measure_theory.integral.mean_inequalitiesMathlib.MeasureTheory.Integral.MeanInequalities

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -333,7 +333,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ} (hpq
         exact le_top
       refine' le_of_eq _
       nth_rw 2 [← ENNReal.rpow_one ((f + g) a)]
-      rw [← ENNReal.rpow_add _ _ h_zero h_top, add_sub_cancel'_right]
+      rw [← ENNReal.rpow_add _ _ h_zero h_top, add_sub_cancel]
     _ = ∫⁻ a : α, f a * (f + g) a ^ (p - 1) ∂μ + ∫⁻ a : α, g a * (f + g) a ^ (p - 1) ∂μ :=
       by
       have h_add_m : AEMeasurable (fun a : α => (f + g) a ^ (p - 1)) μ := (hf.add hg).pow_const _
Diff
@@ -146,7 +146,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : f =ᵐ[μ] 0 :=
   by
-  rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero 
+  rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero
   refine' Filter.Eventually.mp hf_zero (Filter.eventually_of_forall fun x => _)
   dsimp only
   rw [Pi.zero_apply, ← not_imp_not]
@@ -160,7 +160,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   by
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
-  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g; · rwa [MulZeroClass.zero_mul] at h_mul_zero 
+  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g; · rwa [MulZeroClass.zero_mul] at h_mul_zero
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
@@ -262,7 +262,7 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
   have hr0_ne : r ≠ 0 :=
     by
     have hr_inv_pos : 0 < 1 / r := by rwa [h_one_div_r, sub_pos, one_div_lt_one_div hq0_lt hp0_lt]
-    rw [one_div, _root_.inv_pos] at hr_inv_pos 
+    rw [one_div, _root_.inv_pos] at hr_inv_pos
     exact (ne_of_lt hr_inv_pos).symm
   let p2 := q / p
   let q2 := p2.conjugate_exponent
@@ -375,7 +375,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjExponent q) {
         ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p))
   ·
     rwa [← mul_le_mul_left h0_rpow htop_rpow, ← mul_assoc, ← rpow_add _ _ h_add_zero h_add_top, ←
-      sub_eq_add_neg, _root_.sub_self, rpow_zero, one_mul, mul_one] at h 
+      sub_eq_add_neg, _root_.sub_self, rpow_zero, one_mul, mul_one] at h
   have h :
     ∫⁻ a : α, (f + g) a ^ p ∂μ ≤
       ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p)) *
@@ -383,10 +383,10 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjExponent q) {
     lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add hpq hf hf_top hg hg_top
   have h_one_div_q : 1 / q = 1 - 1 / p := by nth_rw 2 [← hpq.inv_add_inv_conj]; ring
   simp_rw [h_one_div_q, sub_eq_add_neg 1 (1 / p), ENNReal.rpow_add _ _ h_add_zero h_add_top,
-    rpow_one] at h 
-  nth_rw 2 [mul_comm] at h 
-  nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h 
-  rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h 
+    rpow_one] at h
+  nth_rw 2 [mul_comm] at h
+  nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h
+  rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
 
 #print ENNReal.lintegral_Lp_add_le /-
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
@@ -412,7 +412,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     exact zero_le _
   have htop : ∫⁻ a, (f + g) a ^ p ∂μ ≠ ⊤ :=
     by
-    rw [← Ne.def] at hf_top hg_top 
+    rw [← Ne.def] at hf_top hg_top
     rw [← lt_top_iff_ne_top] at hf_top hg_top ⊢
     exact lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf hf_top hg_top hp1
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
Diff
@@ -60,7 +60,7 @@ variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 namespace ENNReal
 
 #print ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one /-
-theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
+theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : ∫⁻ a, f a ^ p ∂μ = 1)
     (hg_norm : ∫⁻ a, g a ^ q ∂μ = 1) : ∫⁻ a, (f * g) a ∂μ ≤ 1 := by
   calc
@@ -115,7 +115,7 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
 
 #print ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top /-
 /-- Hölder's inequality in case of finite non-zero integrals -/
-theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
+theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : ∫⁻ a, f a ^ p ∂μ ≠ ⊤)
     (hg_nontop : ∫⁻ a, g a ^ q ∂μ ≠ ⊤) (hf_nonzero : ∫⁻ a, f a ^ p ∂μ ≠ 0)
     (hg_nonzero : ∫⁻ a, g a ^ q ∂μ ≠ 0) :
@@ -182,7 +182,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0
 /-- Hölder's inequality for functions `α → ℝ≥0∞`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
-theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConjugateExponent q)
+theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConjExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
@@ -267,7 +267,7 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
   let p2 := q / p
   let q2 := p2.conjugate_exponent
   have hp2q2 : p2.is_conjugate_exponent q2 :=
-    Real.isConjugateExponent_conjugateExponent (by simp [lt_div_iff, hpq, hp0_lt])
+    Real.IsConjExponent.conjExponent (by simp [lt_div_iff, hpq, hp0_lt])
   calc
     (∫⁻ a : α, (f * g) a ^ p ∂μ) ^ (1 / p) = (∫⁻ a : α, f a ^ p * g a ^ p ∂μ) ^ (1 / p) := by
       simp_rw [Pi.mul_apply, ENNReal.mul_rpow_of_nonneg _ _ hp0]
@@ -284,14 +284,14 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
       have hpq2 : p * q2 = r :=
         by
         rw [← inv_inv r, ← one_div, ← one_div, h_one_div_r]
-        field_simp [q2, Real.conjugateExponent, p2, hp0_ne, hq0_ne]
+        field_simp [q2, Real.conjExponent, p2, hp0_ne, hq0_ne]
       simp_rw [div_mul_div_comm, mul_one, mul_comm p2, mul_comm q2, hpp2, hpq2]
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 -/
 
 #print ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow /-
-theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
-    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
+theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ} (hpq : p.IsConjExponent q)
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) :
     ∫⁻ a, f a * g a ^ (p - 1) ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ p ∂μ) ^ (1 / q) :=
   by
@@ -313,9 +313,9 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
 -/
 
 #print ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add /-
-theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
-    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
-    (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : ∫⁻ a, g a ^ p ∂μ ≠ ⊤) :
+theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ} (hpq : p.IsConjExponent q)
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) (hg : AEMeasurable g μ)
+    (hg_top : ∫⁻ a, g a ^ p ∂μ ≠ ⊤) :
     ∫⁻ a, (f + g) a ^ p ∂μ ≤
       ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) *
         (∫⁻ a, (f a + g a) ^ p ∂μ) ^ (1 / q) :=
@@ -355,7 +355,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
 #align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
 -/
 
-private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
+private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjExponent q) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) (hg : AEMeasurable g μ)
     (hg_top : ∫⁻ a, g a ^ p ∂μ ≠ ⊤) (h_add_zero : ∫⁻ a, (f + g) a ^ p ∂μ ≠ 0)
     (h_add_top : ∫⁻ a, (f + g) a ^ p ∂μ ≠ ⊤) :
@@ -406,7 +406,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     simp_rw [h1, one_div_one, ENNReal.rpow_one]
     exact lintegral_add_left' hf _
   have hp1_lt : 1 < p := by refine' lt_of_le_of_ne hp1 _; symm; exact h1
-  have hpq := Real.isConjugateExponent_conjugateExponent hp1_lt
+  have hpq := Real.IsConjExponent.conjExponent hp1_lt
   by_cases h0 : ∫⁻ a, (f + g) a ^ p ∂μ = 0
   · rw [h0, @ENNReal.zero_rpow_of_pos (1 / p) (by simp [lt_of_lt_of_le zero_lt_one hp1])]
     exact zero_le _
@@ -450,7 +450,7 @@ end ENNReal
 /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
-theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0}
+theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjExponent q) {f g : α → ℝ≥0}
     (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
Diff
@@ -3,10 +3,10 @@ Copyright (c) 2020 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 -/
-import Mathbin.MeasureTheory.Integral.Lebesgue
-import Mathbin.Analysis.MeanInequalities
-import Mathbin.Analysis.MeanInequalitiesPow
-import Mathbin.MeasureTheory.Function.SpecialFunctions.Basic
+import MeasureTheory.Integral.Lebesgue
+import Analysis.MeanInequalities
+import Analysis.MeanInequalitiesPow
+import MeasureTheory.Function.SpecialFunctions.Basic
 
 #align_import measure_theory.integral.mean_inequalities from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
 
Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2020 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
-
-! This file was ported from Lean 3 source module measure_theory.integral.mean_inequalities
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Integral.Lebesgue
 import Mathbin.Analysis.MeanInequalities
 import Mathbin.Analysis.MeanInequalitiesPow
 import Mathbin.MeasureTheory.Function.SpecialFunctions.Basic
 
+#align_import measure_theory.integral.mean_inequalities from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
 /-!
 # Mean value inequalities for integrals
 
Diff
@@ -62,6 +62,7 @@ variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 
 namespace ENNReal
 
+#print ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one /-
 theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : ∫⁻ a, f a ^ p ∂μ = 1)
     (hg_norm : ∫⁻ a, g a ^ q ∂μ = 1) : ∫⁻ a, (f * g) a ∂μ ≤ 1 := by
@@ -76,6 +77,7 @@ theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsCon
         simp [hpq.symm.pos]
       · exact (hf.pow_const _).mul_const _
 #align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one
+-/
 
 #print ENNReal.funMulInvSnorm /-
 /-- Function multiplied by the inverse of its p-seminorm `(∫⁻ f^p ∂μ) ^ 1/p`-/
@@ -84,12 +86,15 @@ def funMulInvSnorm (f : α → ℝ≥0∞) (p : ℝ) (μ : Measure α) : α →
 #align ennreal.fun_mul_inv_snorm ENNReal.funMulInvSnorm
 -/
 
+#print ENNReal.fun_eq_funMulInvSnorm_mul_snorm /-
 theorem fun_eq_funMulInvSnorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_nonzero : ∫⁻ a, f a ^ p ∂μ ≠ 0)
     (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) {a : α} :
     f a = funMulInvSnorm f p μ a * (∫⁻ c, f c ^ p ∂μ) ^ (1 / p) := by
   simp [fun_mul_inv_snorm, mul_assoc, ENNReal.inv_mul_cancel, hf_nonzero, hf_top]
 #align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm ENNReal.fun_eq_funMulInvSnorm_mul_snorm
+-/
 
+#print ENNReal.funMulInvSnorm_rpow /-
 theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a : α} :
     funMulInvSnorm f p μ a ^ p = f a ^ p * (∫⁻ c, f c ^ p ∂μ)⁻¹ :=
   by
@@ -98,7 +103,9 @@ theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a :
   · rw [h_inv_rpow]
   rw [inv_rpow, ← rpow_mul, one_div_mul_cancel hp0.ne', rpow_one]
 #align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpow
+-/
 
+#print ENNReal.lintegral_rpow_funMulInvSnorm_eq_one /-
 theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ℝ≥0∞}
     (hf_nonzero : ∫⁻ a, f a ^ p ∂μ ≠ 0) (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) :
     ∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ = 1 :=
@@ -107,7 +114,9 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
   rw [lintegral_mul_const', ENNReal.mul_inv_cancel hf_nonzero hf_top]
   rwa [inv_ne_top]
 #align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_one
+-/
 
+#print ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top /-
 /-- Hölder's inequality in case of finite non-zero integrals -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : ∫⁻ a, f a ^ p ∂μ ≠ ⊤)
@@ -134,7 +143,9 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
       have hg1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.symm.pos hg_nonzero hg_nontop
       exact lintegral_mul_le_one_of_lintegral_rpow_eq_one hpq (hf.mul_const _) hf1 hg1
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
+-/
 
+#print ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero /-
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : f =ᵐ[μ] 0 :=
   by
@@ -144,7 +155,9 @@ theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α 
   rw [Pi.zero_apply, ← not_imp_not]
   exact fun hx => (rpow_pos_of_nonneg (pos_iff_ne_zero.2 hx) hp0).ne'
 #align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
+-/
 
+#print ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero /-
 theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : ∫⁻ a, (f * g) a ∂μ = 0 :=
   by
@@ -154,7 +167,9 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
+-/
 
+#print ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top /-
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q)
     {f g : α → ℝ≥0∞} (hf_top : ∫⁻ a, f a ^ p ∂μ = ⊤) (hg_nonzero : ∫⁻ a, g a ^ q ∂μ ≠ 0) :
     ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
@@ -164,7 +179,9 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0
   rw [hf_top, ENNReal.top_rpow_of_pos hp0_inv_lt]
   simp [hq0, hg_nonzero]
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top
+-/
 
+#print ENNReal.lintegral_mul_le_Lp_mul_Lq /-
 /-- Hölder's inequality for functions `α → ℝ≥0∞`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
@@ -187,7 +204,9 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
   -- non-⊤ non-zero case
   exact ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hf_top hg_top hf_zero hg_zero
 #align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
+-/
 
+#print ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top /-
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : ∫⁻ a, f a ^ p ∂μ < ⊤) (hg_top : ∫⁻ a, g a ^ p ∂μ < ⊤)
     (hp1 : 1 ≤ p) : ∫⁻ a, (f + g) a ^ p ∂μ < ⊤ :=
@@ -229,7 +248,9 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
       · exact ⟨ENNReal.mul_lt_top h_two hf_top.ne, ENNReal.mul_lt_top h_two hg_top.ne⟩
       · exact (hf.pow_const p).const_mul _
 #align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
+-/
 
+#print ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr /-
 theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (hp0_lt : 0 < p)
     (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
@@ -269,7 +290,9 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
         field_simp [q2, Real.conjugateExponent, p2, hp0_ne, hq0_ne]
       simp_rw [div_mul_div_comm, mul_one, mul_comm p2, mul_comm q2, hpp2, hpq2]
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
+-/
 
+#print ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow /-
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) :
@@ -290,7 +313,9 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
   ext1 a
   rw [← ENNReal.rpow_mul, hpq.sub_one_mul_conj]
 #align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
+-/
 
+#print ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add /-
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : ∫⁻ a, g a ^ p ∂μ ≠ ⊤) :
@@ -331,6 +356,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
           (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hf (hf.add hg) hf_top)
           (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hg (hf.add hg) hg_top)
 #align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
+-/
 
 private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) (hg : AEMeasurable g μ)
@@ -365,6 +391,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
   nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h 
   rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h 
 
+#print ENNReal.lintegral_Lp_add_le /-
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
 functions is bounded by the sum of their `ℒp` seminorms. -/
 theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
@@ -393,7 +420,9 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     exact lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf hf_top hg_top hp1
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
 #align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
+-/
 
+#print ENNReal.lintegral_Lp_add_le_of_le_one /-
 /-- Variant of Minkowski's inequality for functions `α → ℝ≥0∞` in `ℒp` with `p ≤ 1`: the `ℒp`
 seminorm of the sum of two functions is bounded by a constant multiple of the sum
 of their `ℒp` seminorms. -/
@@ -416,9 +445,11 @@ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf :
     _ ≤ 2 ^ (1 / p - 1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) :=
       rpow_add_le_mul_rpow_add_rpow _ _ ((one_le_div hp).2 hp1)
 #align ennreal.lintegral_Lp_add_le_of_le_one ENNReal.lintegral_Lp_add_le_of_le_one
+-/
 
 end ENNReal
 
+#print NNReal.lintegral_mul_le_Lp_mul_Lq /-
 /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
@@ -429,6 +460,7 @@ theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjugateExpone
   simp_rw [Pi.mul_apply, ENNReal.coe_mul]
   exact ENNReal.lintegral_mul_le_Lp_mul_Lq μ hpq hf.coe_nnreal_ennreal hg.coe_nnreal_ennreal
 #align nnreal.lintegral_mul_le_Lp_mul_Lq NNReal.lintegral_mul_le_Lp_mul_Lq
+-/
 
 end Lintegral
 
Diff
@@ -63,11 +63,10 @@ variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 namespace ENNReal
 
 theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
-    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : (∫⁻ a, f a ^ p ∂μ) = 1)
-    (hg_norm : (∫⁻ a, g a ^ q ∂μ) = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : ∫⁻ a, f a ^ p ∂μ = 1)
+    (hg_norm : ∫⁻ a, g a ^ q ∂μ = 1) : ∫⁻ a, (f * g) a ∂μ ≤ 1 := by
   calc
-    (∫⁻ a : α, (f * g) a ∂μ) ≤
-        ∫⁻ a : α, f a ^ p / ENNReal.ofReal p + g a ^ q / ENNReal.ofReal q ∂μ :=
+    ∫⁻ a : α, (f * g) a ∂μ ≤ ∫⁻ a : α, f a ^ p / ENNReal.ofReal p + g a ^ q / ENNReal.ofReal q ∂μ :=
       lintegral_mono fun a => young_inequality (f a) (g a) hpq
     _ = 1 := by
       simp only [div_eq_mul_inv]
@@ -85,8 +84,8 @@ def funMulInvSnorm (f : α → ℝ≥0∞) (p : ℝ) (μ : Measure α) : α →
 #align ennreal.fun_mul_inv_snorm ENNReal.funMulInvSnorm
 -/
 
