂μ = ∑ b in s, ∫⁻ a in t b, f a ∂μ :=
   lintegral_biUnion_finset₀ hd.aedisjoint (fun b hb => (hm b hb).nullMeasurableSet) f
 #align measure_theory.lintegral_bUnion_finset MeasureTheory.lintegral_biUnion_finset
 
 theorem lintegral_iUnion_le [Countable β] (s : β → Set α) (f : α → ℝ≥0∞) :
-    (∫⁻ a in ⋃ i, s i, f a ∂μ) ≤ ∑' i, ∫⁻ a in s i, f a ∂μ := by
+    ∫⁻ a in ⋃ i, s i, f a ∂μ ≤ ∑' i, ∫⁻ a in s i, f a ∂μ := by
   rw [← lintegral_sum_measure]
   exact lintegral_mono' restrict_iUnion_le le_rfl
 #align measure_theory.lintegral_Union_le MeasureTheory.lintegral_iUnion_le
 
 theorem lintegral_union {f : α → ℝ≥0∞} {A B : Set α} (hB : MeasurableSet B) (hAB : Disjoint A B) :
-    (∫⁻ a in A ∪ B, f a ∂μ) = (∫⁻ a in A, f a ∂μ) + ∫⁻ a in B, f a ∂μ := by
+    ∫⁻ a in A ∪ B, f a ∂μ = ∫⁻ a in A, f a ∂μ + ∫⁻ a in B, f a ∂μ := by
   rw [restrict_union hAB hB, lintegral_add_measure]
 #align measure_theory.lintegral_union MeasureTheory.lintegral_union
 
 theorem lintegral_inter_add_diff {B : Set α} (f : α → ℝ≥0∞) (A : Set α) (hB : MeasurableSet B) :
-    ((∫⁻ x in A ∩ B, f x ∂μ) + ∫⁻ x in A \ B, f x ∂μ) = ∫⁻ x in A, f x ∂μ := by
+    (∫⁻ x in A ∩ B, f x ∂μ + ∫⁻ x in A \ B, f x ∂μ) = ∫⁻ x in A, f x ∂μ := by
   rw [← lintegral_add_measure, restrict_inter_add_diff _ hB]
 #align measure_theory.lintegral_inter_add_diff MeasureTheory.lintegral_inter_add_diff
 
 theorem lintegral_add_compl (f : α → ℝ≥0∞) {A : Set α} (hA : MeasurableSet A) :
-    ((∫⁻ x in A, f x ∂μ) + ∫⁻ x in Aᶜ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
+    (∫⁻ x in A, f x ∂μ + ∫⁻ x in Aᶜ, f x ∂μ) = ∫⁻ x, f x ∂μ := by
   rw [← lintegral_add_measure, Measure.restrict_add_restrict_compl hA]
 #align measure_theory.lintegral_add_compl MeasureTheory.lintegral_add_compl
 
 theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) :
-    (∫⁻ x, max (f x) (g x) ∂μ) =
-      (∫⁻ x in { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in { x | g x < f x }, f x ∂μ := by
+    ∫⁻ x, max (f x) (g x) ∂μ =
+      ∫⁻ x in { x | f x ≤ g x }, g x ∂μ + ∫⁻ x in { x | g x < f x }, f x ∂μ := by
   have hm : MeasurableSet { x | f x ≤ g x } := measurableSet_le hf hg
   rw [← lintegral_add_compl (fun x => max (f x) (g x)) hm]
   simp only [← compl_setOf, ← not_le]
@@ -1251,8 +1246,8 @@ theorem lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measur
 #align measure_theory.lintegral_max MeasureTheory.lintegral_max
 
 theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Measurable g) (s : Set α) :
-    (∫⁻ x in s, max (f x) (g x) ∂μ) =
-      (∫⁻ x in s ∩ { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in s ∩ { x | g x < f x }, f x ∂μ := by
+    ∫⁻ x in s, max (f x) (g x) ∂μ =
+      ∫⁻ x in s ∩ { x | f x ≤ g x }, g x ∂μ + ∫⁻ x in s ∩ { x | g x < f x }, f x ∂μ := by
   rw [lintegral_max hf hg, restrict_restrict, restrict_restrict, inter_comm s, inter_comm s]
   exacts [measurableSet_lt hg hf, measurableSet_le hf hg]
 #align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_max
@@ -1300,7 +1295,7 @@ theorem set_lintegral_map [MeasurableSpace β] {f : β → ℝ≥0∞} {g : α 
 
 theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β} {s : Set β}
     (hf : Measurable f) (hs : MeasurableSet s) (c : ℝ≥0∞) :
-    (∫⁻ a, s.indicator (fun _ => c) (f a) ∂μ) = c * μ (f ⁻¹' s) := by
+    ∫⁻ a, s.indicator (fun _ => c) (f a) ∂μ = c * μ (f ⁻¹' s) := by
   erw [lintegral_comp (measurable_const.indicator hs) hf, lintegral_indicator_const hs,
     Measure.map_apply hf hs]
 #align measure_theory.lintegral_indicator_const_comp MeasureTheory.lintegral_indicator_const_comp
@@ -1331,29 +1326,29 @@ theorem lintegral_map_equiv [MeasurableSpace β] (f : β → ℝ≥0∞) (g : α
 
 theorem MeasurePreserving.lintegral_comp {mb : MeasurableSpace β} {ν : Measure β} {g : α → β}
     (hg : MeasurePreserving g μ ν) {f : β → ℝ≥0∞} (hf : Measurable f) :
-    (∫⁻ a, f (g a) ∂μ) = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, lintegral_map hf hg.measurable]
+    ∫⁻ a, f (g a) ∂μ = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, lintegral_map hf hg.measurable]
 #align measure_theory.measure_preserving.lintegral_comp MeasureTheory.MeasurePreserving.lintegral_comp
 
 theorem MeasurePreserving.lintegral_comp_emb {mb : MeasurableSpace β} {ν : Measure β} {g : α → β}
     (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞) :
-    (∫⁻ a, f (g a) ∂μ) = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, hge.lintegral_map]
+    ∫⁻ a, f (g a) ∂μ = ∫⁻ b, f b ∂ν := by rw [← hg.map_eq, hge.lintegral_map]
 #align measure_theory.measure_preserving.lintegral_comp_emb MeasureTheory.MeasurePreserving.lintegral_comp_emb
 
