measure_theory.integral.set_to_l1Mathlib.MeasureTheory.Integral.SetToL1

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -173,7 +173,7 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:642:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
 #print MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum /-
 theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι)
@@ -1995,7 +1995,7 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
     _ = c'.to_real * (snorm (⇑g - ⇑f) 1 μ).toReal := to_real_mul
     _ ≤ c'.to_real * (ε / 2 / c'.to_real) :=
       (mul_le_mul le_rfl hfg.le to_real_nonneg to_real_nonneg)
-    _ = ε / 2 := by refine' mul_div_cancel' (ε / 2) _; rw [Ne.def, to_real_eq_zero_iff];
+    _ = ε / 2 := by refine' mul_div_cancel₀ (ε / 2) _; rw [Ne.def, to_real_eq_zero_iff];
       simp [hc', hc'0]
     _ < ε := half_lt_self hε_pos
 #align measure_theory.continuous_L1_to_L1 MeasureTheory.continuous_L1_toL1
Diff
@@ -137,8 +137,8 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : FinMeasAd
     FinMeasAdditive μ T :=
   by
   refine' of_eq_top_imp_eq_top (fun s hs hμs => _) hT
-  rw [measure.smul_apply, smul_eq_mul, WithTop.mul_eq_top_iff] at hμs 
-  simp only [hc_ne_top, or_false_iff, Ne.def, false_and_iff] at hμs 
+  rw [measure.smul_apply, smul_eq_mul, WithTop.mul_eq_top_iff] at hμs
+  simp only [hc_ne_top, or_false_iff, Ne.def, false_and_iff] at hμs
   exact hμs.2
 #align measure_theory.fin_meas_additive.of_smul_measure MeasureTheory.FinMeasAdditive.of_smul_measure
 -/
@@ -167,8 +167,8 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
   by
   have h_empty : μ ∅ ≠ ∞ := (measure_empty.le.trans_lt ENNReal.coe_lt_top).Ne
   specialize hT ∅ ∅ MeasurableSet.empty MeasurableSet.empty h_empty h_empty (Set.inter_empty ∅)
-  rw [Set.union_empty] at hT 
-  nth_rw 1 [← add_zero (T ∅)] at hT 
+  rw [Set.union_empty] at hT
+  nth_rw 1 [← add_zero (T ∅)] at hT
   exact (add_left_cancel hT).symm
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 -/
@@ -205,7 +205,7 @@ theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     refine' Union_eq_empty.mpr fun i => Union_eq_empty.mpr fun hi => _
     rw [← Set.disjoint_iff_inter_eq_empty]
     refine' h_disj a (Finset.mem_insert_self a s) i (Finset.mem_insert_of_mem hi) fun hai => _
-    rw [← hai] at hi 
+    rw [← hai] at hi
     exact has hi
 #align measure_theory.fin_meas_additive.map_Union_fin_meas_set_eq_sum MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum
 -/
@@ -310,12 +310,12 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : Dominated
     by
     intro s hs hcμs
     simp only [hc_ne_top, Algebra.id.smul_eq_mul, WithTop.mul_eq_top_iff, or_false_iff, Ne.def,
-      false_and_iff] at hcμs 
+      false_and_iff] at hcμs
     exact hcμs.2
   refine' ⟨hT.1.of_eq_top_imp_eq_top h, fun s hs hμs => _⟩
   have hcμs : c • μ s ≠ ∞ := mt (h s hs) hμs.ne
-  rw [smul_eq_mul] at hcμs 
-  simp_rw [dominated_fin_meas_additive, measure.smul_apply, smul_eq_mul, to_real_mul] at hT 
+  rw [smul_eq_mul] at hcμs
+  simp_rw [dominated_fin_meas_additive, measure.smul_apply, smul_eq_mul, to_real_mul] at hT
   refine' (hT.2 s hs hcμs.lt_top).trans (le_of_eq _)
   ring
 #align measure_theory.dominated_fin_meas_additive.of_smul_measure MeasureTheory.DominatedFinMeasAdditive.of_smul_measure
@@ -396,7 +396,7 @@ theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAddi
   by_cases h0 : g (f a) = 0
   · simp_rw [h0]
     rw [ContinuousLinearMap.map_zero, Finset.sum_eq_zero fun x hx => _]
-    rw [mem_filter] at hx 
+    rw [mem_filter] at hx
     rw [hx.2, ContinuousLinearMap.map_zero]
   have h_left_eq :
     T (map g f ⁻¹' {g (f a)}) (g (f a)) =
@@ -411,20 +411,20 @@ theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAddi
   rw [h_add.map_Union_fin_meas_set_eq_sum T T_empty]
   · simp only [filter_congr_decidable, sum_apply, ContinuousLinearMap.coe_sum']
     refine' Finset.sum_congr rfl fun x hx => _
-    rw [mem_filter] at hx 
+    rw [mem_filter] at hx
     rw [hx.2]
   · exact fun i => measurable_set_fiber _ _
   · intro i hi
-    rw [mem_filter] at hi 
+    rw [mem_filter] at hi
     refine' hfp i hi.1 fun hi0 => _
-    rw [hi0, hg] at hi 
+    rw [hi0, hg] at hi
     exact h0 hi.2.symm
   · intro i j hi hj hij
     rw [Set.disjoint_iff]
     intro x hx
     rw [Set.mem_inter_iff, Set.mem_preimage, Set.mem_preimage, Set.mem_singleton_iff,
-      Set.mem_singleton_iff] at hx 
-    rw [← hx.1, ← hx.2] at hij 
+      Set.mem_singleton_iff] at hx
+    rw [← hx.1, ← hx.2] at hij
     exact absurd rfl hij
 #align measure_theory.simple_func.map_set_to_simple_func MeasureTheory.SimpleFunc.map_setToSimpleFunc
 -/
@@ -459,7 +459,7 @@ theorem setToSimpleFunc_congr (T : Set α → E →L[ℝ] F)
   by
   refine' set_to_simple_func_congr' T h_add hf ((integrable_congr h).mp hf) _
   refine' fun x y hxy => h_zero _ ((measurable_set_fiber f x).inter (measurable_set_fiber g y)) _
-  rw [eventually_eq, ae_iff] at h 
+  rw [eventually_eq, ae_iff] at h
   refine' measure_mono_null (fun z => _) h
   simp_rw [Set.mem_inter_iff, Set.mem_setOf_eq, Set.mem_preimage, Set.mem_singleton_iff]
   intro h
@@ -509,7 +509,7 @@ theorem setToSimpleFunc_add_left' (T T' T'' : Set α → E →L[ℝ] F)
   intro x hx
   refine'
     h_add (f ⁻¹' {x}) (measurableSet_preimage _ _) (measure_preimage_lt_top_of_integrable _ hf _)
-  rw [mem_filter] at hx 
+  rw [mem_filter] at hx
   exact hx.2
 #align measure_theory.simple_func.set_to_simple_func_add_left' MeasureTheory.SimpleFunc.setToSimpleFunc_add_left'
 -/
@@ -536,7 +536,7 @@ theorem setToSimpleFunc_smul_left' (T T' : Set α → E →L[ℝ] F') (c : ℝ)
   intro x hx
   refine'
     h_smul (f ⁻¹' {x}) (measurableSet_preimage _ _) (measure_preimage_lt_top_of_integrable _ hf _)
-  rw [mem_filter] at hx 
+  rw [mem_filter] at hx
   exact hx.2
 #align measure_theory.simple_func.set_to_simple_func_smul_left' MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left'
 -/
@@ -646,7 +646,7 @@ theorem setToSimpleFunc_nonneg {m : MeasurableSpace α} (T : Set α → G' →L[
     (hT_nonneg : ∀ s x, 0 ≤ x → 0 ≤ T s x) (f : α →ₛ G') (hf : 0 ≤ f) : 0 ≤ setToSimpleFunc T f :=
   by
   refine' sum_nonneg fun i hi => hT_nonneg _ i _
-  rw [mem_range] at hi 
+  rw [mem_range] at hi
   obtain ⟨y, hy⟩ := set.mem_range.mp hi
   rw [← hy]
   refine' le_trans _ (hf y)
@@ -664,7 +664,7 @@ theorem setToSimpleFunc_nonneg' (T : Set α → G' →L[ℝ] G'')
   · simp [h0]
   refine'
     hT_nonneg _ (measurable_set_fiber _ _) (measure_preimage_lt_top_of_integrable _ hfi h0) i _
-  rw [mem_range] at hi 
+  rw [mem_range] at hi
   obtain ⟨y, hy⟩ := set.mem_range.mp hi
   rw [← hy]
   convert hf y
@@ -803,7 +803,7 @@ theorem norm_eq_sum_mul (f : α →₁ₛ[μ] G) :
   by
   rw [norm_to_simple_func, snorm_one_eq_lintegral_nnnorm]
   have h_eq := simple_func.map_apply (fun x => (‖x‖₊ : ℝ≥0∞)) (to_simple_func f)
-  dsimp only at h_eq 
+  dsimp only at h_eq
   simp_rw [← h_eq]
   rw [simple_func.lintegral_eq_lintegral, simple_func.map_lintegral, ENNReal.toReal_sum]
   · congr
@@ -1747,7 +1747,7 @@ theorem setToFun_neg (hT : DominatedFinMeasAdditive μ T C) (f : α → E) :
     rw [set_to_fun_eq hT hf, set_to_fun_eq hT hf.neg, integrable.to_L1_neg,
       (L1.set_to_L1 hT).map_neg]
   · rw [set_to_fun_undef hT hf, set_to_fun_undef hT, neg_zero]
-    rwa [← integrable_neg_iff] at hf 
+    rwa [← integrable_neg_iff] at hf
 #align measure_theory.set_to_fun_neg MeasureTheory.setToFun_neg
 -/
 
@@ -1781,7 +1781,7 @@ theorem setToFun_congr_ae (hT : DominatedFinMeasAdditive μ T C) (h : f =ᵐ[μ]
   by_cases hfi : integrable f μ
   · have hgi : integrable g μ := hfi.congr h
     rw [set_to_fun_eq hT hfi, set_to_fun_eq hT hgi, (integrable.to_L1_eq_to_L1_iff f g hfi hgi).2 h]
-  · have hgi : ¬integrable g μ := by rw [integrable_congr h] at hfi ; exact hfi
+  · have hgi : ¬integrable g μ := by rw [integrable_congr h] at hfi; exact hfi
     rw [set_to_fun_undef hT hfi, set_to_fun_undef hT hgi]
 #align measure_theory.set_to_fun_congr_ae MeasureTheory.setToFun_congr_ae
 -/
@@ -2077,9 +2077,9 @@ theorem setToFun_top_smul_measure (hT : DominatedFinMeasAdditive (∞ • μ) T
     setToFun (∞ • μ) T hT f = 0 :=
   by
   refine' set_to_fun_measure_zero' hT fun s hs hμs => _
-  rw [lt_top_iff_ne_top] at hμs 
+  rw [lt_top_iff_ne_top] at hμs
   simp only [true_and_iff, measure.smul_apply, WithTop.mul_eq_top_iff, eq_self_iff_true,
-    top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs 
+    top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs
   simp only [hμs.right, measure.smul_apply, MulZeroClass.mul_zero, smul_eq_mul]
 #align measure_theory.set_to_fun_top_smul_measure MeasureTheory.setToFun_top_smul_measure
 -/
@@ -2090,7 +2090,7 @@ theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
     (f : α → E) : setToFun μ T hT f = setToFun (c • μ) T hT_smul f :=
   by
   by_cases hc0 : c = 0
-  · simp [hc0] at hT_smul 
+  · simp [hc0] at hT_smul
     have h : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0 := fun s hs hμs => hT_smul.eq_zero hs
     rw [set_to_fun_zero_left' _ h, set_to_fun_measure_zero]
     simp [hc0]
@@ -2192,7 +2192,7 @@ theorem tendsto_setToFun_filter_of_dominated_convergence (hT : DominatedFinMeasA
   by
   rw [tendsto_iff_seq_tendsto]
   intro x xl
-  have hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s := by rwa [tendsto_at_top'] at xl 
+  have hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s := by rwa [tendsto_at_top'] at xl
   have h :
     {x : ι | (fun n => ae_strongly_measurable (fs n) μ) x} ∩
         {x : ι | (fun n => ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) x} ∈
Diff
@@ -756,11 +756,11 @@ theorem setToSimpleFunc_indicator (T : Set α → F →L[ℝ] F') (hT_empty : T
   swap; · rw [Finset.mem_singleton]; exact hx0
   rw [sum_singleton, (T _).map_zero, add_zero]
   congr
-  simp only [coe_piecewise, piecewise_eq_indicator, coe_const, Pi.const_zero,
+  simp only [coe_piecewise, piecewise_eq_indicator, coe_const, Function.const_zero,
     piecewise_eq_indicator]
   rw [indicator_preimage, preimage_const_of_mem]
   swap; · exact Set.mem_singleton x
-  rw [← Pi.const_zero, preimage_const_of_not_mem]
+  rw [← Function.const_zero, preimage_const_of_not_mem]
   swap; · rw [Set.mem_singleton_iff]; exact Ne.symm hx0
   simp
 #align measure_theory.simple_func.set_to_simple_func_indicator MeasureTheory.SimpleFunc.setToSimpleFunc_indicator
Diff
@@ -687,14 +687,14 @@ theorem setToSimpleFunc_mono {T : Set α → G' →L[ℝ] G''} (h_add : FinMeasA
 
 end Order
 
-#print MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_op_norm /-
-theorem norm_setToSimpleFunc_le_sum_op_norm {m : MeasurableSpace α} (T : Set α → F' →L[ℝ] F)
+#print MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm /-
+theorem norm_setToSimpleFunc_le_sum_opNorm {m : MeasurableSpace α} (T : Set α → F' →L[ℝ] F)
     (f : α →ₛ F') : ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
   calc
     ‖∑ x in f.range, T (f ⁻¹' {x}) x‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x}) x‖ := norm_sum_le _ _
     _ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ := by refine' Finset.sum_le_sum fun b hb => _;
-      simp_rw [ContinuousLinearMap.le_op_norm]
-#align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_op_norm
+      simp_rw [ContinuousLinearMap.le_opNorm]
+#align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm
 -/
 
 #print MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm /-
@@ -703,7 +703,7 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C
     ‖f.setToSimpleFunc T‖ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
   calc
     ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
-      norm_setToSimpleFunc_le_sum_op_norm T f
+      norm_setToSimpleFunc_le_sum_opNorm T f
     _ ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
       (sum_le_sum fun b hb =>
         mul_le_mul_of_nonneg_right (hT_norm _ <| SimpleFunc.measurableSet_fiber _ _) <|
@@ -719,7 +719,7 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm_of_integrable (T : Set α → E →
     ‖f.setToSimpleFunc T‖ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
   calc
     ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
-      norm_setToSimpleFunc_le_sum_op_norm T f
+      norm_setToSimpleFunc_le_sum_opNorm T f
     _ ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
       by
       refine' Finset.sum_le_sum fun b hb => _
@@ -1501,7 +1501,7 @@ theorem norm_setToL1_le_norm_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C)
     ‖setToL1 hT‖ ≤ (1 : ℝ≥0) * ‖setToL1SCLM α E μ hT‖ :=
       by
       refine'
-        ContinuousLinearMap.op_norm_extend_le (set_to_L1s_clm α E μ hT) (coe_to_Lp α E ℝ)
+        ContinuousLinearMap.opNorm_extend_le (set_to_L1s_clm α E μ hT) (coe_to_Lp α E ℝ)
           (simple_func.dense_range one_ne_top) fun x => le_of_eq _
       rw [NNReal.coe_one, one_mul]
       rfl
@@ -1514,7 +1514,7 @@ theorem norm_setToL1_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (hC : 0
     (f : α →₁[μ] E) : ‖setToL1 hT f‖ ≤ C * ‖f‖ :=
   calc
     ‖setToL1 hT f‖ ≤ ‖setToL1SCLM α E μ hT‖ * ‖f‖ :=
-      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
+      ContinuousLinearMap.le_of_opNorm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ C * ‖f‖ := mul_le_mul (norm_setToL1SCLM_le hT hC) le_rfl (norm_nonneg _) hC
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm MeasureTheory.L1.norm_setToL1_le_mul_norm
 -/
@@ -1524,7 +1524,7 @@ theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α
     ‖setToL1 hT f‖ ≤ max C 0 * ‖f‖ :=
   calc
     ‖setToL1 hT f‖ ≤ ‖setToL1SCLM α E μ hT‖ * ‖f‖ :=
-      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
+      ContinuousLinearMap.le_of_opNorm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ max C 0 * ‖f‖ :=
       mul_le_mul (norm_setToL1SCLM_le' hT) le_rfl (norm_nonneg _) (le_max_right _ _)
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm' MeasureTheory.L1.norm_setToL1_le_mul_norm'
@@ -1532,13 +1532,13 @@ theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α
 
 #print MeasureTheory.L1.norm_setToL1_le /-
 theorem norm_setToL1_le (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) : ‖setToL1 hT‖ ≤ C :=
-  ContinuousLinearMap.op_norm_le_bound _ hC (norm_setToL1_le_mul_norm hT hC)
+  ContinuousLinearMap.opNorm_le_bound _ hC (norm_setToL1_le_mul_norm hT hC)
 #align measure_theory.L1.norm_set_to_L1_le MeasureTheory.L1.norm_setToL1_le
 -/
 
 #print MeasureTheory.L1.norm_setToL1_le' /-
 theorem norm_setToL1_le' (hT : DominatedFinMeasAdditive μ T C) : ‖setToL1 hT‖ ≤ max C 0 :=
-  ContinuousLinearMap.op_norm_le_bound _ (le_max_right _ _) (norm_setToL1_le_mul_norm' hT)
+  ContinuousLinearMap.opNorm_le_bound _ (le_max_right _ _) (norm_setToL1_le_mul_norm' hT)
 #align measure_theory.L1.norm_set_to_L1_le' MeasureTheory.L1.norm_setToL1_le'
 -/
 
Diff
@@ -1899,7 +1899,28 @@ theorem continuous_setToFun (hT : DominatedFinMeasAdditive μ T C) :
 theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f : α → E)
     (hfi : Integrable f μ) {fs : ι → α → E} {l : Filter ι} (hfsi : ∀ᶠ i in l, Integrable (fs i) μ)
     (hfs : Tendsto (fun i => ∫⁻ x, ‖fs i x - f x‖₊ ∂μ) l (𝓝 0)) :
-    Tendsto (fun i => setToFun μ T hT (fs i)) l (𝓝 <| setToFun μ T hT f) := by classical
+    Tendsto (fun i => setToFun μ T hT (fs i)) l (𝓝 <| setToFun μ T hT f) := by
+  classical
+  let f_lp := hfi.to_L1 f
+  let F_lp i := if hFi : integrable (fs i) μ then hFi.toL1 (fs i) else 0
+  have tendsto_L1 : tendsto F_lp l (𝓝 f_lp) :=
+    by
+    rw [Lp.tendsto_Lp_iff_tendsto_ℒp']
+    simp_rw [snorm_one_eq_lintegral_nnnorm, Pi.sub_apply]
+    refine' (tendsto_congr' _).mp hfs
+    filter_upwards [hfsi] with i hi
+    refine' lintegral_congr_ae _
+    filter_upwards [hi.coe_fn_to_L1, hfi.coe_fn_to_L1] with x hxi hxf
+    simp_rw [F_lp, dif_pos hi, hxi, hxf]
+  suffices tendsto (fun i => set_to_fun μ T hT (F_lp i)) l (𝓝 (set_to_fun μ T hT f))
+    by
+    refine' (tendsto_congr' _).mp this
+    filter_upwards [hfsi] with i hi
+    suffices h_ae_eq : F_lp i =ᵐ[μ] fs i; exact set_to_fun_congr_ae hT h_ae_eq
+    simp_rw [F_lp, dif_pos hi]
+    exact hi.coe_fn_to_L1
+  rw [set_to_fun_congr_ae hT hfi.coe_fn_to_L1.symm]
+  exact ((continuous_set_to_fun hT).Tendsto f_lp).comp tendsto_L1
 #align measure_theory.tendsto_set_to_fun_of_L1 MeasureTheory.tendsto_setToFun_of_L1
 -/
 
Diff
@@ -1899,28 +1899,7 @@ theorem continuous_setToFun (hT : DominatedFinMeasAdditive μ T C) :
 theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f : α → E)
     (hfi : Integrable f μ) {fs : ι → α → E} {l : Filter ι} (hfsi : ∀ᶠ i in l, Integrable (fs i) μ)
     (hfs : Tendsto (fun i => ∫⁻ x, ‖fs i x - f x‖₊ ∂μ) l (𝓝 0)) :
-    Tendsto (fun i => setToFun μ T hT (fs i)) l (𝓝 <| setToFun μ T hT f) := by
-  classical
-  let f_lp := hfi.to_L1 f
-  let F_lp i := if hFi : integrable (fs i) μ then hFi.toL1 (fs i) else 0
-  have tendsto_L1 : tendsto F_lp l (𝓝 f_lp) :=
-    by
-    rw [Lp.tendsto_Lp_iff_tendsto_ℒp']
-    simp_rw [snorm_one_eq_lintegral_nnnorm, Pi.sub_apply]
-    refine' (tendsto_congr' _).mp hfs
-    filter_upwards [hfsi] with i hi
-    refine' lintegral_congr_ae _
-    filter_upwards [hi.coe_fn_to_L1, hfi.coe_fn_to_L1] with x hxi hxf
-    simp_rw [F_lp, dif_pos hi, hxi, hxf]
-  suffices tendsto (fun i => set_to_fun μ T hT (F_lp i)) l (𝓝 (set_to_fun μ T hT f))
-    by
-    refine' (tendsto_congr' _).mp this
-    filter_upwards [hfsi] with i hi
-    suffices h_ae_eq : F_lp i =ᵐ[μ] fs i; exact set_to_fun_congr_ae hT h_ae_eq
-    simp_rw [F_lp, dif_pos hi]
-    exact hi.coe_fn_to_L1
-  rw [set_to_fun_congr_ae hT hfi.coe_fn_to_L1.symm]
-  exact ((continuous_set_to_fun hT).Tendsto f_lp).comp tendsto_L1
+    Tendsto (fun i => setToFun μ T hT (fs i)) l (𝓝 <| setToFun μ T hT f) := by classical
 #align measure_theory.tendsto_set_to_fun_of_L1 MeasureTheory.tendsto_setToFun_of_L1
 -/
 
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne
 -/
-import Mathbin.MeasureTheory.Function.SimpleFuncDenseLp
+import MeasureTheory.Function.SimpleFuncDenseLp
 
 #align_import measure_theory.integral.set_to_l1 from "leanprover-community/mathlib"@"af471b9e3ce868f296626d33189b4ce730fa4c00"
 
@@ -173,7 +173,7 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
 #print MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum /-
 theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι)
Diff
@@ -2163,7 +2163,7 @@ theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive
   -- the convergence of set_to_L1 follows from the convergence of the L1 functions
   refine' L1.tendsto_set_to_L1 hT _ _ _
   -- up to some rewriting, what we need to prove is `h_lim`
-  rw [tendsto_iff_norm_tendsto_zero]
+  rw [tendsto_iff_norm_sub_tendsto_zero]
   have lintegral_norm_tendsto_zero :
     tendsto (fun n => ENNReal.toReal <| ∫⁻ a, ENNReal.ofReal ‖fs n a - f a‖ ∂μ) at_top (𝓝 0) :=
     (tendsto_to_real zero_ne_top).comp
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne
-
-! This file was ported from Lean 3 source module measure_theory.integral.set_to_l1
-! leanprover-community/mathlib commit af471b9e3ce868f296626d33189b4ce730fa4c00
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.MeasureTheory.Function.SimpleFuncDenseLp
 
+#align_import measure_theory.integral.set_to_l1 from "leanprover-community/mathlib"@"af471b9e3ce868f296626d33189b4ce730fa4c00"
+
 /-!
 # Extension of a linear function from indicators to L1
 
@@ -176,7 +173,7 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 -/
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
 #print MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum /-
 theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι)
Diff
@@ -88,7 +88,6 @@ variable {α E F F' G 𝕜 : Type _} {p : ℝ≥0∞} [NormedAddCommGroup E] [No
   [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedAddCommGroup F'] [NormedSpace ℝ F']
   [NormedAddCommGroup G] {m : MeasurableSpace α} {μ : Measure α}
 
--- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
 open Finset
@@ -108,26 +107,35 @@ namespace FinMeasAdditive
 
 variable {β : Type _} [AddCommMonoid β] {T T' : Set α → β}
 
+#print MeasureTheory.FinMeasAdditive.zero /-
 theorem zero : FinMeasAdditive μ (0 : Set α → β) := fun s t hs ht hμs hμt hst => by simp
 #align measure_theory.fin_meas_additive.zero MeasureTheory.FinMeasAdditive.zero
+-/
 
+#print MeasureTheory.FinMeasAdditive.add /-
 theorem add (hT : FinMeasAdditive μ T) (hT' : FinMeasAdditive μ T') : FinMeasAdditive μ (T + T') :=
   by
   intro s t hs ht hμs hμt hst
   simp only [hT s t hs ht hμs hμt hst, hT' s t hs ht hμs hμt hst, Pi.add_apply]
   abel
 #align measure_theory.fin_meas_additive.add MeasureTheory.FinMeasAdditive.add
+-/
 
+#print MeasureTheory.FinMeasAdditive.smul /-
 theorem smul [Monoid 𝕜] [DistribMulAction 𝕜 β] (hT : FinMeasAdditive μ T) (c : 𝕜) :
     FinMeasAdditive μ fun s => c • T s := fun s t hs ht hμs hμt hst => by
   simp [hT s t hs ht hμs hμt hst]
 #align measure_theory.fin_meas_additive.smul MeasureTheory.FinMeasAdditive.smul
+-/
 
+#print MeasureTheory.FinMeasAdditive.of_eq_top_imp_eq_top /-
 theorem of_eq_top_imp_eq_top {μ' : Measure α} (h : ∀ s, MeasurableSet s → μ s = ∞ → μ' s = ∞)
     (hT : FinMeasAdditive μ T) : FinMeasAdditive μ' T := fun s t hs ht hμ's hμ't hst =>
   hT s t hs ht (mt (h s hs) hμ's) (mt (h t ht) hμ't) hst
 #align measure_theory.fin_meas_additive.of_eq_top_imp_eq_top MeasureTheory.FinMeasAdditive.of_eq_top_imp_eq_top
+-/
 
+#print MeasureTheory.FinMeasAdditive.of_smul_measure /-
 theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : FinMeasAdditive (c • μ) T) :
     FinMeasAdditive μ T :=
   by
@@ -136,7 +144,9 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : FinMeasAd
   simp only [hc_ne_top, or_false_iff, Ne.def, false_and_iff] at hμs 
   exact hμs.2
 #align measure_theory.fin_meas_additive.of_smul_measure MeasureTheory.FinMeasAdditive.of_smul_measure
+-/
 
+#print MeasureTheory.FinMeasAdditive.smul_measure /-
 theorem smul_measure (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hT : FinMeasAdditive μ T) :
     FinMeasAdditive (c • μ) T :=
   by
@@ -145,12 +155,16 @@ theorem smul_measure (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hT : FinMeasAdditi
   simp only [hc_ne_zero, true_and_iff, Ne.def, not_false_iff]
   exact Or.inl hμs
 #align measure_theory.fin_meas_additive.smul_measure MeasureTheory.FinMeasAdditive.smul_measure
+-/
 
+#print MeasureTheory.FinMeasAdditive.smul_measure_iff /-
 theorem smul_measure_iff (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hc_ne_top : c ≠ ∞) :
     FinMeasAdditive (c • μ) T ↔ FinMeasAdditive μ T :=
   ⟨fun hT => of_smul_measure c hc_ne_top hT, fun hT => smul_measure c hc_ne_zero hT⟩
 #align measure_theory.fin_meas_additive.smul_measure_iff MeasureTheory.FinMeasAdditive.smul_measure_iff
+-/
 
+#print MeasureTheory.FinMeasAdditive.map_empty_eq_zero /-
 theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : FinMeasAdditive μ T) :
     T ∅ = 0 :=
   by
@@ -160,8 +174,10 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
   nth_rw 1 [← add_zero (T ∅)] at hT 
   exact (add_left_cancel hT).symm
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
+-/
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
+#print MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum /-
 theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι)
     (hS_meas : ∀ i, MeasurableSet (S i)) (hSp : ∀ i ∈ sι, μ (S i) ≠ ∞)
@@ -195,6 +211,7 @@ theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     rw [← hai] at hi 
     exact has hi
 #align measure_theory.fin_meas_additive.map_Union_fin_meas_set_eq_sum MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum
+-/
 
 end FinMeasAdditive
 
@@ -211,6 +228,7 @@ namespace DominatedFinMeasAdditive
 
 variable {β : Type _} [SeminormedAddCommGroup β] {T T' : Set α → β} {C C' : ℝ}
 
+#print MeasureTheory.DominatedFinMeasAdditive.zero /-
 theorem zero {m : MeasurableSpace α} (μ : Measure α) (hC : 0 ≤ C) :
     DominatedFinMeasAdditive μ (0 : Set α → β) C :=
   by
@@ -218,7 +236,9 @@ theorem zero {m : MeasurableSpace α} (μ : Measure α) (hC : 0 ≤ C) :
   rw [Pi.zero_apply, norm_zero]
   exact mul_nonneg hC to_real_nonneg
 #align measure_theory.dominated_fin_meas_additive.zero MeasureTheory.DominatedFinMeasAdditive.zero
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.eq_zero_of_measure_zero /-
 theorem eq_zero_of_measure_zero {β : Type _} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) {s : Set α} (hs : MeasurableSet s) (hs_zero : μ s = 0) :
     T s = 0 := by
@@ -226,13 +246,17 @@ theorem eq_zero_of_measure_zero {β : Type _} [NormedAddCommGroup β] {T : Set 
   refine' ((hT.2 s hs (by simp [hs_zero])).trans (le_of_eq _)).antisymm (norm_nonneg _)
   rw [hs_zero, ENNReal.zero_toReal, MulZeroClass.mul_zero]
 #align measure_theory.dominated_fin_meas_additive.eq_zero_of_measure_zero MeasureTheory.DominatedFinMeasAdditive.eq_zero_of_measure_zero
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.eq_zero /-
 theorem eq_zero {β : Type _} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ} {m : MeasurableSpace α}
     (hT : DominatedFinMeasAdditive (0 : Measure α) T C) {s : Set α} (hs : MeasurableSet s) :
     T s = 0 :=
   eq_zero_of_measure_zero hT hs (by simp only [measure.coe_zero, Pi.zero_apply])
 #align measure_theory.dominated_fin_meas_additive.eq_zero MeasureTheory.DominatedFinMeasAdditive.eq_zero
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.add /-
 theorem add (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C') :
     DominatedFinMeasAdditive μ (T + T') (C + C') :=
   by
@@ -240,7 +264,9 @@ theorem add (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditi
   rw [Pi.add_apply, add_mul]
   exact (norm_add_le _ _).trans (add_le_add (hT.2 s hs hμs) (hT'.2 s hs hμs))
 #align measure_theory.dominated_fin_meas_additive.add MeasureTheory.DominatedFinMeasAdditive.add
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.smul /-
 theorem smul [NormedField 𝕜] [NormedSpace 𝕜 β] (hT : DominatedFinMeasAdditive μ T C) (c : 𝕜) :
     DominatedFinMeasAdditive μ (fun s => c • T s) (‖c‖ * C) :=
   by
@@ -249,7 +275,9 @@ theorem smul [NormedField 𝕜] [NormedSpace 𝕜 β] (hT : DominatedFinMeasAddi
   rw [norm_smul, mul_assoc]
   exact mul_le_mul le_rfl (hT.2 s hs hμs) (norm_nonneg _) (norm_nonneg _)
 #align measure_theory.dominated_fin_meas_additive.smul MeasureTheory.DominatedFinMeasAdditive.smul
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.of_measure_le /-
 theorem of_measure_le {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAdditive μ T C)
     (hC : 0 ≤ C) : DominatedFinMeasAdditive μ' T C :=
   by
@@ -261,17 +289,23 @@ theorem of_measure_le {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeas
   rw [to_real_le_to_real hμs.ne hμ's.ne]
   exact h s hs
 #align measure_theory.dominated_fin_meas_additive.of_measure_le MeasureTheory.DominatedFinMeasAdditive.of_measure_le
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.add_measure_right /-
 theorem add_measure_right {m : MeasurableSpace α} (μ ν : Measure α)
     (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) : DominatedFinMeasAdditive (μ + ν) T C :=
   of_measure_le (Measure.le_add_right le_rfl) hT hC
 #align measure_theory.dominated_fin_meas_additive.add_measure_right MeasureTheory.DominatedFinMeasAdditive.add_measure_right
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.add_measure_left /-
 theorem add_measure_left {m : MeasurableSpace α} (μ ν : Measure α)
     (hT : DominatedFinMeasAdditive ν T C) (hC : 0 ≤ C) : DominatedFinMeasAdditive (μ + ν) T C :=
   of_measure_le (Measure.le_add_left le_rfl) hT hC
 #align measure_theory.dominated_fin_meas_additive.add_measure_left MeasureTheory.DominatedFinMeasAdditive.add_measure_left
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.of_smul_measure /-
 theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : DominatedFinMeasAdditive (c • μ) T C) :
     DominatedFinMeasAdditive μ T (c.toReal * C) :=
   by
@@ -288,12 +322,15 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : Dominated
   refine' (hT.2 s hs hcμs.lt_top).trans (le_of_eq _)
   ring
 #align measure_theory.dominated_fin_meas_additive.of_smul_measure MeasureTheory.DominatedFinMeasAdditive.of_smul_measure
+-/
 