-theorem fun_eq_funMulInvSnorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0)
-    (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) {a : α} :
+theorem fun_eq_funMulInvSnorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_nonzero : ∫⁻ a, f a ^ p ∂μ ≠ 0)
+    (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) {a : α} :
     f a = funMulInvSnorm f p μ a * (∫⁻ c, f c ^ p ∂μ) ^ (1 / p) := by
   simp [fun_mul_inv_snorm, mul_assoc, ENNReal.inv_mul_cancel, hf_nonzero, hf_top]
 #align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm ENNReal.fun_eq_funMulInvSnorm_mul_snorm
@@ -101,8 +100,8 @@ theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a :
 #align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpow
 
 theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ℝ≥0∞}
-    (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
-    (∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ) = 1 :=
+    (hf_nonzero : ∫⁻ a, f a ^ p ∂μ ≠ 0) (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) :
+    ∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ = 1 :=
   by
   simp_rw [fun_mul_inv_snorm_rpow hp0_lt]
   rw [lintegral_mul_const', ENNReal.mul_inv_cancel hf_nonzero hf_top]
@@ -111,15 +110,15 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
 
 /-- Hölder's inequality in case of finite non-zero integrals -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
-    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤)
-    (hg_nontop : (∫⁻ a, g a ^ q ∂μ) ≠ ⊤) (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0)
-    (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
-    (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : ∫⁻ a, f a ^ p ∂μ ≠ ⊤)
+    (hg_nontop : ∫⁻ a, g a ^ q ∂μ ≠ ⊤) (hf_nonzero : ∫⁻ a, f a ^ p ∂μ ≠ 0)
+    (hg_nonzero : ∫⁻ a, g a ^ q ∂μ ≠ 0) :
+    ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
   let npf := (∫⁻ c : α, f c ^ p ∂μ) ^ (1 / p)
   let nqg := (∫⁻ c : α, g c ^ q ∂μ) ^ (1 / q)
   calc
-    (∫⁻ a : α, (f * g) a ∂μ) =
+    ∫⁻ a : α, (f * g) a ∂μ =
         ∫⁻ a : α, (fun_mul_inv_snorm f p μ * fun_mul_inv_snorm g q μ) a * (npf * nqg) ∂μ :=
       by
       refine' lintegral_congr fun a => _
@@ -137,7 +136,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
 
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 :=
+    (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : f =ᵐ[μ] 0 :=
   by
   rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero 
   refine' Filter.Eventually.mp hf_zero (Filter.eventually_of_forall fun x => _)
@@ -147,7 +146,7 @@ theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α 
 #align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
 
 theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 :=
+    (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : ∫⁻ a, (f * g) a ∂μ = 0 :=
   by
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
@@ -157,8 +156,8 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
 
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q)
-    {f g : α → ℝ≥0∞} (hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤) (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
-    (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
+    {f g : α → ℝ≥0∞} (hf_top : ∫⁻ a, f a ^ p ∂μ = ⊤) (hg_nonzero : ∫⁻ a, g a ^ q ∂μ ≠ 0) :
+    ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
   refine' le_trans le_top (le_of_eq _)
   have hp0_inv_lt : 0 < 1 / p := by simp [hp0_lt]
@@ -171,18 +170,18 @@ is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q`
 exponents. -/
 theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
-    (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
+    ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
-  by_cases hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0
+  by_cases hf_zero : ∫⁻ a, f a ^ p ∂μ = 0
   · refine' Eq.trans_le _ (zero_le _)
     exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.nonneg hf hf_zero
-  by_cases hg_zero : (∫⁻ a, g a ^ q ∂μ) = 0
+  by_cases hg_zero : ∫⁻ a, g a ^ q ∂μ = 0
   · refine' Eq.trans_le _ (zero_le _)
     rw [mul_comm]
     exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.symm.nonneg hg hg_zero
-  by_cases hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤
+  by_cases hf_top : ∫⁻ a, f a ^ p ∂μ = ⊤
   · exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.pos hpq.symm.nonneg hf_top hg_zero
-  by_cases hg_top : (∫⁻ a, g a ^ q ∂μ) = ⊤
+  by_cases hg_top : ∫⁻ a, g a ^ q ∂μ = ⊤
   · rw [mul_comm, mul_comm ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p))]
     exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.symm.pos hpq.nonneg hg_top hf_zero
   -- non-⊤ non-zero case
@@ -190,13 +189,13 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
 #align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
 
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
-    (hp1 : 1 ≤ p) : (∫⁻ a, (f + g) a ^ p ∂μ) < ⊤ :=
+    (hf : AEMeasurable f μ) (hf_top : ∫⁻ a, f a ^ p ∂μ < ⊤) (hg_top : ∫⁻ a, g a ^ p ∂μ < ⊤)
+    (hp1 : 1 ≤ p) : ∫⁻ a, (f + g) a ^ p ∂μ < ⊤ :=
   by
   have hp0_lt : 0 < p := lt_of_lt_of_le zero_lt_one hp1
   have hp0 : 0 ≤ p := le_of_lt hp0_lt
   calc
-    (∫⁻ a : α, (f a + g a) ^ p ∂μ) ≤
+    ∫⁻ a : α, (f a + g a) ^ p ∂μ ≤
         ∫⁻ a, (2 : ℝ≥0∞) ^ (p - 1) * f a ^ p + (2 : ℝ≥0∞) ^ (p - 1) * g a ^ p ∂μ :=
       by
       refine' lintegral_mono fun a => _
@@ -273,8 +272,8 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
 
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
-    (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
-    (∫⁻ a, f a * g a ^ (p - 1) ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ p ∂μ) ^ (1 / q) :=
+    (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) :
+    ∫⁻ a, f a * g a ^ (p - 1) ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ p ∂μ) ^ (1 / q) :=
   by
   refine' le_trans (ENNReal.lintegral_mul_le_Lp_mul_Lq μ hpq hf (hg.pow_const _)) _
   by_cases hf_zero_rpow : (∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) = 0
@@ -294,13 +293,13 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
 
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
-    (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) :
-    (∫⁻ a, (f + g) a ^ p ∂μ) ≤
+    (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : ∫⁻ a, g a ^ p ∂μ ≠ ⊤) :
+    ∫⁻ a, (f + g) a ^ p ∂μ ≤
       ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) *
         (∫⁻ a, (f a + g a) ^ p ∂μ) ^ (1 / q) :=
   by
   calc
-    (∫⁻ a, (f + g) a ^ p ∂μ) ≤ ∫⁻ a, (f + g) a * (f + g) a ^ (p - 1) ∂μ :=
+    ∫⁻ a, (f + g) a ^ p ∂μ ≤ ∫⁻ a, (f + g) a * (f + g) a ^ (p - 1) ∂μ :=
       by
       refine' lintegral_mono fun a => _
       dsimp only
@@ -313,11 +312,11 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
       refine' le_of_eq _
       nth_rw 2 [← ENNReal.rpow_one ((f + g) a)]
       rw [← ENNReal.rpow_add _ _ h_zero h_top, add_sub_cancel'_right]
-    _ = (∫⁻ a : α, f a * (f + g) a ^ (p - 1) ∂μ) + ∫⁻ a : α, g a * (f + g) a ^ (p - 1) ∂μ :=
+    _ = ∫⁻ a : α, f a * (f + g) a ^ (p - 1) ∂μ + ∫⁻ a : α, g a * (f + g) a ^ (p - 1) ∂μ :=
       by
       have h_add_m : AEMeasurable (fun a : α => (f + g) a ^ (p - 1)) μ := (hf.add hg).pow_const _
       have h_add_apply :
-        (∫⁻ a : α, (f + g) a * (f + g) a ^ (p - 1) ∂μ) =
+        ∫⁻ a : α, (f + g) a * (f + g) a ^ (p - 1) ∂μ =
           ∫⁻ a : α, (f a + g a) * (f + g) a ^ (p - 1) ∂μ :=
         rfl
       simp_rw [h_add_apply, add_mul]
@@ -334,9 +333,9 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
 #align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
 
 private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ)
-    (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) (h_add_zero : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ 0)
-    (h_add_top : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤) :
+    (hf : AEMeasurable f μ) (hf_top : ∫⁻ a, f a ^ p ∂μ ≠ ⊤) (hg : AEMeasurable g μ)
+    (hg_top : ∫⁻ a, g a ^ p ∂μ ≠ ⊤) (h_add_zero : ∫⁻ a, (f + g) a ^ p ∂μ ≠ 0)
+    (h_add_top : ∫⁻ a, (f + g) a ^ p ∂μ ≠ ⊤) :
     (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤
       (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p) :=
   by
@@ -355,7 +354,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
     rwa [← mul_le_mul_left h0_rpow htop_rpow, ← mul_assoc, ← rpow_add _ _ h_add_zero h_add_top, ←
       sub_eq_add_neg, _root_.sub_self, rpow_zero, one_mul, mul_one] at h 
   have h :
-    (∫⁻ a : α, (f + g) a ^ p ∂μ) ≤
+    ∫⁻ a : α, (f + g) a ^ p ∂μ ≤
       ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p)) *
         (∫⁻ a : α, (f + g) a ^ p ∂μ) ^ (1 / q) :=
     lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add hpq hf hf_top hg hg_top
@@ -374,9 +373,9 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
       (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p) :=
   by
   have hp_pos : 0 < p := lt_of_lt_of_le zero_lt_one hp1
-  by_cases hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤
+  by_cases hf_top : ∫⁻ a, f a ^ p ∂μ = ⊤
   · simp [hf_top, hp_pos]
-  by_cases hg_top : (∫⁻ a, g a ^ p ∂μ) = ⊤
+  by_cases hg_top : ∫⁻ a, g a ^ p ∂μ = ⊤
   · simp [hg_top, hp_pos]
   by_cases h1 : p = 1
   · refine' le_of_eq _
@@ -384,10 +383,10 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     exact lintegral_add_left' hf _
   have hp1_lt : 1 < p := by refine' lt_of_le_of_ne hp1 _; symm; exact h1
   have hpq := Real.isConjugateExponent_conjugateExponent hp1_lt
-  by_cases h0 : (∫⁻ a, (f + g) a ^ p ∂μ) = 0
+  by_cases h0 : ∫⁻ a, (f + g) a ^ p ∂μ = 0
   · rw [h0, @ENNReal.zero_rpow_of_pos (1 / p) (by simp [lt_of_lt_of_le zero_lt_one hp1])]
     exact zero_le _
-  have htop : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤ :=
+  have htop : ∫⁻ a, (f + g) a ^ p ∂μ ≠ ⊤ :=
     by
     rw [← Ne.def] at hf_top hg_top 
     rw [← lt_top_iff_ne_top] at hf_top hg_top ⊢
@@ -409,7 +408,7 @@ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf :
     rw [rpow_neg, rpow_one, ENNReal.inv_mul_cancel two_ne_zero two_ne_top]
     exact le_rfl
   calc
-    (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ ((∫⁻ a, f a ^ p ∂μ) + ∫⁻ a, g a ^ p ∂μ) ^ (1 / p) :=
+    (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ (∫⁻ a, f a ^ p ∂μ + ∫⁻ a, g a ^ p ∂μ) ^ (1 / p) :=
       by
       apply rpow_le_rpow _ (div_nonneg zero_le_one hp0)
       rw [← lintegral_add_left' (hf.pow_const p)]
@@ -425,7 +424,7 @@ is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q`
 exponents. -/
 theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0}
     (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
-    (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
+    ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
   simp_rw [Pi.mul_apply, ENNReal.coe_mul]
   exact ENNReal.lintegral_mul_le_Lp_mul_Lq μ hpq hf.coe_nnreal_ennreal hg.coe_nnreal_ennreal
Diff
@@ -76,7 +76,6 @@ theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsCon
           div_eq_mul_inv, ← div_eq_mul_inv, hpq.inv_add_inv_conj_ennreal]
         simp [hpq.symm.pos]
       · exact (hf.pow_const _).mul_const _
-    
 #align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one
 
 #print ENNReal.funMulInvSnorm /-
@@ -135,7 +134,6 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
       have hf1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.pos hf_nonzero hf_nontop
       have hg1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.symm.pos hg_nonzero hg_nontop
       exact lintegral_mul_le_one_of_lintegral_rpow_eq_one hpq (hf.mul_const _) hf1 hg1
-    
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
 
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
@@ -231,7 +229,6 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
         lintegral_const_mul' _ _ h_two, ENNReal.add_lt_top]
       · exact ⟨ENNReal.mul_lt_top h_two hf_top.ne, ENNReal.mul_lt_top h_two hg_top.ne⟩
       · exact (hf.pow_const p).const_mul _
-    
 #align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
 
 theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (hp0_lt : 0 < p)
@@ -272,7 +269,6 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
         rw [← inv_inv r, ← one_div, ← one_div, h_one_div_r]
         field_simp [q2, Real.conjugateExponent, p2, hp0_ne, hq0_ne]
       simp_rw [div_mul_div_comm, mul_one, mul_comm p2, mul_comm q2, hpp2, hpq2]
-    
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
@@ -335,7 +331,6 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
         add_le_add
           (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hf (hf.add hg) hf_top)
           (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hg (hf.add hg) hg_top)
-    
 #align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
 
 private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
@@ -421,7 +416,6 @@ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf :
       exact lintegral_mono fun a => rpow_add_le_add_rpow _ _ hp0 hp1
     _ ≤ 2 ^ (1 / p - 1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) :=
       rpow_add_le_mul_rpow_add_rpow _ _ ((one_le_div hp).2 hp1)
-    
 #align ennreal.lintegral_Lp_add_le_of_le_one ENNReal.lintegral_Lp_add_le_of_le_one
 
 end ENNReal
Diff
@@ -141,7 +141,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 :=
   by
-  rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero
+  rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero 
   refine' Filter.Eventually.mp hf_zero (Filter.eventually_of_forall fun x => _)
   dsimp only
   rw [Pi.zero_apply, ← not_imp_not]
@@ -153,7 +153,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   by
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
-  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g; · rwa [MulZeroClass.zero_mul] at h_mul_zero
+  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g; · rwa [MulZeroClass.zero_mul] at h_mul_zero 
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
@@ -248,7 +248,7 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
   have hr0_ne : r ≠ 0 :=
     by
     have hr_inv_pos : 0 < 1 / r := by rwa [h_one_div_r, sub_pos, one_div_lt_one_div hq0_lt hp0_lt]
-    rw [one_div, _root_.inv_pos] at hr_inv_pos
+    rw [one_div, _root_.inv_pos] at hr_inv_pos 
     exact (ne_of_lt hr_inv_pos).symm
   let p2 := q / p
   let q2 := p2.conjugate_exponent
@@ -358,7 +358,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
         ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p))
   ·
     rwa [← mul_le_mul_left h0_rpow htop_rpow, ← mul_assoc, ← rpow_add _ _ h_add_zero h_add_top, ←
-      sub_eq_add_neg, _root_.sub_self, rpow_zero, one_mul, mul_one] at h
+      sub_eq_add_neg, _root_.sub_self, rpow_zero, one_mul, mul_one] at h 
   have h :
     (∫⁻ a : α, (f + g) a ^ p ∂μ) ≤
       ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p)) *
@@ -366,10 +366,10 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
     lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add hpq hf hf_top hg hg_top
   have h_one_div_q : 1 / q = 1 - 1 / p := by nth_rw 2 [← hpq.inv_add_inv_conj]; ring
   simp_rw [h_one_div_q, sub_eq_add_neg 1 (1 / p), ENNReal.rpow_add _ _ h_add_zero h_add_top,
-    rpow_one] at h
-  nth_rw 2 [mul_comm] at h
-  nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h
-  rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
+    rpow_one] at h 
+  nth_rw 2 [mul_comm] at h 
+  nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h 
+  rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h 
 