 theorem MeasurePreserving.set_lintegral_comp_preimage {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) {s : Set β} (hs : MeasurableSet s) {f : β → ℝ≥0∞}
-    (hf : Measurable f) : (∫⁻ a in g ⁻¹' s, f (g a) ∂μ) = ∫⁻ b in s, f b ∂ν := by
+    (hf : Measurable f) : ∫⁻ a in g ⁻¹' s, f (g a) ∂μ = ∫⁻ b in s, f b ∂ν := by
   rw [← hg.map_eq, set_lintegral_map hs hf hg.measurable]
 #align measure_theory.measure_preserving.set_lintegral_comp_preimage MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage
 
 theorem MeasurePreserving.set_lintegral_comp_preimage_emb {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞)
-    (s : Set β) : (∫⁻ a in g ⁻¹' s, f (g a) ∂μ) = ∫⁻ b in s, f b ∂ν := by
+    (s : Set β) : ∫⁻ a in g ⁻¹' s, f (g a) ∂μ = ∫⁻ b in s, f b ∂ν := by
   rw [← hg.map_eq, hge.restrict_map, hge.lintegral_map]
 #align measure_theory.measure_preserving.set_lintegral_comp_preimage_emb MeasureTheory.MeasurePreserving.set_lintegral_comp_preimage_emb
 
 theorem MeasurePreserving.set_lintegral_comp_emb {mb : MeasurableSpace β} {ν : Measure β}
     {g : α → β} (hg : MeasurePreserving g μ ν) (hge : MeasurableEmbedding g) (f : β → ℝ≥0∞)
-    (s : Set α) : (∫⁻ a in s, f (g a) ∂μ) = ∫⁻ b in g '' s, f b ∂ν := by
+    (s : Set α) : ∫⁻ a in s, f (g a) ∂μ = ∫⁻ b in g '' s, f b ∂ν := by
   rw [← hg.set_lintegral_comp_preimage_emb hge, preimage_image_eq _ hge.injective]
 #align measure_theory.measure_preserving.set_lintegral_comp_emb MeasureTheory.MeasurePreserving.set_lintegral_comp_emb
 
@@ -1442,57 +1437,57 @@ section Countable
 
 
 theorem lintegral_countable' [Countable α] [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
-    (∫⁻ a, f a ∂μ) = ∑' a, f a * μ {a} := by
+    ∫⁻ a, f a ∂μ = ∑' a, f a * μ {a} := by
   conv_lhs => rw [← sum_smul_dirac μ, lintegral_sum_measure]
   congr 1 with a : 1
   rw [lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_countable' MeasureTheory.lintegral_countable'
 
 theorem lintegral_singleton' {f : α → ℝ≥0∞} (hf : Measurable f) (a : α) :
-    (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
+    ∫⁻ x in {a}, f x ∂μ = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac' _ hf, mul_comm]
 #align measure_theory.lintegral_singleton' MeasureTheory.lintegral_singleton'
 
 theorem lintegral_singleton [MeasurableSingletonClass α] (f : α → ℝ≥0∞) (a : α) :
-    (∫⁻ x in {a}, f x ∂μ) = f a * μ {a} := by
+    ∫⁻ x in {a}, f x ∂μ = f a * μ {a} := by
   simp only [restrict_singleton, lintegral_smul_measure, lintegral_dirac, mul_comm]
 #align measure_theory.lintegral_singleton MeasureTheory.lintegral_singleton
 
 theorem lintegral_countable [MeasurableSingletonClass α] (f : α → ℝ≥0∞) {s : Set α}
-    (hs : s.Countable) : (∫⁻ a in s, f a ∂μ) = ∑' a : s, f a * μ {(a : α)} :=
+    (hs : s.Countable) : ∫⁻ a in s, f a ∂μ = ∑' a : s, f a * μ {(a : α)} :=
   calc
-    (∫⁻ a in s, f a ∂μ) = ∫⁻ a in ⋃ x ∈ s, {x}, f a ∂μ := by rw [biUnion_of_singleton]
+    ∫⁻ a in s, f a ∂μ = ∫⁻ a in ⋃ x ∈ s, {x}, f a ∂μ := by rw [biUnion_of_singleton]
     _ = ∑' a : s, ∫⁻ x in {(a : α)}, f x ∂μ :=
       (lintegral_biUnion hs (fun _ _ => measurableSet_singleton _) (pairwiseDisjoint_fiber id s) _)
     _ = ∑' a : s, f a * μ {(a : α)} := by simp only [lintegral_singleton]
 #align measure_theory.lintegral_countable MeasureTheory.lintegral_countable
 
 theorem lintegral_insert [MeasurableSingletonClass α] {a : α} {s : Set α} (h : a ∉ s)
-    (f : α → ℝ≥0∞) : (∫⁻ x in insert a s, f x ∂μ) = f a * μ {a} + ∫⁻ x in s, f x ∂μ := by
+    (f : α → ℝ≥0∞) : ∫⁻ x in insert a s, f x ∂μ = f a * μ {a} + ∫⁻ x in s, f x ∂μ := by
   rw [← union_singleton, lintegral_union (measurableSet_singleton a), lintegral_singleton,
     add_comm]
   rwa [disjoint_singleton_right]
 #align measure_theory.lintegral_insert MeasureTheory.lintegral_insert
 
 theorem lintegral_finset [MeasurableSingletonClass α] (s : Finset α) (f : α → ℝ≥0∞) :
-    (∫⁻ x in s, f x ∂μ) = ∑ x in s, f x * μ {x} := by
+    ∫⁻ x in s, f x ∂μ = ∑ x in s, f x * μ {x} := by
   simp only [lintegral_countable _ s.countable_toSet, ← Finset.tsum_subtype']
 #align measure_theory.lintegral_finset MeasureTheory.lintegral_finset
 
 theorem lintegral_fintype [MeasurableSingletonClass α] [Fintype α] (f : α → ℝ≥0∞) :
-    (∫⁻ x, f x ∂μ) = ∑ x, f x * μ {x} := by
+    ∫⁻ x, f x ∂μ = ∑ x, f x * μ {x} := by
   rw [← lintegral_finset, Finset.coe_univ, Measure.restrict_univ]
 #align measure_theory.lintegral_fintype MeasureTheory.lintegral_fintype
 
-theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x ∂μ) = f default * μ univ :=
+theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : ∫⁻ x, f x ∂μ = f default * μ univ :=
   calc
-    (∫⁻ x, f x ∂μ) = ∫⁻ _, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
+    ∫⁻ x, f x ∂μ = ∫⁻ _, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
     _ = f default * μ univ := lintegral_const _
 #align measure_theory.lintegral_unique MeasureTheory.lintegral_unique
 
 end Countable
 
-theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
+theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : ∫⁻ x, f x ∂μ ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ := by
   simp_rw [ae_iff, ENNReal.not_lt_top]
   by_contra h
@@ -1505,14 +1500,14 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
   simp [ENNReal.top_mul', preimage, h]
 #align measure_theory.ae_lt_top MeasureTheory.ae_lt_top
 
-theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : (∫⁻ x, f x ∂μ) ≠ ∞) :
+theorem ae_lt_top' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) (h2f : ∫⁻ x, f x ∂μ ≠ ∞) :
     ∀ᵐ x ∂μ, f x < ∞ :=
-  haveI h2f_meas : (∫⁻ x, hf.mk f x ∂μ) ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
+  haveI h2f_meas : ∫⁻ x, hf.mk f x ∂μ ≠ ∞ := by rwa [← lintegral_congr_ae hf.ae_eq_mk]
   (ae_lt_top hf.measurable_mk h2f_meas).mp (hf.ae_eq_mk.mono fun x hx h => by rwa [hx])
 #align measure_theory.ae_lt_top' MeasureTheory.ae_lt_top'
 
 theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : α → ℝ≥0}
-    (hf : Measurable f) (hbdd : BddAbove (f '' s)) : (∫⁻ x in s, f x ∂μ) < ∞ := by
+    (hf : Measurable f) (hbdd : BddAbove (f '' s)) : ∫⁻ x in s, f x ∂μ < ∞ := by
   obtain ⟨M, hM⟩ := hbdd
   rw [mem_upperBounds] at hM
   refine'
@@ -1525,13 +1520,13 @@ theorem set_lintegral_lt_top_of_bddAbove {s : Set α} (hs : μ s ≠ ∞) {f : 
 
 theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurableSpace α] {s : Set α}
     (hs : μ s ≠ ∞) (hsc : IsCompact s) {f : α → ℝ≥0} (hf : Continuous f) :
-    (∫⁻ x in s, f x ∂μ) < ∞ :=
+    ∫⁻ x in s, f x ∂μ < ∞ :=
   set_lintegral_lt_top_of_bddAbove hs hf.measurable (hsc.image hf).bddAbove
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
 theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _}
     [MeasurableSpace α] (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞}
-    (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) : (∫⁻ x, f x ∂μ) < ∞ := by
+    (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) : ∫⁻ x, f x ∂μ < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
   rw [lintegral_const]
@@ -1599,7 +1594,7 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
-theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
+theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : ∫⁻ a, f a ∂μ ≠ ∞) :
     IsFiniteMeasure (μ.withDensity f) :=
   { measure_univ_lt_top := by
       rwa [withDensity_apply _ MeasurableSet.univ, Measure.restrict_univ, lt_top_iff_ne_top] }
@@ -1628,7 +1623,7 @@ theorem withDensity_tsum {f : ℕ → α → ℝ≥0∞} (h : ∀ i, Measurable
     μ.withDensity (∑' n, f n) = sum fun n => μ.withDensity (f n) := by
   ext1 s hs
   simp_rw [sum_apply _ hs, withDensity_apply _ hs]
-  change (∫⁻ x in s, (∑' n, f n) x ∂μ) = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s
+  change ∫⁻ x in s, (∑' n, f n) x ∂μ = ∑' i : ℕ, ∫⁻ x, f i x ∂μ.restrict s
   rw [← lintegral_tsum fun i => (h i).aemeasurable]
   refine' lintegral_congr fun x => tsum_apply (Pi.summable.2 fun _ => ENNReal.summable)
 #align measure_theory.with_density_tsum MeasureTheory.withDensity_tsum
@@ -1901,7 +1896,7 @@ theorem withDensity_mul (μ : Measure α) {f g : α → ℝ≥0∞} (hf : Measur
 /-- In a sigma-finite measure space, there exists an integrable function which is
 positive everywhere (and with an arbitrarily small integral). -/
 theorem exists_pos_lintegral_lt_of_sigmaFinite (μ : Measure α) [SigmaFinite μ] {ε : ℝ≥0∞}
-    (ε0 : ε ≠ 0) : ∃ g : α → ℝ≥0, (∀ x, 0 < g x) ∧ Measurable g ∧ (∫⁻ x, g x ∂μ) < ε := by
+    (ε0 : ε ≠ 0) : ∃ g : α → ℝ≥0, (∀ x, 0 < g x) ∧ Measurable g ∧ ∫⁻ x, g x ∂μ < ε := by
   /- Let `s` be a covering of `α` by pairwise disjoint measurable sets of finite measure. Let
     `δ : ℕ → ℝ≥0` be a positive function such that `∑' i, μ (s i) * δ i < ε`. Then the function that
      is equal to `δ n` on `s n` is a positive function with integral less than `ε`. -/
@@ -1969,8 +1964,8 @@ over the whole space is bounded by that same constant. Version for a measurable
 See `lintegral_le_of_forall_fin_meas_le'` for the more general `AEMeasurable` version. -/
 theorem lintegral_le_of_forall_fin_meas_le_of_measurable {μ : Measure α} (hm : m ≤ m0)
     [SigmaFinite (μ.trim hm)] (C : ℝ≥0∞) {f : α → ℝ≥0∞} (hf_meas : Measurable f)
-    (hf : ∀ s, MeasurableSet[m] s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C := by
-  have : (∫⁻ x in univ, f x ∂μ) = ∫⁻ x, f x ∂μ := by simp only [Measure.restrict_univ]
+    (hf : ∀ s, MeasurableSet[m] s → μ s ≠ ∞ → ∫⁻ x in s, f x ∂μ ≤ C) : ∫⁻ x, f x ∂μ ≤ C := by
+  have : ∫⁻ x in univ, f x ∂μ = ∫⁻ x, f x ∂μ := by simp only [Measure.restrict_univ]
   rw [← this]
   refine' univ_le_of_forall_fin_meas_le hm C hf fun S hS_meas hS_mono => _
   rw [← lintegral_indicator]
@@ -2009,9 +2004,9 @@ measure in a sub-σ-algebra and the measure is σ-finite on that sub-σ-algebra,
 over the whole space is bounded by that same constant. -/
 theorem lintegral_le_of_forall_fin_meas_le' {μ : Measure α} (hm : m ≤ m0) [SigmaFinite (μ.trim hm)]
     (C : ℝ≥0∞) {f : _ → ℝ≥0∞} (hf_meas : AEMeasurable f μ)
-    (hf : ∀ s, MeasurableSet[m] s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C := by
+    (hf : ∀ s, MeasurableSet[m] s → μ s ≠ ∞ → ∫⁻ x in s, f x ∂μ ≤ C) : ∫⁻ x, f x ∂μ ≤ C := by
   let f' := hf_meas.mk f
-  have hf' : ∀ s, MeasurableSet[m] s → μ s ≠ ∞ → (∫⁻ x in s, f' x ∂μ) ≤ C := by
+  have hf' : ∀ s, MeasurableSet[m] s → μ s ≠ ∞ → ∫⁻ x in s, f' x ∂μ ≤ C := by
     refine' fun s hs hμs => (le_of_eq _).trans (hf s hs hμs)
     refine' lintegral_congr_ae (ae_restrict_of_ae (hf_meas.ae_eq_mk.mono fun x hx => _))
     dsimp only
@@ -2025,13 +2020,13 @@ measure and the measure is σ-finite, then the integral over the whole space is
 constant. -/
 theorem lintegral_le_of_forall_fin_meas_le [MeasurableSpace α] {μ : Measure α} [SigmaFinite μ]
     (C : ℝ≥0∞) {f : α → ℝ≥0∞} (hf_meas : AEMeasurable f μ)
-    (hf : ∀ s, MeasurableSet s → μ s ≠ ∞ → (∫⁻ x in s, f x ∂μ) ≤ C) : (∫⁻ x, f x ∂μ) ≤ C :=
+    (hf : ∀ s, MeasurableSet s → μ s ≠ ∞ → ∫⁻ x in s, f x ∂μ ≤ C) : ∫⁻ x, f x ∂μ ≤ C :=
   @lintegral_le_of_forall_fin_meas_le' _ _ _ _ _ (by rwa [trim_eq_self]) C _ hf_meas hf
 #align measure_theory.lintegral_le_of_forall_fin_meas_le MeasureTheory.lintegral_le_of_forall_fin_meas_le
 
 theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
     {μ : Measure α} [SigmaFinite μ] {f : α →ₛ ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
-    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ := by
+    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ ∫⁻ x, g x ∂μ < ∞ ∧ L < ∫⁻ x, g x ∂μ := by
   induction' f using MeasureTheory.SimpleFunc.induction with c s hs f₁ f₂ _ h₁ h₂ generalizing L
   · simp only [hs, const_zero, coe_piecewise, coe_const, SimpleFunc.coe_zero, univ_inter,
       piecewise_eq_indicator, lintegral_indicator, lintegral_const, Measure.restrict_apply',
@@ -2058,14 +2053,14 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
       rwa [mul_comm, ← ENNReal.div_lt_iff]
       · simp only [c_ne_zero, Ne.def, coe_eq_zero, not_false_iff, true_or_iff]
       · simp only [Ne.def, coe_ne_top, not_false_iff, true_or_iff]
-  · replace hL : L < (∫⁻ x, f₁ x ∂μ) + ∫⁻ x, f₂ x ∂μ
+  · replace hL : L < ∫⁻ x, f₁ x ∂μ + ∫⁻ x, f₂ x ∂μ
     · rwa [← lintegral_add_left f₁.measurable.coe_nnreal_ennreal]
-    by_cases hf₁ : (∫⁻ x, f₁ x ∂μ) = 0
+    by_cases hf₁ : ∫⁻ x, f₁ x ∂μ = 0
     · simp only [hf₁, zero_add] at hL
       rcases h₂ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
       simp only [SimpleFunc.coe_add, Pi.add_apply, le_add_iff_nonneg_left, zero_le']
-    by_cases hf₂ : (∫⁻ x, f₂ x ∂μ) = 0
+    by_cases hf₂ : ∫⁻ x, f₂ x ∂μ = 0
     · simp only [hf₂, add_zero] at hL
       rcases h₁ hL with ⟨g, g_le, g_top, gL⟩
       refine' ⟨g, fun x => (g_le x).trans _, g_top, gL⟩
@@ -2086,7 +2081,7 @@ theorem SimpleFunc.exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : Measurabl
 
 theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α} {μ : Measure α}
     [SigmaFinite μ] {f : α → ℝ≥0} {L : ℝ≥0∞} (hL : L < ∫⁻ x, f x ∂μ) :
-    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ (∫⁻ x, g x ∂μ) < ∞ ∧ L < ∫⁻ x, g x ∂μ := by
+    ∃ g : α →ₛ ℝ≥0, (∀ x, g x ≤ f x) ∧ ∫⁻ x, g x ∂μ < ∞ ∧ L < ∫⁻ x, g x ∂μ := by
   simp_rw [lintegral_eq_nnreal, lt_iSup_iff] at hL
   rcases hL with ⟨g₀, hg₀, g₀L⟩
   have h'L : L < ∫⁻ x, g₀ x ∂μ := by
@@ -2101,7 +2096,7 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
 theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ : Measure α)
     [SigmaFinite μ] : ∃ ν : Measure α, IsFiniteMeasure ν ∧ μ ≪ ν := by
   obtain ⟨g, gpos, gmeas, hg⟩ :
-    ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ (∫⁻ x : α, ↑(g x) ∂μ) < 1 :=
+    ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ ∫⁻ x : α, ↑(g x) ∂μ < 1 :=
     exists_pos_lintegral_lt_of_sigmaFinite μ one_ne_zero
   refine' ⟨μ.withDensity fun x => g x, isFiniteMeasure_withDensity hg.ne_top, _⟩
   have : μ = (μ.withDensity fun x => g x).withDensity fun x => (g x)⁻¹ := by
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -1254,7 +1254,7 @@ theorem set_lintegral_max {f g : α → ℝ≥0∞} (hf : Measurable f) (hg : Me
     (∫⁻ x in s, max (f x) (g x) ∂μ) =
       (∫⁻ x in s ∩ { x | f x ≤ g x }, g x ∂μ) + ∫⁻ x in s ∩ { x | g x < f x }, f x ∂μ := by
   rw [lintegral_max hf hg, restrict_restrict, restrict_restrict, inter_comm s, inter_comm s]
-  exacts[measurableSet_lt hg hf, measurableSet_le hf hg]
+  exacts [measurableSet_lt hg hf, measurableSet_le hf hg]
 #align measure_theory.set_lintegral_max MeasureTheory.set_lintegral_max
 
 theorem lintegral_map {mβ : MeasurableSpace β} {f : β → ℝ≥0∞} {g : α → β} (hf : Measurable f)
feat: golf using gcongr throughout the library (#4784)

Following on from #4702, another hundred sample uses of the gcongr tactic.