+#print MeasureTheory.DominatedFinMeasAdditive.of_measure_le_smul /-
 theorem of_measure_le_smul {μ' : Measure α} (c : ℝ≥0∞) (hc : c ≠ ∞) (h : μ ≤ c • μ')
     (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) :
     DominatedFinMeasAdditive μ' T (c.toReal * C) :=
   (hT.of_measure_le h hC).of_smul_measure c hc
 #align measure_theory.dominated_fin_meas_additive.of_measure_le_smul MeasureTheory.DominatedFinMeasAdditive.of_measure_le_smul
+-/
 
 end DominatedFinMeasAdditive
 
@@ -308,11 +345,14 @@ def setToSimpleFunc {m : MeasurableSpace α} (T : Set α → F →L[ℝ] F') (f
 #align measure_theory.simple_func.set_to_simple_func MeasureTheory.SimpleFunc.setToSimpleFunc
 -/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_zero /-
 @[simp]
 theorem setToSimpleFunc_zero {m : MeasurableSpace α} (f : α →ₛ F) :
     setToSimpleFunc (0 : Set α → F →L[ℝ] F') f = 0 := by simp [set_to_simple_func]
 #align measure_theory.simple_func.set_to_simple_func_zero MeasureTheory.SimpleFunc.setToSimpleFunc_zero
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_zero' /-
 theorem setToSimpleFunc_zero' {T : Set α → E →L[ℝ] F'}
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →ₛ E) (hf : Integrable f μ) :
     setToSimpleFunc T f = 0 := by
@@ -324,13 +364,17 @@ theorem setToSimpleFunc_zero' {T : Set α → E →L[ℝ] F'}
       (measure_preimage_lt_top_of_integrable f hf hx0),
     ContinuousLinearMap.zero_apply]
 #align measure_theory.simple_func.set_to_simple_func_zero' MeasureTheory.SimpleFunc.setToSimpleFunc_zero'
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_zero_apply /-
 @[simp]
 theorem setToSimpleFunc_zero_apply {m : MeasurableSpace α} (T : Set α → F →L[ℝ] F') :
     setToSimpleFunc T (0 : α →ₛ F) = 0 := by
   cases isEmpty_or_nonempty α <;> simp [set_to_simple_func]
 #align measure_theory.simple_func.set_to_simple_func_zero_apply MeasureTheory.SimpleFunc.setToSimpleFunc_zero_apply
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_eq_sum_filter /-
 theorem setToSimpleFunc_eq_sum_filter {m : MeasurableSpace α} (T : Set α → F →L[ℝ] F')
     (f : α →ₛ F) : setToSimpleFunc T f = ∑ x in f.range.filterₓ fun x => x ≠ 0, (T (f ⁻¹' {x})) x :=
   by
@@ -339,7 +383,9 @@ theorem setToSimpleFunc_eq_sum_filter {m : MeasurableSpace α} (T : Set α → F
   rw [hx0]
   exact ContinuousLinearMap.map_zero _
 #align measure_theory.simple_func.set_to_simple_func_eq_sum_filter MeasureTheory.SimpleFunc.setToSimpleFunc_eq_sum_filter
+-/
 
+#print MeasureTheory.SimpleFunc.map_setToSimpleFunc /-
 theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAdditive μ T) {f : α →ₛ G}
     (hf : Integrable f μ) {g : G → F} (hg : g 0 = 0) :
     (f.map g).setToSimpleFunc T = ∑ x in f.range, T (f ⁻¹' {x}) (g x) :=
@@ -384,7 +430,9 @@ theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAddi
     rw [← hx.1, ← hx.2] at hij 
     exact absurd rfl hij
 #align measure_theory.simple_func.map_set_to_simple_func MeasureTheory.SimpleFunc.map_setToSimpleFunc
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_congr' /-
 theorem setToSimpleFunc_congr' (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E}
     (hf : Integrable f μ) (hg : Integrable g μ) (h : ∀ x y, x ≠ y → T (f ⁻¹' {x} ∩ g ⁻¹' {y}) = 0) :
     f.setToSimpleFunc T = g.setToSimpleFunc T :=
@@ -405,7 +453,9 @@ theorem setToSimpleFunc_congr' (T : Set α → E →L[ℝ] F) (h_add : FinMeasAd
         exact h (f a) (g a) Eq
       simp only [this, ContinuousLinearMap.zero_apply, pair_apply]
 #align measure_theory.simple_func.set_to_simple_func_congr' MeasureTheory.SimpleFunc.setToSimpleFunc_congr'
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_congr /-
 theorem setToSimpleFunc_congr (T : Set α → E →L[ℝ] F)
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E}
     (hf : Integrable f μ) (h : f =ᵐ[μ] g) : f.setToSimpleFunc T = g.setToSimpleFunc T :=
@@ -418,7 +468,9 @@ theorem setToSimpleFunc_congr (T : Set α → E →L[ℝ] F)
   intro h
   rwa [h.1, h.2]
 #align measure_theory.simple_func.set_to_simple_func_congr MeasureTheory.SimpleFunc.setToSimpleFunc_congr
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_congr_left /-
 theorem setToSimpleFunc_congr_left (T T' : Set α → E →L[ℝ] F)
     (h : ∀ s, MeasurableSet s → μ s < ∞ → T s = T' s) (f : α →ₛ E) (hf : Integrable f μ) :
     setToSimpleFunc T f = setToSimpleFunc T' f :=
@@ -431,7 +483,9 @@ theorem setToSimpleFunc_congr_left (T T' : Set α → E →L[ℝ] F)
     rw [h (f ⁻¹' {x}) (simple_func.measurable_set_fiber _ _)
         (simple_func.measure_preimage_lt_top_of_integrable _ hf hx0)]
 #align measure_theory.simple_func.set_to_simple_func_congr_left MeasureTheory.SimpleFunc.setToSimpleFunc_congr_left
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_add_left /-
 theorem setToSimpleFunc_add_left {m : MeasurableSpace α} (T T' : Set α → F →L[ℝ] F') {f : α →ₛ F} :
     setToSimpleFunc (T + T') f = setToSimpleFunc T f + setToSimpleFunc T' f :=
   by
@@ -439,7 +493,9 @@ theorem setToSimpleFunc_add_left {m : MeasurableSpace α} (T T' : Set α → F 
   push_cast
   simp_rw [Pi.add_apply, sum_add_distrib]
 #align measure_theory.simple_func.set_to_simple_func_add_left MeasureTheory.SimpleFunc.setToSimpleFunc_add_left
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_add_left' /-
 theorem setToSimpleFunc_add_left' (T T' T'' : Set α → E →L[ℝ] F)
     (h_add : ∀ s, MeasurableSet s → μ s < ∞ → T'' s = T s + T' s) {f : α →ₛ E}
     (hf : Integrable f μ) : setToSimpleFunc T'' f = setToSimpleFunc T f + setToSimpleFunc T' f :=
@@ -459,12 +515,16 @@ theorem setToSimpleFunc_add_left' (T T' T'' : Set α → E →L[ℝ] F)
   rw [mem_filter] at hx 
   exact hx.2
 #align measure_theory.simple_func.set_to_simple_func_add_left' MeasureTheory.SimpleFunc.setToSimpleFunc_add_left'
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left /-
 theorem setToSimpleFunc_smul_left {m : MeasurableSpace α} (T : Set α → F →L[ℝ] F') (c : ℝ)
     (f : α →ₛ F) : setToSimpleFunc (fun s => c • T s) f = c • setToSimpleFunc T f := by
   simp_rw [set_to_simple_func, ContinuousLinearMap.smul_apply, smul_sum]
 #align measure_theory.simple_func.set_to_simple_func_smul_left MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left' /-
 theorem setToSimpleFunc_smul_left' (T T' : Set α → E →L[ℝ] F') (c : ℝ)
     (h_smul : ∀ s, MeasurableSet s → μ s < ∞ → T' s = c • T s) {f : α →ₛ E} (hf : Integrable f μ) :
     setToSimpleFunc T' f = c • setToSimpleFunc T f :=
@@ -482,7 +542,9 @@ theorem setToSimpleFunc_smul_left' (T T' : Set α → E →L[ℝ] F') (c : ℝ)
   rw [mem_filter] at hx 
   exact hx.2
 #align measure_theory.simple_func.set_to_simple_func_smul_left' MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left'
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_add /-
 theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E}
     (hf : Integrable f μ) (hg : Integrable g μ) :
     setToSimpleFunc T (f + g) = setToSimpleFunc T f + setToSimpleFunc T g :=
@@ -501,7 +563,9 @@ theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
       rw [map_set_to_simple_func T h_add hp_pair Prod.snd_zero,
         map_set_to_simple_func T h_add hp_pair Prod.fst_zero]
 #align measure_theory.simple_func.set_to_simple_func_add MeasureTheory.SimpleFunc.setToSimpleFunc_add
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_neg /-
 theorem setToSimpleFunc_neg (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f : α →ₛ E}
     (hf : Integrable f μ) : setToSimpleFunc T (-f) = -setToSimpleFunc T f :=
   calc
@@ -511,7 +575,9 @@ theorem setToSimpleFunc_neg (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
       rw [map_set_to_simple_func T h_add hf neg_zero, set_to_simple_func, ← sum_neg_distrib]
       exact Finset.sum_congr rfl fun x h => ContinuousLinearMap.map_neg _ _
 #align measure_theory.simple_func.set_to_simple_func_neg MeasureTheory.SimpleFunc.setToSimpleFunc_neg
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_sub /-
 theorem setToSimpleFunc_sub (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E}
     (hf : Integrable f μ) (hg : Integrable g μ) :
     setToSimpleFunc T (f - g) = setToSimpleFunc T f - setToSimpleFunc T g :=
@@ -525,7 +591,9 @@ theorem setToSimpleFunc_sub (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
   refine' hg (-x) _
   simp [hx_ne]
 #align measure_theory.simple_func.set_to_simple_func_sub MeasureTheory.SimpleFunc.setToSimpleFunc_sub
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_smul_real /-
 theorem setToSimpleFunc_smul_real (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) (c : ℝ)
     {f : α →ₛ E} (hf : Integrable f μ) : setToSimpleFunc T (c • f) = c • setToSimpleFunc T f :=
   calc
@@ -535,7 +603,9 @@ theorem setToSimpleFunc_smul_real (T : Set α → E →L[ℝ] F) (h_add : FinMea
       (Finset.sum_congr rfl fun b hb => by rw [ContinuousLinearMap.map_smul (T (f ⁻¹' {b})) c b])
     _ = c • setToSimpleFunc T f := by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm]
 #align measure_theory.simple_func.set_to_simple_func_smul_real MeasureTheory.SimpleFunc.setToSimpleFunc_smul_real
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_smul /-
 theorem setToSimpleFunc_smul {E} [NormedAddCommGroup E] [NormedField 𝕜] [NormedSpace 𝕜 E]
     [NormedSpace ℝ E] [NormedSpace 𝕜 F] (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜) {f : α →ₛ E} (hf : Integrable f μ) :
@@ -548,17 +618,21 @@ theorem setToSimpleFunc_smul {E} [NormedAddCommGroup E] [NormedField 𝕜] [Norm
     _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x := (Finset.sum_congr rfl fun b hb => by rw [h_smul])
     _ = c • setToSimpleFunc T f := by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm]
 #align measure_theory.simple_func.set_to_simple_func_smul MeasureTheory.SimpleFunc.setToSimpleFunc_smul
+-/
 
 section Order
 
 variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_mono_left /-
 theorem setToSimpleFunc_mono_left {m : MeasurableSpace α} (T T' : Set α → F →L[ℝ] G'')
     (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →ₛ F) : setToSimpleFunc T f ≤ setToSimpleFunc T' f := by
   simp_rw [set_to_simple_func]; exact sum_le_sum fun i hi => hTT' _ i
 #align measure_theory.simple_func.set_to_simple_func_mono_left MeasureTheory.SimpleFunc.setToSimpleFunc_mono_left
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_mono_left' /-
 theorem setToSimpleFunc_mono_left' (T T' : Set α → E →L[ℝ] G'')
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →ₛ E)
     (hf : Integrable f μ) : setToSimpleFunc T f ≤ setToSimpleFunc T' f :=
@@ -568,7 +642,9 @@ theorem setToSimpleFunc_mono_left' (T T' : Set α → E →L[ℝ] G'')
   · simp [h0]
   · exact hTT' _ (measurable_set_fiber _ _) (measure_preimage_lt_top_of_integrable _ hf h0) i
 #align measure_theory.simple_func.set_to_simple_func_mono_left' MeasureTheory.SimpleFunc.setToSimpleFunc_mono_left'
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_nonneg /-
 theorem setToSimpleFunc_nonneg {m : MeasurableSpace α} (T : Set α → G' →L[ℝ] G'')
     (hT_nonneg : ∀ s x, 0 ≤ x → 0 ≤ T s x) (f : α →ₛ G') (hf : 0 ≤ f) : 0 ≤ setToSimpleFunc T f :=
   by
@@ -579,7 +655,9 @@ theorem setToSimpleFunc_nonneg {m : MeasurableSpace α} (T : Set α → G' →L[
   refine' le_trans _ (hf y)
   simp
 #align measure_theory.simple_func.set_to_simple_func_nonneg MeasureTheory.SimpleFunc.setToSimpleFunc_nonneg
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_nonneg' /-
 theorem setToSimpleFunc_nonneg' (T : Set α → G' →L[ℝ] G'')
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) (f : α →ₛ G') (hf : 0 ≤ f)
     (hfi : Integrable f μ) : 0 ≤ setToSimpleFunc T f :=
@@ -594,7 +672,9 @@ theorem setToSimpleFunc_nonneg' (T : Set α → G' →L[ℝ] G'')
   rw [← hy]
   convert hf y
 #align measure_theory.simple_func.set_to_simple_func_nonneg' MeasureTheory.SimpleFunc.setToSimpleFunc_nonneg'
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_mono /-
 theorem setToSimpleFunc_mono {T : Set α → G' →L[ℝ] G''} (h_add : FinMeasAdditive μ T)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →ₛ G'}
     (hfi : Integrable f μ) (hgi : Integrable g μ) (hfg : f ≤ g) :
@@ -606,9 +686,11 @@ theorem setToSimpleFunc_mono {T : Set α → G' →L[ℝ] G''} (h_add : FinMeasA
   simp only [coe_sub, sub_nonneg, coe_zero, Pi.zero_apply, Pi.sub_apply]
   exact hfg x
 #align measure_theory.simple_func.set_to_simple_func_mono MeasureTheory.SimpleFunc.setToSimpleFunc_mono
+-/
 
 end Order
 
+#print MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_op_norm /-
 theorem norm_setToSimpleFunc_le_sum_op_norm {m : MeasurableSpace α} (T : Set α → F' →L[ℝ] F)
     (f : α →ₛ F') : ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
   calc
@@ -616,7 +698,9 @@ theorem norm_setToSimpleFunc_le_sum_op_norm {m : MeasurableSpace α} (T : Set α
     _ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ := by refine' Finset.sum_le_sum fun b hb => _;
       simp_rw [ContinuousLinearMap.le_op_norm]
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_op_norm
+-/
 
+#print MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm /-
 theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C : ℝ}
     (hT_norm : ∀ s, MeasurableSet s → ‖T s‖ ≤ C * (μ s).toReal) (f : α →ₛ F) :
     ‖f.setToSimpleFunc T‖ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
@@ -629,7 +713,9 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C
           norm_nonneg _)
     _ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ := by simp_rw [mul_sum, ← mul_assoc]
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_mul_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm
+-/
 
+#print MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm_of_integrable /-
 theorem norm_setToSimpleFunc_le_sum_mul_norm_of_integrable (T : Set α → E →L[ℝ] F') {C : ℝ}
     (hT_norm : ∀ s, MeasurableSet s → μ s < ∞ → ‖T s‖ ≤ C * (μ s).toReal) (f : α →ₛ E)
     (hf : Integrable f μ) :
@@ -649,7 +735,9 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm_of_integrable (T : Set α → E →
           (norm_nonneg _)
     _ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ := by simp_rw [mul_sum, ← mul_assoc]
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_mul_norm_of_integrable MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm_of_integrable
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_indicator /-
 theorem setToSimpleFunc_indicator (T : Set α → F →L[ℝ] F') (hT_empty : T ∅ = 0)
     {m : MeasurableSpace α} {s : Set α} (hs : MeasurableSet s) (x : F) :
     SimpleFunc.setToSimpleFunc T
@@ -679,13 +767,17 @@ theorem setToSimpleFunc_indicator (T : Set α → F →L[ℝ] F') (hT_empty : T
   swap; · rw [Set.mem_singleton_iff]; exact Ne.symm hx0
   simp
 #align measure_theory.simple_func.set_to_simple_func_indicator MeasureTheory.SimpleFunc.setToSimpleFunc_indicator
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_const' /-
 theorem setToSimpleFunc_const' [Nonempty α] (T : Set α → F →L[ℝ] F') (x : F)
     {m : MeasurableSpace α} : SimpleFunc.setToSimpleFunc T (SimpleFunc.const α x) = T univ x := by
   simp only [set_to_simple_func, range_const, Set.mem_singleton, preimage_const_of_mem,
     sum_singleton, coe_const]
 #align measure_theory.simple_func.set_to_simple_func_const' MeasureTheory.SimpleFunc.setToSimpleFunc_const'
+-/
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc_const /-
 theorem setToSimpleFunc_const (T : Set α → F →L[ℝ] F') (hT_empty : T ∅ = 0) (x : F)
     {m : MeasurableSpace α} : SimpleFunc.setToSimpleFunc T (SimpleFunc.const α x) = T univ x :=
   by
@@ -696,6 +788,7 @@ theorem setToSimpleFunc_const (T : Set α → F →L[ℝ] F') (hT_empty : T ∅
       range_eq_empty_of_is_empty]
   · exact set_to_simple_func_const' T x
 #align measure_theory.simple_func.set_to_simple_func_const MeasureTheory.SimpleFunc.setToSimpleFunc_const
+-/
 
 end SimpleFunc
 
@@ -707,6 +800,7 @@ variable {α E μ}
 
 namespace SimpleFunc
 
+#print MeasureTheory.L1.SimpleFunc.norm_eq_sum_mul /-
 theorem norm_eq_sum_mul (f : α →₁ₛ[μ] G) :
     ‖f‖ = ∑ x in (toSimpleFunc f).range, (μ (toSimpleFunc f ⁻¹' {x})).toReal * ‖x‖ :=
   by
@@ -727,6 +821,7 @@ theorem norm_eq_sum_mul (f : α →₁ₛ[μ] G) :
         ENNReal.mul_ne_top ENNReal.coe_ne_top
           (simple_func.measure_preimage_lt_top_of_integrable _ (simple_func.integrable f) hx0).Ne
 #align measure_theory.L1.simple_func.norm_eq_sum_mul MeasureTheory.L1.SimpleFunc.norm_eq_sum_mul
+-/
 
 section SetToL1s
 
@@ -736,38 +831,51 @@ attribute [local instance] Lp.simple_func.module
 
 attribute [local instance] Lp.simple_func.normed_space
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S /-
 /-- Extend `set α → (E →L[ℝ] F')` to `(α →₁ₛ[μ] E) → F'`. -/
 def setToL1S (T : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) : F :=
   (toSimpleFunc f).setToSimpleFunc T
 #align measure_theory.L1.simple_func.set_to_L1s MeasureTheory.L1.SimpleFunc.setToL1S
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_eq_setToSimpleFunc /-
 theorem setToL1S_eq_setToSimpleFunc (T : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) :
     setToL1S T f = (toSimpleFunc f).setToSimpleFunc T :=
   rfl
 #align measure_theory.L1.simple_func.set_to_L1s_eq_set_to_simple_func MeasureTheory.L1.SimpleFunc.setToL1S_eq_setToSimpleFunc
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_zero_left /-
 @[simp]
 theorem setToL1S_zero_left (f : α →₁ₛ[μ] E) : setToL1S (0 : Set α → E →L[ℝ] F) f = 0 :=
   SimpleFunc.setToSimpleFunc_zero _
 #align measure_theory.L1.simple_func.set_to_L1s_zero_left MeasureTheory.L1.SimpleFunc.setToL1S_zero_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_zero_left' /-
 theorem setToL1S_zero_left' {T : Set α → E →L[ℝ] F}
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁ₛ[μ] E) : setToL1S T f = 0 :=
   SimpleFunc.setToSimpleFunc_zero' h_zero _ (SimpleFunc.integrable f)
 #align measure_theory.L1.simple_func.set_to_L1s_zero_left' MeasureTheory.L1.SimpleFunc.setToL1S_zero_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_congr /-
 theorem setToL1S_congr (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) {f g : α →₁ₛ[μ] E} (h : toSimpleFunc f =ᵐ[μ] toSimpleFunc g) :
     setToL1S T f = setToL1S T g :=
   SimpleFunc.setToSimpleFunc_congr T h_zero h_add (SimpleFunc.integrable f) h
 #align measure_theory.L1.simple_func.set_to_L1s_congr MeasureTheory.L1.SimpleFunc.setToL1S_congr
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_congr_left /-
 theorem setToL1S_congr_left (T T' : Set α → E →L[ℝ] F)
     (h : ∀ s, MeasurableSet s → μ s < ∞ → T s = T' s) (f : α →₁ₛ[μ] E) :
     setToL1S T f = setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_congr_left T T' h (simpleFunc.toSimpleFunc f) (SimpleFunc.integrable f)
 #align measure_theory.L1.simple_func.set_to_L1s_congr_left MeasureTheory.L1.SimpleFunc.setToL1S_congr_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_congr_measure /-
 /-- `set_to_L1s` does not change if we replace the measure `μ` by `μ'` with `μ ≪ μ'`. The statement
 uses two functions `f` and `f'` because they have to belong to different types, but morally these
 are the same function (we have `f =ᵐ[μ] f'`). -/
@@ -781,29 +889,39 @@ theorem setToL1S_congr_measure {μ' : Measure α} (T : Set α → E →L[ℝ] F)
   have goal' : f' =ᵐ[μ'] simple_func.to_simple_func f' := (to_simple_func_eq_to_fun f').symm
   exact hμ.ae_eq goal'
 #align measure_theory.L1.simple_func.set_to_L1s_congr_measure MeasureTheory.L1.SimpleFunc.setToL1S_congr_measure
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_add_left /-
 theorem setToL1S_add_left (T T' : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) :
     setToL1S (T + T') f = setToL1S T f + setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_add_left T T'
 #align measure_theory.L1.simple_func.set_to_L1s_add_left MeasureTheory.L1.SimpleFunc.setToL1S_add_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_add_left' /-
 theorem setToL1S_add_left' (T T' T'' : Set α → E →L[ℝ] F)
     (h_add : ∀ s, MeasurableSet s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁ₛ[μ] E) :
     setToL1S T'' f = setToL1S T f + setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_add_left' T T' T'' h_add (SimpleFunc.integrable f)
 #align measure_theory.L1.simple_func.set_to_L1s_add_left' MeasureTheory.L1.SimpleFunc.setToL1S_add_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_smul_left /-
 theorem setToL1S_smul_left (T : Set α → E →L[ℝ] F) (c : ℝ) (f : α →₁ₛ[μ] E) :
     setToL1S (fun s => c • T s) f = c • setToL1S T f :=
   SimpleFunc.setToSimpleFunc_smul_left T c _
 #align measure_theory.L1.simple_func.set_to_L1s_smul_left MeasureTheory.L1.SimpleFunc.setToL1S_smul_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_smul_left' /-
 theorem setToL1S_smul_left' (T T' : Set α → E →L[ℝ] F) (c : ℝ)
     (h_smul : ∀ s, MeasurableSet s → μ s < ∞ → T' s = c • T s) (f : α →₁ₛ[μ] E) :
     setToL1S T' f = c • setToL1S T f :=
   SimpleFunc.setToSimpleFunc_smul_left' T T' c h_smul (SimpleFunc.integrable f)
 #align measure_theory.L1.simple_func.set_to_L1s_smul_left' MeasureTheory.L1.SimpleFunc.setToL1S_smul_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_add /-
 theorem setToL1S_add (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (f g : α →₁ₛ[μ] E) :
     setToL1S T (f + g) = setToL1S T f + setToL1S T g :=
@@ -816,7 +934,9 @@ theorem setToL1S_add (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableS
     simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _)
       (add_to_simple_func f g)
 #align measure_theory.L1.simple_func.set_to_L1s_add MeasureTheory.L1.SimpleFunc.setToL1S_add
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_neg /-
 theorem setToL1S_neg {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (f : α →₁ₛ[μ] E) : setToL1S T (-f) = -setToL1S T f :=
   by
@@ -826,13 +946,17 @@ theorem setToL1S_neg {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableS
   rw [simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) this]
   exact simple_func.set_to_simple_func_neg T h_add (simple_func.integrable f)
 #align measure_theory.L1.simple_func.set_to_L1s_neg MeasureTheory.L1.SimpleFunc.setToL1S_neg
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_sub /-
 theorem setToL1S_sub {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (f g : α →₁ₛ[μ] E) :
     setToL1S T (f - g) = setToL1S T f - setToL1S T g := by
   rw [sub_eq_add_neg, set_to_L1s_add T h_zero h_add, set_to_L1s_neg h_zero h_add, sub_eq_add_neg]
 #align measure_theory.L1.simple_func.set_to_L1s_sub MeasureTheory.L1.SimpleFunc.setToL1S_sub
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_smul_real /-
 theorem setToL1S_smul_real (T : Set α → E →L[ℝ] F)
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (c : ℝ)
     (f : α →₁ₛ[μ] E) : setToL1S T (c • f) = c • setToL1S T f :=
@@ -842,7 +966,9 @@ theorem setToL1S_smul_real (T : Set α → E →L[ℝ] F)
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _
   exact smul_to_simple_func c f
 #align measure_theory.L1.simple_func.set_to_L1s_smul_real MeasureTheory.L1.SimpleFunc.setToL1S_smul_real
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_smul /-
 theorem setToL1S_smul {E} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedSpace 𝕜 E]
     [NormedSpace 𝕜 F] (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜)
@@ -853,7 +979,9 @@ theorem setToL1S_smul {E} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedSpac
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _
   exact smul_to_simple_func c f
 #align measure_theory.L1.simple_func.set_to_L1s_smul MeasureTheory.L1.SimpleFunc.setToL1S_smul
+-/
 
+#print MeasureTheory.L1.SimpleFunc.norm_setToL1S_le /-
 theorem norm_setToL1S_le (T : Set α → E →L[ℝ] F) {C : ℝ}
     (hT_norm : ∀ s, MeasurableSet s → μ s < ∞ → ‖T s‖ ≤ C * (μ s).toReal) (f : α →₁ₛ[μ] E) :
     ‖setToL1S T f‖ ≤ C * ‖f‖ := by
@@ -862,7 +990,9 @@ theorem norm_setToL1S_le (T : Set α → E →L[ℝ] F) {C : ℝ}
     simple_func.norm_set_to_simple_func_le_sum_mul_norm_of_integrable T hT_norm _
       (simple_func.integrable f)
 #align measure_theory.L1.simple_func.norm_set_to_L1s_le MeasureTheory.L1.SimpleFunc.norm_setToL1S_le
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_indicatorConst /-
 theorem setToL1S_indicatorConst {T : Set α → E →L[ℝ] F} {s : Set α}
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T)
     (hs : MeasurableSet s) (hμs : μ s < ∞) (x : E) :
@@ -874,29 +1004,37 @@ theorem setToL1S_indicatorConst {T : Set α → E →L[ℝ] F} {s : Set α}
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _
   exact to_simple_func_indicator_const hs hμs.ne x
 #align measure_theory.L1.simple_func.set_to_L1s_indicator_const MeasureTheory.L1.SimpleFunc.setToL1S_indicatorConst
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_const /-
 theorem setToL1S_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F}
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (x : E) :
     setToL1S T (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) = T univ x :=
   setToL1S_indicatorConst h_zero h_add MeasurableSet.univ (measure_lt_top _ _) x
 #align measure_theory.L1.simple_func.set_to_L1s_const MeasureTheory.L1.SimpleFunc.setToL1S_const
+-/
 
 section Order
 
 variable {G'' G' : Type _} [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
   [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] {T : Set α → G'' →L[ℝ] G'}
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_mono_left /-
 theorem setToL1S_mono_left {T T' : Set α → E →L[ℝ] G''} (hTT' : ∀ s x, T s x ≤ T' s x)
     (f : α →₁ₛ[μ] E) : setToL1S T f ≤ setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_mono_left T T' hTT' _
 #align measure_theory.L1.simple_func.set_to_L1s_mono_left MeasureTheory.L1.SimpleFunc.setToL1S_mono_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_mono_left' /-
 theorem setToL1S_mono_left' {T T' : Set α → E →L[ℝ] G''}
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) :
     setToL1S T f ≤ setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_mono_left' T T' hTT' _ (SimpleFunc.integrable f)
 #align measure_theory.L1.simple_func.set_to_L1s_mono_left' MeasureTheory.L1.SimpleFunc.setToL1S_mono_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_nonneg /-
 theorem setToL1S_nonneg (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁ₛ[μ] G''}
@@ -910,7 +1048,9 @@ theorem setToL1S_nonneg (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s =
   exact
     simple_func.set_to_simple_func_nonneg' T hT_nonneg _ hf' ((simple_func.integrable f).congr hff')
 #align measure_theory.L1.simple_func.set_to_L1s_nonneg MeasureTheory.L1.SimpleFunc.setToL1S_nonneg
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1S_mono /-
 theorem setToL1S_mono (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁ₛ[μ] G''}
@@ -920,6 +1060,7 @@ theorem setToL1S_mono (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
   rw [← set_to_L1s_sub h_zero h_add]
   exact set_to_L1s_nonneg h_zero h_add hT_nonneg hfg
 #align measure_theory.L1.simple_func.set_to_L1s_mono MeasureTheory.L1.SimpleFunc.setToL1S_mono
+-/
 
 end Order
 
@@ -927,6 +1068,7 @@ variable [NormedSpace 𝕜 F]
 
 variable (α E μ 𝕜)
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM' /-
 /-- Extend `set α → E →L[ℝ] F` to `(α →₁ₛ[μ] E) →L[𝕜] F`. -/
 def setToL1SCLM' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) : (α →₁ₛ[μ] E) →L[𝕜] F :=
@@ -935,7 +1077,9 @@ def setToL1SCLM' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeas
       setToL1S_smul T (fun _ => hT.eq_zero_of_measure_zero) hT.1 h_smul⟩
     C fun f => norm_setToL1S_le T hT.2 f
 #align measure_theory.L1.simple_func.set_to_L1s_clm' MeasureTheory.L1.SimpleFunc.setToL1SCLM'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM /-
 /-- Extend `set α → E →L[ℝ] F` to `(α →₁ₛ[μ] E) →L[ℝ] F`. -/
 def setToL1SCLM {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) :
     (α →₁ₛ[μ] E) →L[ℝ] F :=
@@ -944,113 +1088,146 @@ def setToL1SCLM {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasA
       setToL1S_smul_real T (fun _ => hT.eq_zero_of_measure_zero) hT.1⟩
     C fun f => norm_setToL1S_le T hT.2 f
 #align measure_theory.L1.simple_func.set_to_L1s_clm MeasureTheory.L1.SimpleFunc.setToL1SCLM
+-/
 
 variable {α E μ 𝕜}
 
 variable {T T' T'' : Set α → E →L[ℝ] F} {C C' C'' : ℝ}
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_zero_left /-
 @[simp]
 theorem setToL1SCLM_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C)
     (f : α →₁ₛ[μ] E) : setToL1SCLM α E μ hT f = 0 :=
   setToL1S_zero_left _
 #align measure_theory.L1.simple_func.set_to_L1s_clm_zero_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_zero_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_zero_left' /-
 theorem setToL1SCLM_zero_left' (hT : DominatedFinMeasAdditive μ T C)
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ hT f = 0 :=
   setToL1S_zero_left' h_zero f
 #align measure_theory.L1.simple_func.set_to_L1s_clm_zero_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_zero_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_left /-
 theorem setToL1SCLM_congr_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (h : T = T') (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ hT f = setToL1SCLM α E μ hT' f :=
   setToL1S_congr_left T T' (fun _ _ _ => by rw [h]) f
 #align measure_theory.L1.simple_func.set_to_L1s_clm_congr_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_left' /-
 theorem setToL1SCLM_congr_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (h : ∀ s, MeasurableSet s → μ s < ∞ → T s = T' s)
     (f : α →₁ₛ[μ] E) : setToL1SCLM α E μ hT f = setToL1SCLM α E μ hT' f :=
   setToL1S_congr_left T T' h f
 #align measure_theory.L1.simple_func.set_to_L1s_clm_congr_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_measure /-
 theorem setToL1SCLM_congr_measure {μ' : Measure α} (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ' T C') (hμ : μ ≪ μ') (f : α →₁ₛ[μ] E) (f' : α →₁ₛ[μ'] E)
     (h : f =ᵐ[μ] f') : setToL1SCLM α E μ hT f = setToL1SCLM α E μ' hT' f' :=
   setToL1S_congr_measure T (fun s => hT.eq_zero_of_measure_zero) hT.1 hμ _ _ h
 #align measure_theory.L1.simple_func.set_to_L1s_clm_congr_measure MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_measure
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_add_left /-
 theorem setToL1SCLM_add_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ (hT.add hT') f = setToL1SCLM α E μ hT f + setToL1SCLM α E μ hT' f :=
   setToL1S_add_left T T' f
 #align measure_theory.L1.simple_func.set_to_L1s_clm_add_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_add_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_add_left' /-
 theorem setToL1SCLM_add_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (hT'' : DominatedFinMeasAdditive μ T'' C'')
     (h_add : ∀ s, MeasurableSet s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ hT'' f = setToL1SCLM α E μ hT f + setToL1SCLM α E μ hT' f :=
   setToL1S_add_left' T T' T'' h_add f
 #align measure_theory.L1.simple_func.set_to_L1s_clm_add_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_add_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_smul_left /-
 theorem setToL1SCLM_smul_left (c : ℝ) (hT : DominatedFinMeasAdditive μ T C) (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ (hT.smul c) f = c • setToL1SCLM α E μ hT f :=
   setToL1S_smul_left T c f
 #align measure_theory.L1.simple_func.set_to_L1s_clm_smul_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_smul_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_smul_left' /-
 theorem setToL1SCLM_smul_left' (c : ℝ) (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C')
     (h_smul : ∀ s, MeasurableSet s → μ s < ∞ → T' s = c • T s) (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ hT' f = c • setToL1SCLM α E μ hT f :=
   setToL1S_smul_left' T T' c h_smul f
 #align measure_theory.L1.simple_func.set_to_L1s_clm_smul_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_smul_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le /-
 theorem norm_setToL1SCLM_le {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hC : 0 ≤ C) : ‖setToL1SCLM α E μ hT‖ ≤ C :=
   LinearMap.mkContinuous_norm_le _ hC _
 #align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le
+-/
 