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
 functions is bounded by the sum of their `ℒp` seminorms. -/
@@ -394,8 +394,8 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     exact zero_le _
   have htop : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤ :=
     by
-    rw [← Ne.def] at hf_top hg_top
-    rw [← lt_top_iff_ne_top] at hf_top hg_top⊢
+    rw [← Ne.def] at hf_top hg_top 
+    rw [← lt_top_iff_ne_top] at hf_top hg_top ⊢
     exact lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf hf_top hg_top hp1
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
 #align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
Diff
@@ -54,7 +54,7 @@ only to prove the more general results:
 
 noncomputable section
 
-open Classical BigOperators NNReal ENNReal
+open scoped Classical BigOperators NNReal ENNReal
 
 open MeasureTheory
 
Diff
@@ -62,12 +62,6 @@ variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 
 namespace ENNReal
 
-/- warning: ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one -> ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_oneₓ'. -/
 theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : (∫⁻ a, f a ^ p ∂μ) = 1)
     (hg_norm : (∫⁻ a, g a ^ q ∂μ) = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
@@ -92,24 +86,12 @@ def funMulInvSnorm (f : α → ℝ≥0∞) (p : ℝ) (μ : Measure α) : α →
 #align ennreal.fun_mul_inv_snorm ENNReal.funMulInvSnorm
 -/
 
-/- warning: ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm -> ENNReal.fun_eq_funMulInvSnorm_mul_snorm is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} (f : α -> ENNReal), (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {a : α}, Eq.{1} ENNReal (f a) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f c) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} (f : α -> ENNReal), (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {a : α}, Eq.{1} ENNReal (f a) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f c) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p))))
-Case conversion may be inaccurate. Consider using '#align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm ENNReal.fun_eq_funMulInvSnorm_mul_snormₓ'. -/
 theorem fun_eq_funMulInvSnorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) {a : α} :
     f a = funMulInvSnorm f p μ a * (∫⁻ c, f c ^ p ∂μ) ^ (1 / p) := by
   simp [fun_mul_inv_snorm, mul_assoc, ENNReal.inv_mul_cancel, hf_nonzero, hf_top]
 #align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm ENNReal.fun_eq_funMulInvSnorm_mul_snorm
 
-/- warning: ennreal.fun_mul_inv_snorm_rpow -> ENNReal.funMulInvSnorm_rpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal} {a : α}, Eq.{1} ENNReal (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) p) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p) (Inv.inv.{0} ENNReal ENNReal.hasInv (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f c) p)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal} {a : α}, Eq.{1} ENNReal (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) p) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p) (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f c) p)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpowₓ'. -/
 theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a : α} :
     funMulInvSnorm f p μ a ^ p = f a ^ p * (∫⁻ c, f c ^ p ∂μ)⁻¹ :=
   by
@@ -119,12 +101,6 @@ theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a :
   rw [inv_rpow, ← rpow_mul, one_div_mul_cancel hp0.ne', rpow_one]
 #align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpow
 
-/- warning: ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one -> ENNReal.lintegral_rpow_funMulInvSnorm_eq_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ c) p)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ c) p)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_oneₓ'. -/
 theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ℝ≥0∞}
     (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ) = 1 :=
@@ -134,9 +110,6 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
   rwa [inv_ne_top]
 #align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_one
 
-/- warning: ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top -> ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_topₓ'. -/
 /-- Hölder's inequality in case of finite non-zero integrals -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤)
@@ -165,12 +138,6 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
     
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
 
-/- warning: ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero -> ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero))))))
-Case conversion may be inaccurate. Consider using '#align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zeroₓ'. -/
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 :=
   by
@@ -181,12 +148,6 @@ theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α 
   exact fun hx => (rpow_pos_of_nonneg (pos_iff_ne_zero.2 hx) hp0).ne'
 #align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
 
-/- warning: ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero -> ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zeroₓ'. -/
 theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 :=
   by
@@ -197,12 +158,6 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
 
-/- warning: ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top -> ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_topₓ'. -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q)
     {f g : α → ℝ≥0∞} (hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤) (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
@@ -213,12 +168,6 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0
   simp [hq0, hg_nonzero]
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top
 
-/- warning: ennreal.lintegral_mul_le_Lp_mul_Lq -> ENNReal.lintegral_mul_le_Lp_mul_Lq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lqₓ'. -/
 /-- Hölder's inequality for functions `α → ℝ≥0∞`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
@@ -242,9 +191,6 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
   exact ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hf_top hg_top hf_zero hg_zero
 #align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
 
-/- warning: ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top -> ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_topₓ'. -/
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
     (hp1 : 1 ≤ p) : (∫⁻ a, (f + g) a ^ p ∂μ) < ⊤ :=
@@ -288,9 +234,6 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
     
 #align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
 
-/- warning: ennreal.lintegral_Lp_mul_le_Lq_mul_Lr -> ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lrₓ'. -/
 theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (hp0_lt : 0 < p)
     (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
@@ -332,12 +275,6 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
     
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 
-/- warning: ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow -> ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) p (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) p (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpowₓ'. -/
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
@@ -359,9 +296,6 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
   rw [← ENNReal.rpow_mul, hpq.sub_one_mul_conj]
 #align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
 
-/- warning: ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add -> ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_addₓ'. -/
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) :
@@ -437,9 +371,6 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
   nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h
   rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
 
-/- warning: ennreal.lintegral_Lp_add_le -> ENNReal.lintegral_Lp_add_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_leₓ'. -/
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
 functions is bounded by the sum of their `ℒp` seminorms. -/
 theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
@@ -469,9 +400,6 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
 #align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
 
-/- warning: ennreal.lintegral_Lp_add_le_of_le_one -> ENNReal.lintegral_Lp_add_le_of_le_one is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_add_le_of_le_one ENNReal.lintegral_Lp_add_le_of_le_oneₓ'. -/
 /-- Variant of Minkowski's inequality for functions `α → ℝ≥0∞` in `ℒp` with `p ≤ 1`: the `ℒp`
 seminorm of the sum of two functions is bounded by a constant multiple of the sum
 of their `ℒp` seminorms. -/
@@ -498,12 +426,6 @@ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf :
 
 end ENNReal
 
-/- warning: nnreal.lintegral_mul_le_Lp_mul_Lq -> NNReal.lintegral_mul_le_Lp_mul_Lq is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> NNReal} {g : α -> NNReal}, (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (HMul.hMul.{u1, u1, u1} (α -> NNReal) (α -> NNReal) (α -> NNReal) (instHMul.{u1} (α -> NNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => Distrib.toHasMul.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))) f g a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (g a)) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> NNReal} {g : α -> NNReal}, (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => ENNReal.some (HMul.hMul.{u1, u1, u1} (α -> NNReal) (α -> NNReal) (α -> NNReal) (instHMul.{u1} (α -> NNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} NNReal instNNRealCanonicallyOrderedCommSemiring))) f g a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.some (f a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.some (g a)) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
-Case conversion may be inaccurate. Consider using '#align nnreal.lintegral_mul_le_Lp_mul_Lq NNReal.lintegral_mul_le_Lp_mul_Lqₓ'. -/
 /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
Diff
@@ -192,8 +192,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   by
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
-  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g
-  · rwa [MulZeroClass.zero_mul] at h_mul_zero
+  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g; · rwa [MulZeroClass.zero_mul] at h_mul_zero
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
@@ -324,9 +323,7 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
       by
       rw [@ENNReal.mul_rpow_of_nonneg _ _ (1 / p) (by simp [hp0]), ← ENNReal.rpow_mul, ←
         ENNReal.rpow_mul]
-      have hpp2 : p * p2 = q := by
-        symm
-        rw [mul_comm, ← div_eq_iff hp0_ne]
+      have hpp2 : p * p2 = q := by symm; rw [mul_comm, ← div_eq_iff hp0_ne]
       have hpq2 : p * q2 = r :=
         by
         rw [← inv_inv r, ← one_div, ← one_div, h_one_div_r]
@@ -433,10 +430,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
       ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p)) *
         (∫⁻ a : α, (f + g) a ^ p ∂μ) ^ (1 / q) :=
     lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add hpq hf hf_top hg hg_top
-  have h_one_div_q : 1 / q = 1 - 1 / p :=
-    by
-    nth_rw 2 [← hpq.inv_add_inv_conj]
-    ring
+  have h_one_div_q : 1 / q = 1 - 1 / p := by nth_rw 2 [← hpq.inv_add_inv_conj]; ring
   simp_rw [h_one_div_q, sub_eq_add_neg 1 (1 / p), ENNReal.rpow_add _ _ h_add_zero h_add_top,
     rpow_one] at h
   nth_rw 2 [mul_comm] at h
@@ -462,10 +456,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
   · refine' le_of_eq _
     simp_rw [h1, one_div_one, ENNReal.rpow_one]
     exact lintegral_add_left' hf _
-  have hp1_lt : 1 < p := by
-    refine' lt_of_le_of_ne hp1 _
-    symm
-    exact h1
+  have hp1_lt : 1 < p := by refine' lt_of_le_of_ne hp1 _; symm; exact h1
   have hpq := Real.isConjugateExponent_conjugateExponent hp1_lt
   by_cases h0 : (∫⁻ a, (f + g) a ^ p ∂μ) = 0
   · rw [h0, @ENNReal.zero_rpow_of_pos (1 / p) (by simp [lt_of_lt_of_le zero_lt_one hp1])]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.integral.mean_inequalities
-! leanprover-community/mathlib commit 13bf7613c96a9fd66a81b9020a82cad9a6ea1fcf
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -16,6 +16,9 @@ import Mathbin.MeasureTheory.Function.SpecialFunctions.Basic
 /-!
 # Mean value inequalities for integrals
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we prove several inequalities on integrals, notably the Hölder inequality and
 the Minkowski inequality. The versions for finite sums are in `analysis.mean_inequalities`.
 
@@ -132,10 +135,7 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
 #align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_one
 
 /- warning: ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top -> ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_topₓ'. -/
 /-- Hölder's inequality in case of finite non-zero integrals -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
@@ -244,10 +244,7 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
 #align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
 
 /- warning: ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top -> ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_topₓ'. -/
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
@@ -293,10 +290,7 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
 #align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
 
 /- warning: ennreal.lintegral_Lp_mul_le_Lq_mul_Lr -> ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_2 : MeasurableSpace.{u1} α] {p : Real} {q : Real} {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (LT.lt.{0} Real Real.hasLt p q) -> (Eq.{1} Real (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) r))) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) r)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) r)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_2 : MeasurableSpace.{u1} α] {p : Real} {q : Real} {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (LT.lt.{0} Real Real.instLTReal p q) -> (Eq.{1} Real (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) r))) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) r)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) r)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lrₓ'. -/
 theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (hp0_lt : 0 < p)
     (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) (μ : Measure α) {f g : α → ℝ≥0∞}
@@ -369,10 +363,7 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
 #align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
 
 /- warning: ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add -> ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_addₓ'. -/
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
@@ -451,13 +442,9 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
   nth_rw 2 [mul_comm] at h
   nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h
   rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
-#align ennreal.lintegral_Lp_add_le_aux ennreal.lintegral_Lp_add_le_aux
 
 /- warning: ennreal.lintegral_Lp_add_le -> ENNReal.lintegral_Lp_add_le is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_leₓ'. -/
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
 functions is bounded by the sum of their `ℒp` seminorms. -/
@@ -492,10 +479,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
 #align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
 
 /- warning: ennreal.lintegral_Lp_add_le_of_le_one -> ENNReal.lintegral_Lp_add_le_of_le_one is a dubious translation:
-lean 3 declaration is
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (LE.le.{0} Real Real.hasLe p (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (OfNat.ofNat.{0} ENNReal 2 (OfNat.mk.{0} ENNReal 2 (bit0.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)))))
-but is expected to have type
-  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (LE.le.{0} Real Real.instLEReal p (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (OfNat.ofNat.{0} ENNReal 2 (instOfNat.{0} ENNReal 2 (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_add_le_of_le_one ENNReal.lintegral_Lp_add_le_of_le_oneₓ'. -/
 /-- Variant of Minkowski's inequality for functions `α → ℝ≥0∞` in `ℒp` with `p ≤ 1`: the `ℒp`
 seminorm of the sum of two functions is bounded by a constant multiple of the sum
Diff
@@ -59,6 +59,12 @@ variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 
 namespace ENNReal
 
+/- warning: ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one -> ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_oneₓ'. -/
 theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : (∫⁻ a, f a ^ p ∂μ) = 1)
     (hg_norm : (∫⁻ a, g a ^ q ∂μ) = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
@@ -76,17 +82,31 @@ theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsCon
     
 #align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one
 
+#print ENNReal.funMulInvSnorm /-
 /-- Function multiplied by the inverse of its p-seminorm `(∫⁻ f^p ∂μ) ^ 1/p`-/
 def funMulInvSnorm (f : α → ℝ≥0∞) (p : ℝ) (μ : Measure α) : α → ℝ≥0∞ := fun a =>
   f a * ((∫⁻ c, f c ^ p ∂μ) ^ (1 / p))⁻¹
 #align ennreal.fun_mul_inv_snorm ENNReal.funMulInvSnorm
+-/
 
+/- warning: ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm -> ENNReal.fun_eq_funMulInvSnorm_mul_snorm is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} (f : α -> ENNReal), (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (forall {a : α}, Eq.{1} ENNReal (f a) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f c) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} (f : α -> ENNReal), (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (forall {a : α}, Eq.{1} ENNReal (f a) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f c) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p))))
+Case conversion may be inaccurate. Consider using '#align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm ENNReal.fun_eq_funMulInvSnorm_mul_snormₓ'. -/
 theorem fun_eq_funMulInvSnorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) {a : α} :
     f a = funMulInvSnorm f p μ a * (∫⁻ c, f c ^ p ∂μ) ^ (1 / p) := by
   simp [fun_mul_inv_snorm, mul_assoc, ENNReal.inv_mul_cancel, hf_nonzero, hf_top]
 #align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm ENNReal.fun_eq_funMulInvSnorm_mul_snorm
 
+/- warning: ennreal.fun_mul_inv_snorm_rpow -> ENNReal.funMulInvSnorm_rpow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal} {a : α}, Eq.{1} ENNReal (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) p) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p) (Inv.inv.{0} ENNReal ENNReal.hasInv (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f c) p)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal} {a : α}, Eq.{1} ENNReal (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ a) p) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p) (Inv.inv.{0} ENNReal ENNReal.instInvENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f c) p)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpowₓ'. -/
 theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a : α} :
     funMulInvSnorm f p μ a ^ p = f a ^ p * (∫⁻ c, f c ^ p ∂μ)⁻¹ :=
   by
@@ -96,6 +116,12 @@ theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a :
   rw [inv_rpow, ← rpow_mul, one_div_mul_cancel hp0.ne', rpow_one]
 #align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpow
 
+/- warning: ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one -> ENNReal.lintegral_rpow_funMulInvSnorm_eq_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ c) p)) (OfNat.ofNat.{0} ENNReal 1 (OfNat.mk.{0} ENNReal 1 (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal}, (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (c : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.funMulInvSnorm.{u1} α _inst_1 f p μ c) p)) (OfNat.ofNat.{0} ENNReal 1 (One.toOfNat1.{0} ENNReal (CanonicallyOrderedCommSemiring.toOne.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_oneₓ'. -/
 theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ℝ≥0∞}
     (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ) = 1 :=
@@ -105,6 +131,12 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
   rwa [inv_ne_top]
 #align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_one
 
+/- warning: ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top -> ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_topₓ'. -/
 /-- Hölder's inequality in case of finite non-zero integrals -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤)
@@ -133,6 +165,12 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
     
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
 
+/- warning: ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero -> ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (OfNat.mk.{u1} (α -> ENNReal) 0 (Zero.zero.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => ENNReal.hasZero)))))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Filter.EventuallyEq.{u1, 0} α ENNReal (MeasureTheory.Measure.ae.{u1} α _inst_1 μ) f (OfNat.ofNat.{u1} (α -> ENNReal) 0 (Zero.toOfNat0.{u1} (α -> ENNReal) (Pi.instZero.{u1, 0} α (fun (a._@.Mathlib.Order.Filter.Basic._hyg.19136 : α) => ENNReal) (fun (i : α) => instENNRealZero))))))
+Case conversion may be inaccurate. Consider using '#align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zeroₓ'. -/
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 :=
   by
@@ -143,6 +181,12 @@ theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α 
   exact fun hx => (rpow_pos_of_nonneg (pos_iff_ne_zero.2 hx) hp0).ne'
 #align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
 
+/- warning: ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero -> ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zeroₓ'. -/
 theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 :=
   by
@@ -154,6 +198,12 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
 