Diff
@@ -505,8 +505,8 @@ theorem exists_pos_set_lintegral_lt_of_measure_lt {f : α → ℝ≥0∞} (h : (
     _ = C * μ s + ε₁ := by
       simp only [← SimpleFunc.lintegral_eq_lintegral, coe_const, lintegral_const,
         Measure.restrict_apply, MeasurableSet.univ, univ_inter, Function.const]
-    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := (add_le_add_right (mul_le_mul_left' hs.le _) _)
-    _ ≤ ε₂ - ε₁ + ε₁ := (add_le_add mul_div_le le_rfl)
+    _ ≤ C * ((ε₂ - ε₁) / C) + ε₁ := by gcongr
+    _ ≤ ε₂ - ε₁ + ε₁ := by gcongr; apply mul_div_le
     _ = ε₂ := tsub_add_cancel_of_le hε₁₂.le
 #align measure_theory.exists_pos_set_lintegral_lt_of_measure_lt MeasureTheory.exists_pos_set_lintegral_lt_of_measure_lt
 
@@ -811,9 +811,9 @@ theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0∞} (hl
   calc
     (∫⁻ x, f x ∂μ) + ε * μ { x | f x + ε ≤ g x } = (∫⁻ x, φ x ∂μ) + ε * μ { x | f x + ε ≤ g x } :=
       by rw [hφ_eq]
-    _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ { x | φ x + ε ≤ g x } :=
-      (add_le_add_left
-        (mul_le_mul_left' (measure_mono fun x => (add_le_add_right (hφ_le _) _).trans) _) _)
+    _ ≤ (∫⁻ x, φ x ∂μ) + ε * μ { x | φ x + ε ≤ g x } := by
+      gcongr
+      exact measure_mono fun x => (add_le_add_right (hφ_le _) _).trans
     _ = ∫⁻ x, φ x + indicator { x | φ x + ε ≤ g x } (fun _ => ε) x ∂μ := by
       rw [lintegral_add_left hφm, lintegral_indicator₀, set_lintegral_const]
       exact measurableSet_le (hφm.nullMeasurable.measurable'.add_const _) hg.nullMeasurable
style: allow _ for an argument in notation3 & replace _foo with _ in notation3 (#4652)
Diff
@@ -93,7 +93,7 @@ variable {m : MeasurableSpace α} {μ ν : Measure α}
 
 /-- The **lower Lebesgue integral** of a function `f` with respect to a measure `μ`. -/
 irreducible_def lintegral {_ : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) : ℝ≥0∞ :=
-  ⨆ (g : α →ₛ ℝ≥0∞) (_hf : ⇑g ≤ f), g.lintegral μ
+  ⨆ (g : α →ₛ ℝ≥0∞) (_ : ⇑g ≤ f), g.lintegral μ
 #align measure_theory.lintegral MeasureTheory.lintegral
 
 /-! In the notation for integrals, an expression like `∫⁻ x, g ‖x‖ ∂μ` will not be parsed correctly,
@@ -140,7 +140,7 @@ theorem lintegral_mono_nnreal {f g : α → ℝ≥0} (h : f ≤ g) : (∫⁻ a,
 #align measure_theory.lintegral_mono_nnreal MeasureTheory.lintegral_mono_nnreal
 
 theorem iSup_lintegral_measurable_le_eq_lintegral (f : α → ℝ≥0∞) :
-    (⨆ (g : α → ℝ≥0∞) (_g_meas : Measurable g) (_hg : g ≤ f), ∫⁻ a, g a ∂μ) = ∫⁻ a, f a ∂μ := by
+    (⨆ (g : α → ℝ≥0∞) (_ : Measurable g) (_ : g ≤ f), ∫⁻ a, g a ∂μ) = ∫⁻ a, f a ∂μ := by
   apply le_antisymm
   · exact iSup_le fun i => iSup_le fun _ => iSup_le fun h'i => lintegral_mono h'i
   · rw [lintegral]
@@ -163,12 +163,12 @@ theorem monotone_lintegral {_ : MeasurableSpace α} (μ : Measure α) : Monotone
 #align measure_theory.monotone_lintegral MeasureTheory.monotone_lintegral
 
 @[simp]
-theorem lintegral_const (c : ℝ≥0∞) : (∫⁻ _a, c ∂μ) = c * μ univ := by
+theorem lintegral_const (c : ℝ≥0∞) : (∫⁻ _, c ∂μ) = c * μ univ := by
   rw [← SimpleFunc.const_lintegral, ← SimpleFunc.lintegral_eq_lintegral, SimpleFunc.coe_const]
   rfl
 #align measure_theory.lintegral_const MeasureTheory.lintegral_const
 
-theorem lintegral_zero : (∫⁻ _a : α, 0 ∂μ) = 0 := by simp
+theorem lintegral_zero : (∫⁻ _ : α, 0 ∂μ) = 0 := by simp
 #align measure_theory.lintegral_zero MeasureTheory.lintegral_zero
 
 theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
@@ -176,23 +176,23 @@ theorem lintegral_zero_fun : lintegral μ (0 : α → ℝ≥0∞) = 0 :=
 #align measure_theory.lintegral_zero_fun MeasureTheory.lintegral_zero_fun
 
 -- @[simp] -- Porting note: simp can prove this
-theorem lintegral_one : (∫⁻ _a, (1 : ℝ≥0∞) ∂μ) = μ univ := by rw [lintegral_const, one_mul]
+theorem lintegral_one : (∫⁻ _, (1 : ℝ≥0∞) ∂μ) = μ univ := by rw [lintegral_const, one_mul]
 #align measure_theory.lintegral_one MeasureTheory.lintegral_one
 
-theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ _a in s, c ∂μ) = c * μ s := by
+theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ _ in s, c ∂μ) = c * μ s := by
   rw [lintegral_const, Measure.restrict_apply_univ]
 #align measure_theory.set_lintegral_const MeasureTheory.set_lintegral_const
 
-theorem set_lintegral_one (s) : (∫⁻ _a in s, 1 ∂μ) = μ s := by rw [set_lintegral_const, one_mul]
+theorem set_lintegral_one (s) : (∫⁻ _ in s, 1 ∂μ) = μ s := by rw [set_lintegral_const, one_mul]
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 
 theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
-    (∫⁻ _a in s, c ∂μ) < ∞ := by
+    (∫⁻ _ in s, c ∂μ) < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
-theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ _a, c ∂μ) < ∞ := by
+theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ _, c ∂μ) < ∞ := by
   simpa only [Measure.restrict_univ] using set_lintegral_const_lt_top (univ : Set α) hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
 