+#print MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le' /-
 theorem norm_setToL1SCLM_le' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) :
     ‖setToL1SCLM α E μ hT‖ ≤ max C 0 :=
   LinearMap.mkContinuous_norm_le' _ _
 #align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le' MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_const /-
 theorem setToL1SCLM_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     setToL1SCLM α E μ hT (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) =
       T univ x :=
   setToL1S_const (fun s => hT.eq_zero_of_measure_zero) hT.1 x
 #align measure_theory.L1.simple_func.set_to_L1s_clm_const MeasureTheory.L1.SimpleFunc.setToL1SCLM_const
+-/
 
 section Order
 
 variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono_left /-
 theorem setToL1SCLM_mono_left {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ hT f ≤ setToL1SCLM α E μ hT' f :=
   SimpleFunc.setToSimpleFunc_mono_left T T' hTT' _
 #align measure_theory.L1.simple_func.set_to_L1s_clm_mono_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono_left
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono_left' /-
 theorem setToL1SCLM_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) :
     setToL1SCLM α E μ hT f ≤ setToL1SCLM α E μ hT' f :=
   SimpleFunc.setToSimpleFunc_mono_left' T T' hTT' _ (SimpleFunc.integrable f)
 #align measure_theory.L1.simple_func.set_to_L1s_clm_mono_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono_left'
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_nonneg /-
 theorem setToL1SCLM_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁ₛ[μ] G'}
     (hf : 0 ≤ f) : 0 ≤ setToL1SCLM α G' μ hT f :=
   setToL1S_nonneg (fun s => hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hf
 #align measure_theory.L1.simple_func.set_to_L1s_clm_nonneg MeasureTheory.L1.SimpleFunc.setToL1SCLM_nonneg
+-/
 
+#print MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono /-
 theorem setToL1SCLM_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁ₛ[μ] G'}
     (hfg : f ≤ g) : setToL1SCLM α G' μ hT f ≤ setToL1SCLM α G' μ hT g :=
   setToL1S_mono (fun s => hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hfg
 #align measure_theory.L1.simple_func.set_to_L1s_clm_mono MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono
+-/
 
 end Order
 
@@ -1069,33 +1246,42 @@ attribute [local instance] Lp.simple_func.normed_space
 variable (𝕜) [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] [CompleteSpace F]
   {T T' T'' : Set α → E →L[ℝ] F} {C C' C'' : ℝ}
 
+#print MeasureTheory.L1.setToL1' /-
 /-- Extend `set α → (E →L[ℝ] F)` to `(α →₁[μ] E) →L[𝕜] F`. -/
 def setToL1' (hT : DominatedFinMeasAdditive μ T C)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) : (α →₁[μ] E) →L[𝕜] F :=
   (setToL1SCLM' α E 𝕜 μ hT h_smul).extend (coeToLp α E 𝕜) (simpleFunc.denseRange one_ne_top)
     simpleFunc.uniformInducing
 #align measure_theory.L1.set_to_L1' MeasureTheory.L1.setToL1'
+-/
 
 variable {𝕜}
 
+#print MeasureTheory.L1.setToL1 /-
 /-- Extend `set α → E →L[ℝ] F` to `(α →₁[μ] E) →L[ℝ] F`. -/
 def setToL1 (hT : DominatedFinMeasAdditive μ T C) : (α →₁[μ] E) →L[ℝ] F :=
   (setToL1SCLM α E μ hT).extend (coeToLp α E ℝ) (simpleFunc.denseRange one_ne_top)
     simpleFunc.uniformInducing
 #align measure_theory.L1.set_to_L1 MeasureTheory.L1.setToL1
+-/
 
+#print MeasureTheory.L1.setToL1_eq_setToL1SCLM /-
 theorem setToL1_eq_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C) (f : α →₁ₛ[μ] E) :
     setToL1 hT f = setToL1SCLM α E μ hT f :=
   uniformly_extend_of_ind simpleFunc.uniformInducing (simpleFunc.denseRange one_ne_top)
     (setToL1SCLM α E μ hT).UniformContinuous _
 #align measure_theory.L1.set_to_L1_eq_set_to_L1s_clm MeasureTheory.L1.setToL1_eq_setToL1SCLM
+-/
 
+#print MeasureTheory.L1.setToL1_eq_setToL1' /-
 theorem setToL1_eq_setToL1' (hT : DominatedFinMeasAdditive μ T C)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (f : α →₁[μ] E) :
     setToL1 hT f = setToL1' 𝕜 hT h_smul f :=
   rfl
 #align measure_theory.L1.set_to_L1_eq_set_to_L1' MeasureTheory.L1.setToL1_eq_setToL1'
+-/
 
+#print MeasureTheory.L1.setToL1_zero_left /-
 @[simp]
 theorem setToL1_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C)
     (f : α →₁[μ] E) : setToL1 hT f = 0 :=
@@ -1105,7 +1291,9 @@ theorem setToL1_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E 
   ext1 f
   rw [set_to_L1s_clm_zero_left hT f, ContinuousLinearMap.zero_comp, ContinuousLinearMap.zero_apply]
 #align measure_theory.L1.set_to_L1_zero_left MeasureTheory.L1.setToL1_zero_left
+-/
 
+#print MeasureTheory.L1.setToL1_zero_left' /-
 theorem setToL1_zero_left' (hT : DominatedFinMeasAdditive μ T C)
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁[μ] E) : setToL1 hT f = 0 :=
   by
@@ -1115,7 +1303,9 @@ theorem setToL1_zero_left' (hT : DominatedFinMeasAdditive μ T C)
   rw [set_to_L1s_clm_zero_left' hT h_zero f, ContinuousLinearMap.zero_comp,
     ContinuousLinearMap.zero_apply]
 #align measure_theory.L1.set_to_L1_zero_left' MeasureTheory.L1.setToL1_zero_left'
+-/
 
+#print MeasureTheory.L1.setToL1_congr_left /-
 theorem setToL1_congr_left (T T' : Set α → E →L[ℝ] F) {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C') (h : T = T')
     (f : α →₁[μ] E) : setToL1 hT f = setToL1 hT' f :=
@@ -1127,7 +1317,9 @@ theorem setToL1_congr_left (T T' : Set α → E →L[ℝ] F) {C C' : ℝ}
   rw [set_to_L1_eq_set_to_L1s_clm]
   exact set_to_L1s_clm_congr_left hT' hT h.symm f
 #align measure_theory.L1.set_to_L1_congr_left MeasureTheory.L1.setToL1_congr_left
+-/
 
+#print MeasureTheory.L1.setToL1_congr_left' /-
 theorem setToL1_congr_left' (T T' : Set α → E →L[ℝ] F) {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (h : ∀ s, MeasurableSet s → μ s < ∞ → T s = T' s) (f : α →₁[μ] E) :
@@ -1140,7 +1332,9 @@ theorem setToL1_congr_left' (T T' : Set α → E →L[ℝ] F) {C C' : ℝ}
   rw [set_to_L1_eq_set_to_L1s_clm]
   exact (set_to_L1s_clm_congr_left' hT hT' h f).symm
 #align measure_theory.L1.set_to_L1_congr_left' MeasureTheory.L1.setToL1_congr_left'
+-/
 
+#print MeasureTheory.L1.setToL1_add_left /-
 theorem setToL1_add_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (f : α →₁[μ] E) :
     setToL1 (hT.add hT') f = setToL1 hT f + setToL1 hT' f :=
@@ -1155,7 +1349,9 @@ theorem setToL1_add_left (hT : DominatedFinMeasAdditive μ T C)
     congr
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_add_left hT hT']
 #align measure_theory.L1.set_to_L1_add_left MeasureTheory.L1.setToL1_add_left
+-/
 
+#print MeasureTheory.L1.setToL1_add_left' /-
 theorem setToL1_add_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (hT'' : DominatedFinMeasAdditive μ T'' C'')
     (h_add : ∀ s, MeasurableSet s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁[μ] E) :
@@ -1170,7 +1366,9 @@ theorem setToL1_add_left' (hT : DominatedFinMeasAdditive μ T C)
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1_eq_set_to_L1s_clm,
     set_to_L1s_clm_add_left' hT hT' hT'' h_add]
 #align measure_theory.L1.set_to_L1_add_left' MeasureTheory.L1.setToL1_add_left'
+-/
 
+#print MeasureTheory.L1.setToL1_smul_left /-
 theorem setToL1_smul_left (hT : DominatedFinMeasAdditive μ T C) (c : ℝ) (f : α →₁[μ] E) :
     setToL1 (hT.smul c) f = c • setToL1 hT f :=
   by
@@ -1182,7 +1380,9 @@ theorem setToL1_smul_left (hT : DominatedFinMeasAdditive μ T C) (c : ℝ) (f :
   suffices c • set_to_L1 hT f = set_to_L1s_clm α E μ (hT.smul c) f by rw [← this]; congr
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_smul_left c hT]
 #align measure_theory.L1.set_to_L1_smul_left MeasureTheory.L1.setToL1_smul_left
+-/
 
+#print MeasureTheory.L1.setToL1_smul_left' /-
 theorem setToL1_smul_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (c : ℝ)
     (h_smul : ∀ s, MeasurableSet s → μ s < ∞ → T' s = c • T s) (f : α →₁[μ] E) :
@@ -1196,7 +1396,9 @@ theorem setToL1_smul_left' (hT : DominatedFinMeasAdditive μ T C)
   suffices c • set_to_L1 hT f = set_to_L1s_clm α E μ hT' f by rw [← this]; congr
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_smul_left' c hT hT' h_smul]
 #align measure_theory.L1.set_to_L1_smul_left' MeasureTheory.L1.setToL1_smul_left'
+-/
 
+#print MeasureTheory.L1.setToL1_smul /-
 theorem setToL1_smul (hT : DominatedFinMeasAdditive μ T C)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜) (f : α →₁[μ] E) :
     setToL1 hT (c • f) = c • setToL1 hT f :=
@@ -1204,7 +1406,9 @@ theorem setToL1_smul (hT : DominatedFinMeasAdditive μ T C)
   rw [set_to_L1_eq_set_to_L1' hT h_smul, set_to_L1_eq_set_to_L1' hT h_smul]
   exact ContinuousLinearMap.map_smul _ _ _
 #align measure_theory.L1.set_to_L1_smul MeasureTheory.L1.setToL1_smul
+-/
 
+#print MeasureTheory.L1.setToL1_simpleFunc_indicatorConst /-
 theorem setToL1_simpleFunc_indicatorConst (hT : DominatedFinMeasAdditive μ T C) {s : Set α}
     (hs : MeasurableSet s) (hμs : μ s < ∞) (x : E) :
     setToL1 hT (simpleFunc.indicatorConst 1 hs hμs.Ne x) = T s x :=
@@ -1212,7 +1416,9 @@ theorem setToL1_simpleFunc_indicatorConst (hT : DominatedFinMeasAdditive μ T C)
   rw [set_to_L1_eq_set_to_L1s_clm]
   exact set_to_L1s_indicator_const (fun s => hT.eq_zero_of_measure_zero) hT.1 hs hμs x
 #align measure_theory.L1.set_to_L1_simple_func_indicator_const MeasureTheory.L1.setToL1_simpleFunc_indicatorConst
+-/
 
+#print MeasureTheory.L1.setToL1_indicatorConstLp /-
 theorem setToL1_indicatorConstLp (hT : DominatedFinMeasAdditive μ T C) {s : Set α}
     (hs : MeasurableSet s) (hμs : μ s ≠ ∞) (x : E) :
     setToL1 hT (indicatorConstLp 1 hs hμs x) = T s x :=
@@ -1220,17 +1426,21 @@ theorem setToL1_indicatorConstLp (hT : DominatedFinMeasAdditive μ T C) {s : Set
   rw [← Lp.simple_func.coe_indicator_const hs hμs x]
   exact set_to_L1_simple_func_indicator_const hT hs hμs.lt_top x
 #align measure_theory.L1.set_to_L1_indicator_const_Lp MeasureTheory.L1.setToL1_indicatorConstLp
+-/
 
+#print MeasureTheory.L1.setToL1_const /-
 theorem setToL1_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     setToL1 hT (indicatorConstLp 1 MeasurableSet.univ (measure_ne_top _ _) x) = T univ x :=
   setToL1_indicatorConstLp hT MeasurableSet.univ (measure_ne_top _ _) x
 #align measure_theory.L1.set_to_L1_const MeasureTheory.L1.setToL1_const
+-/
 
 section Order
 
 variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] [CompleteSpace G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
+#print MeasureTheory.L1.setToL1_mono_left' /-
 theorem setToL1_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁[μ] E) :
@@ -1246,13 +1456,17 @@ theorem setToL1_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     exact add_le_add hf_le hg_le
   · exact isClosed_le (set_to_L1 hT).Continuous (set_to_L1 hT').Continuous
 #align measure_theory.L1.set_to_L1_mono_left' MeasureTheory.L1.setToL1_mono_left'
+-/
 
+#print MeasureTheory.L1.setToL1_mono_left /-
 theorem setToL1_mono_left {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁[μ] E) : setToL1 hT f ≤ setToL1 hT' f :=
   setToL1_mono_left' hT hT' (fun s _ _ x => hTT' s x) f
 #align measure_theory.L1.set_to_L1_mono_left MeasureTheory.L1.setToL1_mono_left
+-/
 
+#print MeasureTheory.L1.setToL1_nonneg /-
 theorem setToL1_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁[μ] G'}
     (hf : 0 ≤ f) : 0 ≤ setToL1 hT f :=
@@ -1268,7 +1482,9 @@ theorem setToL1_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : Dominat
     rw [this, set_to_L1_eq_set_to_L1s_clm]
     exact set_to_L1s_nonneg (fun s => hT.eq_zero_of_measure_zero) hT.1 hT_nonneg g.2
 #align measure_theory.L1.set_to_L1_nonneg MeasureTheory.L1.setToL1_nonneg
+-/
 
+#print MeasureTheory.L1.setToL1_mono /-
 theorem setToL1_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁[μ] G'}
     (hfg : f ≤ g) : setToL1 hT f ≤ setToL1 hT g :=
@@ -1277,9 +1493,11 @@ theorem setToL1_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : Dominated
   rw [← (set_to_L1 hT).map_sub]
   exact set_to_L1_nonneg hT hT_nonneg hfg
 #align measure_theory.L1.set_to_L1_mono MeasureTheory.L1.setToL1_mono
+-/
 
 end Order
 
+#print MeasureTheory.L1.norm_setToL1_le_norm_setToL1SCLM /-
 theorem norm_setToL1_le_norm_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C) :
     ‖setToL1 hT‖ ≤ ‖setToL1SCLM α E μ hT‖ :=
   calc
@@ -1292,7 +1510,9 @@ theorem norm_setToL1_le_norm_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C)
       rfl
     _ = ‖setToL1SCLM α E μ hT‖ := by rw [NNReal.coe_one, one_mul]
 #align measure_theory.L1.norm_set_to_L1_le_norm_set_to_L1s_clm MeasureTheory.L1.norm_setToL1_le_norm_setToL1SCLM
+-/
 
+#print MeasureTheory.L1.norm_setToL1_le_mul_norm /-
 theorem norm_setToL1_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C)
     (f : α →₁[μ] E) : ‖setToL1 hT f‖ ≤ C * ‖f‖ :=
   calc
@@ -1300,7 +1520,9 @@ theorem norm_setToL1_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (hC : 0
       ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ C * ‖f‖ := mul_le_mul (norm_setToL1SCLM_le hT hC) le_rfl (norm_nonneg _) hC
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm MeasureTheory.L1.norm_setToL1_le_mul_norm
+-/
 
+#print MeasureTheory.L1.norm_setToL1_le_mul_norm' /-
 theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E) :
     ‖setToL1 hT f‖ ≤ max C 0 * ‖f‖ :=
   calc
@@ -1309,26 +1531,35 @@ theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α
     _ ≤ max C 0 * ‖f‖ :=
       mul_le_mul (norm_setToL1SCLM_le' hT) le_rfl (norm_nonneg _) (le_max_right _ _)
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm' MeasureTheory.L1.norm_setToL1_le_mul_norm'
+-/
 
+#print MeasureTheory.L1.norm_setToL1_le /-
 theorem norm_setToL1_le (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) : ‖setToL1 hT‖ ≤ C :=
   ContinuousLinearMap.op_norm_le_bound _ hC (norm_setToL1_le_mul_norm hT hC)
 #align measure_theory.L1.norm_set_to_L1_le MeasureTheory.L1.norm_setToL1_le
+-/
 
+#print MeasureTheory.L1.norm_setToL1_le' /-
 theorem norm_setToL1_le' (hT : DominatedFinMeasAdditive μ T C) : ‖setToL1 hT‖ ≤ max C 0 :=
   ContinuousLinearMap.op_norm_le_bound _ (le_max_right _ _) (norm_setToL1_le_mul_norm' hT)
 #align measure_theory.L1.norm_set_to_L1_le' MeasureTheory.L1.norm_setToL1_le'
+-/
 
+#print MeasureTheory.L1.setToL1_lipschitz /-
 theorem setToL1_lipschitz (hT : DominatedFinMeasAdditive μ T C) :
     LipschitzWith (Real.toNNReal C) (setToL1 hT) :=
   (setToL1 hT).lipschitz.weaken (norm_setToL1_le' hT)
 #align measure_theory.L1.set_to_L1_lipschitz MeasureTheory.L1.setToL1_lipschitz
+-/
 
+#print MeasureTheory.L1.tendsto_setToL1 /-
 /-- If `fs i → f` in `L1`, then `set_to_L1 hT (fs i) → set_to_L1 hT f`. -/
 theorem tendsto_setToL1 (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E) {ι}
     (fs : ι → α →₁[μ] E) {l : Filter ι} (hfs : Tendsto fs l (𝓝 f)) :
     Tendsto (fun i => setToL1 hT (fs i)) l (𝓝 <| setToL1 hT f) :=
   ((setToL1 hT).Continuous.Tendsto _).comp hfs
 #align measure_theory.L1.tendsto_set_to_L1 MeasureTheory.L1.tendsto_setToL1
+-/
 
 end SetToL1
 
@@ -1350,26 +1581,35 @@ def setToFun (hT : DominatedFinMeasAdditive μ T C) (f : α → E) : F :=
 
 variable {μ T}
 
+#print MeasureTheory.setToFun_eq /-
 theorem setToFun_eq (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ) :
     setToFun μ T hT f = L1.setToL1 hT (hf.toL1 f) :=
   dif_pos hf
 #align measure_theory.set_to_fun_eq MeasureTheory.setToFun_eq
+-/
 
+#print MeasureTheory.L1.setToFun_eq_setToL1 /-
 theorem L1.setToFun_eq_setToL1 (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E) :
     setToFun μ T hT f = L1.setToL1 hT f := by
   rw [set_to_fun_eq hT (L1.integrable_coe_fn f), integrable.to_L1_coe_fn]
 #align measure_theory.L1.set_to_fun_eq_set_to_L1 MeasureTheory.L1.setToFun_eq_setToL1
+-/
 
+#print MeasureTheory.setToFun_undef /-
 theorem setToFun_undef (hT : DominatedFinMeasAdditive μ T C) (hf : ¬Integrable f μ) :
     setToFun μ T hT f = 0 :=
   dif_neg hf
 #align measure_theory.set_to_fun_undef MeasureTheory.setToFun_undef
+-/
 
+#print MeasureTheory.setToFun_non_aEStronglyMeasurable /-
 theorem setToFun_non_aEStronglyMeasurable (hT : DominatedFinMeasAdditive μ T C)
     (hf : ¬AEStronglyMeasurable f μ) : setToFun μ T hT f = 0 :=
   setToFun_undef hT (not_and_of_not_left _ hf)
 #align measure_theory.set_to_fun_non_ae_strongly_measurable MeasureTheory.setToFun_non_aEStronglyMeasurable
+-/
 
+#print MeasureTheory.setToFun_congr_left /-
 theorem setToFun_congr_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (h : T = T') (f : α → E) :
     setToFun μ T hT f = setToFun μ T' hT' f :=
@@ -1378,7 +1618,9 @@ theorem setToFun_congr_left (hT : DominatedFinMeasAdditive μ T C)
   · simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_congr_left T T' hT hT' h]
   · simp_rw [set_to_fun_undef _ hf]
 #align measure_theory.set_to_fun_congr_left MeasureTheory.setToFun_congr_left
+-/
 
+#print MeasureTheory.setToFun_congr_left' /-
 theorem setToFun_congr_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (h : ∀ s, MeasurableSet s → μ s < ∞ → T s = T' s)
     (f : α → E) : setToFun μ T hT f = setToFun μ T' hT' f :=
@@ -1387,7 +1629,9 @@ theorem setToFun_congr_left' (hT : DominatedFinMeasAdditive μ T C)
   · simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_congr_left' T T' hT hT' h]
   · simp_rw [set_to_fun_undef _ hf]
 #align measure_theory.set_to_fun_congr_left' MeasureTheory.setToFun_congr_left'
+-/
 
+#print MeasureTheory.setToFun_add_left /-
 theorem setToFun_add_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (f : α → E) :
     setToFun μ (T + T') (hT.add hT') f = setToFun μ T hT f + setToFun μ T' hT' f :=
@@ -1396,7 +1640,9 @@ theorem setToFun_add_left (hT : DominatedFinMeasAdditive μ T C)
   · simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_add_left hT hT']
   · simp_rw [set_to_fun_undef _ hf, add_zero]
 #align measure_theory.set_to_fun_add_left MeasureTheory.setToFun_add_left
+-/
 
+#print MeasureTheory.setToFun_add_left' /-
 theorem setToFun_add_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (hT'' : DominatedFinMeasAdditive μ T'' C'')
     (h_add : ∀ s, MeasurableSet s → μ s < ∞ → T'' s = T s + T' s) (f : α → E) :
@@ -1406,7 +1652,9 @@ theorem setToFun_add_left' (hT : DominatedFinMeasAdditive μ T C)
   · simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_add_left' hT hT' hT'' h_add]
   · simp_rw [set_to_fun_undef _ hf, add_zero]
 #align measure_theory.set_to_fun_add_left' MeasureTheory.setToFun_add_left'
+-/
 
+#print MeasureTheory.setToFun_smul_left /-
 theorem setToFun_smul_left (hT : DominatedFinMeasAdditive μ T C) (c : ℝ) (f : α → E) :
     setToFun μ (fun s => c • T s) (hT.smul c) f = c • setToFun μ T hT f :=
   by
@@ -1414,7 +1662,9 @@ theorem setToFun_smul_left (hT : DominatedFinMeasAdditive μ T C) (c : ℝ) (f :
   · simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_smul_left hT c]
   · simp_rw [set_to_fun_undef _ hf, smul_zero]
 #align measure_theory.set_to_fun_smul_left MeasureTheory.setToFun_smul_left
+-/
 
+#print MeasureTheory.setToFun_smul_left' /-
 theorem setToFun_smul_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (c : ℝ)
     (h_smul : ∀ s, MeasurableSet s → μ s < ∞ → T' s = c • T s) (f : α → E) :
@@ -1424,7 +1674,9 @@ theorem setToFun_smul_left' (hT : DominatedFinMeasAdditive μ T C)
   · simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_smul_left' hT hT' c h_smul]
   · simp_rw [set_to_fun_undef _ hf, smul_zero]
 #align measure_theory.set_to_fun_smul_left' MeasureTheory.setToFun_smul_left'
+-/
 
+#print MeasureTheory.setToFun_zero /-
 @[simp]
 theorem setToFun_zero (hT : DominatedFinMeasAdditive μ T C) : setToFun μ T hT (0 : α → E) = 0 :=
   by
@@ -1432,7 +1684,9 @@ theorem setToFun_zero (hT : DominatedFinMeasAdditive μ T C) : setToFun μ T hT
   · simp only [integrable.to_L1_zero, ContinuousLinearMap.map_zero]
   · exact integrable_zero _ _ _
 #align measure_theory.set_to_fun_zero MeasureTheory.setToFun_zero
+-/
 
+#print MeasureTheory.setToFun_zero_left /-
 @[simp]
 theorem setToFun_zero_left {hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C} :
     setToFun μ 0 hT f = 0 := by
@@ -1440,7 +1694,9 @@ theorem setToFun_zero_left {hT : DominatedFinMeasAdditive μ (0 : Set α → E 
   · rw [set_to_fun_eq hT hf]; exact L1.set_to_L1_zero_left hT _
   · exact set_to_fun_undef hT hf
 #align measure_theory.set_to_fun_zero_left MeasureTheory.setToFun_zero_left
+-/
 
+#print MeasureTheory.setToFun_zero_left' /-
 theorem setToFun_zero_left' (hT : DominatedFinMeasAdditive μ T C)
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) : setToFun μ T hT f = 0 :=
   by
@@ -1448,13 +1704,17 @@ theorem setToFun_zero_left' (hT : DominatedFinMeasAdditive μ T C)
   · rw [set_to_fun_eq hT hf]; exact L1.set_to_L1_zero_left' hT h_zero _
   · exact set_to_fun_undef hT hf
 #align measure_theory.set_to_fun_zero_left' MeasureTheory.setToFun_zero_left'
+-/
 
+#print MeasureTheory.setToFun_add /-
 theorem setToFun_add (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ)
     (hg : Integrable g μ) : setToFun μ T hT (f + g) = setToFun μ T hT f + setToFun μ T hT g := by
   rw [set_to_fun_eq hT (hf.add hg), set_to_fun_eq hT hf, set_to_fun_eq hT hg, integrable.to_L1_add,
     (L1.set_to_L1 hT).map_add]
 #align measure_theory.set_to_fun_add MeasureTheory.setToFun_add
+-/
 
+#print MeasureTheory.setToFun_finset_sum' /-
 theorem setToFun_finset_sum' (hT : DominatedFinMeasAdditive μ T C) {ι} (s : Finset ι)
     {f : ι → α → E} (hf : ∀ i ∈ s, Integrable (f i) μ) :
     setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i) :=
@@ -1471,13 +1731,17 @@ theorem setToFun_finset_sum' (hT : DominatedFinMeasAdditive μ T C) {ι} (s : Fi
       ext1 x
       simp
 #align measure_theory.set_to_fun_finset_sum' MeasureTheory.setToFun_finset_sum'
+-/
 
+#print MeasureTheory.setToFun_finset_sum /-
 theorem setToFun_finset_sum (hT : DominatedFinMeasAdditive μ T C) {ι} (s : Finset ι) {f : ι → α → E}
     (hf : ∀ i ∈ s, Integrable (f i) μ) :
     (setToFun μ T hT fun a => ∑ i in s, f i a) = ∑ i in s, setToFun μ T hT (f i) := by
   convert set_to_fun_finset_sum' hT s hf; ext1 a; simp
 #align measure_theory.set_to_fun_finset_sum MeasureTheory.setToFun_finset_sum
+-/
 
+#print MeasureTheory.setToFun_neg /-
 theorem setToFun_neg (hT : DominatedFinMeasAdditive μ T C) (f : α → E) :
     setToFun μ T hT (-f) = -setToFun μ T hT f :=
   by
@@ -1488,12 +1752,16 @@ theorem setToFun_neg (hT : DominatedFinMeasAdditive μ T C) (f : α → E) :
   · rw [set_to_fun_undef hT hf, set_to_fun_undef hT, neg_zero]
     rwa [← integrable_neg_iff] at hf 
 #align measure_theory.set_to_fun_neg MeasureTheory.setToFun_neg
+-/
 
+#print MeasureTheory.setToFun_sub /-
 theorem setToFun_sub (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ)
     (hg : Integrable g μ) : setToFun μ T hT (f - g) = setToFun μ T hT f - setToFun μ T hT g := by
   rw [sub_eq_add_neg, sub_eq_add_neg, set_to_fun_add hT hf hg.neg, set_to_fun_neg hT g]
 #align measure_theory.set_to_fun_sub MeasureTheory.setToFun_sub
+-/
 
+#print MeasureTheory.setToFun_smul /-
 theorem setToFun_smul [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F]
     (hT : DominatedFinMeasAdditive μ T C) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜)
     (f : α → E) : setToFun μ T hT (c • f) = c • setToFun μ T hT f :=
@@ -1507,7 +1775,9 @@ theorem setToFun_smul [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [Norme
     · have hf' : ¬integrable (c • f) μ := by rwa [integrable_smul_iff hr f]
       rw [set_to_fun_undef hT hf, set_to_fun_undef hT hf', smul_zero]
 #align measure_theory.set_to_fun_smul MeasureTheory.setToFun_smul
+-/
 
+#print MeasureTheory.setToFun_congr_ae /-
 theorem setToFun_congr_ae (hT : DominatedFinMeasAdditive μ T C) (h : f =ᵐ[μ] g) :
     setToFun μ T hT f = setToFun μ T hT g :=
   by
@@ -1517,22 +1787,30 @@ theorem setToFun_congr_ae (hT : DominatedFinMeasAdditive μ T C) (h : f =ᵐ[μ]
   · have hgi : ¬integrable g μ := by rw [integrable_congr h] at hfi ; exact hfi
     rw [set_to_fun_undef hT hfi, set_to_fun_undef hT hgi]
 #align measure_theory.set_to_fun_congr_ae MeasureTheory.setToFun_congr_ae
+-/
 