+/- warning: ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top -> ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (OfNat.mk.{0} ENNReal 0 (Zero.zero.{0} ENNReal ENNReal.hasZero)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (Eq.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (OfNat.ofNat.{0} ENNReal 0 (Zero.toOfNat0.{0} ENNReal instENNRealZero))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_topₓ'. -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q)
     {f g : α → ℝ≥0∞} (hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤) (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
@@ -164,6 +214,12 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0
   simp [hq0, hg_nonzero]
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top
 
+/- warning: ennreal.lintegral_mul_le_Lp_mul_Lq -> ENNReal.lintegral_mul_le_Lp_mul_Lq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] (μ : MeasureTheory.Measure.{u1} α _inst_1) {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lqₓ'. -/
 /-- Hölder's inequality for functions `α → ℝ≥0∞`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
@@ -187,6 +243,12 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
   exact ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hf_top hg_top hf_zero hg_zero
 #align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
 
+/- warning: ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top -> ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_topₓ'. -/
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
     (hp1 : 1 ≤ p) : (∫⁻ a, (f + g) a ^ p ∂μ) < ⊤ :=
@@ -230,6 +292,12 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
     
 #align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
 
+/- warning: ennreal.lintegral_Lp_mul_le_Lq_mul_Lr -> ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_2 : MeasurableSpace.{u1} α] {p : Real} {q : Real} {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (LT.lt.{0} Real Real.hasLt p q) -> (Eq.{1} Real (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) r))) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) r)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) r)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_2 : MeasurableSpace.{u1} α] {p : Real} {q : Real} {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (LT.lt.{0} Real Real.instLTReal p q) -> (Eq.{1} Real (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) r))) -> (forall (μ : MeasureTheory.Measure.{u1} α _inst_2) {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_2 g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HMul.hMul.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHMul.{u1} (α -> ENNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_2 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) r)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) r)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lrₓ'. -/
 theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (hp0_lt : 0 < p)
     (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) (μ : Measure α) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
@@ -273,6 +341,12 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
     
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 
+/- warning: ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow -> ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) p (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (f a) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) p (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpowₓ'. -/
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
@@ -294,6 +368,12 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
   rw [← ENNReal.rpow_mul, hpq.sub_one_mul_conj]
 #align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
 
+/- warning: ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add -> ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (f a) (g a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (Ne.{1} ENNReal (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (f a) (g a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_addₓ'. -/
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) :
@@ -373,6 +453,12 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
   rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
 #align ennreal.lintegral_Lp_add_le_aux ennreal.lintegral_Lp_add_le_aux
 
+/- warning: ennreal.lintegral_Lp_add_le -> ENNReal.lintegral_Lp_add_le is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_leₓ'. -/
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
 functions is bounded by the sum of their `ℒp` seminorms. -/
 theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
@@ -405,6 +491,12 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
 #align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
 
+/- warning: ennreal.lintegral_Lp_add_le_of_le_one -> ENNReal.lintegral_Lp_add_le_of_le_one is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) p) -> (LE.le.{0} Real Real.hasLe p (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (OfNat.ofNat.{0} ENNReal 2 (OfNat.mk.{0} ENNReal 2 (bit0.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring))))))) (One.one.{0} ENNReal (AddMonoidWithOne.toOne.{0} ENNReal (AddCommMonoidWithOne.toAddMonoidWithOne.{0} ENNReal ENNReal.addCommMonoidWithOne)))))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.hasSub) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toHasAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {f : α -> ENNReal} {g : α -> ENNReal}, (AEMeasurable.{u1, 0} α ENNReal ENNReal.measurableSpace _inst_1 f μ) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) p) -> (LE.le.{0} Real Real.instLEReal p (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (HAdd.hAdd.{u1, u1, u1} (α -> ENNReal) (α -> ENNReal) (α -> ENNReal) (instHAdd.{u1} (α -> ENNReal) (Pi.instAdd.{u1, 0} α (fun (ᾰ : α) => ENNReal) (fun (i : α) => Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal))))))))) f g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (OfNat.ofNat.{0} ENNReal 2 (instOfNat.{0} ENNReal 2 (CanonicallyOrderedCommSemiring.toNatCast.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))))) (HSub.hSub.{0, 0, 0} Real Real Real (instHSub.{0} Real Real.instSubReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))) (HAdd.hAdd.{0, 0, 0} ENNReal ENNReal ENNReal (instHAdd.{0} ENNReal (Distrib.toAdd.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (f a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (g a) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)))))
+Case conversion may be inaccurate. Consider using '#align ennreal.lintegral_Lp_add_le_of_le_one ENNReal.lintegral_Lp_add_le_of_le_oneₓ'. -/
 /-- Variant of Minkowski's inequality for functions `α → ℝ≥0∞` in `ℒp` with `p ≤ 1`: the `ℒp`
 seminorm of the sum of two functions is bounded by a constant multiple of the sum
 of their `ℒp` seminorms. -/
@@ -431,6 +523,12 @@ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf :
 
 end ENNReal
 
+/- warning: nnreal.lintegral_mul_le_Lp_mul_Lq -> NNReal.lintegral_mul_le_Lp_mul_Lq is a dubious translation:
+lean 3 declaration is
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> NNReal} {g : α -> NNReal}, (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toHasLe.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (HMul.hMul.{u1, u1, u1} (α -> NNReal) (α -> NNReal) (α -> NNReal) (instHMul.{u1} (α -> NNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => Distrib.toHasMul.{0} NNReal (NonUnitalNonAssocSemiring.toDistrib.{0} NNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} NNReal (Semiring.toNonAssocSemiring.{0} NNReal NNReal.semiring)))))) f g a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (Distrib.toHasMul.{0} ENNReal (NonUnitalNonAssocSemiring.toDistrib.{0} ENNReal (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} ENNReal (Semiring.toNonAssocSemiring.{0} ENNReal (OrderedSemiring.toSemiring.{0} ENNReal (OrderedCommSemiring.toOrderedSemiring.{0} ENNReal (CanonicallyOrderedCommSemiring.toOrderedCommSemiring.{0} ENNReal ENNReal.canonicallyOrderedCommSemiring)))))))) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (f a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.Real.hasPow) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCₓ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (g a)) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) q)))))
+but is expected to have type
+  forall {α : Type.{u1}} [_inst_1 : MeasurableSpace.{u1} α] {μ : MeasureTheory.Measure.{u1} α _inst_1} {p : Real} {q : Real}, (Real.IsConjugateExponent p q) -> (forall {f : α -> NNReal} {g : α -> NNReal}, (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 f μ) -> (AEMeasurable.{u1, 0} α NNReal NNReal.measurableSpace _inst_1 g μ) -> (LE.le.{0} ENNReal (Preorder.toLE.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => ENNReal.some (HMul.hMul.{u1, u1, u1} (α -> NNReal) (α -> NNReal) (α -> NNReal) (instHMul.{u1} (α -> NNReal) (Pi.instMul.{u1, 0} α (fun (ᾰ : α) => NNReal) (fun (i : α) => CanonicallyOrderedCommSemiring.toMul.{0} NNReal instNNRealCanonicallyOrderedCommSemiring))) f g a))) (HMul.hMul.{0, 0, 0} ENNReal ENNReal ENNReal (instHMul.{0} ENNReal (CanonicallyOrderedCommSemiring.toMul.{0} ENNReal ENNReal.instCanonicallyOrderedCommSemiringENNReal)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.some (f a)) p)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) p)) (HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (MeasureTheory.lintegral.{u1} α _inst_1 μ (fun (a : α) => HPow.hPow.{0, 0, 0} ENNReal Real ENNReal (instHPow.{0, 0} ENNReal Real ENNReal.instPowENNRealReal) (ENNReal.some (g a)) q)) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) q)))))
+Case conversion may be inaccurate. Consider using '#align nnreal.lintegral_mul_le_Lp_mul_Lq NNReal.lintegral_mul_le_Lp_mul_Lqₓ'. -/
 /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
Diff
@@ -60,7 +60,7 @@ variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 namespace ENNReal
 
 theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
-    {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hf_norm : (∫⁻ a, f a ^ p ∂μ) = 1)
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : (∫⁻ a, f a ^ p ∂μ) = 1)
     (hg_norm : (∫⁻ a, g a ^ q ∂μ) = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
   calc
     (∫⁻ a : α, (f * g) a ∂μ) ≤
@@ -107,7 +107,7 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
 
 /-- Hölder's inequality in case of finite non-zero integrals -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
-    {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hf_nontop : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤)
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤)
     (hg_nontop : (∫⁻ a, g a ^ q ∂μ) ≠ ⊤) (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0)
     (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
@@ -134,7 +134,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
 
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 :=
+    (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 :=
   by
   rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero
   refine' Filter.Eventually.mp hf_zero (Filter.eventually_of_forall fun x => _)
@@ -144,7 +144,7 @@ theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α 
 #align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
 
 theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 :=
+    (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 :=
   by
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
@@ -168,7 +168,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
 theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConjugateExponent q)
-    {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hg : AeMeasurable g μ) :
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
   by_cases hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0
@@ -188,7 +188,7 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
 #align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
 
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
+    (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
     (hp1 : 1 ≤ p) : (∫⁻ a, (f + g) a ^ p ∂μ) < ⊤ :=
   by
   have hp0_lt : 0 < p := lt_of_lt_of_le zero_lt_one hp1
@@ -232,7 +232,7 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
 
 theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (hp0_lt : 0 < p)
     (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) (μ : Measure α) {f g : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) (hg : AeMeasurable g μ) :
+    (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     (∫⁻ a, (f * g) a ^ p ∂μ) ^ (1 / p) ≤
       (∫⁻ a, f a ^ q ∂μ) ^ (1 / q) * (∫⁻ a, g a ^ r ∂μ) ^ (1 / r) :=
   by
@@ -274,7 +274,7 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
-    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hg : AeMeasurable g μ)
+    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ a, f a * g a ^ (p - 1) ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ p ∂μ) ^ (1 / q) :=
   by
@@ -295,8 +295,8 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
 #align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
 
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
-    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ)
-    (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AeMeasurable g μ) (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) :
+    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
+    (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ a, (f + g) a ^ p ∂μ) ≤
       ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) *
         (∫⁻ a, (f a + g a) ^ p ∂μ) ^ (1 / q) :=
@@ -317,7 +317,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
       rw [← ENNReal.rpow_add _ _ h_zero h_top, add_sub_cancel'_right]
     _ = (∫⁻ a : α, f a * (f + g) a ^ (p - 1) ∂μ) + ∫⁻ a : α, g a * (f + g) a ^ (p - 1) ∂μ :=
       by
-      have h_add_m : AeMeasurable (fun a : α => (f + g) a ^ (p - 1)) μ := (hf.add hg).pow_const _
+      have h_add_m : AEMeasurable (fun a : α => (f + g) a ^ (p - 1)) μ := (hf.add hg).pow_const _
       have h_add_apply :
         (∫⁻ a : α, (f + g) a * (f + g) a ^ (p - 1) ∂μ) =
           ∫⁻ a : α, (f a + g a) * (f + g) a ^ (p - 1) ∂μ :=
@@ -337,7 +337,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
 #align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
 
 private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
-    (hf : AeMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AeMeasurable g μ)
+    (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ)
     (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) (h_add_zero : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ 0)
     (h_add_top : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤
@@ -375,7 +375,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
 
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
 functions is bounded by the sum of their `ℒp` seminorms. -/
-theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hg : AeMeasurable g μ)
+theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hp1 : 1 ≤ p) :
     (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤
       (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p) :=
@@ -408,7 +408,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurab
 /-- Variant of Minkowski's inequality for functions `α → ℝ≥0∞` in `ℒp` with `p ≤ 1`: the `ℒp`
 seminorm of the sum of two functions is bounded by a constant multiple of the sum
 of their `ℒp` seminorms. -/
-theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hp0 : 0 ≤ p)
+theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hp0 : 0 ≤ p)
     (hp1 : p ≤ 1) :
     (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤
       2 ^ (1 / p - 1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) :=
@@ -435,7 +435,7 @@ end ENNReal
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
 theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0}
-    (hf : AeMeasurable f μ) (hg : AeMeasurable g μ) :
+    (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
   simp_rw [Pi.mul_apply, ENNReal.coe_mul]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.integral.mean_inequalities
-! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
+! leanprover-community/mathlib commit 13bf7613c96a9fd66a81b9020a82cad9a6ea1fcf
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -405,6 +405,30 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurab
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
 #align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
 
+/-- Variant of Minkowski's inequality for functions `α → ℝ≥0∞` in `ℒp` with `p ≤ 1`: the `ℒp`
+seminorm of the sum of two functions is bounded by a constant multiple of the sum
+of their `ℒp` seminorms. -/
+theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hp0 : 0 ≤ p)
+    (hp1 : p ≤ 1) :
+    (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤
+      2 ^ (1 / p - 1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) :=
+  by
+  rcases eq_or_lt_of_le hp0 with (rfl | hp)
+  · simp only [Pi.add_apply, rpow_zero, lintegral_one, _root_.div_zero, zero_sub]
+    norm_num
+    rw [rpow_neg, rpow_one, ENNReal.inv_mul_cancel two_ne_zero two_ne_top]
+    exact le_rfl
+  calc
+    (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ ((∫⁻ a, f a ^ p ∂μ) + ∫⁻ a, g a ^ p ∂μ) ^ (1 / p) :=
+      by
+      apply rpow_le_rpow _ (div_nonneg zero_le_one hp0)
+      rw [← lintegral_add_left' (hf.pow_const p)]
+      exact lintegral_mono fun a => rpow_add_le_add_rpow _ _ hp0 hp1
+    _ ≤ 2 ^ (1 / p - 1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) :=
+      rpow_add_le_mul_rpow_add_rpow _ _ ((one_le_div hp).2 hp1)
+    
+#align ennreal.lintegral_Lp_add_le_of_le_one ENNReal.lintegral_Lp_add_le_of_le_one
+
 end ENNReal
 
 /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions
Diff
@@ -149,7 +149,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
   suffices h_mul_zero : f * g =ᵐ[μ] 0 * g
-  · rwa [zero_mul] at h_mul_zero
+  · rwa [MulZeroClass.zero_mul] at h_mul_zero
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
@@ -280,7 +280,7 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
   by
   refine' le_trans (ENNReal.lintegral_mul_le_Lp_mul_Lq μ hpq hf (hg.pow_const _)) _
   by_cases hf_zero_rpow : (∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) = 0
-  · rw [hf_zero_rpow, zero_mul]
+  · rw [hf_zero_rpow, MulZeroClass.zero_mul]
     exact zero_le _
   have hf_top_rpow : (∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) ≠ ⊤ :=
     by
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.integral.mean_inequalities
-! leanprover-community/mathlib commit afdb4fa3b32d41106a4a09b371ce549ad7958abd
+! leanprover-community/mathlib commit 57ac39bd365c2f80589a700f9fbb664d3a1a30c2
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -126,8 +126,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
       by
       rw [lintegral_mul_const' (npf * nqg) _
           (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero, ENNReal.mul_eq_top])]
-      nth_rw 2 [← one_mul (npf * nqg)]
-      refine' mul_le_mul _ (le_refl (npf * nqg))
+      refine' mul_le_of_le_one_left' _
       have hf1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.pos hf_nonzero hf_nontop
       have hg1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.symm.pos hg_nonzero hg_nontop
       exact lintegral_mul_le_one_of_lintegral_rpow_eq_one hpq (hf.mul_const _) hf1 hg1
@@ -205,9 +204,9 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
         rw [← ENNReal.zero_rpow_of_pos hp0_lt]
         exact ENNReal.rpow_lt_rpow (by simp [zero_lt_one]) hp0_lt
       have h_rw : (1 / 2) ^ p * (2 : ℝ≥0∞) ^ (p - 1) = 1 / 2 := by
-        rw [sub_eq_add_neg, ENNReal.rpow_add _ _ ENNReal.two_ne_zero ENNReal.coe_ne_top, ←
-          mul_assoc, ← ENNReal.mul_rpow_of_nonneg _ _ hp0, one_div,
-          ENNReal.inv_mul_cancel ENNReal.two_ne_zero ENNReal.coe_ne_top, ENNReal.one_rpow, one_mul,
+        rw [sub_eq_add_neg, ENNReal.rpow_add _ _ two_ne_zero ENNReal.coe_ne_top, ← mul_assoc, ←
+          ENNReal.mul_rpow_of_nonneg _ _ hp0, one_div,
+          ENNReal.inv_mul_cancel two_ne_zero ENNReal.coe_ne_top, ENNReal.one_rpow, one_mul,
           ENNReal.rpow_neg_one]
       rw [← ENNReal.mul_le_mul_left (ne_of_lt h_zero_lt_half_rpow).symm _]
       · rw [mul_add, ← mul_assoc, ← mul_assoc, h_rw, ← ENNReal.mul_rpow_of_nonneg _ _ hp0, mul_add]
@@ -215,11 +214,11 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
           ENNReal.rpow_arith_mean_le_arith_mean2_rpow (1 / 2 : ℝ≥0∞) (1 / 2 : ℝ≥0∞) (f a) (g a) _
             hp1
         rw [ENNReal.div_add_div_same, one_add_one_eq_two,
-          ENNReal.div_self ENNReal.two_ne_zero ENNReal.coe_ne_top]
+          ENNReal.div_self two_ne_zero ENNReal.coe_ne_top]
       · rw [← lt_top_iff_ne_top]
         refine' ENNReal.rpow_lt_top_of_nonneg hp0 _
         rw [one_div, ENNReal.inv_ne_top]
-        exact ENNReal.two_ne_zero
+        exact two_ne_zero
     _ < ⊤ :=
       by
       have h_two : (2 : ℝ≥0∞) ^ (p - 1) ≠ ⊤ :=
Diff
@@ -51,20 +51,20 @@ only to prove the more general results:
 
 noncomputable section
 
-open Classical BigOperators NNReal Ennreal
+open Classical BigOperators NNReal ENNReal
 
 open MeasureTheory
 
 variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 
-namespace Ennreal
+namespace ENNReal
 
 theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hf_norm : (∫⁻ a, f a ^ p ∂μ) = 1)
     (hg_norm : (∫⁻ a, g a ^ q ∂μ) = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
   calc
     (∫⁻ a : α, (f * g) a ∂μ) ≤
-        ∫⁻ a : α, f a ^ p / Ennreal.ofReal p + g a ^ q / Ennreal.ofReal q ∂μ :=
+        ∫⁻ a : α, f a ^ p / ENNReal.ofReal p + g a ^ q / ENNReal.ofReal q ∂μ :=
       lintegral_mono fun a => young_inequality (f a) (g a) hpq
     _ = 1 := by
       simp only [div_eq_mul_inv]
@@ -74,18 +74,18 @@ theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsCon
         simp [hpq.symm.pos]
       · exact (hf.pow_const _).mul_const _
     