@@ -226,7 +226,7 @@ end
 functions `φ : α →ₛ ℝ≥0`. -/
 theorem lintegral_eq_nnreal {m : MeasurableSpace α} (f : α → ℝ≥0∞) (μ : Measure α) :
     (∫⁻ a, f a ∂μ) =
-      ⨆ (φ : α →ₛ ℝ≥0) (_hf : ∀ x, ↑(φ x) ≤ f x), (φ.map ((↑) : ℝ≥0 → ℝ≥0∞)).lintegral μ := by
+      ⨆ (φ : α →ₛ ℝ≥0) (_ : ∀ x, ↑(φ x) ≤ f x), (φ.map ((↑) : ℝ≥0 → ℝ≥0∞)).lintegral μ := by
   rw [lintegral]
   refine'
     le_antisymm (iSup₂_le fun φ hφ => _) (iSup_mono' fun φ => ⟨φ.map ((↑) : ℝ≥0 → ℝ≥0∞), le_rfl⟩)
@@ -871,7 +871,7 @@ theorem ae_eq_of_ae_le_of_lintegral_le {f g : α → ℝ≥0∞} (hfg : f ≤ᵐ
 @[simp]
 theorem lintegral_eq_zero_iff' {f : α → ℝ≥0∞} (hf : AEMeasurable f μ) :
     (∫⁻ a, f a ∂μ) = 0 ↔ f =ᵐ[μ] 0 :=
-  have : (∫⁻ _a : α, 0 ∂μ) ≠ ∞ := by simp [lintegral_zero, zero_ne_top]
+  have : (∫⁻ _ : α, 0 ∂μ) ≠ ∞ := by simp [lintegral_zero, zero_ne_top]
   ⟨fun h =>
     (ae_eq_of_ae_le_of_lintegral_le (ae_of_all _ <| zero_le f) this hf
         (h.trans lintegral_zero.symm).le).symm,
@@ -1406,7 +1406,7 @@ theorem lintegral_count [MeasurableSingletonClass α] (f : α → ℝ≥0∞) :
 #align measure_theory.lintegral_count MeasureTheory.lintegral_count
 
 theorem _root_.ENNReal.tsum_const_eq [MeasurableSingletonClass α] (c : ℝ≥0∞) :
-    (∑' _i : α, c) = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
+    (∑' _ : α, c) = c * Measure.count (univ : Set α) := by rw [← lintegral_count, lintegral_const]
 #align ennreal.tsum_const_eq ENNReal.tsum_const_eq
 
 /-- Markov's inequality for the counting measure with hypothesis using `tsum` in `ℝ≥0∞`. -/
@@ -1486,7 +1486,7 @@ theorem lintegral_fintype [MeasurableSingletonClass α] [Fintype α] (f : α →
 
 theorem lintegral_unique [Unique α] (f : α → ℝ≥0∞) : (∫⁻ x, f x ∂μ) = f default * μ univ :=
   calc
-    (∫⁻ x, f x ∂μ) = ∫⁻ _x, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
+    (∫⁻ x, f x ∂μ) = ∫⁻ _, f default ∂μ := lintegral_congr <| Unique.forall_iff.2 rfl
     _ = f default * μ univ := lintegral_const _
 #align measure_theory.lintegral_unique MeasureTheory.lintegral_unique
 
style: recover Is of Foo which is ported from is_foo (#4639)

I have misported is_foo to Foo because I misunderstood the rule for IsLawfulFoo. This PR recover Is of Foo which is ported from is_foo. This PR also renames some misported theorems.

Diff
@@ -186,13 +186,13 @@ theorem set_lintegral_const (s : Set α) (c : ℝ≥0∞) : (∫⁻ _a in s, c 
 theorem set_lintegral_one (s) : (∫⁻ _a in s, 1 ∂μ) = μ s := by rw [set_lintegral_const, one_mul]
 #align measure_theory.set_lintegral_one MeasureTheory.set_lintegral_one
 
-theorem set_lintegral_const_lt_top [FiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
+theorem set_lintegral_const_lt_top [IsFiniteMeasure μ] (s : Set α) {c : ℝ≥0∞} (hc : c ≠ ∞) :
     (∫⁻ _a in s, c ∂μ) < ∞ := by
   rw [lintegral_const]
   exact ENNReal.mul_lt_top hc (measure_ne_top (μ.restrict s) univ)
 #align measure_theory.set_lintegral_const_lt_top MeasureTheory.set_lintegral_const_lt_top
 
-theorem lintegral_const_lt_top [FiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ _a, c ∂μ) < ∞ := by
+theorem lintegral_const_lt_top [IsFiniteMeasure μ] {c : ℝ≥0∞} (hc : c ≠ ∞) : (∫⁻ _a, c ∂μ) < ∞ := by
   simpa only [Measure.restrict_univ] using set_lintegral_const_lt_top (univ : Set α) hc
 #align measure_theory.lintegral_const_lt_top MeasureTheory.lintegral_const_lt_top
 
@@ -1530,7 +1530,7 @@ theorem set_lintegral_lt_top_of_isCompact [TopologicalSpace α] [OpensMeasurable
 #align measure_theory.set_lintegral_lt_top_of_is_compact MeasureTheory.set_lintegral_lt_top_of_isCompact
 
 theorem _root_.IsFiniteMeasure.lintegral_lt_top_of_bounded_to_eNNReal {α : Type _}
-    [MeasurableSpace α] (μ : Measure α) [μ_fin : FiniteMeasure μ] {f : α → ℝ≥0∞}
+    [MeasurableSpace α] (μ : Measure α) [μ_fin : IsFiniteMeasure μ] {f : α → ℝ≥0∞}
     (f_bdd : ∃ c : ℝ≥0, ∀ x, f x ≤ c) : (∫⁻ x, f x ∂μ) < ∞ := by
   cases' f_bdd with c hc
   apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ hc)
@@ -1599,11 +1599,11 @@ theorem withDensity_smul' (r : ℝ≥0∞) (f : α → ℝ≥0∞) (hr : r ≠ 
   rfl
 #align measure_theory.with_density_smul' MeasureTheory.withDensity_smul'
 