+#print MeasureTheory.setToFun_measure_zero /-
 theorem setToFun_measure_zero (hT : DominatedFinMeasAdditive μ T C) (h : μ = 0) :
     setToFun μ T hT f = 0 := by have : f =ᵐ[μ] 0 := by simp [h];
   rw [set_to_fun_congr_ae hT this, set_to_fun_zero]
 #align measure_theory.set_to_fun_measure_zero MeasureTheory.setToFun_measure_zero
+-/
 
+#print MeasureTheory.setToFun_measure_zero' /-
 theorem setToFun_measure_zero' (hT : DominatedFinMeasAdditive μ T C)
     (h : ∀ s, MeasurableSet s → μ s < ∞ → μ s = 0) : setToFun μ T hT f = 0 :=
   setToFun_zero_left' hT fun s hs hμs => hT.eq_zero_of_measure_zero hs (h s hs hμs)
 #align measure_theory.set_to_fun_measure_zero' MeasureTheory.setToFun_measure_zero'
+-/
 
+#print MeasureTheory.setToFun_toL1 /-
 theorem setToFun_toL1 (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ) :
     setToFun μ T hT (hf.toL1 f) = setToFun μ T hT f :=
   setToFun_congr_ae hT hf.coeFn_toL1
 #align measure_theory.set_to_fun_to_L1 MeasureTheory.setToFun_toL1
+-/
 
+#print MeasureTheory.setToFun_indicator_const /-
 theorem setToFun_indicator_const (hT : DominatedFinMeasAdditive μ T C) {s : Set α}
     (hs : MeasurableSet s) (hμs : μ s ≠ ∞) (x : E) :
     setToFun μ T hT (s.indicator fun _ => x) = T s x :=
@@ -1541,7 +1819,9 @@ theorem setToFun_indicator_const (hT : DominatedFinMeasAdditive μ T C) {s : Set
   rw [L1.set_to_fun_eq_set_to_L1 hT]
   exact L1.set_to_L1_indicator_const_Lp hT hs hμs x
 #align measure_theory.set_to_fun_indicator_const MeasureTheory.setToFun_indicator_const
+-/
 
+#print MeasureTheory.setToFun_const /-
 theorem setToFun_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     (setToFun μ T hT fun _ => x) = T univ x :=
   by
@@ -1549,12 +1829,14 @@ theorem setToFun_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T
   rw [this]
   exact set_to_fun_indicator_const hT MeasurableSet.univ (measure_ne_top _ _) x
 #align measure_theory.set_to_fun_const MeasureTheory.setToFun_const
+-/
 
 section Order
 
 variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] [CompleteSpace G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
+#print MeasureTheory.setToFun_mono_left' /-
 theorem setToFun_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α → E) :
@@ -1564,13 +1846,17 @@ theorem setToFun_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
   · simp_rw [set_to_fun_eq _ hf]; exact L1.set_to_L1_mono_left' hT hT' hTT' _
   · simp_rw [set_to_fun_undef _ hf]
 #align measure_theory.set_to_fun_mono_left' MeasureTheory.setToFun_mono_left'
+-/
 
+#print MeasureTheory.setToFun_mono_left /-
 theorem setToFun_mono_left {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁[μ] E) : setToFun μ T hT f ≤ setToFun μ T' hT' f :=
   setToFun_mono_left' hT hT' (fun s _ _ x => hTT' s x) f
 #align measure_theory.set_to_fun_mono_left MeasureTheory.setToFun_mono_left
+-/
 
+#print MeasureTheory.setToFun_nonneg /-
 theorem setToFun_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α → G'}
     (hf : 0 ≤ᵐ[μ] f) : 0 ≤ setToFun μ T hT f :=
@@ -1586,7 +1872,9 @@ theorem setToFun_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : Domina
     exact hfa
   · simp_rw [set_to_fun_undef _ hfi]
 #align measure_theory.set_to_fun_nonneg MeasureTheory.setToFun_nonneg
+-/
 
+#print MeasureTheory.setToFun_mono /-
 theorem setToFun_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α → G'}
     (hf : Integrable f μ) (hg : Integrable g μ) (hfg : f ≤ᵐ[μ] g) :
@@ -1597,15 +1885,19 @@ theorem setToFun_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : Dominate
   rw [Pi.sub_apply, Pi.zero_apply, sub_nonneg]
   exact ha
 #align measure_theory.set_to_fun_mono MeasureTheory.setToFun_mono
+-/
 
 end Order
 
+#print MeasureTheory.continuous_setToFun /-
 @[continuity]
 theorem continuous_setToFun (hT : DominatedFinMeasAdditive μ T C) :
     Continuous fun f : α →₁[μ] E => setToFun μ T hT f := by simp_rw [L1.set_to_fun_eq_set_to_L1 hT];
   exact ContinuousLinearMap.continuous _
 #align measure_theory.continuous_set_to_fun MeasureTheory.continuous_setToFun
+-/
 
+#print MeasureTheory.tendsto_setToFun_of_L1 /-
 /-- If `F i → f` in `L1`, then `set_to_fun μ T hT (F i) → set_to_fun μ T hT f`. -/
 theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f : α → E)
     (hfi : Integrable f μ) {fs : ι → α → E} {l : Filter ι} (hfsi : ∀ᶠ i in l, Integrable (fs i) μ)
@@ -1633,7 +1925,9 @@ theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f :
   rw [set_to_fun_congr_ae hT hfi.coe_fn_to_L1.symm]
   exact ((continuous_set_to_fun hT).Tendsto f_lp).comp tendsto_L1
 #align measure_theory.tendsto_set_to_fun_of_L1 MeasureTheory.tendsto_setToFun_of_L1
+-/
 
+#print MeasureTheory.tendsto_setToFun_approxOn_of_measurable /-
 theorem tendsto_setToFun_approxOn_of_measurable (hT : DominatedFinMeasAdditive μ T C)
     [MeasurableSpace E] [BorelSpace E] {f : α → E} {s : Set E} [SeparableSpace s]
     (hfi : Integrable f μ) (hfm : Measurable f) (hs : ∀ᵐ x ∂μ, f x ∈ closure s) {y₀ : E}
@@ -1644,7 +1938,9 @@ theorem tendsto_setToFun_approxOn_of_measurable (hT : DominatedFinMeasAdditive 
     (eventually_of_forall (SimpleFunc.integrable_approxOn hfm hfi h₀ h₀i))
     (SimpleFunc.tendsto_approxOn_L1_nnnorm hfm _ hs (hfi.sub h₀i).2)
 #align measure_theory.tendsto_set_to_fun_approx_on_of_measurable MeasureTheory.tendsto_setToFun_approxOn_of_measurable
+-/
 
+#print MeasureTheory.tendsto_setToFun_approxOn_of_measurable_of_range_subset /-
 theorem tendsto_setToFun_approxOn_of_measurable_of_range_subset
     (hT : DominatedFinMeasAdditive μ T C) [MeasurableSpace E] [BorelSpace E] {f : α → E}
     (fmeas : Measurable f) (hf : Integrable f μ) (s : Set E) [SeparableSpace s]
@@ -1655,7 +1951,9 @@ theorem tendsto_setToFun_approxOn_of_measurable_of_range_subset
   refine' tendsto_set_to_fun_approx_on_of_measurable hT hf fmeas _ _ (integrable_zero _ _ _)
   exact eventually_of_forall fun x => subset_closure (hs (Set.mem_union_left _ (mem_range_self _)))
 #align measure_theory.tendsto_set_to_fun_approx_on_of_measurable_of_range_subset MeasureTheory.tendsto_setToFun_approxOn_of_measurable_of_range_subset
+-/
 
+#print MeasureTheory.continuous_L1_toL1 /-
 /-- Auxiliary lemma for `set_to_fun_congr_measure`: the function sending `f : α →₁[μ] G` to
 `f : α →₁[μ'] G` is continuous when `μ' ≤ c' • μ` for `c' ≠ ∞`. -/
 theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞) (hμ'_le : μ' ≤ c' • μ) :
@@ -1704,7 +2002,9 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
       simp [hc', hc'0]
     _ < ε := half_lt_self hε_pos
 #align measure_theory.continuous_L1_to_L1 MeasureTheory.continuous_L1_toL1
+-/
 
+#print MeasureTheory.setToFun_congr_measure_of_integrable /-
 theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞)
     (hμ'_le : μ' ≤ c' • μ) (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ' T C') (f : α → E) (hfμ : Integrable f μ) :
@@ -1734,7 +2034,9 @@ theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞
     have hfg' : f₂ =ᵐ[μ'] g₂ := (measure.absolutely_continuous_of_le_smul hμ'_le).ae_eq hfg
     rw [← set_to_fun_congr_ae hT hfg, hf_eq, set_to_fun_congr_ae hT' hfg']
 #align measure_theory.set_to_fun_congr_measure_of_integrable MeasureTheory.setToFun_congr_measure_of_integrable
+-/
 
+#print MeasureTheory.setToFun_congr_measure /-
 theorem setToFun_congr_measure {μ' : Measure α} (c c' : ℝ≥0∞) (hc : c ≠ ∞) (hc' : c' ≠ ∞)
     (hμ_le : μ ≤ c • μ') (hμ'_le : μ' ≤ c' • μ) (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ' T C') (f : α → E) :
@@ -1747,7 +2049,9 @@ theorem setToFun_congr_measure {μ' : Measure α} (c c' : ℝ≥0∞) (hc : c 
       mt fun h => h.of_measure_le_smul _ hc hμ_le
     simp_rw [set_to_fun_undef _ hf, set_to_fun_undef _ (h_int f hf)]
 #align measure_theory.set_to_fun_congr_measure MeasureTheory.setToFun_congr_measure
+-/
 
+#print MeasureTheory.setToFun_congr_measure_of_add_right /-
 theorem setToFun_congr_measure_of_add_right {μ' : Measure α}
     (hT_add : DominatedFinMeasAdditive (μ + μ') T C') (hT : DominatedFinMeasAdditive μ T C)
     (f : α → E) (hf : Integrable f (μ + μ')) : setToFun (μ + μ') T hT_add f = setToFun μ T hT f :=
@@ -1757,7 +2061,9 @@ theorem setToFun_congr_measure_of_add_right {μ' : Measure α}
   nth_rw 1 [← add_zero μ]
   exact add_le_add le_rfl bot_le
 #align measure_theory.set_to_fun_congr_measure_of_add_right MeasureTheory.setToFun_congr_measure_of_add_right
+-/
 
+#print MeasureTheory.setToFun_congr_measure_of_add_left /-
 theorem setToFun_congr_measure_of_add_left {μ' : Measure α}
     (hT_add : DominatedFinMeasAdditive (μ + μ') T C') (hT : DominatedFinMeasAdditive μ' T C)
     (f : α → E) (hf : Integrable f (μ + μ')) : setToFun (μ + μ') T hT_add f = setToFun μ' T hT f :=
@@ -1767,7 +2073,9 @@ theorem setToFun_congr_measure_of_add_left {μ' : Measure α}
   nth_rw 1 [← zero_add μ']
   exact add_le_add bot_le le_rfl
 #align measure_theory.set_to_fun_congr_measure_of_add_left MeasureTheory.setToFun_congr_measure_of_add_left
+-/
 
+#print MeasureTheory.setToFun_top_smul_measure /-
 theorem setToFun_top_smul_measure (hT : DominatedFinMeasAdditive (∞ • μ) T C) (f : α → E) :
     setToFun (∞ • μ) T hT f = 0 :=
   by
@@ -1777,7 +2085,9 @@ theorem setToFun_top_smul_measure (hT : DominatedFinMeasAdditive (∞ • μ) T
     top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs 
   simp only [hμs.right, measure.smul_apply, MulZeroClass.mul_zero, smul_eq_mul]
 #align measure_theory.set_to_fun_top_smul_measure MeasureTheory.setToFun_top_smul_measure
+-/
 
+#print MeasureTheory.setToFun_congr_smul_measure /-
 theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
     (hT : DominatedFinMeasAdditive μ T C) (hT_smul : DominatedFinMeasAdditive (c • μ) T C')
     (f : α → E) : setToFun μ T hT f = setToFun (c • μ) T hT_smul f :=
@@ -1791,27 +2101,37 @@ theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
   · simp [hc0]
   · rw [smul_smul, ENNReal.inv_mul_cancel hc0 hc_ne_top, one_smul]
 #align measure_theory.set_to_fun_congr_smul_measure MeasureTheory.setToFun_congr_smul_measure
+-/
 
+#print MeasureTheory.norm_setToFun_le_mul_norm /-
 theorem norm_setToFun_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E)
     (hC : 0 ≤ C) : ‖setToFun μ T hT f‖ ≤ C * ‖f‖ := by rw [L1.set_to_fun_eq_set_to_L1];
   exact L1.norm_set_to_L1_le_mul_norm hT hC f
 #align measure_theory.norm_set_to_fun_le_mul_norm MeasureTheory.norm_setToFun_le_mul_norm
+-/
 
+#print MeasureTheory.norm_setToFun_le_mul_norm' /-
 theorem norm_setToFun_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E) :
     ‖setToFun μ T hT f‖ ≤ max C 0 * ‖f‖ := by rw [L1.set_to_fun_eq_set_to_L1];
   exact L1.norm_set_to_L1_le_mul_norm' hT f
 #align measure_theory.norm_set_to_fun_le_mul_norm' MeasureTheory.norm_setToFun_le_mul_norm'
+-/
 
+#print MeasureTheory.norm_setToFun_le /-
 theorem norm_setToFun_le (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ) (hC : 0 ≤ C) :
     ‖setToFun μ T hT f‖ ≤ C * ‖hf.toL1 f‖ := by rw [set_to_fun_eq hT hf];
   exact L1.norm_set_to_L1_le_mul_norm hT hC _
 #align measure_theory.norm_set_to_fun_le MeasureTheory.norm_setToFun_le
+-/
 
+#print MeasureTheory.norm_setToFun_le' /-
 theorem norm_setToFun_le' (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ) :
     ‖setToFun μ T hT f‖ ≤ max C 0 * ‖hf.toL1 f‖ := by rw [set_to_fun_eq hT hf];
   exact L1.norm_set_to_L1_le_mul_norm' hT _
 #align measure_theory.norm_set_to_fun_le' MeasureTheory.norm_setToFun_le'
+-/
 
+#print MeasureTheory.tendsto_setToFun_of_dominated_convergence /-
 /-- Lebesgue dominated convergence theorem provides sufficient conditions under which almost
   everywhere convergence of a sequence of functions implies the convergence of their image by
   `set_to_fun`.
@@ -1862,7 +2182,9 @@ theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive
   dsimp only
   rw [hx, ofReal_norm_eq_coe_nnnorm, Pi.sub_apply]
 #align measure_theory.tendsto_set_to_fun_of_dominated_convergence MeasureTheory.tendsto_setToFun_of_dominated_convergence
+-/
 
+#print MeasureTheory.tendsto_setToFun_filter_of_dominated_convergence /-
 /-- Lebesgue dominated convergence theorem for filters with a countable basis -/
 theorem tendsto_setToFun_filter_of_dominated_convergence (hT : DominatedFinMeasAdditive μ T C) {ι}
     {l : Filter ι} [l.IsCountablyGenerated] {fs : ι → α → E} {f : α → E} (bound : α → ℝ)
@@ -1889,9 +2211,11 @@ theorem tendsto_setToFun_filter_of_dominated_convergence (hT : DominatedFinMeasA
     rw [tendsto_add_at_top_iff_nat]
     assumption
 #align measure_theory.tendsto_set_to_fun_filter_of_dominated_convergence MeasureTheory.tendsto_setToFun_filter_of_dominated_convergence
+-/
 
 variable {X : Type _} [TopologicalSpace X] [FirstCountableTopology X]
 
+#print MeasureTheory.continuousWithinAt_setToFun_of_dominated /-
 theorem continuousWithinAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C)
     {fs : X → α → E} {x₀ : X} {bound : α → ℝ} {s : Set X}
     (hfs_meas : ∀ᶠ x in 𝓝[s] x₀, AEStronglyMeasurable (fs x) μ)
@@ -1900,7 +2224,9 @@ theorem continuousWithinAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive
     ContinuousWithinAt (fun x => setToFun μ T hT (fs x)) s x₀ :=
   tendsto_setToFun_filter_of_dominated_convergence hT bound ‹_› ‹_› ‹_› ‹_›
 #align measure_theory.continuous_within_at_set_to_fun_of_dominated MeasureTheory.continuousWithinAt_setToFun_of_dominated
+-/
 
+#print MeasureTheory.continuousAt_setToFun_of_dominated /-
 theorem continuousAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C) {fs : X → α → E}
     {x₀ : X} {bound : α → ℝ} (hfs_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (fs x) μ)
     (h_bound : ∀ᶠ x in 𝓝 x₀, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
@@ -1908,7 +2234,9 @@ theorem continuousAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C
     ContinuousAt (fun x => setToFun μ T hT (fs x)) x₀ :=
   tendsto_setToFun_filter_of_dominated_convergence hT bound ‹_› ‹_› ‹_› ‹_›
 #align measure_theory.continuous_at_set_to_fun_of_dominated MeasureTheory.continuousAt_setToFun_of_dominated
+-/
 
+#print MeasureTheory.continuousOn_setToFun_of_dominated /-
 theorem continuousOn_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C) {fs : X → α → E}
     {bound : α → ℝ} {s : Set X} (hfs_meas : ∀ x ∈ s, AEStronglyMeasurable (fs x) μ)
     (h_bound : ∀ x ∈ s, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
@@ -1921,7 +2249,9 @@ theorem continuousOn_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C
   · filter_upwards [self_mem_nhdsWithin] with x hx using h_bound x hx
   · filter_upwards [h_cont] with a ha using ha x hx
 #align measure_theory.continuous_on_set_to_fun_of_dominated MeasureTheory.continuousOn_setToFun_of_dominated
+-/
 
+#print MeasureTheory.continuous_setToFun_of_dominated /-
 theorem continuous_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C) {fs : X → α → E}
     {bound : α → ℝ} (hfs_meas : ∀ x, AEStronglyMeasurable (fs x) μ)
     (h_bound : ∀ x, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
@@ -1931,6 +2261,7 @@ theorem continuous_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C)
         (eventually_of_forall h_bound) ‹_› <|
       h_cont.mono fun _ => Continuous.continuousAt
 #align measure_theory.continuous_set_to_fun_of_dominated MeasureTheory.continuous_setToFun_of_dominated
+-/
 
 end Function
 
Diff
@@ -490,10 +490,10 @@ theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
   calc
     setToSimpleFunc T (f + g) = ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) (x.fst + x.snd) := by
       rw [add_eq_map₂, map_set_to_simple_func T h_add hp_pair]; simp
-    _ = ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.fst + T (pair f g ⁻¹' {x}) x.snd :=
+    _ = ∑ x in (pair f g).range, (T (pair f g ⁻¹' {x}) x.fst + T (pair f g ⁻¹' {x}) x.snd) :=
       (Finset.sum_congr rfl fun a ha => ContinuousLinearMap.map_add _ _ _)
     _ =
-        (∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.fst) +
+        ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.fst +
           ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.snd :=
       by rw [Finset.sum_add_distrib]
     _ = ((pair f g).map Prod.fst).setToSimpleFunc T + ((pair f g).map Prod.snd).setToSimpleFunc T :=
Diff
@@ -500,7 +500,6 @@ theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
       by
       rw [map_set_to_simple_func T h_add hp_pair Prod.snd_zero,
         map_set_to_simple_func T h_add hp_pair Prod.fst_zero]
-    
 #align measure_theory.simple_func.set_to_simple_func_add MeasureTheory.SimpleFunc.setToSimpleFunc_add
 
 theorem setToSimpleFunc_neg (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f : α →ₛ E}
@@ -511,7 +510,6 @@ theorem setToSimpleFunc_neg (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
       by
       rw [map_set_to_simple_func T h_add hf neg_zero, set_to_simple_func, ← sum_neg_distrib]
       exact Finset.sum_congr rfl fun x h => ContinuousLinearMap.map_neg _ _
-    
 #align measure_theory.simple_func.set_to_simple_func_neg MeasureTheory.SimpleFunc.setToSimpleFunc_neg
 
 theorem setToSimpleFunc_sub (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E}
@@ -536,7 +534,6 @@ theorem setToSimpleFunc_smul_real (T : Set α → E →L[ℝ] F) (h_add : FinMea
     _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x :=
       (Finset.sum_congr rfl fun b hb => by rw [ContinuousLinearMap.map_smul (T (f ⁻¹' {b})) c b])
     _ = c • setToSimpleFunc T f := by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm]
-    
 #align measure_theory.simple_func.set_to_simple_func_smul_real MeasureTheory.SimpleFunc.setToSimpleFunc_smul_real
 
 theorem setToSimpleFunc_smul {E} [NormedAddCommGroup E] [NormedField 𝕜] [NormedSpace 𝕜 E]
@@ -550,7 +547,6 @@ theorem setToSimpleFunc_smul {E} [NormedAddCommGroup E] [NormedField 𝕜] [Norm
       rw [smul_zero]
     _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x := (Finset.sum_congr rfl fun b hb => by rw [h_smul])
     _ = c • setToSimpleFunc T f := by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm]
-    
 #align measure_theory.simple_func.set_to_simple_func_smul MeasureTheory.SimpleFunc.setToSimpleFunc_smul
 
 section Order
@@ -619,7 +615,6 @@ theorem norm_setToSimpleFunc_le_sum_op_norm {m : MeasurableSpace α} (T : Set α
     ‖∑ x in f.range, T (f ⁻¹' {x}) x‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x}) x‖ := norm_sum_le _ _
     _ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ := by refine' Finset.sum_le_sum fun b hb => _;
       simp_rw [ContinuousLinearMap.le_op_norm]
-    
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_op_norm
 
 theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C : ℝ}
@@ -633,7 +628,6 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C
         mul_le_mul_of_nonneg_right (hT_norm _ <| SimpleFunc.measurableSet_fiber _ _) <|
           norm_nonneg _)
     _ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ := by simp_rw [mul_sum, ← mul_assoc]
-    
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_mul_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm
 
 theorem norm_setToSimpleFunc_le_sum_mul_norm_of_integrable (T : Set α → E →L[ℝ] F') {C : ℝ}
@@ -654,7 +648,6 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm_of_integrable (T : Set α → E →
             simple_func.measure_preimage_lt_top_of_integrable _ hf hb)
           (norm_nonneg _)
     _ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ := by simp_rw [mul_sum, ← mul_assoc]
-    
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_mul_norm_of_integrable MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm_of_integrable
 
 theorem setToSimpleFunc_indicator (T : Set α → F →L[ℝ] F') (hT_empty : T ∅ = 0)
@@ -1298,7 +1291,6 @@ theorem norm_setToL1_le_norm_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C)
       rw [NNReal.coe_one, one_mul]
       rfl
     _ = ‖setToL1SCLM α E μ hT‖ := by rw [NNReal.coe_one, one_mul]
-    
 #align measure_theory.L1.norm_set_to_L1_le_norm_set_to_L1s_clm MeasureTheory.L1.norm_setToL1_le_norm_setToL1SCLM
 
 theorem norm_setToL1_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C)
@@ -1307,7 +1299,6 @@ theorem norm_setToL1_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (hC : 0
     ‖setToL1 hT f‖ ≤ ‖setToL1SCLM α E μ hT‖ * ‖f‖ :=
       ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ C * ‖f‖ := mul_le_mul (norm_setToL1SCLM_le hT hC) le_rfl (norm_nonneg _) hC
-    
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm MeasureTheory.L1.norm_setToL1_le_mul_norm
 
 theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E) :
@@ -1317,7 +1308,6 @@ theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α
       ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ max C 0 * ‖f‖ :=
       mul_le_mul (norm_setToL1SCLM_le' hT) le_rfl (norm_nonneg _) (le_max_right _ _)
-    
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm' MeasureTheory.L1.norm_setToL1_le_mul_norm'
 
 theorem norm_setToL1_le (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) : ‖setToL1 hT‖ ≤ C :=
@@ -1713,7 +1703,6 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
     _ = ε / 2 := by refine' mul_div_cancel' (ε / 2) _; rw [Ne.def, to_real_eq_zero_iff];
       simp [hc', hc'0]
     _ < ε := half_lt_self hε_pos
-    
 #align measure_theory.continuous_L1_to_L1 MeasureTheory.continuous_L1_toL1
 
 theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞)
Diff
@@ -161,7 +161,7 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
   exact (add_left_cancel hT).symm
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:638:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
 theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι)
     (hS_meas : ∀ i, MeasurableSet (S i)) (hSp : ∀ i ∈ sι, μ (S i) ≠ ∞)
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne
 
 ! This file was ported from Lean 3 source module measure_theory.integral.set_to_l1
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit af471b9e3ce868f296626d33189b4ce730fa4c00
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.MeasureTheory.Function.SimpleFuncDenseLp
 /-!
 # Extension of a linear function from indicators to L1
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 Let `T : set α → E →L[ℝ] F` be additive for measurable sets with finite measure, in the sense that
 for `s, t` two such sets, `s ∩ t = ∅ → T (s ∪ t) = T s + T t`. `T` is akin to a bilinear map on
 `set α × E`, or a linear map on indicator functions.
@@ -92,12 +95,14 @@ open Finset
 
 section FinMeasAdditive
 
+#print MeasureTheory.FinMeasAdditive /-
 /-- A set function is `fin_meas_additive` if its value on the union of two disjoint measurable
 sets with finite measure is the sum of its values on each set. -/
 def FinMeasAdditive {β} [AddMonoid β] {m : MeasurableSpace α} (μ : Measure α) (T : Set α → β) :
     Prop :=
   ∀ s t, MeasurableSet s → MeasurableSet t → μ s ≠ ∞ → μ t ≠ ∞ → s ∩ t = ∅ → T (s ∪ t) = T s + T t
 #align measure_theory.fin_meas_additive MeasureTheory.FinMeasAdditive
+-/
 
 namespace FinMeasAdditive
 
@@ -193,12 +198,14 @@ theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
 
 end FinMeasAdditive
 
+#print MeasureTheory.DominatedFinMeasAdditive /-
 /-- A `fin_meas_additive` set function whose norm on every set is less than the measure of the
 set (up to a multiplicative constant). -/
 def DominatedFinMeasAdditive {β} [SeminormedAddCommGroup β] {m : MeasurableSpace α} (μ : Measure α)
     (T : Set α → β) (C : ℝ) : Prop :=
   FinMeasAdditive μ T ∧ ∀ s, MeasurableSet s → μ s < ∞ → ‖T s‖ ≤ C * (μ s).toReal
 #align measure_theory.dominated_fin_meas_additive MeasureTheory.DominatedFinMeasAdditive
+-/
 
 namespace DominatedFinMeasAdditive
 
@@ -294,10 +301,12 @@ end FinMeasAdditive
 
 namespace SimpleFunc
 
+#print MeasureTheory.SimpleFunc.setToSimpleFunc /-
 /-- Extend `set α → (F →L[ℝ] F')` to `(α →ₛ F) → F'`. -/
 def setToSimpleFunc {m : MeasurableSpace α} (T : Set α → F →L[ℝ] F') (f : α →ₛ F) : F' :=
   ∑ x in f.range, T (f ⁻¹' {x}) x
 #align measure_theory.simple_func.set_to_simple_func MeasureTheory.SimpleFunc.setToSimpleFunc
+-/
 
 @[simp]
 theorem setToSimpleFunc_zero {m : MeasurableSpace α} (f : α →ₛ F) :
@@ -735,76 +744,76 @@ attribute [local instance] Lp.simple_func.module
 attribute [local instance] Lp.simple_func.normed_space
 
 /-- Extend `set α → (E →L[ℝ] F')` to `(α →₁ₛ[μ] E) → F'`. -/
-def setToL1s (T : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) : F :=
+def setToL1S (T : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) : F :=
   (toSimpleFunc f).setToSimpleFunc T
-#align measure_theory.L1.simple_func.set_to_L1s MeasureTheory.L1.SimpleFunc.setToL1s
+#align measure_theory.L1.simple_func.set_to_L1s MeasureTheory.L1.SimpleFunc.setToL1S
 
-theorem setToL1s_eq_setToSimpleFunc (T : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) :
-    setToL1s T f = (toSimpleFunc f).setToSimpleFunc T :=
+theorem setToL1S_eq_setToSimpleFunc (T : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) :
+    setToL1S T f = (toSimpleFunc f).setToSimpleFunc T :=
   rfl
-#align measure_theory.L1.simple_func.set_to_L1s_eq_set_to_simple_func MeasureTheory.L1.SimpleFunc.setToL1s_eq_setToSimpleFunc
+#align measure_theory.L1.simple_func.set_to_L1s_eq_set_to_simple_func MeasureTheory.L1.SimpleFunc.setToL1S_eq_setToSimpleFunc
 
 @[simp]
-theorem setToL1s_zero_left (f : α →₁ₛ[μ] E) : setToL1s (0 : Set α → E →L[ℝ] F) f = 0 :=
+theorem setToL1S_zero_left (f : α →₁ₛ[μ] E) : setToL1S (0 : Set α → E →L[ℝ] F) f = 0 :=
   SimpleFunc.setToSimpleFunc_zero _
-#align measure_theory.L1.simple_func.set_to_L1s_zero_left MeasureTheory.L1.SimpleFunc.setToL1s_zero_left
+#align measure_theory.L1.simple_func.set_to_L1s_zero_left MeasureTheory.L1.SimpleFunc.setToL1S_zero_left
 
-theorem setToL1s_zero_left' {T : Set α → E →L[ℝ] F}
-    (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁ₛ[μ] E) : setToL1s T f = 0 :=
+theorem setToL1S_zero_left' {T : Set α → E →L[ℝ] F}
+    (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁ₛ[μ] E) : setToL1S T f = 0 :=
   SimpleFunc.setToSimpleFunc_zero' h_zero _ (SimpleFunc.integrable f)
-#align measure_theory.L1.simple_func.set_to_L1s_zero_left' MeasureTheory.L1.SimpleFunc.setToL1s_zero_left'
+#align measure_theory.L1.simple_func.set_to_L1s_zero_left' MeasureTheory.L1.SimpleFunc.setToL1S_zero_left'
 
-theorem setToL1s_congr (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
+theorem setToL1S_congr (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) {f g : α →₁ₛ[μ] E} (h : toSimpleFunc f =ᵐ[μ] toSimpleFunc g) :
-    setToL1s T f = setToL1s T g :=
+    setToL1S T f = setToL1S T g :=
   SimpleFunc.setToSimpleFunc_congr T h_zero h_add (SimpleFunc.integrable f) h
-#align measure_theory.L1.simple_func.set_to_L1s_congr MeasureTheory.L1.SimpleFunc.setToL1s_congr
+#align measure_theory.L1.simple_func.set_to_L1s_congr MeasureTheory.L1.SimpleFunc.setToL1S_congr
 
-theorem setToL1s_congr_left (T T' : Set α → E →L[ℝ] F)
+theorem setToL1S_congr_left (T T' : Set α → E →L[ℝ] F)
     (h : ∀ s, MeasurableSet s → μ s < ∞ → T s = T' s) (f : α →₁ₛ[μ] E) :
-    setToL1s T f = setToL1s T' f :=
+    setToL1S T f = setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_congr_left T T' h (simpleFunc.toSimpleFunc f) (SimpleFunc.integrable f)
-#align measure_theory.L1.simple_func.set_to_L1s_congr_left MeasureTheory.L1.SimpleFunc.setToL1s_congr_left
+#align measure_theory.L1.simple_func.set_to_L1s_congr_left MeasureTheory.L1.SimpleFunc.setToL1S_congr_left
 