-#align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one Ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one
+#align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one
 
 /-- Function multiplied by the inverse of its p-seminorm `(∫⁻ f^p ∂μ) ^ 1/p`-/
 def funMulInvSnorm (f : α → ℝ≥0∞) (p : ℝ) (μ : Measure α) : α → ℝ≥0∞ := fun a =>
   f a * ((∫⁻ c, f c ^ p ∂μ) ^ (1 / p))⁻¹
-#align ennreal.fun_mul_inv_snorm Ennreal.funMulInvSnorm
+#align ennreal.fun_mul_inv_snorm ENNReal.funMulInvSnorm
 
 theorem fun_eq_funMulInvSnorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) {a : α} :
     f a = funMulInvSnorm f p μ a * (∫⁻ c, f c ^ p ∂μ) ^ (1 / p) := by
-  simp [fun_mul_inv_snorm, mul_assoc, Ennreal.inv_mul_cancel, hf_nonzero, hf_top]
-#align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm Ennreal.fun_eq_funMulInvSnorm_mul_snorm
+  simp [fun_mul_inv_snorm, mul_assoc, ENNReal.inv_mul_cancel, hf_nonzero, hf_top]
+#align ennreal.fun_eq_fun_mul_inv_snorm_mul_snorm ENNReal.fun_eq_funMulInvSnorm_mul_snorm
 
 theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a : α} :
     funMulInvSnorm f p μ a ^ p = f a ^ p * (∫⁻ c, f c ^ p ∂μ)⁻¹ :=
@@ -94,16 +94,16 @@ theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a :
   suffices h_inv_rpow : ((∫⁻ c : α, f c ^ p ∂μ) ^ (1 / p))⁻¹ ^ p = (∫⁻ c : α, f c ^ p ∂μ)⁻¹
   · rw [h_inv_rpow]
   rw [inv_rpow, ← rpow_mul, one_div_mul_cancel hp0.ne', rpow_one]
-#align ennreal.fun_mul_inv_snorm_rpow Ennreal.funMulInvSnorm_rpow
+#align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpow
 
 theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ℝ≥0∞}
     (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ) = 1 :=
   by
   simp_rw [fun_mul_inv_snorm_rpow hp0_lt]
-  rw [lintegral_mul_const', Ennreal.mul_inv_cancel hf_nonzero hf_top]
+  rw [lintegral_mul_const', ENNReal.mul_inv_cancel hf_nonzero hf_top]
   rwa [inv_ne_top]
-#align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one Ennreal.lintegral_rpow_funMulInvSnorm_eq_one
+#align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_one
 
 /-- Hölder's inequality in case of finite non-zero integrals -/
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
@@ -125,14 +125,14 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
     _ ≤ npf * nqg :=
       by
       rw [lintegral_mul_const' (npf * nqg) _
-          (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero, Ennreal.mul_eq_top])]
+          (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero, ENNReal.mul_eq_top])]
       nth_rw 2 [← one_mul (npf * nqg)]
       refine' mul_le_mul _ (le_refl (npf * nqg))
       have hf1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.pos hf_nonzero hf_nontop
       have hg1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.symm.pos hg_nonzero hg_nontop
       exact lintegral_mul_le_one_of_lintegral_rpow_eq_one hpq (hf.mul_const _) hf1 hg1
     
-#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top Ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
+#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
 
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
     (hf : AeMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 :=
@@ -142,7 +142,7 @@ theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α 
   dsimp only
   rw [Pi.zero_apply, ← not_imp_not]
   exact fun hx => (rpow_pos_of_nonneg (pos_iff_ne_zero.2 hx) hp0).ne'
-#align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero Ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero
+#align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
 
 theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞}
     (hf : AeMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 :=
@@ -153,7 +153,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   · rwa [zero_mul] at h_mul_zero
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
-#align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero Ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
+#align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
 
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q)
     {f g : α → ℝ≥0∞} (hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤) (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
@@ -161,9 +161,9 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0
   by
   refine' le_trans le_top (le_of_eq _)
   have hp0_inv_lt : 0 < 1 / p := by simp [hp0_lt]
-  rw [hf_top, Ennreal.top_rpow_of_pos hp0_inv_lt]
+  rw [hf_top, ENNReal.top_rpow_of_pos hp0_inv_lt]
   simp [hq0, hg_nonzero]
-#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top Ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top
+#align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top
 
 /-- Hölder's inequality for functions `α → ℝ≥0∞`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
@@ -185,8 +185,8 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
   · rw [mul_comm, mul_comm ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p))]
     exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.symm.pos hpq.nonneg hg_top hf_zero
   -- non-⊤ non-zero case
-  exact Ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hf_top hg_top hf_zero hg_zero
-#align ennreal.lintegral_mul_le_Lp_mul_Lq Ennreal.lintegral_mul_le_Lp_mul_Lq
+  exact ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hf_top hg_top hf_zero hg_zero
+#align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
 
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
     (hf : AeMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
@@ -202,34 +202,34 @@ theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α 
       dsimp only
       have h_zero_lt_half_rpow : (0 : ℝ≥0∞) < (1 / 2) ^ p :=
         by
-        rw [← Ennreal.zero_rpow_of_pos hp0_lt]
-        exact Ennreal.rpow_lt_rpow (by simp [zero_lt_one]) hp0_lt
+        rw [← ENNReal.zero_rpow_of_pos hp0_lt]
+        exact ENNReal.rpow_lt_rpow (by simp [zero_lt_one]) hp0_lt
       have h_rw : (1 / 2) ^ p * (2 : ℝ≥0∞) ^ (p - 1) = 1 / 2 := by
-        rw [sub_eq_add_neg, Ennreal.rpow_add _ _ Ennreal.two_ne_zero Ennreal.coe_ne_top, ←
-          mul_assoc, ← Ennreal.mul_rpow_of_nonneg _ _ hp0, one_div,
-          Ennreal.inv_mul_cancel Ennreal.two_ne_zero Ennreal.coe_ne_top, Ennreal.one_rpow, one_mul,
-          Ennreal.rpow_neg_one]
-      rw [← Ennreal.mul_le_mul_left (ne_of_lt h_zero_lt_half_rpow).symm _]
-      · rw [mul_add, ← mul_assoc, ← mul_assoc, h_rw, ← Ennreal.mul_rpow_of_nonneg _ _ hp0, mul_add]
+        rw [sub_eq_add_neg, ENNReal.rpow_add _ _ ENNReal.two_ne_zero ENNReal.coe_ne_top, ←
+          mul_assoc, ← ENNReal.mul_rpow_of_nonneg _ _ hp0, one_div,
+          ENNReal.inv_mul_cancel ENNReal.two_ne_zero ENNReal.coe_ne_top, ENNReal.one_rpow, one_mul,
+          ENNReal.rpow_neg_one]
+      rw [← ENNReal.mul_le_mul_left (ne_of_lt h_zero_lt_half_rpow).symm _]
+      · rw [mul_add, ← mul_assoc, ← mul_assoc, h_rw, ← ENNReal.mul_rpow_of_nonneg _ _ hp0, mul_add]
         refine'
-          Ennreal.rpow_arith_mean_le_arith_mean2_rpow (1 / 2 : ℝ≥0∞) (1 / 2 : ℝ≥0∞) (f a) (g a) _
+          ENNReal.rpow_arith_mean_le_arith_mean2_rpow (1 / 2 : ℝ≥0∞) (1 / 2 : ℝ≥0∞) (f a) (g a) _
             hp1
-        rw [Ennreal.div_add_div_same, one_add_one_eq_two,
-          Ennreal.div_self Ennreal.two_ne_zero Ennreal.coe_ne_top]
+        rw [ENNReal.div_add_div_same, one_add_one_eq_two,
+          ENNReal.div_self ENNReal.two_ne_zero ENNReal.coe_ne_top]
       · rw [← lt_top_iff_ne_top]
-        refine' Ennreal.rpow_lt_top_of_nonneg hp0 _
-        rw [one_div, Ennreal.inv_ne_top]
-        exact Ennreal.two_ne_zero
+        refine' ENNReal.rpow_lt_top_of_nonneg hp0 _
+        rw [one_div, ENNReal.inv_ne_top]
+        exact ENNReal.two_ne_zero
     _ < ⊤ :=
       by
       have h_two : (2 : ℝ≥0∞) ^ (p - 1) ≠ ⊤ :=
-        Ennreal.rpow_ne_top_of_nonneg (by simp [hp1]) Ennreal.coe_ne_top
+        ENNReal.rpow_ne_top_of_nonneg (by simp [hp1]) ENNReal.coe_ne_top
       rw [lintegral_add_left', lintegral_const_mul'' _ (hf.pow_const p),
-        lintegral_const_mul' _ _ h_two, Ennreal.add_lt_top]
-      · exact ⟨Ennreal.mul_lt_top h_two hf_top.ne, Ennreal.mul_lt_top h_two hg_top.ne⟩
+        lintegral_const_mul' _ _ h_two, ENNReal.add_lt_top]
+      · exact ⟨ENNReal.mul_lt_top h_two hf_top.ne, ENNReal.mul_lt_top h_two hg_top.ne⟩
       · exact (hf.pow_const p).const_mul _
     
-#align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top Ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
+#align ennreal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top ENNReal.lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top
 
 theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (hp0_lt : 0 < p)
     (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) (μ : Measure α) {f g : α → ℝ≥0∞}
@@ -253,16 +253,16 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
     Real.isConjugateExponent_conjugateExponent (by simp [lt_div_iff, hpq, hp0_lt])
   calc
     (∫⁻ a : α, (f * g) a ^ p ∂μ) ^ (1 / p) = (∫⁻ a : α, f a ^ p * g a ^ p ∂μ) ^ (1 / p) := by
-      simp_rw [Pi.mul_apply, Ennreal.mul_rpow_of_nonneg _ _ hp0]
+      simp_rw [Pi.mul_apply, ENNReal.mul_rpow_of_nonneg _ _ hp0]
     _ ≤ ((∫⁻ a, f a ^ (p * p2) ∂μ) ^ (1 / p2) * (∫⁻ a, g a ^ (p * q2) ∂μ) ^ (1 / q2)) ^ (1 / p) :=
       by
-      refine' Ennreal.rpow_le_rpow _ (by simp [hp0])
-      simp_rw [Ennreal.rpow_mul]
-      exact Ennreal.lintegral_mul_le_Lp_mul_Lq μ hp2q2 (hf.pow_const _) (hg.pow_const _)
+      refine' ENNReal.rpow_le_rpow _ (by simp [hp0])
+      simp_rw [ENNReal.rpow_mul]
+      exact ENNReal.lintegral_mul_le_Lp_mul_Lq μ hp2q2 (hf.pow_const _) (hg.pow_const _)
     _ = (∫⁻ a : α, f a ^ q ∂μ) ^ (1 / q) * (∫⁻ a : α, g a ^ r ∂μ) ^ (1 / r) :=
       by
-      rw [@Ennreal.mul_rpow_of_nonneg _ _ (1 / p) (by simp [hp0]), ← Ennreal.rpow_mul, ←
-        Ennreal.rpow_mul]
+      rw [@ENNReal.mul_rpow_of_nonneg _ _ (1 / p) (by simp [hp0]), ← ENNReal.rpow_mul, ←
+        ENNReal.rpow_mul]
       have hpp2 : p * p2 = q := by
         symm
         rw [mul_comm, ← div_eq_iff hp0_ne]
@@ -272,14 +272,14 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
         field_simp [q2, Real.conjugateExponent, p2, hp0_ne, hq0_ne]
       simp_rw [div_mul_div_comm, mul_one, mul_comm p2, mul_comm q2, hpp2, hpq2]
     
-#align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr Ennreal.lintegral_Lp_mul_le_Lq_mul_Lr
+#align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ) (hg : AeMeasurable g μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ a, f a * g a ^ (p - 1) ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ p ∂μ) ^ (1 / q) :=
   by
-  refine' le_trans (Ennreal.lintegral_mul_le_Lp_mul_Lq μ hpq hf (hg.pow_const _)) _
+  refine' le_trans (ENNReal.lintegral_mul_le_Lp_mul_Lq μ hpq hf (hg.pow_const _)) _
   by_cases hf_zero_rpow : (∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) = 0
   · rw [hf_zero_rpow, zero_mul]
     exact zero_le _
@@ -289,11 +289,11 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
     refine' hf_top _
     have hp_not_neg : ¬p < 0 := by simp [hpq.nonneg]
     simpa [hpq.pos, hp_not_neg] using h
-  refine' (Ennreal.mul_le_mul_left hf_zero_rpow hf_top_rpow).mpr (le_of_eq _)
+  refine' (ENNReal.mul_le_mul_left hf_zero_rpow hf_top_rpow).mpr (le_of_eq _)
   congr
   ext1 a
-  rw [← Ennreal.rpow_mul, hpq.sub_one_mul_conj]
-#align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow Ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
+  rw [← ENNReal.rpow_mul, hpq.sub_one_mul_conj]
+#align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
 
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
     (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AeMeasurable f μ)
@@ -308,14 +308,14 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
       refine' lintegral_mono fun a => _
       dsimp only
       by_cases h_zero : (f + g) a = 0
-      · rw [h_zero, Ennreal.zero_rpow_of_pos hpq.pos]
+      · rw [h_zero, ENNReal.zero_rpow_of_pos hpq.pos]
         exact zero_le _
       by_cases h_top : (f + g) a = ⊤
-      · rw [h_top, Ennreal.top_rpow_of_pos hpq.sub_one_pos, Ennreal.top_mul_top]
+      · rw [h_top, ENNReal.top_rpow_of_pos hpq.sub_one_pos, ENNReal.top_mul_top]
         exact le_top
       refine' le_of_eq _
-      nth_rw 2 [← Ennreal.rpow_one ((f + g) a)]
-      rw [← Ennreal.rpow_add _ _ h_zero h_top, add_sub_cancel'_right]
+      nth_rw 2 [← ENNReal.rpow_one ((f + g) a)]
+      rw [← ENNReal.rpow_add _ _ h_zero h_top, add_sub_cancel'_right]
     _ = (∫⁻ a : α, f a * (f + g) a ^ (p - 1) ∂μ) + ∫⁻ a : α, g a * (f + g) a ^ (p - 1) ∂μ :=
       by
       have h_add_m : AeMeasurable (fun a : α => (f + g) a ^ (p - 1)) μ := (hf.add hg).pow_const _
@@ -335,7 +335,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
           (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hf (hf.add hg) hf_top)
           (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hg (hf.add hg) hg_top)
     