-theorem finiteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
-    FiniteMeasure (μ.withDensity f) :=
+theorem isFiniteMeasure_withDensity {f : α → ℝ≥0∞} (hf : (∫⁻ a, f a ∂μ) ≠ ∞) :
+    IsFiniteMeasure (μ.withDensity f) :=
   { measure_univ_lt_top := by
       rwa [withDensity_apply _ MeasurableSet.univ, Measure.restrict_univ, lt_top_iff_ne_top] }
-#align measure_theory.is_finite_measure_with_density MeasureTheory.finiteMeasure_withDensity
+#align measure_theory.is_finite_measure_with_density MeasureTheory.isFiniteMeasure_withDensity
 
 theorem withDensity_absolutelyContinuous {m : MeasurableSpace α} (μ : Measure α) (f : α → ℝ≥0∞) :
     μ.withDensity f ≪ μ := by
@@ -2098,12 +2098,12 @@ theorem exists_lt_lintegral_simpleFunc_of_lt_lintegral {m : MeasurableSpace α}
 #align measure_theory.exists_lt_lintegral_simple_func_of_lt_lintegral MeasureTheory.exists_lt_lintegral_simpleFunc_of_lt_lintegral
 
 /-- A sigma-finite measure is absolutely continuous with respect to some finite measure. -/
-theorem exists_absolutelyContinuous_finiteMeasure {m : MeasurableSpace α} (μ : Measure α)
-    [SigmaFinite μ] : ∃ ν : Measure α, FiniteMeasure ν ∧ μ ≪ ν := by
+theorem exists_absolutelyContinuous_isFiniteMeasure {m : MeasurableSpace α} (μ : Measure α)
+    [SigmaFinite μ] : ∃ ν : Measure α, IsFiniteMeasure ν ∧ μ ≪ ν := by
   obtain ⟨g, gpos, gmeas, hg⟩ :
     ∃ g : α → ℝ≥0, (∀ x : α, 0 < g x) ∧ Measurable g ∧ (∫⁻ x : α, ↑(g x) ∂μ) < 1 :=
     exists_pos_lintegral_lt_of_sigmaFinite μ one_ne_zero
-  refine' ⟨μ.withDensity fun x => g x, finiteMeasure_withDensity hg.ne_top, _⟩
+  refine' ⟨μ.withDensity fun x => g x, isFiniteMeasure_withDensity hg.ne_top, _⟩
   have : μ = (μ.withDensity fun x => g x).withDensity fun x => (g x)⁻¹ := by
     have A : ((fun x : α => (g x : ℝ≥0∞)) * fun x : α => (g x : ℝ≥0∞)⁻¹) = 1 := by
       ext1 x
@@ -2112,7 +2112,7 @@ theorem exists_absolutelyContinuous_finiteMeasure {m : MeasurableSpace α} (μ :
       withDensity_one]
   nth_rw 1 [this]
   exact withDensity_absolutelyContinuous _ _
-#align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_finiteMeasure
+#align measure_theory.exists_absolutely_continuous_is_finite_measure MeasureTheory.exists_absolutelyContinuous_isFiniteMeasure
 
 end SigmaFinite
 
feat: notation3 delaborator generation (#4533)

Gives the notation3 command the ability to generate a delaborator in most common situations. When it succeeds, notation3-defined syntax is pretty printable.

Examples:

(⋃ (i : ι) (i' : ι'), s i i') = ⋃ (i' : ι') (i : ι), s i i'
(⨆ (g : α → ℝ≥0∞) (_ : Measurable g) (_ : g ≤ f), ∫⁻ (a : α), g a ∂μ) = ∫⁻ (a : α), f a ∂μ

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -117,23 +117,6 @@ notation3 "∫⁻ "(...)" in "s", "r:(scoped f => f)" ∂"μ => lintegral (Measu
 @[inherit_doc MeasureTheory.lintegral]
 notation3 "∫⁻ "(...)" in "s", "r:(scoped f => lintegral (Measure.restrict volume s) f) => r
 
-open Lean in
-@[app_unexpander MeasureTheory.lintegral]
-def _root_.unexpandLIntegral : PrettyPrinter.Unexpander
-  | `($(_) $μ fun $x:ident => $b) =>
-    match μ with
-    | `(Measure.restrict volume $s) => `(∫⁻ $x:ident in $s, $b)
-    | `(volume) => `(∫⁻ $x:ident, $b)
-    | `(Measure.restrict $ν $s) => `(∫⁻ $x:ident in $s, $b ∂$ν)
-    | _ => `(∫⁻ $x:ident, $b ∂$μ)
-  | `($(_) $μ fun ($x:ident : $t) => $b) =>
-    match μ with
-    | `(Measure.restrict volume $s) => `(∫⁻ ($x:ident : $t) in $s, $b)
-    | `(volume) => `(∫⁻ ($x:ident : $t), $b)
-    | `(Measure.restrict $ν $s) => `(∫⁻ ($x:ident : $t) in $s, $b ∂$ν)
-    | _ => `(∫⁻ ($x:ident : $t), $b ∂$μ)
-  | _ => throw ()
-
 theorem SimpleFunc.lintegral_eq_lintegral {m : MeasurableSpace α} (f : α →ₛ ℝ≥0∞) (μ : Measure α) :
     (∫⁻ a, f a ∂μ) = f.lintegral μ := by
   rw [MeasureTheory.lintegral]
fix: spacing and indentation in tactic formatters (#4519)

This fixes a bunch of spacing bugs in tactics. Mathlib counterpart of:

Diff
@@ -103,19 +103,19 @@ irreducible_def lintegral {_ : MeasurableSpace α} (μ : Measure α) (f : α →
 
 -- mathport name: «expr∫⁻ , ∂ »
 @[inherit_doc MeasureTheory.lintegral]
-notation3"∫⁻ "(...)", "r:(scoped f => f)" ∂"μ => lintegral μ r
+notation3 "∫⁻ "(...)", "r:(scoped f => f)" ∂"μ => lintegral μ r
 
 -- mathport name: «expr∫⁻ , »
 @[inherit_doc MeasureTheory.lintegral]
-notation3"∫⁻ "(...)", "r:(scoped f => lintegral volume f) => r
+notation3 "∫⁻ "(...)", "r:(scoped f => lintegral volume f) => r
 
 -- mathport name: «expr∫⁻ in , ∂ »
 @[inherit_doc MeasureTheory.lintegral]
-notation3"∫⁻ "(...)" in "s", "r:(scoped f => f)" ∂"μ => lintegral (Measure.restrict μ s) r
+notation3 "∫⁻ "(...)" in "s", "r:(scoped f => f)" ∂"μ => lintegral (Measure.restrict μ s) r
 
 -- mathport name: «expr∫⁻ in , »
 @[inherit_doc MeasureTheory.lintegral]
-notation3"∫⁻ "(...)" in "s", "r:(scoped f => lintegral (Measure.restrict volume s) f) => r
+notation3 "∫⁻ "(...)" in "s", "r:(scoped f => lintegral (Measure.restrict volume s) f) => r
 
 open Lean in
 @[app_unexpander MeasureTheory.lintegral]
chore: fix many typos (#4535)

Run codespell Mathlib and keep some suggestions.