 /-- `set_to_L1s` does not change if we replace the measure `μ` by `μ'` with `μ ≪ μ'`. The statement
 uses two functions `f` and `f'` because they have to belong to different types, but morally these
 are the same function (we have `f =ᵐ[μ] f'`). -/
-theorem setToL1s_congr_measure {μ' : Measure α} (T : Set α → E →L[ℝ] F)
+theorem setToL1S_congr_measure {μ' : Measure α} (T : Set α → E →L[ℝ] F)
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (hμ : μ ≪ μ')
-    (f : α →₁ₛ[μ] E) (f' : α →₁ₛ[μ'] E) (h : f =ᵐ[μ] f') : setToL1s T f = setToL1s T f' :=
+    (f : α →₁ₛ[μ] E) (f' : α →₁ₛ[μ'] E) (h : f =ᵐ[μ] f') : setToL1S T f = setToL1S T f' :=
   by
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable f) _
   refine' (to_simple_func_eq_to_fun f).trans _
   suffices : f' =ᵐ[μ] ⇑(simple_func.to_simple_func f'); exact h.trans this
   have goal' : f' =ᵐ[μ'] simple_func.to_simple_func f' := (to_simple_func_eq_to_fun f').symm
   exact hμ.ae_eq goal'
-#align measure_theory.L1.simple_func.set_to_L1s_congr_measure MeasureTheory.L1.SimpleFunc.setToL1s_congr_measure
+#align measure_theory.L1.simple_func.set_to_L1s_congr_measure MeasureTheory.L1.SimpleFunc.setToL1S_congr_measure
 
-theorem setToL1s_add_left (T T' : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) :
-    setToL1s (T + T') f = setToL1s T f + setToL1s T' f :=
+theorem setToL1S_add_left (T T' : Set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) :
+    setToL1S (T + T') f = setToL1S T f + setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_add_left T T'
-#align measure_theory.L1.simple_func.set_to_L1s_add_left MeasureTheory.L1.SimpleFunc.setToL1s_add_left
+#align measure_theory.L1.simple_func.set_to_L1s_add_left MeasureTheory.L1.SimpleFunc.setToL1S_add_left
 
-theorem setToL1s_add_left' (T T' T'' : Set α → E →L[ℝ] F)
+theorem setToL1S_add_left' (T T' T'' : Set α → E →L[ℝ] F)
     (h_add : ∀ s, MeasurableSet s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁ₛ[μ] E) :
-    setToL1s T'' f = setToL1s T f + setToL1s T' f :=
+    setToL1S T'' f = setToL1S T f + setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_add_left' T T' T'' h_add (SimpleFunc.integrable f)
-#align measure_theory.L1.simple_func.set_to_L1s_add_left' MeasureTheory.L1.SimpleFunc.setToL1s_add_left'
+#align measure_theory.L1.simple_func.set_to_L1s_add_left' MeasureTheory.L1.SimpleFunc.setToL1S_add_left'
 
-theorem setToL1s_smul_left (T : Set α → E →L[ℝ] F) (c : ℝ) (f : α →₁ₛ[μ] E) :
-    setToL1s (fun s => c • T s) f = c • setToL1s T f :=
+theorem setToL1S_smul_left (T : Set α → E →L[ℝ] F) (c : ℝ) (f : α →₁ₛ[μ] E) :
+    setToL1S (fun s => c • T s) f = c • setToL1S T f :=
   SimpleFunc.setToSimpleFunc_smul_left T c _
-#align measure_theory.L1.simple_func.set_to_L1s_smul_left MeasureTheory.L1.SimpleFunc.setToL1s_smul_left
+#align measure_theory.L1.simple_func.set_to_L1s_smul_left MeasureTheory.L1.SimpleFunc.setToL1S_smul_left
 
-theorem setToL1s_smul_left' (T T' : Set α → E →L[ℝ] F) (c : ℝ)
+theorem setToL1S_smul_left' (T T' : Set α → E →L[ℝ] F) (c : ℝ)
     (h_smul : ∀ s, MeasurableSet s → μ s < ∞ → T' s = c • T s) (f : α →₁ₛ[μ] E) :
-    setToL1s T' f = c • setToL1s T f :=
+    setToL1S T' f = c • setToL1S T f :=
   SimpleFunc.setToSimpleFunc_smul_left' T T' c h_smul (SimpleFunc.integrable f)
-#align measure_theory.L1.simple_func.set_to_L1s_smul_left' MeasureTheory.L1.SimpleFunc.setToL1s_smul_left'
+#align measure_theory.L1.simple_func.set_to_L1s_smul_left' MeasureTheory.L1.SimpleFunc.setToL1S_smul_left'
 
-theorem setToL1s_add (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
+theorem setToL1S_add (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (f g : α →₁ₛ[μ] E) :
-    setToL1s T (f + g) = setToL1s T f + setToL1s T g :=
+    setToL1S T (f + g) = setToL1S T f + setToL1S T g :=
   by
   simp_rw [set_to_L1s]
   rw [←
@@ -813,92 +822,92 @@ theorem setToL1s_add (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableS
   exact
     simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _)
       (add_to_simple_func f g)
-#align measure_theory.L1.simple_func.set_to_L1s_add MeasureTheory.L1.SimpleFunc.setToL1s_add
+#align measure_theory.L1.simple_func.set_to_L1s_add MeasureTheory.L1.SimpleFunc.setToL1S_add
 
-theorem setToL1s_neg {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
-    (h_add : FinMeasAdditive μ T) (f : α →₁ₛ[μ] E) : setToL1s T (-f) = -setToL1s T f :=
+theorem setToL1S_neg {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
+    (h_add : FinMeasAdditive μ T) (f : α →₁ₛ[μ] E) : setToL1S T (-f) = -setToL1S T f :=
   by
   simp_rw [set_to_L1s]
   have : simple_func.to_simple_func (-f) =ᵐ[μ] ⇑(-simple_func.to_simple_func f) :=
     neg_to_simple_func f
   rw [simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) this]
   exact simple_func.set_to_simple_func_neg T h_add (simple_func.integrable f)
-#align measure_theory.L1.simple_func.set_to_L1s_neg MeasureTheory.L1.SimpleFunc.setToL1s_neg
+#align measure_theory.L1.simple_func.set_to_L1s_neg MeasureTheory.L1.SimpleFunc.setToL1S_neg
 
-theorem setToL1s_sub {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
+theorem setToL1S_sub {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (f g : α →₁ₛ[μ] E) :
-    setToL1s T (f - g) = setToL1s T f - setToL1s T g := by
+    setToL1S T (f - g) = setToL1S T f - setToL1S T g := by
   rw [sub_eq_add_neg, set_to_L1s_add T h_zero h_add, set_to_L1s_neg h_zero h_add, sub_eq_add_neg]
-#align measure_theory.L1.simple_func.set_to_L1s_sub MeasureTheory.L1.SimpleFunc.setToL1s_sub
+#align measure_theory.L1.simple_func.set_to_L1s_sub MeasureTheory.L1.SimpleFunc.setToL1S_sub
 
-theorem setToL1s_smul_real (T : Set α → E →L[ℝ] F)
+theorem setToL1S_smul_real (T : Set α → E →L[ℝ] F)
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (c : ℝ)
-    (f : α →₁ₛ[μ] E) : setToL1s T (c • f) = c • setToL1s T f :=
+    (f : α →₁ₛ[μ] E) : setToL1S T (c • f) = c • setToL1S T f :=
   by
   simp_rw [set_to_L1s]
   rw [← simple_func.set_to_simple_func_smul_real T h_add c (simple_func.integrable f)]
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _
   exact smul_to_simple_func c f
-#align measure_theory.L1.simple_func.set_to_L1s_smul_real MeasureTheory.L1.SimpleFunc.setToL1s_smul_real
+#align measure_theory.L1.simple_func.set_to_L1s_smul_real MeasureTheory.L1.SimpleFunc.setToL1S_smul_real
 
-theorem setToL1s_smul {E} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedSpace 𝕜 E]
+theorem setToL1S_smul {E} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedSpace 𝕜 E]
     [NormedSpace 𝕜 F] (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜)
-    (f : α →₁ₛ[μ] E) : setToL1s T (c • f) = c • setToL1s T f :=
+    (f : α →₁ₛ[μ] E) : setToL1S T (c • f) = c • setToL1S T f :=
   by
   simp_rw [set_to_L1s]
   rw [← simple_func.set_to_simple_func_smul T h_add h_smul c (simple_func.integrable f)]
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _
   exact smul_to_simple_func c f
-#align measure_theory.L1.simple_func.set_to_L1s_smul MeasureTheory.L1.SimpleFunc.setToL1s_smul
+#align measure_theory.L1.simple_func.set_to_L1s_smul MeasureTheory.L1.SimpleFunc.setToL1S_smul
 
-theorem norm_setToL1s_le (T : Set α → E →L[ℝ] F) {C : ℝ}
+theorem norm_setToL1S_le (T : Set α → E →L[ℝ] F) {C : ℝ}
     (hT_norm : ∀ s, MeasurableSet s → μ s < ∞ → ‖T s‖ ≤ C * (μ s).toReal) (f : α →₁ₛ[μ] E) :
-    ‖setToL1s T f‖ ≤ C * ‖f‖ := by
+    ‖setToL1S T f‖ ≤ C * ‖f‖ := by
   rw [set_to_L1s, norm_eq_sum_mul f]
   exact
     simple_func.norm_set_to_simple_func_le_sum_mul_norm_of_integrable T hT_norm _
       (simple_func.integrable f)
-#align measure_theory.L1.simple_func.norm_set_to_L1s_le MeasureTheory.L1.SimpleFunc.norm_setToL1s_le
+#align measure_theory.L1.simple_func.norm_set_to_L1s_le MeasureTheory.L1.SimpleFunc.norm_setToL1S_le
 
-theorem setToL1s_indicatorConst {T : Set α → E →L[ℝ] F} {s : Set α}
+theorem setToL1S_indicatorConst {T : Set α → E →L[ℝ] F} {s : Set α}
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T)
     (hs : MeasurableSet s) (hμs : μ s < ∞) (x : E) :
-    setToL1s T (simpleFunc.indicatorConst 1 hs hμs.Ne x) = T s x :=
+    setToL1S T (simpleFunc.indicatorConst 1 hs hμs.Ne x) = T s x :=
   by
   have h_empty : T ∅ = 0 := h_zero _ MeasurableSet.empty measure_empty
   rw [set_to_L1s_eq_set_to_simple_func]
   refine' Eq.trans _ (simple_func.set_to_simple_func_indicator T h_empty hs x)
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _
   exact to_simple_func_indicator_const hs hμs.ne x
-#align measure_theory.L1.simple_func.set_to_L1s_indicator_const MeasureTheory.L1.SimpleFunc.setToL1s_indicatorConst
+#align measure_theory.L1.simple_func.set_to_L1s_indicator_const MeasureTheory.L1.SimpleFunc.setToL1S_indicatorConst
 
-theorem setToL1s_const [FiniteMeasure μ] {T : Set α → E →L[ℝ] F}
+theorem setToL1S_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F}
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (x : E) :
-    setToL1s T (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) = T univ x :=
-  setToL1s_indicatorConst h_zero h_add MeasurableSet.univ (measure_lt_top _ _) x
-#align measure_theory.L1.simple_func.set_to_L1s_const MeasureTheory.L1.SimpleFunc.setToL1s_const
+    setToL1S T (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) = T univ x :=
+  setToL1S_indicatorConst h_zero h_add MeasurableSet.univ (measure_lt_top _ _) x
+#align measure_theory.L1.simple_func.set_to_L1s_const MeasureTheory.L1.SimpleFunc.setToL1S_const
 
 section Order
 
 variable {G'' G' : Type _} [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
   [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] {T : Set α → G'' →L[ℝ] G'}
 
-theorem setToL1s_mono_left {T T' : Set α → E →L[ℝ] G''} (hTT' : ∀ s x, T s x ≤ T' s x)
-    (f : α →₁ₛ[μ] E) : setToL1s T f ≤ setToL1s T' f :=
+theorem setToL1S_mono_left {T T' : Set α → E →L[ℝ] G''} (hTT' : ∀ s x, T s x ≤ T' s x)
+    (f : α →₁ₛ[μ] E) : setToL1S T f ≤ setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_mono_left T T' hTT' _
-#align measure_theory.L1.simple_func.set_to_L1s_mono_left MeasureTheory.L1.SimpleFunc.setToL1s_mono_left
+#align measure_theory.L1.simple_func.set_to_L1s_mono_left MeasureTheory.L1.SimpleFunc.setToL1S_mono_left
 
-theorem setToL1s_mono_left' {T T' : Set α → E →L[ℝ] G''}
+theorem setToL1S_mono_left' {T T' : Set α → E →L[ℝ] G''}
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) :
-    setToL1s T f ≤ setToL1s T' f :=
+    setToL1S T f ≤ setToL1S T' f :=
   SimpleFunc.setToSimpleFunc_mono_left' T T' hTT' _ (SimpleFunc.integrable f)
-#align measure_theory.L1.simple_func.set_to_L1s_mono_left' MeasureTheory.L1.SimpleFunc.setToL1s_mono_left'
+#align measure_theory.L1.simple_func.set_to_L1s_mono_left' MeasureTheory.L1.SimpleFunc.setToL1S_mono_left'
 
-theorem setToL1s_nonneg (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
+theorem setToL1S_nonneg (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁ₛ[μ] G''}
-    (hf : 0 ≤ f) : 0 ≤ setToL1s T f := by
+    (hf : 0 ≤ f) : 0 ≤ setToL1S T f := by
   simp_rw [set_to_L1s]
   obtain ⟨f', hf', hff'⟩ : ∃ f' : α →ₛ G'', 0 ≤ f' ∧ simple_func.to_simple_func f =ᵐ[μ] f' :=
     by
@@ -907,17 +916,17 @@ theorem setToL1s_nonneg (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s =
   rw [simple_func.set_to_simple_func_congr _ h_zero h_add (simple_func.integrable _) hff']
   exact
     simple_func.set_to_simple_func_nonneg' T hT_nonneg _ hf' ((simple_func.integrable f).congr hff')
-#align measure_theory.L1.simple_func.set_to_L1s_nonneg MeasureTheory.L1.SimpleFunc.setToL1s_nonneg
+#align measure_theory.L1.simple_func.set_to_L1s_nonneg MeasureTheory.L1.SimpleFunc.setToL1S_nonneg
 
-theorem setToL1s_mono (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
+theorem setToL1S_mono (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁ₛ[μ] G''}
-    (hfg : f ≤ g) : setToL1s T f ≤ setToL1s T g :=
+    (hfg : f ≤ g) : setToL1S T f ≤ setToL1S T g :=
   by
   rw [← sub_nonneg] at hfg ⊢
   rw [← set_to_L1s_sub h_zero h_add]
   exact set_to_L1s_nonneg h_zero h_add hT_nonneg hfg
-#align measure_theory.L1.simple_func.set_to_L1s_mono MeasureTheory.L1.SimpleFunc.setToL1s_mono
+#align measure_theory.L1.simple_func.set_to_L1s_mono MeasureTheory.L1.SimpleFunc.setToL1S_mono
 
 end Order
 
@@ -926,129 +935,129 @@ variable [NormedSpace 𝕜 F]
 variable (α E μ 𝕜)
 
 /-- Extend `set α → E →L[ℝ] F` to `(α →₁ₛ[μ] E) →L[𝕜] F`. -/
-def setToL1sClm' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
+def setToL1SCLM' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) : (α →₁ₛ[μ] E) →L[𝕜] F :=
   LinearMap.mkContinuous
-    ⟨setToL1s T, setToL1s_add T (fun _ => hT.eq_zero_of_measure_zero) hT.1,
-      setToL1s_smul T (fun _ => hT.eq_zero_of_measure_zero) hT.1 h_smul⟩
-    C fun f => norm_setToL1s_le T hT.2 f
-#align measure_theory.L1.simple_func.set_to_L1s_clm' MeasureTheory.L1.SimpleFunc.setToL1sClm'
+    ⟨setToL1S T, setToL1S_add T (fun _ => hT.eq_zero_of_measure_zero) hT.1,
+      setToL1S_smul T (fun _ => hT.eq_zero_of_measure_zero) hT.1 h_smul⟩
+    C fun f => norm_setToL1S_le T hT.2 f
+#align measure_theory.L1.simple_func.set_to_L1s_clm' MeasureTheory.L1.SimpleFunc.setToL1SCLM'
 
 /-- Extend `set α → E →L[ℝ] F` to `(α →₁ₛ[μ] E) →L[ℝ] F`. -/
-def setToL1sClm {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) :
+def setToL1SCLM {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) :
     (α →₁ₛ[μ] E) →L[ℝ] F :=
   LinearMap.mkContinuous
-    ⟨setToL1s T, setToL1s_add T (fun _ => hT.eq_zero_of_measure_zero) hT.1,
-      setToL1s_smul_real T (fun _ => hT.eq_zero_of_measure_zero) hT.1⟩
-    C fun f => norm_setToL1s_le T hT.2 f
-#align measure_theory.L1.simple_func.set_to_L1s_clm MeasureTheory.L1.SimpleFunc.setToL1sClm
+    ⟨setToL1S T, setToL1S_add T (fun _ => hT.eq_zero_of_measure_zero) hT.1,
+      setToL1S_smul_real T (fun _ => hT.eq_zero_of_measure_zero) hT.1⟩
+    C fun f => norm_setToL1S_le T hT.2 f
+#align measure_theory.L1.simple_func.set_to_L1s_clm MeasureTheory.L1.SimpleFunc.setToL1SCLM
 
 variable {α E μ 𝕜}
 
 variable {T T' T'' : Set α → E →L[ℝ] F} {C C' C'' : ℝ}
 
 @[simp]
-theorem setToL1sClm_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C)
-    (f : α →₁ₛ[μ] E) : setToL1sClm α E μ hT f = 0 :=
-  setToL1s_zero_left _
-#align measure_theory.L1.simple_func.set_to_L1s_clm_zero_left MeasureTheory.L1.SimpleFunc.setToL1sClm_zero_left
+theorem setToL1SCLM_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C)
+    (f : α →₁ₛ[μ] E) : setToL1SCLM α E μ hT f = 0 :=
+  setToL1S_zero_left _
+#align measure_theory.L1.simple_func.set_to_L1s_clm_zero_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_zero_left
 
-theorem setToL1sClm_zero_left' (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_zero_left' (hT : DominatedFinMeasAdditive μ T C)
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ hT f = 0 :=
-  setToL1s_zero_left' h_zero f
-#align measure_theory.L1.simple_func.set_to_L1s_clm_zero_left' MeasureTheory.L1.SimpleFunc.setToL1sClm_zero_left'
+    setToL1SCLM α E μ hT f = 0 :=
+  setToL1S_zero_left' h_zero f
+#align measure_theory.L1.simple_func.set_to_L1s_clm_zero_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_zero_left'
 
-theorem setToL1sClm_congr_left (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_congr_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (h : T = T') (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ hT f = setToL1sClm α E μ hT' f :=
-  setToL1s_congr_left T T' (fun _ _ _ => by rw [h]) f
-#align measure_theory.L1.simple_func.set_to_L1s_clm_congr_left MeasureTheory.L1.SimpleFunc.setToL1sClm_congr_left
+    setToL1SCLM α E μ hT f = setToL1SCLM α E μ hT' f :=
+  setToL1S_congr_left T T' (fun _ _ _ => by rw [h]) f
+#align measure_theory.L1.simple_func.set_to_L1s_clm_congr_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_left
 
-theorem setToL1sClm_congr_left' (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_congr_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (h : ∀ s, MeasurableSet s → μ s < ∞ → T s = T' s)
-    (f : α →₁ₛ[μ] E) : setToL1sClm α E μ hT f = setToL1sClm α E μ hT' f :=
-  setToL1s_congr_left T T' h f
-#align measure_theory.L1.simple_func.set_to_L1s_clm_congr_left' MeasureTheory.L1.SimpleFunc.setToL1sClm_congr_left'
+    (f : α →₁ₛ[μ] E) : setToL1SCLM α E μ hT f = setToL1SCLM α E μ hT' f :=
+  setToL1S_congr_left T T' h f
+#align measure_theory.L1.simple_func.set_to_L1s_clm_congr_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_left'
 
-theorem setToL1sClm_congr_measure {μ' : Measure α} (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_congr_measure {μ' : Measure α} (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ' T C') (hμ : μ ≪ μ') (f : α →₁ₛ[μ] E) (f' : α →₁ₛ[μ'] E)
-    (h : f =ᵐ[μ] f') : setToL1sClm α E μ hT f = setToL1sClm α E μ' hT' f' :=
-  setToL1s_congr_measure T (fun s => hT.eq_zero_of_measure_zero) hT.1 hμ _ _ h
-#align measure_theory.L1.simple_func.set_to_L1s_clm_congr_measure MeasureTheory.L1.SimpleFunc.setToL1sClm_congr_measure
+    (h : f =ᵐ[μ] f') : setToL1SCLM α E μ hT f = setToL1SCLM α E μ' hT' f' :=
+  setToL1S_congr_measure T (fun s => hT.eq_zero_of_measure_zero) hT.1 hμ _ _ h
+#align measure_theory.L1.simple_func.set_to_L1s_clm_congr_measure MeasureTheory.L1.SimpleFunc.setToL1SCLM_congr_measure
 
-theorem setToL1sClm_add_left (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_add_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ (hT.add hT') f = setToL1sClm α E μ hT f + setToL1sClm α E μ hT' f :=
-  setToL1s_add_left T T' f
-#align measure_theory.L1.simple_func.set_to_L1s_clm_add_left MeasureTheory.L1.SimpleFunc.setToL1sClm_add_left
+    setToL1SCLM α E μ (hT.add hT') f = setToL1SCLM α E μ hT f + setToL1SCLM α E μ hT' f :=
+  setToL1S_add_left T T' f
+#align measure_theory.L1.simple_func.set_to_L1s_clm_add_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_add_left
 
-theorem setToL1sClm_add_left' (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_add_left' (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (hT'' : DominatedFinMeasAdditive μ T'' C'')
     (h_add : ∀ s, MeasurableSet s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ hT'' f = setToL1sClm α E μ hT f + setToL1sClm α E μ hT' f :=
-  setToL1s_add_left' T T' T'' h_add f
-#align measure_theory.L1.simple_func.set_to_L1s_clm_add_left' MeasureTheory.L1.SimpleFunc.setToL1sClm_add_left'
+    setToL1SCLM α E μ hT'' f = setToL1SCLM α E μ hT f + setToL1SCLM α E μ hT' f :=
+  setToL1S_add_left' T T' T'' h_add f
+#align measure_theory.L1.simple_func.set_to_L1s_clm_add_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_add_left'
 
-theorem setToL1sClm_smul_left (c : ℝ) (hT : DominatedFinMeasAdditive μ T C) (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ (hT.smul c) f = c • setToL1sClm α E μ hT f :=
-  setToL1s_smul_left T c f
-#align measure_theory.L1.simple_func.set_to_L1s_clm_smul_left MeasureTheory.L1.SimpleFunc.setToL1sClm_smul_left
+theorem setToL1SCLM_smul_left (c : ℝ) (hT : DominatedFinMeasAdditive μ T C) (f : α →₁ₛ[μ] E) :
+    setToL1SCLM α E μ (hT.smul c) f = c • setToL1SCLM α E μ hT f :=
+  setToL1S_smul_left T c f
+#align measure_theory.L1.simple_func.set_to_L1s_clm_smul_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_smul_left
 
-theorem setToL1sClm_smul_left' (c : ℝ) (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_smul_left' (c : ℝ) (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C')
     (h_smul : ∀ s, MeasurableSet s → μ s < ∞ → T' s = c • T s) (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ hT' f = c • setToL1sClm α E μ hT f :=
-  setToL1s_smul_left' T T' c h_smul f
-#align measure_theory.L1.simple_func.set_to_L1s_clm_smul_left' MeasureTheory.L1.SimpleFunc.setToL1sClm_smul_left'
+    setToL1SCLM α E μ hT' f = c • setToL1SCLM α E μ hT f :=
+  setToL1S_smul_left' T T' c h_smul f
+#align measure_theory.L1.simple_func.set_to_L1s_clm_smul_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_smul_left'
 
-theorem norm_setToL1sClm_le {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
-    (hC : 0 ≤ C) : ‖setToL1sClm α E μ hT‖ ≤ C :=
+theorem norm_setToL1SCLM_le {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
+    (hC : 0 ≤ C) : ‖setToL1SCLM α E μ hT‖ ≤ C :=
   LinearMap.mkContinuous_norm_le _ hC _
-#align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le MeasureTheory.L1.SimpleFunc.norm_setToL1sClm_le
+#align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le
 
-theorem norm_setToL1sClm_le' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) :
-    ‖setToL1sClm α E μ hT‖ ≤ max C 0 :=
+theorem norm_setToL1SCLM_le' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C) :
+    ‖setToL1SCLM α E μ hT‖ ≤ max C 0 :=
   LinearMap.mkContinuous_norm_le' _ _
-#align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le' MeasureTheory.L1.SimpleFunc.norm_setToL1sClm_le'
+#align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le' MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le'
 
-theorem setToL1sClm_const [FiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C : ℝ}
+theorem setToL1SCLM_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (x : E) :
-    setToL1sClm α E μ hT (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) =
+    setToL1SCLM α E μ hT (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) =
       T univ x :=
-  setToL1s_const (fun s => hT.eq_zero_of_measure_zero) hT.1 x
-#align measure_theory.L1.simple_func.set_to_L1s_clm_const MeasureTheory.L1.SimpleFunc.setToL1sClm_const
+  setToL1S_const (fun s => hT.eq_zero_of_measure_zero) hT.1 x
+#align measure_theory.L1.simple_func.set_to_L1s_clm_const MeasureTheory.L1.SimpleFunc.setToL1SCLM_const
 
 section Order
 
 variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
-theorem setToL1sClm_mono_left {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
+theorem setToL1SCLM_mono_left {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ hT f ≤ setToL1sClm α E μ hT' f :=
+    setToL1SCLM α E μ hT f ≤ setToL1SCLM α E μ hT' f :=
   SimpleFunc.setToSimpleFunc_mono_left T T' hTT' _
-#align measure_theory.L1.simple_func.set_to_L1s_clm_mono_left MeasureTheory.L1.SimpleFunc.setToL1sClm_mono_left
+#align measure_theory.L1.simple_func.set_to_L1s_clm_mono_left MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono_left
 
-theorem setToL1sClm_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
+theorem setToL1SCLM_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) :
-    setToL1sClm α E μ hT f ≤ setToL1sClm α E μ hT' f :=
+    setToL1SCLM α E μ hT f ≤ setToL1SCLM α E μ hT' f :=
   SimpleFunc.setToSimpleFunc_mono_left' T T' hTT' _ (SimpleFunc.integrable f)
-#align measure_theory.L1.simple_func.set_to_L1s_clm_mono_left' MeasureTheory.L1.SimpleFunc.setToL1sClm_mono_left'
+#align measure_theory.L1.simple_func.set_to_L1s_clm_mono_left' MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono_left'
 
-theorem setToL1sClm_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁ₛ[μ] G'}
-    (hf : 0 ≤ f) : 0 ≤ setToL1sClm α G' μ hT f :=
-  setToL1s_nonneg (fun s => hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hf
-#align measure_theory.L1.simple_func.set_to_L1s_clm_nonneg MeasureTheory.L1.SimpleFunc.setToL1sClm_nonneg
+    (hf : 0 ≤ f) : 0 ≤ setToL1SCLM α G' μ hT f :=
+  setToL1S_nonneg (fun s => hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hf
+#align measure_theory.L1.simple_func.set_to_L1s_clm_nonneg MeasureTheory.L1.SimpleFunc.setToL1SCLM_nonneg
 
-theorem setToL1sClm_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
+theorem setToL1SCLM_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁ₛ[μ] G'}
-    (hfg : f ≤ g) : setToL1sClm α G' μ hT f ≤ setToL1sClm α G' μ hT g :=
-  setToL1s_mono (fun s => hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hfg
-#align measure_theory.L1.simple_func.set_to_L1s_clm_mono MeasureTheory.L1.SimpleFunc.setToL1sClm_mono
+    (hfg : f ≤ g) : setToL1SCLM α G' μ hT f ≤ setToL1SCLM α G' μ hT g :=
+  setToL1S_mono (fun s => hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hfg
+#align measure_theory.L1.simple_func.set_to_L1s_clm_mono MeasureTheory.L1.SimpleFunc.setToL1SCLM_mono
 
 end Order
 
@@ -1070,7 +1079,7 @@ variable (𝕜) [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [NormedSpace
 /-- Extend `set α → (E →L[ℝ] F)` to `(α →₁[μ] E) →L[𝕜] F`. -/
 def setToL1' (hT : DominatedFinMeasAdditive μ T C)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) : (α →₁[μ] E) →L[𝕜] F :=
-  (setToL1sClm' α E 𝕜 μ hT h_smul).extend (coeToLp α E 𝕜) (simpleFunc.denseRange one_ne_top)
+  (setToL1SCLM' α E 𝕜 μ hT h_smul).extend (coeToLp α E 𝕜) (simpleFunc.denseRange one_ne_top)
     simpleFunc.uniformInducing
 #align measure_theory.L1.set_to_L1' MeasureTheory.L1.setToL1'
 
@@ -1078,15 +1087,15 @@ variable {𝕜}
 
 /-- Extend `set α → E →L[ℝ] F` to `(α →₁[μ] E) →L[ℝ] F`. -/
 def setToL1 (hT : DominatedFinMeasAdditive μ T C) : (α →₁[μ] E) →L[ℝ] F :=
-  (setToL1sClm α E μ hT).extend (coeToLp α E ℝ) (simpleFunc.denseRange one_ne_top)
+  (setToL1SCLM α E μ hT).extend (coeToLp α E ℝ) (simpleFunc.denseRange one_ne_top)
     simpleFunc.uniformInducing
 #align measure_theory.L1.set_to_L1 MeasureTheory.L1.setToL1
 
-theorem setToL1_eq_setToL1sClm (hT : DominatedFinMeasAdditive μ T C) (f : α →₁ₛ[μ] E) :
-    setToL1 hT f = setToL1sClm α E μ hT f :=
+theorem setToL1_eq_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C) (f : α →₁ₛ[μ] E) :
+    setToL1 hT f = setToL1SCLM α E μ hT f :=
   uniformly_extend_of_ind simpleFunc.uniformInducing (simpleFunc.denseRange one_ne_top)
-    (setToL1sClm α E μ hT).UniformContinuous _
-#align measure_theory.L1.set_to_L1_eq_set_to_L1s_clm MeasureTheory.L1.setToL1_eq_setToL1sClm
+    (setToL1SCLM α E μ hT).UniformContinuous _
+#align measure_theory.L1.set_to_L1_eq_set_to_L1s_clm MeasureTheory.L1.setToL1_eq_setToL1SCLM
 
 theorem setToL1_eq_setToL1' (hT : DominatedFinMeasAdditive μ T C)
     (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (f : α →₁[μ] E) :
@@ -1219,7 +1228,7 @@ theorem setToL1_indicatorConstLp (hT : DominatedFinMeasAdditive μ T C) {s : Set
   exact set_to_L1_simple_func_indicator_const hT hs hμs.lt_top x
 #align measure_theory.L1.set_to_L1_indicator_const_Lp MeasureTheory.L1.setToL1_indicatorConstLp
 
-theorem setToL1_const [FiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
+theorem setToL1_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     setToL1 hT (indicatorConstLp 1 MeasurableSet.univ (measure_ne_top _ _) x) = T univ x :=
   setToL1_indicatorConstLp hT MeasurableSet.univ (measure_ne_top _ _) x
 #align measure_theory.L1.set_to_L1_const MeasureTheory.L1.setToL1_const
@@ -1278,36 +1287,36 @@ theorem setToL1_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : Dominated
 
 end Order
 
-theorem norm_setToL1_le_norm_setToL1sClm (hT : DominatedFinMeasAdditive μ T C) :
-    ‖setToL1 hT‖ ≤ ‖setToL1sClm α E μ hT‖ :=
+theorem norm_setToL1_le_norm_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C) :
+    ‖setToL1 hT‖ ≤ ‖setToL1SCLM α E μ hT‖ :=
   calc
-    ‖setToL1 hT‖ ≤ (1 : ℝ≥0) * ‖setToL1sClm α E μ hT‖ :=
+    ‖setToL1 hT‖ ≤ (1 : ℝ≥0) * ‖setToL1SCLM α E μ hT‖ :=
       by
       refine'
         ContinuousLinearMap.op_norm_extend_le (set_to_L1s_clm α E μ hT) (coe_to_Lp α E ℝ)
           (simple_func.dense_range one_ne_top) fun x => le_of_eq _
       rw [NNReal.coe_one, one_mul]
       rfl
-    _ = ‖setToL1sClm α E μ hT‖ := by rw [NNReal.coe_one, one_mul]
+    _ = ‖setToL1SCLM α E μ hT‖ := by rw [NNReal.coe_one, one_mul]
     