-#align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add Ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
+#align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
 
 private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
     (hf : AeMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AeMeasurable g μ)
@@ -348,7 +348,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
   have htop_rpow : (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≠ ⊤ :=
     by
     by_contra h
-    exact h_add_top (@Ennreal.rpow_eq_top_of_nonneg _ (1 / p) (by simp [hpq.nonneg]) h)
+    exact h_add_top (@ENNReal.rpow_eq_top_of_nonneg _ (1 / p) (by simp [hpq.nonneg]) h)
   have h0_rpow : (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≠ 0 := by
     simp [h_add_zero, h_add_top, hpq.nonneg, hp_not_nonpos, -Pi.add_apply]
   suffices h :
@@ -367,11 +367,11 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
     by
     nth_rw 2 [← hpq.inv_add_inv_conj]
     ring
-  simp_rw [h_one_div_q, sub_eq_add_neg 1 (1 / p), Ennreal.rpow_add _ _ h_add_zero h_add_top,
+  simp_rw [h_one_div_q, sub_eq_add_neg 1 (1 / p), ENNReal.rpow_add _ _ h_add_zero h_add_top,
     rpow_one] at h
   nth_rw 2 [mul_comm] at h
   nth_rw 1 [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)] at h
-  rwa [← mul_assoc, Ennreal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
+  rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
 #align ennreal.lintegral_Lp_add_le_aux ennreal.lintegral_Lp_add_le_aux
 
 /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
@@ -388,7 +388,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurab
   · simp [hg_top, hp_pos]
   by_cases h1 : p = 1
   · refine' le_of_eq _
-    simp_rw [h1, one_div_one, Ennreal.rpow_one]
+    simp_rw [h1, one_div_one, ENNReal.rpow_one]
     exact lintegral_add_left' hf _
   have hp1_lt : 1 < p := by
     refine' lt_of_le_of_ne hp1 _
@@ -396,7 +396,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurab
     exact h1
   have hpq := Real.isConjugateExponent_conjugateExponent hp1_lt
   by_cases h0 : (∫⁻ a, (f + g) a ^ p ∂μ) = 0
-  · rw [h0, @Ennreal.zero_rpow_of_pos (1 / p) (by simp [lt_of_lt_of_le zero_lt_one hp1])]
+  · rw [h0, @ENNReal.zero_rpow_of_pos (1 / p) (by simp [lt_of_lt_of_le zero_lt_one hp1])]
     exact zero_le _
   have htop : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤ :=
     by
@@ -404,9 +404,9 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AeMeasurab
     rw [← lt_top_iff_ne_top] at hf_top hg_top⊢
     exact lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf hf_top hg_top hp1
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
-#align ennreal.lintegral_Lp_add_le Ennreal.lintegral_Lp_add_le
+#align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
 
-end Ennreal
+end ENNReal
 
 /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
@@ -415,8 +415,8 @@ theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjugateExpone
     (hf : AeMeasurable f μ) (hg : AeMeasurable g μ) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) :=
   by
-  simp_rw [Pi.mul_apply, Ennreal.coe_mul]
-  exact Ennreal.lintegral_mul_le_Lp_mul_Lq μ hpq hf.coe_nnreal_ennreal hg.coe_nnreal_ennreal
+  simp_rw [Pi.mul_apply, ENNReal.coe_mul]
+  exact ENNReal.lintegral_mul_le_Lp_mul_Lq μ hpq hf.coe_nnreal_ennreal hg.coe_nnreal_ennreal
 #align nnreal.lintegral_mul_le_Lp_mul_Lq NNReal.lintegral_mul_le_Lp_mul_Lq
 
 end Lintegral
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.integral.mean_inequalities
-! leanprover-community/mathlib commit 11c2b8c18d1a8e44fe9ba8ba6b931d51b4734150
+! leanprover-community/mathlib commit afdb4fa3b32d41106a4a09b371ce549ad7958abd
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -125,7 +125,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
     _ ≤ npf * nqg :=
       by
       rw [lintegral_mul_const' (npf * nqg) _
-          (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero])]
+          (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero, Ennreal.mul_eq_top])]
       nth_rw 2 [← one_mul (npf * nqg)]
       refine' mul_le_mul _ (le_refl (npf * nqg))
       have hf1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.pos hf_nonzero hf_nontop

Changes in mathlib4

mathlib3
mathlib4
chore: backports from #11997, adaptations for nightly-2024-04-07 (#12176)

These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -456,7 +456,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
   · rw [h0, @ENNReal.zero_rpow_of_pos (1 / p) (by simp [lt_of_lt_of_le zero_lt_one hp1])]
     exact zero_le _
   have htop : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤ := by
-    rw [← Ne.def] at hf_top hg_top
+    rw [← Ne] at hf_top hg_top
     rw [← lt_top_iff_ne_top] at hf_top hg_top ⊢
     exact lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf hf_top hg_top hp1
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
chore: Rename mul-div cancellation lemmas (#11530)

Lemma names around cancellation of multiplication and division are a mess.

This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero lemma name, the Group lemma, the AddGroup lemma name).

| Statement | New name | Old name | |

Diff
@@ -233,20 +233,20 @@ theorem lintegral_prod_norm_pow_le {α ι : Type*} [MeasurableSpace α] {μ : Me
           = ∫⁻ a, f i₀ a ^ p i₀ * ∏ i in s, f i a ^ p i ∂μ := by simp [hi₀]
         _ = ∫⁻ a, f i₀ a ^ p i₀ * (∏ i in s, f i a ^ q i) ^ (1 - p i₀) ∂μ := by
             simp [← ENNReal.prod_rpow_of_nonneg hpi₀, ← ENNReal.rpow_mul,
-              div_mul_cancel (h := h2pi₀)]
+              div_mul_cancel₀ (h := h2pi₀)]
         _ ≤ (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * (∫⁻ a, ∏ i in s, f i a ^ q i ∂μ) ^ (1 - p i₀) := by
             apply ENNReal.lintegral_mul_norm_pow_le
             · exact hf i₀ <| mem_insert_self ..
             · exact s.aemeasurable_prod fun i hi ↦ (hf i <| mem_insert_of_mem hi).pow_const _
             · exact h2p i₀ <| mem_insert_self ..
             · exact hpi₀
-            · apply add_sub_cancel'_right
+            · apply add_sub_cancel
         _ ≤ (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * (∏ i in s, (∫⁻ a, f i a ∂μ) ^ q i) ^ (1 - p i₀) := by
             gcongr -- behavior of gcongr is heartbeat-dependent, which makes code really fragile...
             exact ih (fun i hi ↦ hf i <| mem_insert_of_mem hi) hq h2q
         _ = (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * ∏ i in s, (∫⁻ a, f i a ∂μ) ^ p i := by
             simp [← ENNReal.prod_rpow_of_nonneg hpi₀, ← ENNReal.rpow_mul,
-              div_mul_cancel (h := h2pi₀)]
+              div_mul_cancel₀ (h := h2pi₀)]
         _ = ∏ i in insert i₀ s, (∫⁻ a, f i a ∂μ) ^ p i := by simp [hi₀]
 
 /-- A version of Hölder with multiple arguments, one of which plays a distinguished role. -/
@@ -381,7 +381,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
         exact le_top
       refine' le_of_eq _
       nth_rw 2 [← ENNReal.rpow_one ((f + g) a)]
-      rw [← ENNReal.rpow_add _ _ h_zero h_top, add_sub_cancel'_right]
+      rw [← ENNReal.rpow_add _ _ h_zero h_top, add_sub_cancel]
     _ = (∫⁻ a : α, f a * (f + g) a ^ (p - 1) ∂μ) + ∫⁻ a : α, g a * (f + g) a ^ (p - 1) ∂μ := by
       have h_add_m : AEMeasurable (fun a : α => (f + g) a ^ (p - 1 : ℝ)) μ :=
         (hf.add hg).pow_const _
chore: golf using filter_upwards (#11208)

This is presumably not exhaustive, but covers about a hundred instances.

Style opinions (e.g., why a particular change is great/not a good idea) are very welcome; I'm still forming my own.

Diff
@@ -133,8 +133,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : f =ᵐ[μ] 0 := by
   rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero
-  refine' Filter.Eventually.mp hf_zero (Filter.eventually_of_forall fun x => _)
-  dsimp only
+  filter_upwards [hf_zero] with x
   rw [Pi.zero_apply, ← not_imp_not]
   exact fun hx => (rpow_pos_of_nonneg (pos_iff_ne_zero.2 hx) hp0).ne'
 #align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -54,7 +54,8 @@ only to prove the more general results:
 
 noncomputable section
 
-open Classical BigOperators NNReal ENNReal MeasureTheory Finset
+open scoped Classical
+open BigOperators NNReal ENNReal MeasureTheory Finset
 
 set_option linter.uppercaseLean3 false
 
chore: move Mathlib to v4.7.0-rc1 (#11162)

This is a very large PR, but it has been reviewed piecemeal already in PRs to the bump/v4.7.0 branch as we update to intermediate nightlies.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: damiano <adomani@gmail.com>

Diff
@@ -471,7 +471,7 @@ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf :
       (2 : ℝ≥0∞) ^ (1 / p - 1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) := by
   rcases eq_or_lt_of_le hp0 with (rfl | hp)
   · simp only [Pi.add_apply, rpow_zero, lintegral_one, _root_.div_zero, zero_sub]
-    norm_num
+    set_option tactic.skipAssignedInstances false in norm_num
     rw [rpow_neg, rpow_one, ENNReal.inv_mul_cancel two_ne_zero two_ne_top]
   calc
     (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ ((∫⁻ a, f a ^ p ∂μ) + ∫⁻ a, g a ^ p ∂μ) ^ (1 / p) := by
chore: more backporting of simp changes from #10995 (#11001)

Co-authored-by: Patrick Massot <patrickmassot@free.fr> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -122,7 +122,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
       ring
     _ ≤ npf * nqg := by
       rw [lintegral_mul_const' (npf * nqg) _
-          (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero, ENNReal.mul_eq_top])]
+          (by simp [npf, nqg, hf_nontop, hg_nontop, hf_nonzero, hg_nonzero, ENNReal.mul_eq_top])]
       refine' mul_le_of_le_one_left' _
       have hf1 := lintegral_rpow_funMulInvSnorm_eq_one hpq.pos hf_nonzero hf_nontop
       have hg1 := lintegral_rpow_funMulInvSnorm_eq_one hpq.symm.pos hg_nonzero hg_nontop
@@ -322,7 +322,8 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
   have h_one_div_r : 1 / r = 1 / p - 1 / q := by rw [hpqr]; simp
   let p2 := q / p
   let q2 := p2.conjExponent
-  have hp2q2 : p2.IsConjExponent q2 := .conjExponent (by simp [_root_.lt_div_iff, hpq, hp0_lt])
+  have hp2q2 : p2.IsConjExponent q2 :=
+    .conjExponent (by simp [p2, q2, _root_.lt_div_iff, hpq, hp0_lt])
   calc
     (∫⁻ a : α, (f * g) a ^ p ∂μ) ^ (1 / p) = (∫⁻ a : α, f a ^ p * g a ^ p ∂μ) ^ (1 / p) := by
       simp_rw [Pi.mul_apply, ENNReal.mul_rpow_of_nonneg _ _ hp0]
@@ -339,7 +340,7 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
         rw [mul_comm, ← div_eq_iff hp0_ne]
       have hpq2 : p * q2 = r := by
         rw [← inv_inv r, ← one_div, ← one_div, h_one_div_r]
-        field_simp [Real.conjExponent, hp0_ne, hq0_ne]
+        field_simp [p2, q2, Real.conjExponent, hp0_ne, hq0_ne]
       simp_rw [div_mul_div_comm, mul_one, mul_comm p2, mul_comm q2, hpp2, hpq2]
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -92,8 +92,8 @@ theorem fun_eq_funMulInvSnorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_no
 theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a : α} :
     funMulInvSnorm f p μ a ^ p = f a ^ p * (∫⁻ c, f c ^ p ∂μ)⁻¹ := by
   rw [funMulInvSnorm, mul_rpow_of_nonneg _ _ (le_of_lt hp0)]
-  suffices h_inv_rpow : ((∫⁻ c : α, f c ^ p ∂μ) ^ (1 / p))⁻¹ ^ p = (∫⁻ c : α, f c ^ p ∂μ)⁻¹
-  · rw [h_inv_rpow]
+  suffices h_inv_rpow : ((∫⁻ c : α, f c ^ p ∂μ) ^ (1 / p))⁻¹ ^ p = (∫⁻ c : α, f c ^ p ∂μ)⁻¹ by
+    rw [h_inv_rpow]
   rw [inv_rpow, ← rpow_mul, one_div_mul_cancel hp0.ne', rpow_one]
 #align ennreal.fun_mul_inv_snorm_rpow ENNReal.funMulInvSnorm_rpow
 
@@ -142,8 +142,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
     (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 := by
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
-  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g
-  · rwa [zero_mul] at h_mul_zero
+  suffices h_mul_zero : f * g =ᵐ[μ] 0 * g by rwa [zero_mul] at h_mul_zero
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
@@ -415,8 +414,8 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjExponent q) {
   suffices h :
     1 ≤
       (∫⁻ a : α, (f + g) a ^ p ∂μ) ^ (-(1 / p)) *
-        ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p))
-  · rwa [← mul_le_mul_left h0_rpow htop_rpow, ← mul_assoc, ← rpow_add _ _ h_add_zero h_add_top, ←
+        ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a : α, g a ^ p ∂μ) ^ (1 / p)) by
+    rwa [← mul_le_mul_left h0_rpow htop_rpow, ← mul_assoc, ← rpow_add _ _ h_add_zero h_add_top, ←
       sub_eq_add_neg, _root_.sub_self, rpow_zero, one_mul, mul_one] at h
   have h :
     (∫⁻ a : α, (f + g) a ^ p ∂μ) ≤
feat: Conjugate exponents in ℝ≥0 (#10589)

It happens often that we have p q : ℝ≥0 that are conjugate. So far, we only had a predicate for real numbers to be conjugate, which made dealing with ℝ≥0 conjugates clumsy.