Diff
@@ -1323,7 +1323,7 @@ theorem lintegral_indicator_const_comp {mβ : MeasurableSpace β} {f : α → β
 #align measure_theory.lintegral_indicator_const_comp MeasureTheory.lintegral_indicator_const_comp
 
 /-- If `g : α → β` is a measurable embedding and `f : β → ℝ≥0∞` is any function (not necessarily
-measurable), then `∫⁻ a, f a ∂(map g μ) = ∫⁻ a, f (g a) ∂μ`. Compare with `lintegral_map` wich
+measurable), then `∫⁻ a, f a ∂(map g μ) = ∫⁻ a, f (g a) ∂μ`. Compare with `lintegral_map` which
 applies to any measurable `g : α → β` but requires that `f` is measurable as well. -/
 theorem _root_.MeasurableEmbedding.lintegral_map [MeasurableSpace β] {g : α → β}
     (hg : MeasurableEmbedding g) (f : β → ℝ≥0∞) : (∫⁻ a, f a ∂map g μ) = ∫⁻ a, f (g a) ∂μ := by
chore: fix upper/lowercase in comments (#4360)
  • Run a non-interactive version of fix-comments.py on all files.
  • Go through the diff and manually add/discard/edit chunks.
Diff
@@ -847,7 +847,7 @@ theorem mul_meas_ge_le_lintegral₀ {f : α → ℝ≥0∞} (hf : AEMeasurable f
 #align measure_theory.mul_meas_ge_le_lintegral₀ MeasureTheory.mul_meas_ge_le_lintegral₀
 
 /-- **Markov's inequality** also known as **Chebyshev's first inequality**. For a version assuming
-`ae_measurable`, see `mul_meas_ge_le_lintegral₀`. -/
+`AEMeasurable`, see `mul_meas_ge_le_lintegral₀`. -/
 theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε : ℝ≥0∞) :
     ε * μ { x | ε ≤ f x } ≤ ∫⁻ a, f a ∂μ :=
   mul_meas_ge_le_lintegral₀ hf.aemeasurable ε
@@ -1016,7 +1016,7 @@ theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurab
   lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
 #align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
 
-/-- Known as Fatou's lemma, version with `ae_measurable` functions -/
+/-- Known as Fatou's lemma, version with `AEMeasurable` functions -/
 theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
     (∫⁻ a, liminf (fun n => f n a) atTop ∂μ) ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
   calc
style(MeasureTheory/Integral/Lebesgue): rename aEMeasurable_withDensity_eNNReal_iff to aemeasurable_withDensity_ennreal_iff (#4379)
Diff
@@ -1738,7 +1738,7 @@ theorem ae_withDensity_iff_ae_restrict {p : α → Prop} {f : α → ℝ≥0∞}
   · exact hf (measurableSet_singleton 0).compl
 #align measure_theory.ae_with_density_iff_ae_restrict MeasureTheory.ae_withDensity_iff_ae_restrict
 
-theorem aEMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
+theorem aemeasurable_withDensity_ennreal_iff {f : α → ℝ≥0} (hf : Measurable f) {g : α → ℝ≥0∞} :
     AEMeasurable g (μ.withDensity fun x => (f x : ℝ≥0∞)) ↔
       AEMeasurable (fun x => (f x : ℝ≥0∞) * g x) μ := by
   constructor
@@ -1762,7 +1762,7 @@ theorem aEMeasurable_withDensity_eNNReal_iff {f : α → ℝ≥0} (hf : Measurab
     filter_upwards [hg']
     intro x hx h'x
     rw [← hx, ← mul_assoc, ENNReal.inv_mul_cancel h'x ENNReal.coe_ne_top, one_mul]
-#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aEMeasurable_withDensity_eNNReal_iff
+#align measure_theory.ae_measurable_with_density_ennreal_iff MeasureTheory.aemeasurable_withDensity_ennreal_iff
 
 end Lintegral
 
chore: update std 05-22 (#4248)

The main breaking change is that tac <;> [t1, t2] is now written tac <;> [t1; t2], to avoid clashing with tactics like cases and use that take comma-separated lists.

Diff
@@ -273,7 +273,7 @@ theorem exists_simpleFunc_forall_lintegral_sub_lt_of_pos {f : α → ℝ≥0∞}
         ∀ ψ : α →ₛ ℝ≥0, (∀ x, ↑(ψ x) ≤ f x) → (map (↑) (ψ - φ)).lintegral μ < ε := by
   rw [lintegral_eq_nnreal] at h
   have := ENNReal.lt_add_right h hε
-  erw [ENNReal.biSup_add] at this <;> [skip, exact ⟨0, fun x => zero_le _⟩]
+  erw [ENNReal.biSup_add] at this <;> [skip; exact ⟨0, fun x => zero_le _⟩]
   simp_rw [lt_iSup_iff, iSup_lt_iff, iSup_le_iff] at this
   rcases this with ⟨φ, hle : ∀ x, ↑(φ x) ≤ f x, b, hbφ, hb⟩
   refine' ⟨φ, hle, fun ψ hψ => _⟩
@@ -1516,7 +1516,7 @@ theorem ae_lt_top {f : α → ℝ≥0∞} (hf : Measurable f) (h2f : (∫⁻ x,
   apply h2f.lt_top.not_le
   have : (f ⁻¹' {∞}).indicator ⊤ ≤ f := by
     intro x
-    by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [indicator_of_mem hx] , simp [indicator_of_not_mem hx]]
+    by_cases hx : x ∈ f ⁻¹' {∞} <;> [simpa [indicator_of_mem hx]; simp [indicator_of_not_mem hx]]
   convert lintegral_mono this
   rw [lintegral_indicator _ (hf (measurableSet_singleton ∞))]
   simp [ENNReal.top_mul', preimage, h]
feat: port MeasureTheory.Integral.Lebesgue (#4058)

Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com> Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Chris Hughes <chrishughes24@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Dependencies 10 + 636

637 files ported (98.5%)
287816 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file