-#align measure_theory.L1.norm_set_to_L1_le_norm_set_to_L1s_clm MeasureTheory.L1.norm_setToL1_le_norm_setToL1sClm
+#align measure_theory.L1.norm_set_to_L1_le_norm_set_to_L1s_clm MeasureTheory.L1.norm_setToL1_le_norm_setToL1SCLM
 
 theorem norm_setToL1_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C)
     (f : α →₁[μ] E) : ‖setToL1 hT f‖ ≤ C * ‖f‖ :=
   calc
-    ‖setToL1 hT f‖ ≤ ‖setToL1sClm α E μ hT‖ * ‖f‖ :=
-      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1sClm hT) _
-    _ ≤ C * ‖f‖ := mul_le_mul (norm_setToL1sClm_le hT hC) le_rfl (norm_nonneg _) hC
+    ‖setToL1 hT f‖ ≤ ‖setToL1SCLM α E μ hT‖ * ‖f‖ :=
+      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
+    _ ≤ C * ‖f‖ := mul_le_mul (norm_setToL1SCLM_le hT hC) le_rfl (norm_nonneg _) hC
     
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm MeasureTheory.L1.norm_setToL1_le_mul_norm
 
 theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E) :
     ‖setToL1 hT f‖ ≤ max C 0 * ‖f‖ :=
   calc
-    ‖setToL1 hT f‖ ≤ ‖setToL1sClm α E μ hT‖ * ‖f‖ :=
-      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1sClm hT) _
+    ‖setToL1 hT f‖ ≤ ‖setToL1SCLM α E μ hT‖ * ‖f‖ :=
+      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ max C 0 * ‖f‖ :=
-      mul_le_mul (norm_setToL1sClm_le' hT) le_rfl (norm_nonneg _) (le_max_right _ _)
+      mul_le_mul (norm_setToL1SCLM_le' hT) le_rfl (norm_nonneg _) (le_max_right _ _)
     
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm' MeasureTheory.L1.norm_setToL1_le_mul_norm'
 
@@ -1341,11 +1350,13 @@ variable [CompleteSpace F] {T T' T'' : Set α → E →L[ℝ] F} {C C' C'' : ℝ
 
 variable (μ T)
 
+#print MeasureTheory.setToFun /-
 /-- Extend `T : set α → E →L[ℝ] F` to `(α → E) → F` (for integrable functions `α → E`). We set it to
 0 if the function is not integrable. -/
 def setToFun (hT : DominatedFinMeasAdditive μ T C) (f : α → E) : F :=
   if hf : Integrable f μ then L1.setToL1 hT (hf.toL1 f) else 0
 #align measure_theory.set_to_fun MeasureTheory.setToFun
+-/
 
 variable {μ T}
 
@@ -1541,7 +1552,7 @@ theorem setToFun_indicator_const (hT : DominatedFinMeasAdditive μ T C) {s : Set
   exact L1.set_to_L1_indicator_const_Lp hT hs hμs x
 #align measure_theory.set_to_fun_indicator_const MeasureTheory.setToFun_indicator_const
 
-theorem setToFun_const [FiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
+theorem setToFun_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     (setToFun μ T hT fun _ => x) = T univ x :=
   by
   have : (fun _ : α => x) = Set.indicator univ fun _ => x := (indicator_univ _).symm
@@ -1580,7 +1591,7 @@ theorem setToFun_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : Domina
     rw [← Lp.coe_fn_le]
     have h0 := Lp.coe_fn_zero G' 1 μ
     have h := integrable.coe_fn_to_L1 hfi
-    filter_upwards [h0, h, hf]with _ h0a ha hfa
+    filter_upwards [h0, h, hf] with _ h0a ha hfa
     rw [h0a, ha]
     exact hfa
   · simp_rw [set_to_fun_undef _ hfi]
@@ -1611,26 +1622,26 @@ theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f :
     (hfs : Tendsto (fun i => ∫⁻ x, ‖fs i x - f x‖₊ ∂μ) l (𝓝 0)) :
     Tendsto (fun i => setToFun μ T hT (fs i)) l (𝓝 <| setToFun μ T hT f) := by
   classical
-    let f_lp := hfi.to_L1 f
-    let F_lp i := if hFi : integrable (fs i) μ then hFi.toL1 (fs i) else 0
-    have tendsto_L1 : tendsto F_lp l (𝓝 f_lp) :=
-      by
-      rw [Lp.tendsto_Lp_iff_tendsto_ℒp']
-      simp_rw [snorm_one_eq_lintegral_nnnorm, Pi.sub_apply]
-      refine' (tendsto_congr' _).mp hfs
-      filter_upwards [hfsi]with i hi
-      refine' lintegral_congr_ae _
-      filter_upwards [hi.coe_fn_to_L1, hfi.coe_fn_to_L1]with x hxi hxf
-      simp_rw [F_lp, dif_pos hi, hxi, hxf]
-    suffices tendsto (fun i => set_to_fun μ T hT (F_lp i)) l (𝓝 (set_to_fun μ T hT f))
-      by
-      refine' (tendsto_congr' _).mp this
-      filter_upwards [hfsi]with i hi
-      suffices h_ae_eq : F_lp i =ᵐ[μ] fs i; exact set_to_fun_congr_ae hT h_ae_eq
-      simp_rw [F_lp, dif_pos hi]
-      exact hi.coe_fn_to_L1
-    rw [set_to_fun_congr_ae hT hfi.coe_fn_to_L1.symm]
-    exact ((continuous_set_to_fun hT).Tendsto f_lp).comp tendsto_L1
+  let f_lp := hfi.to_L1 f
+  let F_lp i := if hFi : integrable (fs i) μ then hFi.toL1 (fs i) else 0
+  have tendsto_L1 : tendsto F_lp l (𝓝 f_lp) :=
+    by
+    rw [Lp.tendsto_Lp_iff_tendsto_ℒp']
+    simp_rw [snorm_one_eq_lintegral_nnnorm, Pi.sub_apply]
+    refine' (tendsto_congr' _).mp hfs
+    filter_upwards [hfsi] with i hi
+    refine' lintegral_congr_ae _
+    filter_upwards [hi.coe_fn_to_L1, hfi.coe_fn_to_L1] with x hxi hxf
+    simp_rw [F_lp, dif_pos hi, hxi, hxf]
+  suffices tendsto (fun i => set_to_fun μ T hT (F_lp i)) l (𝓝 (set_to_fun μ T hT f))
+    by
+    refine' (tendsto_congr' _).mp this
+    filter_upwards [hfsi] with i hi
+    suffices h_ae_eq : F_lp i =ᵐ[μ] fs i; exact set_to_fun_congr_ae hT h_ae_eq
+    simp_rw [F_lp, dif_pos hi]
+    exact hi.coe_fn_to_L1
+  rw [set_to_fun_congr_ae hT hfi.coe_fn_to_L1.symm]
+  exact ((continuous_set_to_fun hT).Tendsto f_lp).comp tendsto_L1
 #align measure_theory.tendsto_set_to_fun_of_L1 MeasureTheory.tendsto_setToFun_of_L1
 
 theorem tendsto_setToFun_approxOn_of_measurable (hT : DominatedFinMeasAdditive μ T C)
@@ -1875,8 +1886,8 @@ theorem tendsto_setToFun_filter_of_dominated_convergence (hT : DominatedFinMeasA
   intro x xl
   have hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s := by rwa [tendsto_at_top'] at xl 
   have h :
-    { x : ι | (fun n => ae_strongly_measurable (fs n) μ) x } ∩
-        { x : ι | (fun n => ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) x } ∈
+    {x : ι | (fun n => ae_strongly_measurable (fs n) μ) x} ∩
+        {x : ι | (fun n => ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) x} ∈
       l :=
     inter_mem hfs_meas h_bound
   obtain ⟨k, h⟩ := hxl _ h
@@ -1917,9 +1928,9 @@ theorem continuousOn_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C
   by
   intro x hx
   refine' continuous_within_at_set_to_fun_of_dominated hT _ _ bound_integrable _
-  · filter_upwards [self_mem_nhdsWithin]with x hx using hfs_meas x hx
-  · filter_upwards [self_mem_nhdsWithin]with x hx using h_bound x hx
-  · filter_upwards [h_cont]with a ha using ha x hx
+  · filter_upwards [self_mem_nhdsWithin] with x hx using hfs_meas x hx
+  · filter_upwards [self_mem_nhdsWithin] with x hx using h_bound x hx
+  · filter_upwards [h_cont] with a ha using ha x hx
 #align measure_theory.continuous_on_set_to_fun_of_dominated MeasureTheory.continuousOn_setToFun_of_dominated
 
 theorem continuous_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C) {fs : X → α → E}
Diff
@@ -127,8 +127,8 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : FinMeasAd
     FinMeasAdditive μ T :=
   by
   refine' of_eq_top_imp_eq_top (fun s hs hμs => _) hT
-  rw [measure.smul_apply, smul_eq_mul, WithTop.mul_eq_top_iff] at hμs
-  simp only [hc_ne_top, or_false_iff, Ne.def, false_and_iff] at hμs
+  rw [measure.smul_apply, smul_eq_mul, WithTop.mul_eq_top_iff] at hμs 
+  simp only [hc_ne_top, or_false_iff, Ne.def, false_and_iff] at hμs 
   exact hμs.2
 #align measure_theory.fin_meas_additive.of_smul_measure MeasureTheory.FinMeasAdditive.of_smul_measure
 
@@ -151,8 +151,8 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
   by
   have h_empty : μ ∅ ≠ ∞ := (measure_empty.le.trans_lt ENNReal.coe_lt_top).Ne
   specialize hT ∅ ∅ MeasurableSet.empty MeasurableSet.empty h_empty h_empty (Set.inter_empty ∅)
-  rw [Set.union_empty] at hT
-  nth_rw 1 [← add_zero (T ∅)] at hT
+  rw [Set.union_empty] at hT 
+  nth_rw 1 [← add_zero (T ∅)] at hT 
   exact (add_left_cancel hT).symm
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 
@@ -178,7 +178,7 @@ theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
   rw [←
     h_add (S a) (⋃ i ∈ s, S i) (hS_meas a) (measurable_set_bUnion _ fun i _ => hS_meas i)
       (hps a (Finset.mem_insert_self a s))]
-  · congr ; convert Finset.iSup_insert a s S
+  · congr; convert Finset.iSup_insert a s S
   ·
     exact
       ((measure_bUnion_finset_le _ _).trans_lt <|
@@ -187,7 +187,7 @@ theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     refine' Union_eq_empty.mpr fun i => Union_eq_empty.mpr fun hi => _
     rw [← Set.disjoint_iff_inter_eq_empty]
     refine' h_disj a (Finset.mem_insert_self a s) i (Finset.mem_insert_of_mem hi) fun hai => _
-    rw [← hai] at hi
+    rw [← hai] at hi 
     exact has hi
 #align measure_theory.fin_meas_additive.map_Union_fin_meas_set_eq_sum MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum
 
@@ -272,12 +272,12 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : Dominated
     by
     intro s hs hcμs
     simp only [hc_ne_top, Algebra.id.smul_eq_mul, WithTop.mul_eq_top_iff, or_false_iff, Ne.def,
-      false_and_iff] at hcμs
+      false_and_iff] at hcμs 
     exact hcμs.2
   refine' ⟨hT.1.of_eq_top_imp_eq_top h, fun s hs hμs => _⟩
   have hcμs : c • μ s ≠ ∞ := mt (h s hs) hμs.ne
-  rw [smul_eq_mul] at hcμs
-  simp_rw [dominated_fin_meas_additive, measure.smul_apply, smul_eq_mul, to_real_mul] at hT
+  rw [smul_eq_mul] at hcμs 
+  simp_rw [dominated_fin_meas_additive, measure.smul_apply, smul_eq_mul, to_real_mul] at hT 
   refine' (hT.2 s hs hcμs.lt_top).trans (le_of_eq _)
   ring
 #align measure_theory.dominated_fin_meas_additive.of_smul_measure MeasureTheory.DominatedFinMeasAdditive.of_smul_measure
@@ -344,35 +344,35 @@ theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAddi
   by_cases h0 : g (f a) = 0
   · simp_rw [h0]
     rw [ContinuousLinearMap.map_zero, Finset.sum_eq_zero fun x hx => _]
-    rw [mem_filter] at hx
+    rw [mem_filter] at hx 
     rw [hx.2, ContinuousLinearMap.map_zero]
   have h_left_eq :
     T (map g f ⁻¹' {g (f a)}) (g (f a)) =
       T (f ⁻¹' ↑(f.range.filter fun b => g b = g (f a))) (g (f a)) :=
-    by congr ; rw [map_preimage_singleton]
+    by congr; rw [map_preimage_singleton]
   rw [h_left_eq]
   have h_left_eq' :
     T (f ⁻¹' ↑(Filter (fun b : G => g b = g (f a)) f.range)) (g (f a)) =
       T (⋃ y ∈ Filter (fun b : G => g b = g (f a)) f.range, f ⁻¹' {y}) (g (f a)) :=
-    by congr ; rw [← Finset.set_biUnion_preimage_singleton]
+    by congr; rw [← Finset.set_biUnion_preimage_singleton]
   rw [h_left_eq']
   rw [h_add.map_Union_fin_meas_set_eq_sum T T_empty]
   · simp only [filter_congr_decidable, sum_apply, ContinuousLinearMap.coe_sum']
     refine' Finset.sum_congr rfl fun x hx => _
-    rw [mem_filter] at hx
+    rw [mem_filter] at hx 
     rw [hx.2]
   · exact fun i => measurable_set_fiber _ _
   · intro i hi
-    rw [mem_filter] at hi
+    rw [mem_filter] at hi 
     refine' hfp i hi.1 fun hi0 => _
-    rw [hi0, hg] at hi
+    rw [hi0, hg] at hi 
     exact h0 hi.2.symm
   · intro i j hi hj hij
     rw [Set.disjoint_iff]
     intro x hx
     rw [Set.mem_inter_iff, Set.mem_preimage, Set.mem_preimage, Set.mem_singleton_iff,
-      Set.mem_singleton_iff] at hx
-    rw [← hx.1, ← hx.2] at hij
+      Set.mem_singleton_iff] at hx 
+    rw [← hx.1, ← hx.2] at hij 
     exact absurd rfl hij
 #align measure_theory.simple_func.map_set_to_simple_func MeasureTheory.SimpleFunc.map_setToSimpleFunc
 
@@ -390,7 +390,7 @@ theorem setToSimpleFunc_congr' (T : Set α → E →L[ℝ] F) (h_add : FinMeasAd
     · dsimp only [pair_apply]; rw [Eq]
     · have : T (pair f g ⁻¹' {(f a, g a)}) = 0 :=
         by
-        have h_eq : T (⇑(f.pair g) ⁻¹' {(f a, g a)}) = T (f ⁻¹' {f a} ∩ g ⁻¹' {g a}) := by congr ;
+        have h_eq : T (⇑(f.pair g) ⁻¹' {(f a, g a)}) = T (f ⁻¹' {f a} ∩ g ⁻¹' {g a}) := by congr;
           rw [pair_preimage_singleton f g]
         rw [h_eq]
         exact h (f a) (g a) Eq
@@ -403,7 +403,7 @@ theorem setToSimpleFunc_congr (T : Set α → E →L[ℝ] F)
   by
   refine' set_to_simple_func_congr' T h_add hf ((integrable_congr h).mp hf) _
   refine' fun x y hxy => h_zero _ ((measurable_set_fiber f x).inter (measurable_set_fiber g y)) _
-  rw [eventually_eq, ae_iff] at h
+  rw [eventually_eq, ae_iff] at h 
   refine' measure_mono_null (fun z => _) h
   simp_rw [Set.mem_inter_iff, Set.mem_setOf_eq, Set.mem_preimage, Set.mem_singleton_iff]
   intro h
@@ -447,7 +447,7 @@ theorem setToSimpleFunc_add_left' (T T' T'' : Set α → E →L[ℝ] F)
   intro x hx
   refine'
     h_add (f ⁻¹' {x}) (measurableSet_preimage _ _) (measure_preimage_lt_top_of_integrable _ hf _)
-  rw [mem_filter] at hx
+  rw [mem_filter] at hx 
   exact hx.2
 #align measure_theory.simple_func.set_to_simple_func_add_left' MeasureTheory.SimpleFunc.setToSimpleFunc_add_left'
 
@@ -470,7 +470,7 @@ theorem setToSimpleFunc_smul_left' (T T' : Set α → E →L[ℝ] F') (c : ℝ)
   intro x hx
   refine'
     h_smul (f ⁻¹' {x}) (measurableSet_preimage _ _) (measure_preimage_lt_top_of_integrable _ hf _)
-  rw [mem_filter] at hx
+  rw [mem_filter] at hx 
   exact hx.2
 #align measure_theory.simple_func.set_to_simple_func_smul_left' MeasureTheory.SimpleFunc.setToSimpleFunc_smul_left'
 
@@ -511,7 +511,7 @@ theorem setToSimpleFunc_sub (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
   by
   rw [sub_eq_add_neg, set_to_simple_func_add T h_add hf, set_to_simple_func_neg T h_add hg,
     sub_eq_add_neg]
-  rw [integrable_iff] at hg⊢
+  rw [integrable_iff] at hg ⊢
   intro x hx_ne
   change μ (Neg.neg ∘ g ⁻¹' {x}) < ∞
   rw [preimage_comp, neg_preimage, Set.neg_singleton]
@@ -568,7 +568,7 @@ theorem setToSimpleFunc_nonneg {m : MeasurableSpace α} (T : Set α → G' →L[
     (hT_nonneg : ∀ s x, 0 ≤ x → 0 ≤ T s x) (f : α →ₛ G') (hf : 0 ≤ f) : 0 ≤ setToSimpleFunc T f :=
   by
   refine' sum_nonneg fun i hi => hT_nonneg _ i _
-  rw [mem_range] at hi
+  rw [mem_range] at hi 
   obtain ⟨y, hy⟩ := set.mem_range.mp hi
   rw [← hy]
   refine' le_trans _ (hf y)
@@ -584,7 +584,7 @@ theorem setToSimpleFunc_nonneg' (T : Set α → G' →L[ℝ] G'')
   · simp [h0]
   refine'
     hT_nonneg _ (measurable_set_fiber _ _) (measure_preimage_lt_top_of_integrable _ hfi h0) i _
-  rw [mem_range] at hi
+  rw [mem_range] at hi 
   obtain ⟨y, hy⟩ := set.mem_range.mp hi
   rw [← hy]
   convert hf y
@@ -710,7 +710,7 @@ theorem norm_eq_sum_mul (f : α →₁ₛ[μ] G) :
   by
   rw [norm_to_simple_func, snorm_one_eq_lintegral_nnnorm]
   have h_eq := simple_func.map_apply (fun x => (‖x‖₊ : ℝ≥0∞)) (to_simple_func f)
-  dsimp only at h_eq
+  dsimp only at h_eq 
   simp_rw [← h_eq]
   rw [simple_func.lintegral_eq_lintegral, simple_func.map_lintegral, ENNReal.toReal_sum]
   · congr
@@ -914,7 +914,7 @@ theorem setToL1s_mono (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁ₛ[μ] G''}
     (hfg : f ≤ g) : setToL1s T f ≤ setToL1s T g :=
   by
-  rw [← sub_nonneg] at hfg⊢
+  rw [← sub_nonneg] at hfg ⊢
   rw [← set_to_L1s_sub h_zero h_add]
   exact set_to_L1s_nonneg h_zero h_add hT_nonneg hfg
 #align measure_theory.L1.simple_func.set_to_L1s_mono MeasureTheory.L1.SimpleFunc.setToL1s_mono
@@ -1271,7 +1271,7 @@ theorem setToL1_mono {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : Dominated
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁[μ] G'}
     (hfg : f ≤ g) : setToL1 hT f ≤ setToL1 hT g :=
   by
-  rw [← sub_nonneg] at hfg⊢
+  rw [← sub_nonneg] at hfg ⊢
   rw [← (set_to_L1 hT).map_sub]
   exact set_to_L1_nonneg hT hT_nonneg hfg
 #align measure_theory.L1.set_to_L1_mono MeasureTheory.L1.setToL1_mono
@@ -1485,7 +1485,7 @@ theorem setToFun_neg (hT : DominatedFinMeasAdditive μ T C) (f : α → E) :
     rw [set_to_fun_eq hT hf, set_to_fun_eq hT hf.neg, integrable.to_L1_neg,
       (L1.set_to_L1 hT).map_neg]
   · rw [set_to_fun_undef hT hf, set_to_fun_undef hT, neg_zero]
-    rwa [← integrable_neg_iff] at hf
+    rwa [← integrable_neg_iff] at hf 
 #align measure_theory.set_to_fun_neg MeasureTheory.setToFun_neg
 
 theorem setToFun_sub (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ)
@@ -1513,7 +1513,7 @@ theorem setToFun_congr_ae (hT : DominatedFinMeasAdditive μ T C) (h : f =ᵐ[μ]
   by_cases hfi : integrable f μ
   · have hgi : integrable g μ := hfi.congr h
     rw [set_to_fun_eq hT hfi, set_to_fun_eq hT hgi, (integrable.to_L1_eq_to_L1_iff f g hfi hgi).2 h]
-  · have hgi : ¬integrable g μ := by rw [integrable_congr h] at hfi; exact hfi
+  · have hgi : ¬integrable g μ := by rw [integrable_congr h] at hfi ; exact hfi
     rw [set_to_fun_undef hT hfi, set_to_fun_undef hT hgi]
 #align measure_theory.set_to_fun_congr_ae MeasureTheory.setToFun_congr_ae
 
@@ -1675,7 +1675,7 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
   use ε / 2 / c'.to_real
   refine' ⟨div_pos (half_pos hε_pos) (to_real_pos hc'0 hc'), _⟩
   intro g hfg
-  rw [Lp.dist_def] at hfg⊢
+  rw [Lp.dist_def] at hfg ⊢
   let h_int := fun f' : α →₁[μ] G => (L1.integrable_coe_fn f').of_measure_le_smul c' hc' hμ'_le
   have :
     snorm (integrable.to_L1 g (h_int g) - integrable.to_L1 f (h_int f)) 1 μ' = snorm (g - f) 1 μ' :=
@@ -1772,9 +1772,9 @@ theorem setToFun_top_smul_measure (hT : DominatedFinMeasAdditive (∞ • μ) T
     setToFun (∞ • μ) T hT f = 0 :=
   by
   refine' set_to_fun_measure_zero' hT fun s hs hμs => _
-  rw [lt_top_iff_ne_top] at hμs
+  rw [lt_top_iff_ne_top] at hμs 
   simp only [true_and_iff, measure.smul_apply, WithTop.mul_eq_top_iff, eq_self_iff_true,
-    top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs
+    top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs 
   simp only [hμs.right, measure.smul_apply, MulZeroClass.mul_zero, smul_eq_mul]
 #align measure_theory.set_to_fun_top_smul_measure MeasureTheory.setToFun_top_smul_measure
 
@@ -1783,7 +1783,7 @@ theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
     (f : α → E) : setToFun μ T hT f = setToFun (c • μ) T hT_smul f :=
   by
   by_cases hc0 : c = 0
-  · simp [hc0] at hT_smul
+  · simp [hc0] at hT_smul 
     have h : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0 := fun s hs hμs => hT_smul.eq_zero hs
     rw [set_to_fun_zero_left' _ h, set_to_fun_measure_zero]
     simp [hc0]
@@ -1873,7 +1873,7 @@ theorem tendsto_setToFun_filter_of_dominated_convergence (hT : DominatedFinMeasA
   by
   rw [tendsto_iff_seq_tendsto]
   intro x xl
-  have hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s := by rwa [tendsto_at_top'] at xl
+  have hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s := by rwa [tendsto_at_top'] at xl 
   have h :
     { x : ι | (fun n => ae_strongly_measurable (fs n) μ) x } ∩
         { x : ι | (fun n => ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) x } ∈
Diff
@@ -75,7 +75,7 @@ with finite measure. Its value on other sets is ignored.
 
 noncomputable section
 
-open Classical Topology BigOperators NNReal ENNReal MeasureTheory Pointwise
+open scoped Classical Topology BigOperators NNReal ENNReal MeasureTheory Pointwise
 
 open Set Filter TopologicalSpace ENNReal Emetric
 
Diff
@@ -178,8 +178,7 @@ theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
   rw [←
     h_add (S a) (⋃ i ∈ s, S i) (hS_meas a) (measurable_set_bUnion _ fun i _ => hS_meas i)
       (hps a (Finset.mem_insert_self a s))]
-  · congr
-    convert Finset.iSup_insert a s S
+  · congr ; convert Finset.iSup_insert a s S
   ·
     exact
       ((measure_bUnion_finset_le _ _).trans_lt <|
@@ -247,10 +246,7 @@ theorem smul [NormedField 𝕜] [NormedSpace 𝕜 β] (hT : DominatedFinMeasAddi
 theorem of_measure_le {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAdditive μ T C)
     (hC : 0 ≤ C) : DominatedFinMeasAdditive μ' T C :=
   by
-  have h' : ∀ s, MeasurableSet s → μ s = ∞ → μ' s = ∞ :=
-    by
-    intro s hs hμs
-    rw [eq_top_iff, ← hμs]
+  have h' : ∀ s, MeasurableSet s → μ s = ∞ → μ' s = ∞ := by intro s hs hμs; rw [eq_top_iff, ← hμs];
     exact h s hs
   refine' ⟨hT.1.of_eq_top_imp_eq_top h', fun s hs hμ's => _⟩
   have hμs : μ s < ∞ := (h s hs).trans_lt hμ's
@@ -353,16 +349,12 @@ theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAddi
   have h_left_eq :
     T (map g f ⁻¹' {g (f a)}) (g (f a)) =
       T (f ⁻¹' ↑(f.range.filter fun b => g b = g (f a))) (g (f a)) :=
-    by
-    congr
-    rw [map_preimage_singleton]
+    by congr ; rw [map_preimage_singleton]
   rw [h_left_eq]
   have h_left_eq' :
     T (f ⁻¹' ↑(Filter (fun b : G => g b = g (f a)) f.range)) (g (f a)) =
       T (⋃ y ∈ Filter (fun b : G => g b = g (f a)) f.range, f ⁻¹' {y}) (g (f a)) :=
-    by
-    congr
-    rw [← Finset.set_biUnion_preimage_singleton]
+    by congr ; rw [← Finset.set_biUnion_preimage_singleton]
   rw [h_left_eq']
   rw [h_add.map_Union_fin_meas_set_eq_sum T T_empty]
   · simp only [filter_congr_decidable, sum_apply, ContinuousLinearMap.coe_sum']
@@ -395,13 +387,10 @@ theorem setToSimpleFunc_congr' (T : Set α → E →L[ℝ] F) (h_add : FinMeasAd
     refine' Finset.sum_congr rfl fun p hp => _
     rcases mem_range.1 hp with ⟨a, rfl⟩
     by_cases eq : f a = g a
-    · dsimp only [pair_apply]
-      rw [Eq]
+    · dsimp only [pair_apply]; rw [Eq]
     · have : T (pair f g ⁻¹' {(f a, g a)}) = 0 :=
         by
-        have h_eq : T (⇑(f.pair g) ⁻¹' {(f a, g a)}) = T (f ⁻¹' {f a} ∩ g ⁻¹' {g a}) :=
-          by
-          congr
+        have h_eq : T (⇑(f.pair g) ⁻¹' {(f a, g a)}) = T (f ⁻¹' {f a} ∩ g ⁻¹' {g a}) := by congr ;
           rw [pair_preimage_singleton f g]
         rw [h_eq]
         exact h (f a) (g a) Eq
@@ -490,10 +479,8 @@ theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
     setToSimpleFunc T (f + g) = setToSimpleFunc T f + setToSimpleFunc T g :=
   have hp_pair : Integrable (f.pair g) μ := integrable_pair hf hg
   calc
-    setToSimpleFunc T (f + g) = ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) (x.fst + x.snd) :=
-      by
-      rw [add_eq_map₂, map_set_to_simple_func T h_add hp_pair]
-      simp
+    setToSimpleFunc T (f + g) = ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) (x.fst + x.snd) := by
+      rw [add_eq_map₂, map_set_to_simple_func T h_add hp_pair]; simp
     _ = ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.fst + T (pair f g ⁻¹' {x}) x.snd :=
       (Finset.sum_congr rfl fun a ha => ContinuousLinearMap.map_add _ _ _)
     _ =
@@ -535,10 +522,8 @@ theorem setToSimpleFunc_sub (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
 theorem setToSimpleFunc_smul_real (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) (c : ℝ)
     {f : α →ₛ E} (hf : Integrable f μ) : setToSimpleFunc T (c • f) = c • setToSimpleFunc T f :=
   calc
-    setToSimpleFunc T (c • f) = ∑ x in f.range, T (f ⁻¹' {x}) (c • x) :=
-      by
-      rw [smul_eq_map c f, map_set_to_simple_func T h_add hf]
-      rw [smul_zero]
+    setToSimpleFunc T (c • f) = ∑ x in f.range, T (f ⁻¹' {x}) (c • x) := by
+      rw [smul_eq_map c f, map_set_to_simple_func T h_add hf]; rw [smul_zero]
     _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x :=
       (Finset.sum_congr rfl fun b hb => by rw [ContinuousLinearMap.map_smul (T (f ⁻¹' {b})) c b])
     _ = c • setToSimpleFunc T f := by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm]
@@ -565,10 +550,8 @@ variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
 theorem setToSimpleFunc_mono_left {m : MeasurableSpace α} (T T' : Set α → F →L[ℝ] G'')
-    (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →ₛ F) : setToSimpleFunc T f ≤ setToSimpleFunc T' f :=
-  by
-  simp_rw [set_to_simple_func]
-  exact sum_le_sum fun i hi => hTT' _ i
+    (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →ₛ F) : setToSimpleFunc T f ≤ setToSimpleFunc T' f := by
+  simp_rw [set_to_simple_func]; exact sum_le_sum fun i hi => hTT' _ i
 #align measure_theory.simple_func.set_to_simple_func_mono_left MeasureTheory.SimpleFunc.setToSimpleFunc_mono_left
 
 theorem setToSimpleFunc_mono_left' (T T' : Set α → E →L[ℝ] G'')
@@ -625,9 +608,7 @@ theorem norm_setToSimpleFunc_le_sum_op_norm {m : MeasurableSpace α} (T : Set α
     (f : α →ₛ F') : ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
   calc
     ‖∑ x in f.range, T (f ⁻¹' {x}) x‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x}) x‖ := norm_sum_le _ _
-    _ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
-      by
-      refine' Finset.sum_le_sum fun b hb => _
+    _ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ := by refine' Finset.sum_le_sum fun b hb => _;
       simp_rw [ContinuousLinearMap.le_op_norm]
     
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_op_norm
@@ -683,12 +664,9 @@ theorem setToSimpleFunc_indicator (T : Set α → F →L[ℝ] F') (hT_empty : T
     simp
   rw [range_indicator hs hs_empty hs_univ]
   by_cases hx0 : x = 0
-  · simp_rw [hx0]
-    simp
+  · simp_rw [hx0]; simp
   rw [sum_insert]
-  swap;
-  · rw [Finset.mem_singleton]
-    exact hx0
+  swap; · rw [Finset.mem_singleton]; exact hx0
   rw [sum_singleton, (T _).map_zero, add_zero]
   congr
   simp only [coe_piecewise, piecewise_eq_indicator, coe_const, Pi.const_zero,
@@ -696,9 +674,7 @@ theorem setToSimpleFunc_indicator (T : Set α → F →L[ℝ] F') (hT_empty : T
   rw [indicator_preimage, preimage_const_of_mem]
   swap; · exact Set.mem_singleton x
   rw [← Pi.const_zero, preimage_const_of_not_mem]
-  swap;
-  · rw [Set.mem_singleton_iff]
-    exact Ne.symm hx0
+  swap; · rw [Set.mem_singleton_iff]; exact Ne.symm hx0
   simp
 #align measure_theory.simple_func.set_to_simple_func_indicator MeasureTheory.SimpleFunc.setToSimpleFunc_indicator
 