This PR

  • introduces NNReal.IsConjExponent, NNReal.conjExponent
  • renames Real.IsConjugateExponent, Real.conjugateExponent to Real.IsConjExponent, Real.conjExponent
  • renames a few more lemmas to match up the Real and NNReal versions

From LeanAPAP

Diff
@@ -62,7 +62,7 @@ variable {α : Type*} [MeasurableSpace α] {μ : Measure α}
 
 namespace ENNReal
 
-theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
+theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : ∫⁻ a, f a ^ p ∂μ = 1)
     (hg_norm : ∫⁻ a, g a ^ q ∂μ = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
   calc
@@ -106,7 +106,7 @@ theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α
 #align ennreal.lintegral_rpow_fun_mul_inv_snorm_eq_one ENNReal.lintegral_rpow_funMulInvSnorm_eq_one
 
 /-- Hölder's inequality in case of finite non-zero integrals -/
-theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjugateExponent q)
+theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsConjExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_nontop : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤)
     (hg_nontop : (∫⁻ a, g a ^ q ∂μ) ≠ ⊤) (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0)
     (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
@@ -160,7 +160,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0
 /-- Hölder's inequality for functions `α → ℝ≥0∞`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
-theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConjugateExponent q)
+theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConjExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) := by
   by_cases hf_zero : ∫⁻ a, f a ^ p ∂μ = 0
@@ -322,9 +322,8 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
   have hq0_ne : q ≠ 0 := (ne_of_lt hq0_lt).symm
   have h_one_div_r : 1 / r = 1 / p - 1 / q := by rw [hpqr]; simp
   let p2 := q / p
-  let q2 := p2.conjugateExponent
-  have hp2q2 : p2.IsConjugateExponent q2 :=
-    Real.isConjugateExponent_conjugateExponent (by simp [_root_.lt_div_iff, hpq, hp0_lt])
+  let q2 := p2.conjExponent
+  have hp2q2 : p2.IsConjExponent q2 := .conjExponent (by simp [_root_.lt_div_iff, hpq, hp0_lt])
   calc
     (∫⁻ a : α, (f * g) a ^ p ∂μ) ^ (1 / p) = (∫⁻ a : α, f a ^ p * g a ^ p ∂μ) ^ (1 / p) := by
       simp_rw [Pi.mul_apply, ENNReal.mul_rpow_of_nonneg _ _ hp0]
@@ -341,12 +340,12 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
         rw [mul_comm, ← div_eq_iff hp0_ne]
       have hpq2 : p * q2 = r := by
         rw [← inv_inv r, ← one_div, ← one_div, h_one_div_r]
-        field_simp [Real.conjugateExponent, hp0_ne, hq0_ne]
+        field_simp [Real.conjExponent, hp0_ne, hq0_ne]
       simp_rw [div_mul_div_comm, mul_one, mul_comm p2, mul_comm q2, hpp2, hpq2]
 #align ennreal.lintegral_Lp_mul_le_Lq_mul_Lr ENNReal.lintegral_Lp_mul_le_Lq_mul_Lr
 
 theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
-    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
+    (hpq : p.IsConjExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ a, f a * g a ^ (p - 1) ∂μ) ≤
       (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ p ∂μ) ^ (1 / q) := by
@@ -366,7 +365,7 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
 #align ennreal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow ENNReal.lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow
 
 theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
-    (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
+    (hpq : p.IsConjExponent q) {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ)
     (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ) (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) :
     (∫⁻ a, (f + g) a ^ p ∂μ) ≤
       ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) *
@@ -401,7 +400,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
       · exact lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hg (hf.add hg) hg_top
 #align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
 
-private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
+private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjExponent q) {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) (hg : AEMeasurable g μ)
     (hg_top : (∫⁻ a, g a ^ p ∂μ) ≠ ⊤) (h_add_zero : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ 0)
     (h_add_top : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤) :
@@ -452,7 +451,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     refine' lt_of_le_of_ne hp1 _
     symm
     exact h1
-  have hpq := Real.isConjugateExponent_conjugateExponent hp1_lt
+  have hpq := Real.IsConjExponent.conjExponent hp1_lt
   by_cases h0 : (∫⁻ a, (f + g) a ^ p ∂μ) = 0
   · rw [h0, @ENNReal.zero_rpow_of_pos (1 / p) (by simp [lt_of_lt_of_le zero_lt_one hp1])]
     exact zero_le _
@@ -488,7 +487,7 @@ end ENNReal
 /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions
 is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate
 exponents. -/
-theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0}
+theorem NNReal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.IsConjExponent q) {f g : α → ℝ≥0}
     (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     (∫⁻ a, (f * g) a ∂μ) ≤
       (∫⁻ a, (f a : ℝ≥0∞) ^ p ∂μ) ^ (1 / p) * (∫⁻ a, (g a : ℝ≥0∞) ^ q ∂μ) ^ (1 / q) := by
refactor: Use p⁻¹ instead of 1 / p in conjugate exponents (#10216)

I am keeping some 1 / p lemmas behind to keep the diff small but the goal is to get rid of them entirely.

Diff
@@ -72,8 +72,8 @@ theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsCon
     _ = 1 := by
       simp only [div_eq_mul_inv]
       rw [lintegral_add_left']
-      · rw [lintegral_mul_const'' _ (hf.pow_const p), lintegral_mul_const', hf_norm, hg_norm, ←
-          div_eq_mul_inv, ← div_eq_mul_inv, hpq.inv_add_inv_conj_ennreal]
+      · rw [lintegral_mul_const'' _ (hf.pow_const p), lintegral_mul_const', hf_norm, hg_norm,
+          one_mul, one_mul, hpq.inv_add_inv_conj_ennreal]
         simp [hpq.symm.pos]
       · exact (hf.pow_const _).mul_const _
 #align ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one ENNReal.lintegral_mul_le_one_of_lintegral_rpow_eq_one
@@ -195,8 +195,7 @@ theorem lintegral_mul_norm_pow_le {α} [MeasurableSpace α] {μ : Measure α}
     rw [one_div]
     apply one_lt_inv hp
     linarith
-  have h2pq : 1 / (1 / p) + 1 / (1 / q) = 1 := by
-    simp [hp.ne', hq.ne', hpq]
+  have h2pq : (1 / p)⁻¹ + (1 / q)⁻¹ = 1 := by simp [hp.ne', hq.ne', hpq]
   have := ENNReal.lintegral_mul_le_Lp_mul_Lq μ ⟨h2p, h2pq⟩ (hf.pow_const p) (hg.pow_const q)
   simpa [← ENNReal.rpow_mul, hp.ne', hq.ne'] using this
 
chore(*): drop $/<| before fun (#9361)

Subset of #9319

Diff
@@ -239,7 +239,7 @@ theorem lintegral_prod_norm_pow_le {α ι : Type*} [MeasurableSpace α] {μ : Me
         _ ≤ (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * (∫⁻ a, ∏ i in s, f i a ^ q i ∂μ) ^ (1 - p i₀) := by
             apply ENNReal.lintegral_mul_norm_pow_le
             · exact hf i₀ <| mem_insert_self ..
-            · exact s.aemeasurable_prod <| fun i hi ↦ (hf i <| mem_insert_of_mem hi).pow_const _
+            · exact s.aemeasurable_prod fun i hi ↦ (hf i <| mem_insert_of_mem hi).pow_const _
             · exact h2p i₀ <| mem_insert_self ..
             · exact hpi₀
             · apply add_sub_cancel'_right
style: use cases x with | ... instead of cases x; case => ... (#9321)

This converts usages of the pattern

cases h
case inl h' => ...
case inr h' => ...

which derive from mathported code, to the "structured cases" syntax:

cases h with
| inl h' => ...
| inr h' => ...

The case where the subgoals are handled with · instead of case is more contentious (and much more numerous) so I left those alone. This pattern also appears with cases', induction, induction', and rcases. Furthermore, there is a similar transformation for by_cases:

by_cases h : cond
case pos => ...
case neg => ...

is replaced by:

if h : cond then
  ...
else
  ...

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -205,10 +205,10 @@ theorem lintegral_prod_norm_pow_le {α ι : Type*} [MeasurableSpace α] {μ : Me
     (s : Finset ι) {f : ι → α → ℝ≥0∞} (hf : ∀ i ∈ s, AEMeasurable (f i) μ)
     {p : ι → ℝ} (hp : ∑ i in s, p i = 1) (h2p : ∀ i ∈ s, 0 ≤ p i) :
     ∫⁻ a, ∏ i in s, f i a ^ p i ∂μ ≤ ∏ i in s, (∫⁻ a, f i a ∂μ) ^ p i := by
-  induction s using Finset.induction generalizing p
-  case empty =>
+  induction s using Finset.induction generalizing p with
+  | empty =>
     simp at hp
-  case insert i₀ s hi₀ ih =>
+  | @insert i₀ s hi₀ ih =>
     rcases eq_or_ne (p i₀) 1 with h2i₀|h2i₀
     · simp [hi₀]
       have h2p : ∀ i ∈ s, p i = 0 := by
chore(*): golf, mostly dropping unused haves (#9292)
Diff
@@ -322,10 +322,6 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
   have hq0_lt : 0 < q := lt_of_le_of_lt hp0 hpq
   have hq0_ne : q ≠ 0 := (ne_of_lt hq0_lt).symm
   have h_one_div_r : 1 / r = 1 / p - 1 / q := by rw [hpqr]; simp
-  have _ : r ≠ 0 := by
-    have hr_inv_pos : 0 < 1 / r := by rwa [h_one_div_r, sub_pos, one_div_lt_one_div hq0_lt hp0_lt]
-    rw [one_div, _root_.inv_pos] at hr_inv_pos
-    exact (ne_of_lt hr_inv_pos).symm
   let p2 := q / p
   let q2 := p2.conjugateExponent
   have hp2q2 : p2.IsConjugateExponent q2 :=
doc: Mark named theorems (#8749)
Diff
@@ -438,7 +438,7 @@ private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent
   conv_lhs at h => rw [← one_mul (∫⁻ a : α, (f + g) a ^ p ∂μ)]
   rwa [← mul_assoc, ENNReal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h
 
-/-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
+/-- **Minkowski's inequality for functions** `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two
 functions is bounded by the sum of their `ℒp` seminorms. -/
 theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
     (hp1 : 1 ≤ p) :
feat: golf using gcongr throughout the library (#8752)

Following on from previous gcongr golfing PRs #4702 and #4784.

This is a replacement for #7901: this round of golfs, first introduced there, there exposed some performance issues in gcongr, hopefully fixed by #8731, and I am opening a new PR so that the performance can be checked against current master rather than master at the time of #7901.

Diff
@@ -335,7 +335,7 @@ theorem lintegral_Lp_mul_le_Lq_mul_Lr {α} [MeasurableSpace α] {p q r : ℝ} (h
       simp_rw [Pi.mul_apply, ENNReal.mul_rpow_of_nonneg _ _ hp0]
     _ ≤ ((∫⁻ a, f a ^ (p * p2) ∂μ) ^ (1 / p2) *
         (∫⁻ a, g a ^ (p * q2) ∂μ) ^ (1 / q2)) ^ (1 / p) := by
-      refine' ENNReal.rpow_le_rpow _ (by simp [hp0])
+      gcongr
       simp_rw [ENNReal.rpow_mul]
       exact ENNReal.lintegral_mul_le_Lp_mul_Lq μ hp2q2 (hf.pow_const _) (hg.pow_const _)
     _ = (∫⁻ a : α, f a ^ q ∂μ) ^ (1 / q) * (∫⁻ a : α, g a ^ r ∂μ) ^ (1 / r) := by
@@ -378,8 +378,7 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
         (∫⁻ a, (f a + g a) ^ p ∂μ) ^ (1 / q) := by
   calc
     (∫⁻ a, (f + g) a ^ p ∂μ) ≤ ∫⁻ a, (f + g) a * (f + g) a ^ (p - 1) ∂μ := by
-      refine' lintegral_mono fun a => _
-      dsimp only
+      gcongr with a
       by_cases h_zero : (f + g) a = 0
       · rw [h_zero, ENNReal.zero_rpow_of_pos hpq.pos]
         exact zero_le _
@@ -402,10 +401,9 @@ theorem lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ}
         ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) *
           (∫⁻ a, (f a + g a) ^ p ∂μ) ^ (1 / q) := by
       rw [add_mul]
-      exact
-        add_le_add
-          (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hf (hf.add hg) hf_top)
-          (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hg (hf.add hg) hg_top)
+      gcongr
+      · exact lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hf (hf.add hg) hf_top
+      · exact lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hg (hf.add hg) hg_top
 #align ennreal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add ENNReal.lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add
 
 private theorem lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.IsConjugateExponent q) {f g : α → ℝ≥0∞}
@@ -483,9 +481,9 @@ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf :
     rw [rpow_neg, rpow_one, ENNReal.inv_mul_cancel two_ne_zero two_ne_top]
   calc
     (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ ((∫⁻ a, f a ^ p ∂μ) + ∫⁻ a, g a ^ p ∂μ) ^ (1 / p) := by
-      apply rpow_le_rpow _ (div_nonneg zero_le_one hp0)
       rw [← lintegral_add_left' (hf.pow_const p)]
-      exact lintegral_mono fun a => rpow_add_le_add_rpow _ _ hp0 hp1
+      gcongr with a
+      exact rpow_add_le_add_rpow _ _ hp0 hp1
     _ ≤ (2 : ℝ≥0∞) ^ (1 / p - 1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p)) :=
       rpow_add_le_mul_rpow_add_rpow _ _ ((one_le_div hp).2 hp1)
 #align ennreal.lintegral_Lp_add_le_of_le_one ENNReal.lintegral_Lp_add_le_of_le_one
chore: bump to v4.3.0-rc2 (#8366)

PR contents

This is the supremum of

along with some minor fixes from failures on nightly-testing as Mathlib master is merged into it.

Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.

I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0 branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.

Lean PRs involved in this bump

In particular this includes adjustments for the Lean PRs

leanprover/lean4#2778

We can get rid of all the

local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)

macros across Mathlib (and in any projects that want to write natural number powers of reals).

leanprover/lean4#2722

Changes the default behaviour of simp to (config := {decide := false}). This makes simp (and consequentially norm_num) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp or norm_num to decide or rfl, or adding (config := {decide := true}).

leanprover/lean4#2783

This changed the behaviour of simp so that simp [f] will only unfold "fully applied" occurrences of f. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true }). We may in future add a syntax for this, e.g. simp [!f]; please provide feedback! In the meantime, we have made the following changes:

  • switching to using explicit lemmas that have the intended level of application
  • (config := { unfoldPartialApp := true }) in some places, to recover the old behaviour
  • Using @[eqns] to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp and Function.flip.

This change in Lean may require further changes down the line (e.g. adding the !f syntax, and/or upstreaming the special treatment for Function.comp and Function.flip, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!

Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>

Diff
@@ -58,8 +58,6 @@ open Classical BigOperators NNReal ENNReal MeasureTheory Finset
 
 set_option linter.uppercaseLean3 false
 
-local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
-
 variable {α : Type*} [MeasurableSpace α] {μ : Measure α}
 
 namespace ENNReal
feat: Hölder's inequality for more than 2 functions (#7756)
  • From the Sobolev project

Co-authored-by: Heather Macbeth 25316162+hrmacbeth@users.noreply.github.com


Open in Gitpod


Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -24,6 +24,12 @@ and `α → (E)NNReal` functions in two cases,
 * `ENNReal.lintegral_mul_le_Lp_mul_Lq` : ℝ≥0∞ functions,
 * `NNReal.lintegral_mul_le_Lp_mul_Lq`  : ℝ≥0 functions.
 
+`ENNReal.lintegral_mul_norm_pow_le` is a variant where the exponents are not reciprocals:
+`∫ (f ^ p * g ^ q) ∂μ ≤ (∫ f ∂μ) ^ p * (∫ g ∂μ) ^ q` where `p, q ≥ 0` and `p + q = 1`.
+`ENNReal.lintegral_prod_norm_pow_le` generalizes this to a finite family of functions:
+`∫ (∏ i, f i ^ p i) ∂μ ≤ ∏ i, (∫ f i ∂μ) ^ p i` when the `p` is a collection
+of nonnegative weights with sum 1.
+
 Minkowski's inequality for the Lebesgue integral of measurable functions with `ℝ≥0∞` values:
 we prove `(∫ (f + g)^p ∂μ) ^ (1/p) ≤ (∫ f^p ∂μ) ^ (1/p) + (∫ g^p ∂μ) ^ (1/p)` for `1 ≤ p`.
 -/
@@ -48,7 +54,7 @@ only to prove the more general results:
 
 noncomputable section
 
-open Classical BigOperators NNReal ENNReal MeasureTheory
+open Classical BigOperators NNReal ENNReal MeasureTheory Finset
 
 set_option linter.uppercaseLean3 false
 
@@ -175,6 +181,101 @@ theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConj
   exact ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hf_top hg_top hf_zero hg_zero
 #align ennreal.lintegral_mul_le_Lp_mul_Lq ENNReal.lintegral_mul_le_Lp_mul_Lq
 