@@ -743,8 +719,7 @@ theorem norm_eq_sum_mul (f : α →₁ₛ[μ] G) :
       ENNReal.toReal_ofReal (norm_nonneg _)]
   · intro x hx
     by_cases hx0 : x = 0
-    · rw [hx0]
-      simp
+    · rw [hx0]; simp
     ·
       exact
         ENNReal.mul_ne_top ENNReal.coe_ne_top
@@ -800,8 +775,7 @@ theorem setToL1s_congr_measure {μ' : Measure α} (T : Set α → E →L[ℝ] F)
   by
   refine' simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable f) _
   refine' (to_simple_func_eq_to_fun f).trans _
-  suffices : f' =ᵐ[μ] ⇑(simple_func.to_simple_func f')
-  exact h.trans this
+  suffices : f' =ᵐ[μ] ⇑(simple_func.to_simple_func f'); exact h.trans this
   have goal' : f' =ᵐ[μ'] simple_func.to_simple_func f' := (to_simple_func_eq_to_fun f').symm
   exact hμ.ae_eq goal'
 #align measure_theory.L1.simple_func.set_to_L1s_congr_measure MeasureTheory.L1.SimpleFunc.setToL1s_congr_measure
@@ -1124,9 +1098,7 @@ theorem setToL1_eq_setToL1' (hT : DominatedFinMeasAdditive μ T C)
 theorem setToL1_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C)
     (f : α →₁[μ] E) : setToL1 hT f = 0 :=
   by
-  suffices set_to_L1 hT = 0 by
-    rw [this]
-    simp
+  suffices set_to_L1 hT = 0 by rw [this]; simp
   refine' ContinuousLinearMap.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _
   ext1 f
   rw [set_to_L1s_clm_zero_left hT f, ContinuousLinearMap.zero_comp, ContinuousLinearMap.zero_apply]
@@ -1135,9 +1107,7 @@ theorem setToL1_zero_left (hT : DominatedFinMeasAdditive μ (0 : Set α → E 
 theorem setToL1_zero_left' (hT : DominatedFinMeasAdditive μ T C)
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) (f : α →₁[μ] E) : setToL1 hT f = 0 :=
   by
-  suffices set_to_L1 hT = 0 by
-    rw [this]
-    simp
+  suffices set_to_L1 hT = 0 by rw [this]; simp
   refine' ContinuousLinearMap.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _
   ext1 f
   rw [set_to_L1s_clm_zero_left' hT h_zero f, ContinuousLinearMap.zero_comp,
@@ -1151,10 +1121,7 @@ theorem setToL1_congr_left (T T' : Set α → E →L[ℝ] F) {C C' : ℝ}
   suffices set_to_L1 hT = set_to_L1 hT' by rw [this]
   refine' ContinuousLinearMap.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _
   ext1 f
-  suffices set_to_L1 hT' f = set_to_L1s_clm α E μ hT f
-    by
-    rw [← this]
-    congr 1
+  suffices set_to_L1 hT' f = set_to_L1s_clm α E μ hT f by rw [← this]; congr 1
   rw [set_to_L1_eq_set_to_L1s_clm]
   exact set_to_L1s_clm_congr_left hT' hT h.symm f
 #align measure_theory.L1.set_to_L1_congr_left MeasureTheory.L1.setToL1_congr_left
@@ -1167,10 +1134,7 @@ theorem setToL1_congr_left' (T T' : Set α → E →L[ℝ] F) {C C' : ℝ}
   suffices set_to_L1 hT = set_to_L1 hT' by rw [this]
   refine' ContinuousLinearMap.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _
   ext1 f
-  suffices set_to_L1 hT' f = set_to_L1s_clm α E μ hT f
-    by
-    rw [← this]
-    congr 1
+  suffices set_to_L1 hT' f = set_to_L1s_clm α E μ hT f by rw [← this]; congr 1
   rw [set_to_L1_eq_set_to_L1s_clm]
   exact (set_to_L1s_clm_congr_left' hT hT' h f).symm
 #align measure_theory.L1.set_to_L1_congr_left' MeasureTheory.L1.setToL1_congr_left'
@@ -1185,9 +1149,7 @@ theorem setToL1_add_left (hT : DominatedFinMeasAdditive μ T C)
   ext1 f
   simp only [ContinuousLinearMap.add_comp, ContinuousLinearMap.coe_comp', Function.comp_apply,
     ContinuousLinearMap.add_apply]
-  suffices set_to_L1 hT f + set_to_L1 hT' f = set_to_L1s_clm α E μ (hT.add hT') f
-    by
-    rw [← this]
+  suffices set_to_L1 hT f + set_to_L1 hT' f = set_to_L1s_clm α E μ (hT.add hT') f by rw [← this];
     congr
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_add_left hT hT']
 #align measure_theory.L1.set_to_L1_add_left MeasureTheory.L1.setToL1_add_left
@@ -1202,10 +1164,7 @@ theorem setToL1_add_left' (hT : DominatedFinMeasAdditive μ T C)
   ext1 f
   simp only [ContinuousLinearMap.add_comp, ContinuousLinearMap.coe_comp', Function.comp_apply,
     ContinuousLinearMap.add_apply]
-  suffices set_to_L1 hT f + set_to_L1 hT' f = set_to_L1s_clm α E μ hT'' f
-    by
-    rw [← this]
-    congr
+  suffices set_to_L1 hT f + set_to_L1 hT' f = set_to_L1s_clm α E μ hT'' f by rw [← this]; congr
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1_eq_set_to_L1s_clm,
     set_to_L1s_clm_add_left' hT hT' hT'' h_add]
 #align measure_theory.L1.set_to_L1_add_left' MeasureTheory.L1.setToL1_add_left'
@@ -1218,10 +1177,7 @@ theorem setToL1_smul_left (hT : DominatedFinMeasAdditive μ T C) (c : ℝ) (f :
   ext1 f
   simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_comp,
     Pi.smul_apply, ContinuousLinearMap.coe_smul']
-  suffices c • set_to_L1 hT f = set_to_L1s_clm α E μ (hT.smul c) f
-    by
-    rw [← this]
-    congr
+  suffices c • set_to_L1 hT f = set_to_L1s_clm α E μ (hT.smul c) f by rw [← this]; congr
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_smul_left c hT]
 #align measure_theory.L1.set_to_L1_smul_left MeasureTheory.L1.setToL1_smul_left
 
@@ -1235,10 +1191,7 @@ theorem setToL1_smul_left' (hT : DominatedFinMeasAdditive μ T C)
   ext1 f
   simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_comp,
     Pi.smul_apply, ContinuousLinearMap.coe_smul']
-  suffices c • set_to_L1 hT f = set_to_L1s_clm α E μ hT' f
-    by
-    rw [← this]
-    congr
+  suffices c • set_to_L1 hT f = set_to_L1s_clm α E μ hT' f by rw [← this]; congr
   rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_smul_left' c hT hT' h_smul]
 #align measure_theory.L1.set_to_L1_smul_left' MeasureTheory.L1.setToL1_smul_left'
 
@@ -1483,8 +1436,7 @@ theorem setToFun_zero (hT : DominatedFinMeasAdditive μ T C) : setToFun μ T hT
 theorem setToFun_zero_left {hT : DominatedFinMeasAdditive μ (0 : Set α → E →L[ℝ] F) C} :
     setToFun μ 0 hT f = 0 := by
   by_cases hf : integrable f μ
-  · rw [set_to_fun_eq hT hf]
-    exact L1.set_to_L1_zero_left hT _
+  · rw [set_to_fun_eq hT hf]; exact L1.set_to_L1_zero_left hT _
   · exact set_to_fun_undef hT hf
 #align measure_theory.set_to_fun_zero_left MeasureTheory.setToFun_zero_left
 
@@ -1492,8 +1444,7 @@ theorem setToFun_zero_left' (hT : DominatedFinMeasAdditive μ T C)
     (h_zero : ∀ s, MeasurableSet s → μ s < ∞ → T s = 0) : setToFun μ T hT f = 0 :=
   by
   by_cases hf : integrable f μ
-  · rw [set_to_fun_eq hT hf]
-    exact L1.set_to_L1_zero_left' hT h_zero _
+  · rw [set_to_fun_eq hT hf]; exact L1.set_to_L1_zero_left' hT h_zero _
   · exact set_to_fun_undef hT hf
 #align measure_theory.set_to_fun_zero_left' MeasureTheory.setToFun_zero_left'
 
@@ -1522,11 +1473,8 @@ theorem setToFun_finset_sum' (hT : DominatedFinMeasAdditive μ T C) {ι} (s : Fi
 
 theorem setToFun_finset_sum (hT : DominatedFinMeasAdditive μ T C) {ι} (s : Finset ι) {f : ι → α → E}
     (hf : ∀ i ∈ s, Integrable (f i) μ) :
-    (setToFun μ T hT fun a => ∑ i in s, f i a) = ∑ i in s, setToFun μ T hT (f i) :=
-  by
-  convert set_to_fun_finset_sum' hT s hf
-  ext1 a
-  simp
+    (setToFun μ T hT fun a => ∑ i in s, f i a) = ∑ i in s, setToFun μ T hT (f i) := by
+  convert set_to_fun_finset_sum' hT s hf; ext1 a; simp
 #align measure_theory.set_to_fun_finset_sum MeasureTheory.setToFun_finset_sum
 
 theorem setToFun_neg (hT : DominatedFinMeasAdditive μ T C) (f : α → E) :
@@ -1554,8 +1502,7 @@ theorem setToFun_smul [NontriviallyNormedField 𝕜] [NormedSpace 𝕜 E] [Norme
     rw [set_to_fun_eq hT hf, set_to_fun_eq hT, integrable.to_L1_smul',
       L1.set_to_L1_smul hT h_smul c _]
   · by_cases hr : c = 0
-    · rw [hr]
-      simp
+    · rw [hr]; simp
     · have hf' : ¬integrable (c • f) μ := by rwa [integrable_smul_iff hr f]
       rw [set_to_fun_undef hT hf, set_to_fun_undef hT hf', smul_zero]
 #align measure_theory.set_to_fun_smul MeasureTheory.setToFun_smul
@@ -1566,15 +1513,12 @@ theorem setToFun_congr_ae (hT : DominatedFinMeasAdditive μ T C) (h : f =ᵐ[μ]
   by_cases hfi : integrable f μ
   · have hgi : integrable g μ := hfi.congr h
     rw [set_to_fun_eq hT hfi, set_to_fun_eq hT hgi, (integrable.to_L1_eq_to_L1_iff f g hfi hgi).2 h]
-  · have hgi : ¬integrable g μ := by
-      rw [integrable_congr h] at hfi
-      exact hfi
+  · have hgi : ¬integrable g μ := by rw [integrable_congr h] at hfi; exact hfi
     rw [set_to_fun_undef hT hfi, set_to_fun_undef hT hgi]
 #align measure_theory.set_to_fun_congr_ae MeasureTheory.setToFun_congr_ae
 
 theorem setToFun_measure_zero (hT : DominatedFinMeasAdditive μ T C) (h : μ = 0) :
-    setToFun μ T hT f = 0 := by
-  have : f =ᵐ[μ] 0 := by simp [h]
+    setToFun μ T hT f = 0 := by have : f =ᵐ[μ] 0 := by simp [h];
   rw [set_to_fun_congr_ae hT this, set_to_fun_zero]
 #align measure_theory.set_to_fun_measure_zero MeasureTheory.setToFun_measure_zero
 
@@ -1616,8 +1560,7 @@ theorem setToFun_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     setToFun μ T hT f ≤ setToFun μ T' hT' f :=
   by
   by_cases hf : integrable f μ
-  · simp_rw [set_to_fun_eq _ hf]
-    exact L1.set_to_L1_mono_left' hT hT' hTT' _
+  · simp_rw [set_to_fun_eq _ hf]; exact L1.set_to_L1_mono_left' hT hT' hTT' _
   · simp_rw [set_to_fun_undef _ hf]
 #align measure_theory.set_to_fun_mono_left' MeasureTheory.setToFun_mono_left'
 
@@ -1658,9 +1601,7 @@ end Order
 
 @[continuity]
 theorem continuous_setToFun (hT : DominatedFinMeasAdditive μ T C) :
-    Continuous fun f : α →₁[μ] E => setToFun μ T hT f :=
-  by
-  simp_rw [L1.set_to_fun_eq_set_to_L1 hT]
+    Continuous fun f : α →₁[μ] E => setToFun μ T hT f := by simp_rw [L1.set_to_fun_eq_set_to_L1 hT];
   exact ContinuousLinearMap.continuous _
 #align measure_theory.continuous_set_to_fun MeasureTheory.continuous_setToFun
 
@@ -1685,8 +1626,7 @@ theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f :
       by
       refine' (tendsto_congr' _).mp this
       filter_upwards [hfsi]with i hi
-      suffices h_ae_eq : F_lp i =ᵐ[μ] fs i
-      exact set_to_fun_congr_ae hT h_ae_eq
+      suffices h_ae_eq : F_lp i =ᵐ[μ] fs i; exact set_to_fun_congr_ae hT h_ae_eq
       simp_rw [F_lp, dif_pos hi]
       exact hi.coe_fn_to_L1
     rw [set_to_fun_congr_ae hT hfi.coe_fn_to_L1.symm]
@@ -1722,19 +1662,12 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
       (Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f)).toL1 f :=
   by
   by_cases hc'0 : c' = 0
-  · have hμ'0 : μ' = 0 := by
-      rw [← measure.nonpos_iff_eq_zero']
-      refine' hμ'_le.trans _
-      simp [hc'0]
+  · have hμ'0 : μ' = 0 := by rw [← measure.nonpos_iff_eq_zero']; refine' hμ'_le.trans _; simp [hc'0]
     have h_im_zero :
       (fun f : α →₁[μ] G =>
           (integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coe_fn f)).toL1 f) =
         0 :=
-      by
-      ext1 f
-      ext1
-      simp_rw [hμ'0]
-      simp only [ae_zero]
+      by ext1 f; ext1; simp_rw [hμ'0]; simp only [ae_zero]
     rw [h_im_zero]
     exact continuous_zero
   rw [Metric.continuous_iff]
@@ -1748,9 +1681,7 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
     snorm (integrable.to_L1 g (h_int g) - integrable.to_L1 f (h_int f)) 1 μ' = snorm (g - f) 1 μ' :=
     snorm_congr_ae ((integrable.coe_fn_to_L1 _).sub (integrable.coe_fn_to_L1 _))
   rw [this]
-  have h_snorm_ne_top : snorm (g - f) 1 μ ≠ ∞ :=
-    by
-    rw [← snorm_congr_ae (Lp.coe_fn_sub _ _)]
+  have h_snorm_ne_top : snorm (g - f) 1 μ ≠ ∞ := by rw [← snorm_congr_ae (Lp.coe_fn_sub _ _)];
     exact Lp.snorm_ne_top _
   have h_snorm_ne_top' : snorm (g - f) 1 μ' ≠ ∞ :=
     by
@@ -1768,9 +1699,7 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
     _ = c'.to_real * (snorm (⇑g - ⇑f) 1 μ).toReal := to_real_mul
     _ ≤ c'.to_real * (ε / 2 / c'.to_real) :=
       (mul_le_mul le_rfl hfg.le to_real_nonneg to_real_nonneg)
-    _ = ε / 2 := by
-      refine' mul_div_cancel' (ε / 2) _
-      rw [Ne.def, to_real_eq_zero_iff]
+    _ = ε / 2 := by refine' mul_div_cancel' (ε / 2) _; rw [Ne.def, to_real_eq_zero_iff];
       simp [hc', hc'0]
     _ < ε := half_lt_self hε_pos
     
@@ -1798,9 +1727,7 @@ theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞
     have :
       (fun f : α →₁[μ] E => set_to_fun μ' T hT' f) = fun f : α →₁[μ] E =>
         set_to_fun μ' T hT' ((h_int f (L1.integrable_coe_fn f)).toL1 f) :=
-      by
-      ext1 f
-      exact set_to_fun_congr_ae hT' (integrable.coe_fn_to_L1 _).symm
+      by ext1 f; exact set_to_fun_congr_ae hT' (integrable.coe_fn_to_L1 _).symm
     rw [this]
     exact (continuous_set_to_fun hT').comp (continuous_L1_to_L1 c' hc' hμ'_le)
   · intro f₂ g₂ hfg hf₂ hf_eq
@@ -1866,30 +1793,22 @@ theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
 #align measure_theory.set_to_fun_congr_smul_measure MeasureTheory.setToFun_congr_smul_measure
 
 theorem norm_setToFun_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E)
-    (hC : 0 ≤ C) : ‖setToFun μ T hT f‖ ≤ C * ‖f‖ :=
-  by
-  rw [L1.set_to_fun_eq_set_to_L1]
+    (hC : 0 ≤ C) : ‖setToFun μ T hT f‖ ≤ C * ‖f‖ := by rw [L1.set_to_fun_eq_set_to_L1];
   exact L1.norm_set_to_L1_le_mul_norm hT hC f
 #align measure_theory.norm_set_to_fun_le_mul_norm MeasureTheory.norm_setToFun_le_mul_norm
 
 theorem norm_setToFun_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E) :
-    ‖setToFun μ T hT f‖ ≤ max C 0 * ‖f‖ :=
-  by
-  rw [L1.set_to_fun_eq_set_to_L1]
+    ‖setToFun μ T hT f‖ ≤ max C 0 * ‖f‖ := by rw [L1.set_to_fun_eq_set_to_L1];
   exact L1.norm_set_to_L1_le_mul_norm' hT f
 #align measure_theory.norm_set_to_fun_le_mul_norm' MeasureTheory.norm_setToFun_le_mul_norm'
 
 theorem norm_setToFun_le (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ) (hC : 0 ≤ C) :
-    ‖setToFun μ T hT f‖ ≤ C * ‖hf.toL1 f‖ :=
-  by
-  rw [set_to_fun_eq hT hf]
+    ‖setToFun μ T hT f‖ ≤ C * ‖hf.toL1 f‖ := by rw [set_to_fun_eq hT hf];
   exact L1.norm_set_to_L1_le_mul_norm hT hC _
 #align measure_theory.norm_set_to_fun_le MeasureTheory.norm_setToFun_le
 
 theorem norm_setToFun_le' (hT : DominatedFinMeasAdditive μ T C) (hf : Integrable f μ) :
-    ‖setToFun μ T hT f‖ ≤ max C 0 * ‖hf.toL1 f‖ :=
-  by
-  rw [set_to_fun_eq hT hf]
+    ‖setToFun μ T hT f‖ ≤ max C 0 * ‖hf.toL1 f‖ := by rw [set_to_fun_eq hT hf];
   exact L1.norm_set_to_L1_le_mul_norm' hT _
 #align measure_theory.norm_set_to_fun_le' MeasureTheory.norm_setToFun_le'
 
@@ -1922,8 +1841,7 @@ theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive
       (𝓝 (L1.set_to_L1 hT (f_int.to_L1 f)))
     by
     convert this
-    · ext1 n
-      exact set_to_fun_eq hT (fs_int n)
+    · ext1 n; exact set_to_fun_eq hT (fs_int n)
     · exact set_to_fun_eq hT f_int
   -- the convergence of set_to_L1 follows from the convergence of the L1 functions
   refine' L1.tendsto_set_to_L1 hT _ _ _
Diff
@@ -1411,10 +1411,10 @@ theorem setToFun_undef (hT : DominatedFinMeasAdditive μ T C) (hf : ¬Integrable
   dif_neg hf
 #align measure_theory.set_to_fun_undef MeasureTheory.setToFun_undef
 
-theorem setToFun_non_aeStronglyMeasurable (hT : DominatedFinMeasAdditive μ T C)
-    (hf : ¬AeStronglyMeasurable f μ) : setToFun μ T hT f = 0 :=
+theorem setToFun_non_aEStronglyMeasurable (hT : DominatedFinMeasAdditive μ T C)
+    (hf : ¬AEStronglyMeasurable f μ) : setToFun μ T hT f = 0 :=
   setToFun_undef hT (not_and_of_not_left _ hf)
-#align measure_theory.set_to_fun_non_ae_strongly_measurable MeasureTheory.setToFun_non_aeStronglyMeasurable
+#align measure_theory.set_to_fun_non_ae_strongly_measurable MeasureTheory.setToFun_non_aEStronglyMeasurable
 
 theorem setToFun_congr_left (hT : DominatedFinMeasAdditive μ T C)
     (hT' : DominatedFinMeasAdditive μ T' C') (h : T = T') (f : α → E) :
@@ -1901,14 +1901,14 @@ theorem norm_setToFun_le' (hT : DominatedFinMeasAdditive μ T C) (hf : Integrabl
   is easier. -/
 theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive μ T C)
     {fs : ℕ → α → E} {f : α → E} (bound : α → ℝ)
-    (fs_measurable : ∀ n, AeStronglyMeasurable (fs n) μ) (bound_integrable : Integrable bound μ)
+    (fs_measurable : ∀ n, AEStronglyMeasurable (fs n) μ) (bound_integrable : Integrable bound μ)
     (h_bound : ∀ n, ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a)
     (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => fs n a) atTop (𝓝 (f a))) :
     Tendsto (fun n => setToFun μ T hT (fs n)) atTop (𝓝 <| setToFun μ T hT f) :=
   by
   -- `f` is a.e.-measurable, since it is the a.e.-pointwise limit of a.e.-measurable functions.
   have f_measurable : ae_strongly_measurable f μ :=
-    aeStronglyMeasurable_of_tendsto_ae _ fs_measurable h_lim
+    aestronglyMeasurable_of_tendsto_ae _ fs_measurable h_lim
   -- all functions we consider are integrable
   have fs_int : ∀ n, integrable (fs n) μ := fun n =>
     bound_integrable.mono' (fs_measurable n) (h_bound _)
@@ -1948,7 +1948,7 @@ theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive
 /-- Lebesgue dominated convergence theorem for filters with a countable basis -/
 theorem tendsto_setToFun_filter_of_dominated_convergence (hT : DominatedFinMeasAdditive μ T C) {ι}
     {l : Filter ι} [l.IsCountablyGenerated] {fs : ι → α → E} {f : α → E} (bound : α → ℝ)
-    (hfs_meas : ∀ᶠ n in l, AeStronglyMeasurable (fs n) μ)
+    (hfs_meas : ∀ᶠ n in l, AEStronglyMeasurable (fs n) μ)
     (h_bound : ∀ᶠ n in l, ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
     (h_lim : ∀ᵐ a ∂μ, Tendsto (fun n => fs n a) l (𝓝 (f a))) :
     Tendsto (fun n => setToFun μ T hT (fs n)) l (𝓝 <| setToFun μ T hT f) :=
@@ -1976,7 +1976,7 @@ variable {X : Type _} [TopologicalSpace X] [FirstCountableTopology X]
 
 theorem continuousWithinAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C)
     {fs : X → α → E} {x₀ : X} {bound : α → ℝ} {s : Set X}
-    (hfs_meas : ∀ᶠ x in 𝓝[s] x₀, AeStronglyMeasurable (fs x) μ)
+    (hfs_meas : ∀ᶠ x in 𝓝[s] x₀, AEStronglyMeasurable (fs x) μ)
     (h_bound : ∀ᶠ x in 𝓝[s] x₀, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
     (h_cont : ∀ᵐ a ∂μ, ContinuousWithinAt (fun x => fs x a) s x₀) :
     ContinuousWithinAt (fun x => setToFun μ T hT (fs x)) s x₀ :=
@@ -1984,7 +1984,7 @@ theorem continuousWithinAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive
 #align measure_theory.continuous_within_at_set_to_fun_of_dominated MeasureTheory.continuousWithinAt_setToFun_of_dominated
 
 theorem continuousAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C) {fs : X → α → E}
-    {x₀ : X} {bound : α → ℝ} (hfs_meas : ∀ᶠ x in 𝓝 x₀, AeStronglyMeasurable (fs x) μ)
+    {x₀ : X} {bound : α → ℝ} (hfs_meas : ∀ᶠ x in 𝓝 x₀, AEStronglyMeasurable (fs x) μ)
     (h_bound : ∀ᶠ x in 𝓝 x₀, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
     (h_cont : ∀ᵐ a ∂μ, ContinuousAt (fun x => fs x a) x₀) :
     ContinuousAt (fun x => setToFun μ T hT (fs x)) x₀ :=
@@ -1992,7 +1992,7 @@ theorem continuousAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C
 #align measure_theory.continuous_at_set_to_fun_of_dominated MeasureTheory.continuousAt_setToFun_of_dominated
 
 theorem continuousOn_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C) {fs : X → α → E}
-    {bound : α → ℝ} {s : Set X} (hfs_meas : ∀ x ∈ s, AeStronglyMeasurable (fs x) μ)
+    {bound : α → ℝ} {s : Set X} (hfs_meas : ∀ x ∈ s, AEStronglyMeasurable (fs x) μ)
     (h_bound : ∀ x ∈ s, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
     (h_cont : ∀ᵐ a ∂μ, ContinuousOn (fun x => fs x a) s) :
     ContinuousOn (fun x => setToFun μ T hT (fs x)) s :=
@@ -2005,7 +2005,7 @@ theorem continuousOn_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C
 #align measure_theory.continuous_on_set_to_fun_of_dominated MeasureTheory.continuousOn_setToFun_of_dominated
 
 theorem continuous_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C) {fs : X → α → E}
-    {bound : α → ℝ} (hfs_meas : ∀ x, AeStronglyMeasurable (fs x) μ)
+    {bound : α → ℝ} (hfs_meas : ∀ x, AEStronglyMeasurable (fs x) μ)
     (h_bound : ∀ x, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : Integrable bound μ)
     (h_cont : ∀ᵐ a ∂μ, Continuous fun x => fs x a) : Continuous fun x => setToFun μ T hT (fs x) :=
   continuous_iff_continuousAt.mpr fun x₀ =>
Diff
@@ -157,7 +157,7 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 
 /- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
-theorem map_unionᵢ_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
+theorem map_iUnion_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι)
     (hS_meas : ∀ i, MeasurableSet (S i)) (hSp : ∀ i ∈ sι, μ (S i) ≠ ∞)
     (h_disj : ∀ (i) (_ : i ∈ sι) (j) (_ : j ∈ sι), i ≠ j → Disjoint (S i) (S j)) :
@@ -179,18 +179,18 @@ theorem map_unionᵢ_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ =
     h_add (S a) (⋃ i ∈ s, S i) (hS_meas a) (measurable_set_bUnion _ fun i _ => hS_meas i)
       (hps a (Finset.mem_insert_self a s))]
   · congr
-    convert Finset.supᵢ_insert a s S
+    convert Finset.iSup_insert a s S
   ·
     exact
       ((measure_bUnion_finset_le _ _).trans_lt <|
           ENNReal.sum_lt_top fun i hi => hps i <| Finset.mem_insert_of_mem hi).Ne
-  · simp_rw [Set.inter_unionᵢ]
+  · simp_rw [Set.inter_iUnion]
     refine' Union_eq_empty.mpr fun i => Union_eq_empty.mpr fun hi => _
     rw [← Set.disjoint_iff_inter_eq_empty]
     refine' h_disj a (Finset.mem_insert_self a s) i (Finset.mem_insert_of_mem hi) fun hai => _
     rw [← hai] at hi
     exact has hi
-#align measure_theory.fin_meas_additive.map_Union_fin_meas_set_eq_sum MeasureTheory.FinMeasAdditive.map_unionᵢ_fin_meas_set_eq_sum
+#align measure_theory.fin_meas_additive.map_Union_fin_meas_set_eq_sum MeasureTheory.FinMeasAdditive.map_iUnion_fin_meas_set_eq_sum
 
 end FinMeasAdditive
 
@@ -362,7 +362,7 @@ theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAddi
       T (⋃ y ∈ Filter (fun b : G => g b = g (f a)) f.range, f ⁻¹' {y}) (g (f a)) :=
     by
     congr
-    rw [← Finset.set_bunionᵢ_preimage_singleton]
+    rw [← Finset.set_biUnion_preimage_singleton]
   rw [h_left_eq']
   rw [h_add.map_Union_fin_meas_set_eq_sum T T_empty]
   · simp only [filter_congr_decidable, sum_apply, ContinuousLinearMap.coe_sum']
Diff
@@ -899,7 +899,7 @@ theorem setToL1s_indicatorConst {T : Set α → E →L[ℝ] F} {s : Set α}
   exact to_simple_func_indicator_const hs hμs.ne x
 #align measure_theory.L1.simple_func.set_to_L1s_indicator_const MeasureTheory.L1.SimpleFunc.setToL1s_indicatorConst
 
-theorem setToL1s_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F}
+theorem setToL1s_const [FiniteMeasure μ] {T : Set α → E →L[ℝ] F}
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (x : E) :
     setToL1s T (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) = T univ x :=
   setToL1s_indicatorConst h_zero h_add MeasurableSet.univ (measure_lt_top _ _) x
@@ -1038,7 +1038,7 @@ theorem norm_setToL1sClm_le' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : Domi
   LinearMap.mkContinuous_norm_le' _ _
 #align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le' MeasureTheory.L1.SimpleFunc.norm_setToL1sClm_le'
 
-theorem setToL1sClm_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C : ℝ}
+theorem setToL1sClm_const [FiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     setToL1sClm α E μ hT (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) =
       T univ x :=
@@ -1266,7 +1266,7 @@ theorem setToL1_indicatorConstLp (hT : DominatedFinMeasAdditive μ T C) {s : Set
   exact set_to_L1_simple_func_indicator_const hT hs hμs.lt_top x
 #align measure_theory.L1.set_to_L1_indicator_const_Lp MeasureTheory.L1.setToL1_indicatorConstLp
 
-theorem setToL1_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
+theorem setToL1_const [FiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     setToL1 hT (indicatorConstLp 1 MeasurableSet.univ (measure_ne_top _ _) x) = T univ x :=
   setToL1_indicatorConstLp hT MeasurableSet.univ (measure_ne_top _ _) x
 #align measure_theory.L1.set_to_L1_const MeasureTheory.L1.setToL1_const
@@ -1597,7 +1597,7 @@ theorem setToFun_indicator_const (hT : DominatedFinMeasAdditive μ T C) {s : Set
   exact L1.set_to_L1_indicator_const_Lp hT hs hμs x
 #align measure_theory.set_to_fun_indicator_const MeasureTheory.setToFun_indicator_const
 
-theorem setToFun_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
+theorem setToFun_const [FiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     (setToFun μ T hT fun _ => x) = T univ x :=
   by
   have : (fun _ : α => x) = Set.indicator univ fun _ => x := (indicator_univ _).symm
Diff
@@ -118,32 +118,32 @@ theorem smul [Monoid 𝕜] [DistribMulAction 𝕜 β] (hT : FinMeasAdditive μ T
   simp [hT s t hs ht hμs hμt hst]
 #align measure_theory.fin_meas_additive.smul MeasureTheory.FinMeasAdditive.smul
 
-theorem ofEqTopImpEqTop {μ' : Measure α} (h : ∀ s, MeasurableSet s → μ s = ∞ → μ' s = ∞)
+theorem of_eq_top_imp_eq_top {μ' : Measure α} (h : ∀ s, MeasurableSet s → μ s = ∞ → μ' s = ∞)
     (hT : FinMeasAdditive μ T) : FinMeasAdditive μ' T := fun s t hs ht hμ's hμ't hst =>
   hT s t hs ht (mt (h s hs) hμ's) (mt (h t ht) hμ't) hst
-#align measure_theory.fin_meas_additive.of_eq_top_imp_eq_top MeasureTheory.FinMeasAdditive.ofEqTopImpEqTop
+#align measure_theory.fin_meas_additive.of_eq_top_imp_eq_top MeasureTheory.FinMeasAdditive.of_eq_top_imp_eq_top
 
-theorem ofSmulMeasure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : FinMeasAdditive (c • μ) T) :
+theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : FinMeasAdditive (c • μ) T) :
     FinMeasAdditive μ T :=
   by
   refine' of_eq_top_imp_eq_top (fun s hs hμs => _) hT
   rw [measure.smul_apply, smul_eq_mul, WithTop.mul_eq_top_iff] at hμs
   simp only [hc_ne_top, or_false_iff, Ne.def, false_and_iff] at hμs
   exact hμs.2
-#align measure_theory.fin_meas_additive.of_smul_measure MeasureTheory.FinMeasAdditive.ofSmulMeasure
+#align measure_theory.fin_meas_additive.of_smul_measure MeasureTheory.FinMeasAdditive.of_smul_measure
 