+/-- A different formulation of Hölder's inequality for two functions, with two exponents that sum to
+1, instead of reciprocals of  -/
+theorem lintegral_mul_norm_pow_le {α} [MeasurableSpace α] {μ : Measure α}
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ)
+    {p q : ℝ} (hp : 0 ≤ p) (hq : 0 ≤ q) (hpq : p + q = 1) :
+    ∫⁻ a, f a ^ p * g a ^ q ∂μ ≤ (∫⁻ a, f a ∂μ) ^ p * (∫⁻ a, g a ∂μ) ^ q := by
+  rcases hp.eq_or_lt with rfl|hp
+  · rw [zero_add] at hpq
+    simp [hpq]
+  rcases hq.eq_or_lt with rfl|hq
+  · rw [add_zero] at hpq
+    simp [hpq]
+  have h2p : 1 < 1 / p := by
+    rw [one_div]
+    apply one_lt_inv hp
+    linarith
+  have h2pq : 1 / (1 / p) + 1 / (1 / q) = 1 := by
+    simp [hp.ne', hq.ne', hpq]
+  have := ENNReal.lintegral_mul_le_Lp_mul_Lq μ ⟨h2p, h2pq⟩ (hf.pow_const p) (hg.pow_const q)
+  simpa [← ENNReal.rpow_mul, hp.ne', hq.ne'] using this
+
+/-- A version of Hölder with multiple arguments -/
+theorem lintegral_prod_norm_pow_le {α ι : Type*} [MeasurableSpace α] {μ : Measure α}
+    (s : Finset ι) {f : ι → α → ℝ≥0∞} (hf : ∀ i ∈ s, AEMeasurable (f i) μ)
+    {p : ι → ℝ} (hp : ∑ i in s, p i = 1) (h2p : ∀ i ∈ s, 0 ≤ p i) :
+    ∫⁻ a, ∏ i in s, f i a ^ p i ∂μ ≤ ∏ i in s, (∫⁻ a, f i a ∂μ) ^ p i := by
+  induction s using Finset.induction generalizing p
+  case empty =>
+    simp at hp
+  case insert i₀ s hi₀ ih =>
+    rcases eq_or_ne (p i₀) 1 with h2i₀|h2i₀
+    · simp [hi₀]
+      have h2p : ∀ i ∈ s, p i = 0 := by
+        simpa [hi₀, h2i₀, sum_eq_zero_iff_of_nonneg (fun i hi ↦ h2p i <| mem_insert_of_mem hi)]
+          using hp
+      calc ∫⁻ a, f i₀ a ^ p i₀ * ∏ i in s, f i a ^ p i ∂μ
+          = ∫⁻ a, f i₀ a ^ p i₀ * ∏ i in s, 1 ∂μ := by
+            congr! 3 with x
+            apply prod_congr rfl fun i hi ↦ by rw [h2p i hi, ENNReal.rpow_zero]
+        _ ≤ (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * ∏ i in s, 1 := by simp [h2i₀]
+        _ = (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * ∏ i in s, (∫⁻ a, f i a ∂μ) ^ p i := by
+            congr 1
+            apply prod_congr rfl fun i hi ↦ by rw [h2p i hi, ENNReal.rpow_zero]
+    · have hpi₀ : 0 ≤ 1 - p i₀ := by
+        simp_rw [sub_nonneg, ← hp, single_le_sum h2p (mem_insert_self ..)]
+      have h2pi₀ : 1 - p i₀ ≠ 0 := by
+        rwa [sub_ne_zero, ne_comm]
+      let q := fun i ↦ p i / (1 - p i₀)
+      have hq : ∑ i in s, q i = 1 := by
+        rw [← Finset.sum_div, ← sum_insert_sub hi₀, hp, div_self h2pi₀]
+      have h2q : ∀ i ∈ s, 0 ≤ q i :=
+        fun i hi ↦ div_nonneg (h2p i <| mem_insert_of_mem hi) hpi₀
+      calc ∫⁻ a, ∏ i in insert i₀ s, f i a ^ p i ∂μ
+          = ∫⁻ a, f i₀ a ^ p i₀ * ∏ i in s, f i a ^ p i ∂μ := by simp [hi₀]
+        _ = ∫⁻ a, f i₀ a ^ p i₀ * (∏ i in s, f i a ^ q i) ^ (1 - p i₀) ∂μ := by
+            simp [← ENNReal.prod_rpow_of_nonneg hpi₀, ← ENNReal.rpow_mul,
+              div_mul_cancel (h := h2pi₀)]
+        _ ≤ (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * (∫⁻ a, ∏ i in s, f i a ^ q i ∂μ) ^ (1 - p i₀) := by
+            apply ENNReal.lintegral_mul_norm_pow_le
+            · exact hf i₀ <| mem_insert_self ..
+            · exact s.aemeasurable_prod <| fun i hi ↦ (hf i <| mem_insert_of_mem hi).pow_const _
+            · exact h2p i₀ <| mem_insert_self ..
+            · exact hpi₀
+            · apply add_sub_cancel'_right
+        _ ≤ (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * (∏ i in s, (∫⁻ a, f i a ∂μ) ^ q i) ^ (1 - p i₀) := by
+            gcongr -- behavior of gcongr is heartbeat-dependent, which makes code really fragile...
+            exact ih (fun i hi ↦ hf i <| mem_insert_of_mem hi) hq h2q
+        _ = (∫⁻ a, f i₀ a ∂μ) ^ p i₀ * ∏ i in s, (∫⁻ a, f i a ∂μ) ^ p i := by
+            simp [← ENNReal.prod_rpow_of_nonneg hpi₀, ← ENNReal.rpow_mul,
+              div_mul_cancel (h := h2pi₀)]
+        _ = ∏ i in insert i₀ s, (∫⁻ a, f i a ∂μ) ^ p i := by simp [hi₀]
+
+/-- A version of Hölder with multiple arguments, one of which plays a distinguished role. -/
+theorem lintegral_mul_prod_norm_pow_le {α ι : Type*} [MeasurableSpace α] {μ : Measure α}
+    (s : Finset ι) {g : α →  ℝ≥0∞} {f : ι → α → ℝ≥0∞} (hg : AEMeasurable g μ)
+    (hf : ∀ i ∈ s, AEMeasurable (f i) μ) (q : ℝ) {p : ι → ℝ} (hpq : q + ∑ i in s, p i = 1)
+    (hq :  0 ≤ q) (hp : ∀ i ∈ s, 0 ≤ p i) :
+    ∫⁻ a, g a ^ q * ∏ i in s, f i a ^ p i ∂μ ≤
+      (∫⁻ a, g a ∂μ) ^ q * ∏ i in s, (∫⁻ a, f i a ∂μ) ^ p i := by
+  suffices
+    ∫⁻ t, ∏ j in insertNone s, Option.elim j (g t) (fun j ↦ f j t) ^ Option.elim j q p ∂μ
+    ≤ ∏ j in insertNone s, (∫⁻ t, Option.elim j (g t) (fun j ↦ f j t) ∂μ) ^ Option.elim j q p by
+    simpa using this
+  refine ENNReal.lintegral_prod_norm_pow_le _ ?_ ?_ ?_
+  · rintro (_|i) hi
+    · exact hg
+    · refine hf i ?_
+      simpa using hi
+  · simp_rw [sum_insertNone, Option.elim]
+    exact hpq
+  · rintro (_|i) hi
+    · exact hq
+    · refine hp i ?_
+      simpa using hi
+
 theorem lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞}
     (hf : AEMeasurable f μ) (hf_top : (∫⁻ a, f a ^ p ∂μ) < ⊤) (hg_top : (∫⁻ a, g a ^ p ∂μ) < ⊤)
     (hp1 : 1 ≤ p) : (∫⁻ a, (f + g) a ^ p ∂μ) < ⊤ := by
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -139,7 +139,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
   suffices h_mul_zero : f * g =ᵐ[μ] 0 * g
-  · rwa [MulZeroClass.zero_mul] at h_mul_zero
+  · rwa [zero_mul] at h_mul_zero
   have hf_eq_zero : f =ᵐ[μ] 0 := ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero
   exact hf_eq_zero.mul (ae_eq_refl g)
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
@@ -258,7 +258,7 @@ theorem lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ}
       (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ p ∂μ) ^ (1 / q) := by
   refine' le_trans (ENNReal.lintegral_mul_le_Lp_mul_Lq μ hpq hf (hg.pow_const _)) _
   by_cases hf_zero_rpow : (∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) = 0
-  · rw [hf_zero_rpow, MulZeroClass.zero_mul]
+  · rw [hf_zero_rpow, zero_mul]
     exact zero_le _
   have hf_top_rpow : (∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p) ≠ ⊤ := by
     by_contra h
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -54,7 +54,7 @@ set_option linter.uppercaseLean3 false
 
 local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
 
-variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
+variable {α : Type*} [MeasurableSpace α] {μ : Measure α}
 
 namespace ENNReal
 
chore: regularize HPow.hPow porting notes (#6465)
Diff
@@ -52,7 +52,7 @@ open Classical BigOperators NNReal ENNReal MeasureTheory
 
 set_option linter.uppercaseLean3 false
 
-local macro_rules | `($x ^ $y)   => `(HPow.hPow $x $y) -- Porting note: See issue #2220
+local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
 
 variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,17 +2,14 @@
 Copyright (c) 2020 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Rémy Degenne
-
-! This file was ported from Lean 3 source module measure_theory.integral.mean_inequalities
-! leanprover-community/mathlib commit 13bf7613c96a9fd66a81b9020a82cad9a6ea1fcf
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Integral.Lebesgue
 import Mathlib.Analysis.MeanInequalities
 import Mathlib.Analysis.MeanInequalitiesPow
 import Mathlib.MeasureTheory.Function.SpecialFunctions.Basic
 
+#align_import measure_theory.integral.mean_inequalities from "leanprover-community/mathlib"@"13bf7613c96a9fd66a81b9020a82cad9a6ea1fcf"
+
 /-!
 # Mean value inequalities for integrals
 
chore: remove superfluous parentheses around integrals (#5591)
Diff
@@ -62,8 +62,8 @@ variable {α : Type _} [MeasurableSpace α] {μ : Measure α}
 namespace ENNReal
 
 theorem lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.IsConjugateExponent q)
-    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : (∫⁻ a, f a ^ p ∂μ) = 1)
-    (hg_norm : (∫⁻ a, g a ^ q ∂μ) = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
+    {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hf_norm : ∫⁻ a, f a ^ p ∂μ = 1)
+    (hg_norm : ∫⁻ a, g a ^ q ∂μ = 1) : (∫⁻ a, (f * g) a ∂μ) ≤ 1 := by
   calc
     (∫⁻ a : α, (f * g) a ∂μ) ≤
         ∫⁻ a : α, f a ^ p / ENNReal.ofReal p + g a ^ q / ENNReal.ofReal q ∂μ :=
@@ -98,7 +98,7 @@ theorem funMulInvSnorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a :
 
 theorem lintegral_rpow_funMulInvSnorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ℝ≥0∞}
     (hf_nonzero : (∫⁻ a, f a ^ p ∂μ) ≠ 0) (hf_top : (∫⁻ a, f a ^ p ∂μ) ≠ ⊤) :
-    (∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ) = 1 := by
+    ∫⁻ c, funMulInvSnorm f p μ c ^ p ∂μ = 1 := by
   simp_rw [funMulInvSnorm_rpow hp0_lt]
   rw [lintegral_mul_const', ENNReal.mul_inv_cancel hf_nonzero hf_top]
   rwa [inv_ne_top]
@@ -129,7 +129,7 @@ theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.IsC
 #align ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top
 
 theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : f =ᵐ[μ] 0 := by
+    (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : f =ᵐ[μ] 0 := by
   rw [lintegral_eq_zero_iff' (hf.pow_const p)] at hf_zero
   refine' Filter.Eventually.mp hf_zero (Filter.eventually_of_forall fun x => _)
   dsimp only
@@ -138,7 +138,7 @@ theorem ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α 
 #align ennreal.ae_eq_zero_of_lintegral_rpow_eq_zero ENNReal.ae_eq_zero_of_lintegral_rpow_eq_zero
 
 theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞}
-    (hf : AEMeasurable f μ) (hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 := by
+    (hf : AEMeasurable f μ) (hf_zero : ∫⁻ a, f a ^ p ∂μ = 0) : (∫⁻ a, (f * g) a ∂μ) = 0 := by
   rw [← @lintegral_zero_fun α _ μ]
   refine' lintegral_congr_ae _
   suffices h_mul_zero : f * g =ᵐ[μ] 0 * g
@@ -148,7 +148,7 @@ theorem lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p
 #align ennreal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero ENNReal.lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero
 
 theorem lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q)
-    {f g : α → ℝ≥0∞} (hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤) (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
+    {f g : α → ℝ≥0∞} (hf_top : ∫⁻ a, f a ^ p ∂μ = ⊤) (hg_nonzero : (∫⁻ a, g a ^ q ∂μ) ≠ 0) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) := by
   refine' le_trans le_top (le_of_eq _)
   have hp0_inv_lt : 0 < 1 / p := by simp [hp0_lt]
@@ -162,16 +162,16 @@ exponents. -/
 theorem lintegral_mul_le_Lp_mul_Lq (μ : Measure α) {p q : ℝ} (hpq : p.IsConjugateExponent q)
     {f g : α → ℝ≥0∞} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
     (∫⁻ a, (f * g) a ∂μ) ≤ (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) * (∫⁻ a, g a ^ q ∂μ) ^ (1 / q) := by
-  by_cases hf_zero : (∫⁻ a, f a ^ p ∂μ) = 0
+  by_cases hf_zero : ∫⁻ a, f a ^ p ∂μ = 0
   · refine' Eq.trans_le _ (zero_le _)
     exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.nonneg hf hf_zero
-  by_cases hg_zero : (∫⁻ a, g a ^ q ∂μ) = 0
+  by_cases hg_zero : ∫⁻ a, g a ^ q ∂μ = 0
   · refine' Eq.trans_le _ (zero_le _)
     rw [mul_comm]
     exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.symm.nonneg hg hg_zero
-  by_cases hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤
+  by_cases hf_top : ∫⁻ a, f a ^ p ∂μ = ⊤
   · exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.pos hpq.symm.nonneg hf_top hg_zero
-  by_cases hg_top : (∫⁻ a, g a ^ q ∂μ) = ⊤
+  by_cases hg_top : ∫⁻ a, g a ^ q ∂μ = ⊤
   · rw [mul_comm, mul_comm ((∫⁻ a : α, f a ^ p ∂μ) ^ (1 / p))]
     exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.symm.pos hpq.nonneg hg_top hf_zero
   -- non-⊤ non-zero case
@@ -351,9 +351,9 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤
       (∫⁻ a, f a ^ p ∂μ) ^ (1 / p) + (∫⁻ a, g a ^ p ∂μ) ^ (1 / p) := by
   have hp_pos : 0 < p := lt_of_lt_of_le zero_lt_one hp1
-  by_cases hf_top : (∫⁻ a, f a ^ p ∂μ) = ⊤
+  by_cases hf_top : ∫⁻ a, f a ^ p ∂μ = ⊤
   · simp [hf_top, hp_pos]
-  by_cases hg_top : (∫⁻ a, g a ^ p ∂μ) = ⊤
+  by_cases hg_top : ∫⁻ a, g a ^ p ∂μ = ⊤
   · simp [hg_top, hp_pos]
   by_cases h1 : p = 1
   · refine' le_of_eq _
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊢ -> some_tactic at h ⊢
  • some_tactic at h -> some_tactic at h
Diff
@@ -369,7 +369,7 @@ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : AEMeasurab
     exact zero_le _
   have htop : (∫⁻ a, (f + g) a ^ p ∂μ) ≠ ⊤ := by
     rw [← Ne.def] at hf_top hg_top
-    rw [← lt_top_iff_ne_top] at hf_top hg_top⊢
+    rw [← lt_top_iff_ne_top] at hf_top hg_top ⊢
     exact lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf hf_top hg_top hp1
   exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop
 #align ennreal.lintegral_Lp_add_le ENNReal.lintegral_Lp_add_le
chore: tidy various files (#4757)
Diff
@@ -35,7 +35,7 @@ we prove `(∫ (f + g)^p ∂μ) ^ (1/p) ≤ (∫ f^p ∂μ) ^ (1/p) + (∫ g^p 
 section LIntegral
 
 /-!
-### Hölder's inequality for the Lebesgue integral of ℝ≥0∞ and nnreal functions
+### Hölder's inequality for the Lebesgue integral of ℝ≥0∞ and ℝ≥0 functions
 
 We prove `∫ (f * g) ∂μ ≤ (∫ f^p ∂μ) ^ (1/p) * (∫ g^q ∂μ) ^ (1/q)` for `p`, `q`
 conjugate real exponents and `α → (E)NNReal` functions in several cases, the first two being useful
@@ -45,15 +45,13 @@ only to prove the more general results:
 * `ENNReal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top` : ℝ≥0∞ functions for which the
     integrals on the right are neither ⊤ nor 0,
 * `ENNReal.lintegral_mul_le_Lp_mul_Lq` : ℝ≥0∞ functions,
-* `NNReal.lintegral_mul_le_Lp_mul_Lq`  : nnreal functions.
+* `NNReal.lintegral_mul_le_Lp_mul_Lq`  : ℝ≥0 functions.
 -/
 
 
 noncomputable section
 
-open Classical BigOperators NNReal ENNReal
-
-open MeasureTheory
+open Classical BigOperators NNReal ENNReal MeasureTheory
 
 set_option linter.uppercaseLean3 false
 
feat: port MeasureTheory.Integral.MeanInequalities (#4337)

Co-authored-by: Komyyy <pol_tta@outlook.jp> Co-authored-by: Chris Hughes <chrishughes24@gmail.com>

Dependencies 12 + 803

804 files ported (98.5%)
362524 lines ported (98.5%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file