-theorem smulMeasure (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hT : FinMeasAdditive μ T) :
+theorem smul_measure (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hT : FinMeasAdditive μ T) :
     FinMeasAdditive (c • μ) T :=
   by
   refine' of_eq_top_imp_eq_top (fun s hs hμs => _) hT
   rw [measure.smul_apply, smul_eq_mul, WithTop.mul_eq_top_iff]
   simp only [hc_ne_zero, true_and_iff, Ne.def, not_false_iff]
   exact Or.inl hμs
-#align measure_theory.fin_meas_additive.smul_measure MeasureTheory.FinMeasAdditive.smulMeasure
+#align measure_theory.fin_meas_additive.smul_measure MeasureTheory.FinMeasAdditive.smul_measure
 
 theorem smul_measure_iff (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hc_ne_top : c ≠ ∞) :
     FinMeasAdditive (c • μ) T ↔ FinMeasAdditive μ T :=
-  ⟨fun hT => ofSmulMeasure c hc_ne_top hT, fun hT => smulMeasure c hc_ne_zero hT⟩
+  ⟨fun hT => of_smul_measure c hc_ne_top hT, fun hT => smul_measure c hc_ne_zero hT⟩
 #align measure_theory.fin_meas_additive.smul_measure_iff MeasureTheory.FinMeasAdditive.smul_measure_iff
 
 theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : FinMeasAdditive μ T) :
@@ -244,7 +244,7 @@ theorem smul [NormedField 𝕜] [NormedSpace 𝕜 β] (hT : DominatedFinMeasAddi
   exact mul_le_mul le_rfl (hT.2 s hs hμs) (norm_nonneg _) (norm_nonneg _)
 #align measure_theory.dominated_fin_meas_additive.smul MeasureTheory.DominatedFinMeasAdditive.smul
 
-theorem ofMeasureLe {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAdditive μ T C)
+theorem of_measure_le {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAdditive μ T C)
     (hC : 0 ≤ C) : DominatedFinMeasAdditive μ' T C :=
   by
   have h' : ∀ s, MeasurableSet s → μ s = ∞ → μ' s = ∞ :=
@@ -252,24 +252,24 @@ theorem ofMeasureLe {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAd
     intro s hs hμs
     rw [eq_top_iff, ← hμs]
     exact h s hs
-  refine' ⟨hT.1.ofEqTopImpEqTop h', fun s hs hμ's => _⟩
+  refine' ⟨hT.1.of_eq_top_imp_eq_top h', fun s hs hμ's => _⟩
   have hμs : μ s < ∞ := (h s hs).trans_lt hμ's
   refine' (hT.2 s hs hμs).trans (mul_le_mul le_rfl _ ENNReal.toReal_nonneg hC)
   rw [to_real_le_to_real hμs.ne hμ's.ne]
   exact h s hs
-#align measure_theory.dominated_fin_meas_additive.of_measure_le MeasureTheory.DominatedFinMeasAdditive.ofMeasureLe
+#align measure_theory.dominated_fin_meas_additive.of_measure_le MeasureTheory.DominatedFinMeasAdditive.of_measure_le
 
-theorem addMeasureRight {m : MeasurableSpace α} (μ ν : Measure α)
+theorem add_measure_right {m : MeasurableSpace α} (μ ν : Measure α)
     (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) : DominatedFinMeasAdditive (μ + ν) T C :=
-  ofMeasureLe (Measure.le_add_right le_rfl) hT hC
-#align measure_theory.dominated_fin_meas_additive.add_measure_right MeasureTheory.DominatedFinMeasAdditive.addMeasureRight
+  of_measure_le (Measure.le_add_right le_rfl) hT hC
+#align measure_theory.dominated_fin_meas_additive.add_measure_right MeasureTheory.DominatedFinMeasAdditive.add_measure_right
 
-theorem addMeasureLeft {m : MeasurableSpace α} (μ ν : Measure α)
+theorem add_measure_left {m : MeasurableSpace α} (μ ν : Measure α)
     (hT : DominatedFinMeasAdditive ν T C) (hC : 0 ≤ C) : DominatedFinMeasAdditive (μ + ν) T C :=
-  ofMeasureLe (Measure.le_add_left le_rfl) hT hC
-#align measure_theory.dominated_fin_meas_additive.add_measure_left MeasureTheory.DominatedFinMeasAdditive.addMeasureLeft
+  of_measure_le (Measure.le_add_left le_rfl) hT hC
+#align measure_theory.dominated_fin_meas_additive.add_measure_left MeasureTheory.DominatedFinMeasAdditive.add_measure_left
 
-theorem ofSmulMeasure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : DominatedFinMeasAdditive (c • μ) T C) :
+theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : DominatedFinMeasAdditive (c • μ) T C) :
     DominatedFinMeasAdditive μ T (c.toReal * C) :=
   by
   have h : ∀ s, MeasurableSet s → c • μ s = ∞ → μ s = ∞ :=
@@ -278,19 +278,19 @@ theorem ofSmulMeasure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : DominatedFi
     simp only [hc_ne_top, Algebra.id.smul_eq_mul, WithTop.mul_eq_top_iff, or_false_iff, Ne.def,
       false_and_iff] at hcμs
     exact hcμs.2
-  refine' ⟨hT.1.ofEqTopImpEqTop h, fun s hs hμs => _⟩
+  refine' ⟨hT.1.of_eq_top_imp_eq_top h, fun s hs hμs => _⟩
   have hcμs : c • μ s ≠ ∞ := mt (h s hs) hμs.ne
   rw [smul_eq_mul] at hcμs
   simp_rw [dominated_fin_meas_additive, measure.smul_apply, smul_eq_mul, to_real_mul] at hT
   refine' (hT.2 s hs hcμs.lt_top).trans (le_of_eq _)
   ring
-#align measure_theory.dominated_fin_meas_additive.of_smul_measure MeasureTheory.DominatedFinMeasAdditive.ofSmulMeasure
+#align measure_theory.dominated_fin_meas_additive.of_smul_measure MeasureTheory.DominatedFinMeasAdditive.of_smul_measure
 
-theorem ofMeasureLeSmul {μ' : Measure α} (c : ℝ≥0∞) (hc : c ≠ ∞) (h : μ ≤ c • μ')
+theorem of_measure_le_smul {μ' : Measure α} (c : ℝ≥0∞) (hc : c ≠ ∞) (h : μ ≤ c • μ')
     (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) :
     DominatedFinMeasAdditive μ' T (c.toReal * C) :=
-  (hT.ofMeasureLe h hC).ofSmulMeasure c hc
-#align measure_theory.dominated_fin_meas_additive.of_measure_le_smul MeasureTheory.DominatedFinMeasAdditive.ofMeasureLeSmul
+  (hT.of_measure_le h hC).of_smul_measure c hc
+#align measure_theory.dominated_fin_meas_additive.of_measure_le_smul MeasureTheory.DominatedFinMeasAdditive.of_measure_le_smul
 
 end DominatedFinMeasAdditive
 
@@ -488,7 +488,7 @@ theorem setToSimpleFunc_smul_left' (T T' : Set α → E →L[ℝ] F') (c : ℝ)
 theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E}
     (hf : Integrable f μ) (hg : Integrable g μ) :
     setToSimpleFunc T (f + g) = setToSimpleFunc T f + setToSimpleFunc T g :=
-  have hp_pair : Integrable (f.pair g) μ := integrablePair hf hg
+  have hp_pair : Integrable (f.pair g) μ := integrable_pair hf hg
   calc
     setToSimpleFunc T (f + g) = ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) (x.fst + x.snd) :=
       by
@@ -1700,7 +1700,7 @@ theorem tendsto_setToFun_approxOn_of_measurable (hT : DominatedFinMeasAdditive 
     Tendsto (fun n => setToFun μ T hT (SimpleFunc.approxOn f hfm s y₀ h₀ n)) atTop
       (𝓝 <| setToFun μ T hT f) :=
   tendsto_setToFun_of_L1 hT _ hfi
-    (eventually_of_forall (SimpleFunc.integrableApproxOn hfm hfi h₀ h₀i))
+    (eventually_of_forall (SimpleFunc.integrable_approxOn hfm hfi h₀ h₀i))
     (SimpleFunc.tendsto_approxOn_L1_nnnorm hfm _ hs (hfi.sub h₀i).2)
 #align measure_theory.tendsto_set_to_fun_approx_on_of_measurable MeasureTheory.tendsto_setToFun_approxOn_of_measurable
 
@@ -1719,7 +1719,7 @@ theorem tendsto_setToFun_approxOn_of_measurable_of_range_subset
 `f : α →₁[μ'] G` is continuous when `μ' ≤ c' • μ` for `c' ≠ ∞`. -/
 theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞) (hμ'_le : μ' ≤ c' • μ) :
     Continuous fun f : α →₁[μ] G =>
-      (Integrable.ofMeasureLeSmul c' hc' hμ'_le (L1.integrableCoeFn f)).toL1 f :=
+      (Integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coeFn f)).toL1 f :=
   by
   by_cases hc'0 : c' = 0
   · have hμ'0 : μ' = 0 := by
@@ -1743,7 +1743,7 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
   refine' ⟨div_pos (half_pos hε_pos) (to_real_pos hc'0 hc'), _⟩
   intro g hfg
   rw [Lp.dist_def] at hfg⊢
-  let h_int := fun f' : α →₁[μ] G => (L1.integrable_coe_fn f').ofMeasureLeSmul c' hc' hμ'_le
+  let h_int := fun f' : α →₁[μ] G => (L1.integrable_coe_fn f').of_measure_le_smul c' hc' hμ'_le
   have :
     snorm (integrable.to_L1 g (h_int g) - integrable.to_L1 f (h_int f)) 1 μ' = snorm (g - f) 1 μ' :=
     snorm_congr_ae ((integrable.coe_fn_to_L1 _).sub (integrable.coe_fn_to_L1 _))
@@ -1817,7 +1817,7 @@ theorem setToFun_congr_measure {μ' : Measure α} (c c' : ℝ≥0∞) (hc : c 
   · exact set_to_fun_congr_measure_of_integrable c' hc' hμ'_le hT hT' f hf
   · -- if `f` is not integrable, both `set_to_fun` are 0.
     have h_int : ∀ g : α → E, ¬integrable g μ → ¬integrable g μ' := fun g =>
-      mt fun h => h.ofMeasureLeSmul _ hc hμ_le
+      mt fun h => h.of_measure_le_smul _ hc hμ_le
     simp_rw [set_to_fun_undef _ hf, set_to_fun_undef _ (h_int f hf)]
 #align measure_theory.set_to_fun_congr_measure MeasureTheory.setToFun_congr_measure
 
@@ -1908,7 +1908,7 @@ theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive
   by
   -- `f` is a.e.-measurable, since it is the a.e.-pointwise limit of a.e.-measurable functions.
   have f_measurable : ae_strongly_measurable f μ :=
-    aeStronglyMeasurableOfTendstoAe _ fs_measurable h_lim
+    aeStronglyMeasurable_of_tendsto_ae _ fs_measurable h_lim
   -- all functions we consider are integrable
   have fs_int : ∀ n, integrable (fs n) μ := fun n =>
     bound_integrable.mono' (fs_measurable n) (h_bound _)
Diff
@@ -218,7 +218,7 @@ theorem eq_zero_of_measure_zero {β : Type _} [NormedAddCommGroup β] {T : Set 
     T s = 0 := by
   refine' norm_eq_zero.mp _
   refine' ((hT.2 s hs (by simp [hs_zero])).trans (le_of_eq _)).antisymm (norm_nonneg _)
-  rw [hs_zero, ENNReal.zero_toReal, mul_zero]
+  rw [hs_zero, ENNReal.zero_toReal, MulZeroClass.mul_zero]
 #align measure_theory.dominated_fin_meas_additive.eq_zero_of_measure_zero MeasureTheory.DominatedFinMeasAdditive.eq_zero_of_measure_zero
 
 theorem eq_zero {β : Type _} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ} {m : MeasurableSpace α}
@@ -1848,7 +1848,7 @@ theorem setToFun_top_smul_measure (hT : DominatedFinMeasAdditive (∞ • μ) T
   rw [lt_top_iff_ne_top] at hμs
   simp only [true_and_iff, measure.smul_apply, WithTop.mul_eq_top_iff, eq_self_iff_true,
     top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs
-  simp only [hμs.right, measure.smul_apply, mul_zero, smul_eq_mul]
+  simp only [hμs.right, measure.smul_apply, MulZeroClass.mul_zero, smul_eq_mul]
 #align measure_theory.set_to_fun_top_smul_measure MeasureTheory.setToFun_top_smul_measure
 
 theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
Diff
@@ -156,7 +156,7 @@ theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : Fi
   exact (add_left_cancel hT).symm
 #align measure_theory.fin_meas_additive.map_empty_eq_zero MeasureTheory.FinMeasAdditive.map_empty_eq_zero
 
-/- ./././Mathport/Syntax/Translate/Basic.lean:628:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
+/- ./././Mathport/Syntax/Translate/Basic.lean:635:2: warning: expanding binder collection (i j «expr ∈ » sι) -/
 theorem map_unionᵢ_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ = 0)
     (h_add : FinMeasAdditive μ T) {ι} (S : ι → Set α) (sι : Finset ι)
     (hS_meas : ∀ i, MeasurableSet (S i)) (hSp : ∀ i ∈ sι, μ (S i) ≠ ∞)
@@ -495,7 +495,7 @@ theorem setToSimpleFunc_add (T : Set α → E →L[ℝ] F) (h_add : FinMeasAddit
       rw [add_eq_map₂, map_set_to_simple_func T h_add hp_pair]
       simp
     _ = ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.fst + T (pair f g ⁻¹' {x}) x.snd :=
-      Finset.sum_congr rfl fun a ha => ContinuousLinearMap.map_add _ _ _
+      (Finset.sum_congr rfl fun a ha => ContinuousLinearMap.map_add _ _ _)
     _ =
         (∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.fst) +
           ∑ x in (pair f g).range, T (pair f g ⁻¹' {x}) x.snd :=
@@ -540,7 +540,7 @@ theorem setToSimpleFunc_smul_real (T : Set α → E →L[ℝ] F) (h_add : FinMea
       rw [smul_eq_map c f, map_set_to_simple_func T h_add hf]
       rw [smul_zero]
     _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x :=
-      Finset.sum_congr rfl fun b hb => by rw [ContinuousLinearMap.map_smul (T (f ⁻¹' {b})) c b]
+      (Finset.sum_congr rfl fun b hb => by rw [ContinuousLinearMap.map_smul (T (f ⁻¹' {b})) c b])
     _ = c • setToSimpleFunc T f := by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm]
     
 #align measure_theory.simple_func.set_to_simple_func_smul_real MeasureTheory.SimpleFunc.setToSimpleFunc_smul_real
@@ -554,7 +554,7 @@ theorem setToSimpleFunc_smul {E} [NormedAddCommGroup E] [NormedField 𝕜] [Norm
       by
       rw [smul_eq_map c f, map_set_to_simple_func T h_add hf]
       rw [smul_zero]
-    _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x := Finset.sum_congr rfl fun b hb => by rw [h_smul]
+    _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x := (Finset.sum_congr rfl fun b hb => by rw [h_smul])
     _ = c • setToSimpleFunc T f := by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm]
     
 #align measure_theory.simple_func.set_to_simple_func_smul MeasureTheory.SimpleFunc.setToSimpleFunc_smul
@@ -639,9 +639,9 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C
     ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
       norm_setToSimpleFunc_le_sum_op_norm T f
     _ ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
-      sum_le_sum fun b hb =>
+      (sum_le_sum fun b hb =>
         mul_le_mul_of_nonneg_right (hT_norm _ <| SimpleFunc.measurableSet_fiber _ _) <|
-          norm_nonneg _
+          norm_nonneg _)
     _ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ := by simp_rw [mul_sum, ← mul_assoc]
     
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_mul_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm
@@ -1766,7 +1766,8 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
       rw [snorm_smul_measure_of_ne_zero hc'0, smul_eq_mul]
       simp
     _ = c'.to_real * (snorm (⇑g - ⇑f) 1 μ).toReal := to_real_mul
-    _ ≤ c'.to_real * (ε / 2 / c'.to_real) := mul_le_mul le_rfl hfg.le to_real_nonneg to_real_nonneg
+    _ ≤ c'.to_real * (ε / 2 / c'.to_real) :=
+      (mul_le_mul le_rfl hfg.le to_real_nonneg to_real_nonneg)
     _ = ε / 2 := by
       refine' mul_div_cancel' (ε / 2) _
       rw [Ne.def, to_real_eq_zero_iff]
Diff
@@ -75,9 +75,9 @@ with finite measure. Its value on other sets is ignored.
 
 noncomputable section
 
-open Classical Topology BigOperators NNReal Ennreal MeasureTheory Pointwise
+open Classical Topology BigOperators NNReal ENNReal MeasureTheory Pointwise
 
-open Set Filter TopologicalSpace Ennreal Emetric
+open Set Filter TopologicalSpace ENNReal Emetric
 
 namespace MeasureTheory
 
@@ -149,7 +149,7 @@ theorem smul_measure_iff (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hc_ne_top : c
 theorem map_empty_eq_zero {β} [AddCancelMonoid β] {T : Set α → β} (hT : FinMeasAdditive μ T) :
     T ∅ = 0 :=
   by
-  have h_empty : μ ∅ ≠ ∞ := (measure_empty.le.trans_lt Ennreal.coe_lt_top).Ne
+  have h_empty : μ ∅ ≠ ∞ := (measure_empty.le.trans_lt ENNReal.coe_lt_top).Ne
   specialize hT ∅ ∅ MeasurableSet.empty MeasurableSet.empty h_empty h_empty (Set.inter_empty ∅)
   rw [Set.union_empty] at hT
   nth_rw 1 [← add_zero (T ∅)] at hT
@@ -183,7 +183,7 @@ theorem map_unionᵢ_fin_meas_set_eq_sum (T : Set α → β) (T_empty : T ∅ =
   ·
     exact
       ((measure_bUnion_finset_le _ _).trans_lt <|
-          Ennreal.sum_lt_top fun i hi => hps i <| Finset.mem_insert_of_mem hi).Ne
+          ENNReal.sum_lt_top fun i hi => hps i <| Finset.mem_insert_of_mem hi).Ne
   · simp_rw [Set.inter_unionᵢ]
     refine' Union_eq_empty.mpr fun i => Union_eq_empty.mpr fun hi => _
     rw [← Set.disjoint_iff_inter_eq_empty]
@@ -218,7 +218,7 @@ theorem eq_zero_of_measure_zero {β : Type _} [NormedAddCommGroup β] {T : Set 
     T s = 0 := by
   refine' norm_eq_zero.mp _
   refine' ((hT.2 s hs (by simp [hs_zero])).trans (le_of_eq _)).antisymm (norm_nonneg _)
-  rw [hs_zero, Ennreal.zero_toReal, mul_zero]
+  rw [hs_zero, ENNReal.zero_toReal, mul_zero]
 #align measure_theory.dominated_fin_meas_additive.eq_zero_of_measure_zero MeasureTheory.DominatedFinMeasAdditive.eq_zero_of_measure_zero
 
 theorem eq_zero {β : Type _} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ} {m : MeasurableSpace α}
@@ -254,7 +254,7 @@ theorem ofMeasureLe {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAd
     exact h s hs
   refine' ⟨hT.1.ofEqTopImpEqTop h', fun s hs hμ's => _⟩
   have hμs : μ s < ∞ := (h s hs).trans_lt hμ's
-  refine' (hT.2 s hs hμs).trans (mul_le_mul le_rfl _ Ennreal.toReal_nonneg hC)
+  refine' (hT.2 s hs hμs).trans (mul_le_mul le_rfl _ ENNReal.toReal_nonneg hC)
   rw [to_real_le_to_real hμs.ne hμ's.ne]
   exact h s hs
 #align measure_theory.dominated_fin_meas_additive.of_measure_le MeasureTheory.DominatedFinMeasAdditive.ofMeasureLe
@@ -736,18 +736,18 @@ theorem norm_eq_sum_mul (f : α →₁ₛ[μ] G) :
   have h_eq := simple_func.map_apply (fun x => (‖x‖₊ : ℝ≥0∞)) (to_simple_func f)
   dsimp only at h_eq
   simp_rw [← h_eq]
-  rw [simple_func.lintegral_eq_lintegral, simple_func.map_lintegral, Ennreal.toReal_sum]
+  rw [simple_func.lintegral_eq_lintegral, simple_func.map_lintegral, ENNReal.toReal_sum]
   · congr
     ext1 x
-    rw [Ennreal.toReal_mul, mul_comm, ← ofReal_norm_eq_coe_nnnorm,
-      Ennreal.toReal_ofReal (norm_nonneg _)]
+    rw [ENNReal.toReal_mul, mul_comm, ← ofReal_norm_eq_coe_nnnorm,
+      ENNReal.toReal_ofReal (norm_nonneg _)]
   · intro x hx
     by_cases hx0 : x = 0
     · rw [hx0]
       simp
     ·
       exact
-        Ennreal.mul_ne_top Ennreal.coe_ne_top
+        ENNReal.mul_ne_top ENNReal.coe_ne_top
           (simple_func.measure_preimage_lt_top_of_integrable _ (simple_func.integrable f) hx0).Ne
 #align measure_theory.L1.simple_func.norm_eq_sum_mul MeasureTheory.L1.SimpleFunc.norm_eq_sum_mul
 
@@ -1756,12 +1756,12 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
     by
     refine' ((snorm_mono_measure _ hμ'_le).trans_lt _).Ne
     rw [snorm_smul_measure_of_ne_zero hc'0, smul_eq_mul]
-    refine' Ennreal.mul_lt_top _ h_snorm_ne_top
+    refine' ENNReal.mul_lt_top _ h_snorm_ne_top
     simp [hc', hc'0]
   calc
     (snorm (g - f) 1 μ').toReal ≤ (c' * snorm (g - f) 1 μ).toReal :=
       by
-      rw [to_real_le_to_real h_snorm_ne_top' (Ennreal.mul_ne_top hc' h_snorm_ne_top)]
+      rw [to_real_le_to_real h_snorm_ne_top' (ENNReal.mul_ne_top hc' h_snorm_ne_top)]
       refine' (snorm_mono_measure (⇑g - ⇑f) hμ'_le).trans _
       rw [snorm_smul_measure_of_ne_zero hc'0, smul_eq_mul]
       simp
@@ -1789,7 +1789,7 @@ theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞
     have hμ's : μ' s ≠ ∞ := by
       refine' ((hμ'_le s hs).trans_lt _).Ne
       rw [measure.smul_apply, smul_eq_mul]
-      exact Ennreal.mul_lt_top hc' hμs.ne
+      exact ENNReal.mul_lt_top hc' hμs.ne
     rw [set_to_fun_indicator_const hT hs hμs.ne, set_to_fun_indicator_const hT' hs hμ's]
   · intro f₂ g₂ h_dish hf₂ hg₂ h_eq_f h_eq_g
     rw [set_to_fun_add hT hf₂ hg₂, set_to_fun_add hT' (h_int f₂ hf₂) (h_int g₂ hg₂), h_eq_f, h_eq_g]
@@ -1861,7 +1861,7 @@ theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
     simp [hc0]
   refine' set_to_fun_congr_measure c⁻¹ c _ hc_ne_top (le_of_eq _) le_rfl hT hT_smul f
   · simp [hc0]
-  · rw [smul_smul, Ennreal.inv_mul_cancel hc0 hc_ne_top, one_smul]
+  · rw [smul_smul, ENNReal.inv_mul_cancel hc0 hc_ne_top, one_smul]
 #align measure_theory.set_to_fun_congr_smul_measure MeasureTheory.setToFun_congr_smul_measure
 
 theorem norm_setToFun_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (f : α →₁[μ] E)
@@ -1929,7 +1929,7 @@ theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive
   -- up to some rewriting, what we need to prove is `h_lim`
   rw [tendsto_iff_norm_tendsto_zero]
   have lintegral_norm_tendsto_zero :
-    tendsto (fun n => Ennreal.toReal <| ∫⁻ a, Ennreal.ofReal ‖fs n a - f a‖ ∂μ) at_top (𝓝 0) :=
+    tendsto (fun n => ENNReal.toReal <| ∫⁻ a, ENNReal.ofReal ‖fs n a - f a‖ ∂μ) at_top (𝓝 0) :=
     (tendsto_to_real zero_ne_top).comp
       (tendsto_lintegral_norm_of_dominated_convergence fs_measurable
         bound_integrable.has_finite_integral h_bound h_lim)

Changes in mathlib4

mathlib3
mathlib4
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -502,7 +502,7 @@ theorem setToSimpleFunc_smul {E} [NormedAddCommGroup E] [NormedField 𝕜] [Norm
   calc
     setToSimpleFunc T (c • f) = ∑ x in f.range, T (f ⁻¹' {x}) (c • x) := by
       rw [smul_eq_map c f, map_setToSimpleFunc T h_add hf]; dsimp only; rw [smul_zero]
-    _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x := (Finset.sum_congr rfl fun b _ => by rw [h_smul])
+    _ = ∑ x in f.range, c • T (f ⁻¹' {x}) x := Finset.sum_congr rfl fun b _ => by rw [h_smul]
     _ = c • setToSimpleFunc T f := by simp only [setToSimpleFunc, smul_sum, smul_smul, mul_comm]
 #align measure_theory.simple_func.set_to_simple_func_smul MeasureTheory.SimpleFunc.setToSimpleFunc_smul
 
chore: remove mathport name: <expression> lines (#11928)

Quoting [@digama0](https://github.com/digama0):

These were actually never meant to go in the file, they are basically debugging information and only useful on significantly broken mathport files. You can safely remove all of them.

Diff
@@ -82,7 +82,6 @@ variable {α E F F' G 𝕜 : Type*} {p : ℝ≥0∞} [NormedAddCommGroup E] [Nor
   [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedAddCommGroup F'] [NormedSpace ℝ F']
   [NormedAddCommGroup G] {m : MeasurableSpace α} {μ : Measure α}
 
--- mathport name: «expr →ₛ »
 local infixr:25 " →ₛ " => SimpleFunc
 
 open Finset
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11813)
Diff
@@ -124,7 +124,7 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : FinMeasAd
     FinMeasAdditive μ T := by
   refine' of_eq_top_imp_eq_top (fun s _ hμs => _) hT
   rw [Measure.smul_apply, smul_eq_mul, ENNReal.mul_eq_top] at hμs
-  simp only [hc_ne_top, or_false_iff, Ne.def, false_and_iff] at hμs
+  simp only [hc_ne_top, or_false_iff, Ne, false_and_iff] at hμs
   exact hμs.2
 #align measure_theory.fin_meas_additive.of_smul_measure MeasureTheory.FinMeasAdditive.of_smul_measure
 
@@ -132,7 +132,7 @@ theorem smul_measure (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hT : FinMeasAdditi
     FinMeasAdditive (c • μ) T := by
   refine' of_eq_top_imp_eq_top (fun s _ hμs => _) hT
   rw [Measure.smul_apply, smul_eq_mul, ENNReal.mul_eq_top]
-  simp only [hc_ne_zero, true_and_iff, Ne.def, not_false_iff]
+  simp only [hc_ne_zero, true_and_iff, Ne, not_false_iff]
   exact Or.inl hμs
 #align measure_theory.fin_meas_additive.smul_measure MeasureTheory.FinMeasAdditive.smul_measure
 
@@ -253,7 +253,7 @@ theorem of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : Dominated
     DominatedFinMeasAdditive μ T (c.toReal * C) := by
   have h : ∀ s, MeasurableSet s → c • μ s = ∞ → μ s = ∞ := by
     intro s _ hcμs
-    simp only [hc_ne_top, Algebra.id.smul_eq_mul, ENNReal.mul_eq_top, or_false_iff, Ne.def,
+    simp only [hc_ne_top, Algebra.id.smul_eq_mul, ENNReal.mul_eq_top, or_false_iff, Ne,
       false_and_iff] at hcμs
     exact hcμs.2
   refine' ⟨hT.1.of_eq_top_imp_eq_top (μ := c • μ) h, fun s hs hμs => _⟩
@@ -1590,7 +1590,7 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
     _ ≤ c'.toReal * (ε / 2 / c'.toReal) :=
       (mul_le_mul le_rfl hfg.le toReal_nonneg toReal_nonneg)
     _ = ε / 2 := by
-      refine' mul_div_cancel₀ (ε / 2) _; rw [Ne.def, toReal_eq_zero_iff]; simp [hc', hc'0]
+      refine' mul_div_cancel₀ (ε / 2) _; rw [Ne, toReal_eq_zero_iff]; simp [hc', hc'0]
     _ < ε := half_lt_self hε_pos
 #align measure_theory.continuous_L1_to_L1 MeasureTheory.continuous_L1_toL1
 
@@ -1660,7 +1660,7 @@ theorem setToFun_top_smul_measure (hT : DominatedFinMeasAdditive (∞ • μ) T
   refine' setToFun_measure_zero' hT fun s _ hμs => _
   rw [lt_top_iff_ne_top] at hμs
   simp only [true_and_iff, Measure.smul_apply, ENNReal.mul_eq_top, eq_self_iff_true,
-    top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs
+    top_ne_zero, Ne, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs
   simp only [hμs.right, Measure.smul_apply, mul_zero, smul_eq_mul]
 #align measure_theory.set_to_fun_top_smul_measure MeasureTheory.setToFun_top_smul_measure
 
chore: Rename mul-div cancellation lemmas (#11530)

Lemma names around cancellation of multiplication and division are a mess.

This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero lemma name, the Group lemma, the AddGroup lemma name).

| Statement | New name | Old name | |

Diff
@@ -1590,7 +1590,7 @@ theorem continuous_L1_toL1 {μ' : Measure α} (c' : ℝ≥0∞) (hc' : c' ≠ 
     _ ≤ c'.toReal * (ε / 2 / c'.toReal) :=
       (mul_le_mul le_rfl hfg.le toReal_nonneg toReal_nonneg)
     _ = ε / 2 := by
-      refine' mul_div_cancel' (ε / 2) _; rw [Ne.def, toReal_eq_zero_iff]; simp [hc', hc'0]
+      refine' mul_div_cancel₀ (ε / 2) _; rw [Ne.def, toReal_eq_zero_iff]; simp [hc', hc'0]
     _ < ε := half_lt_self hε_pos
 #align measure_theory.continuous_L1_to_L1 MeasureTheory.continuous_L1_toL1
 
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -865,7 +865,6 @@ theorem setToL1S_mono (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
 end Order
 
 variable [NormedSpace 𝕜 F]
-
 variable (α E μ 𝕜)
 
 /-- Extend `Set α → E →L[ℝ] F` to `(α →₁ₛ[μ] E) →L[𝕜] F`. -/
@@ -887,7 +886,6 @@ def setToL1SCLM {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : DominatedFinMeasA
 #align measure_theory.L1.simple_func.set_to_L1s_clm MeasureTheory.L1.SimpleFunc.setToL1SCLM
 
 variable {α E μ 𝕜}
-
 variable {T T' T'' : Set α → E →L[ℝ] F} {C C' C'' : ℝ}
 
 @[simp]
@@ -1257,7 +1255,6 @@ section Function
 set_option linter.uppercaseLean3 false
 
 variable [CompleteSpace F] {T T' T'' : Set α → E →L[ℝ] F} {C C' C'' : ℝ} {f g : α → E}
-
 variable (μ T)
 
 /-- Extend `T : Set α → E →L[ℝ] F` to `(α → E) → F` (for integrable functions `α → E`). We set it to
chore: move Mathlib to v4.7.0-rc1 (#11162)

This is a very large PR, but it has been reviewed piecemeal already in PRs to the bump/v4.7.0 branch as we update to intermediate nightlies.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Kyle Miller <kmill31415@gmail.com> Co-authored-by: damiano <adomani@gmail.com>

Diff
@@ -1518,12 +1518,12 @@ theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f :
       filter_upwards [hfsi] with i hi
       refine' lintegral_congr_ae _
       filter_upwards [hi.coeFn_toL1, hfi.coeFn_toL1] with x hxi hxf
-      simp_rw [dif_pos hi, hxi, hxf]
+      simp_rw [F_lp, dif_pos hi, hxi, hxf]
     suffices Tendsto (fun i => setToFun μ T hT (F_lp i)) l (𝓝 (setToFun μ T hT f)) by
       refine' (tendsto_congr' _).mp this
       filter_upwards [hfsi] with i hi
       suffices h_ae_eq : F_lp i =ᵐ[μ] fs i from setToFun_congr_ae hT h_ae_eq
-      simp_rw [dif_pos hi]
+      simp_rw [F_lp, dif_pos hi]
       exact hi.coeFn_toL1
     rw [setToFun_congr_ae hT hfi.coeFn_toL1.symm]
     exact ((continuous_setToFun hT).tendsto f_lp).comp tendsto_L1
chore: backport a few misc changes from #11070 to master (#11079)

A random collection of changes, backporting from the upcoming Lean bump.

  • squeeze one simp
  • backport one more simp change (which probably was missed in the previous backports)
  • rewrite the field_simp in SolutionOfCubic: with the upcoming Lean bump, this would become very slow

Similar to #10996 and #11001.

Diff
@@ -1157,8 +1157,7 @@ theorem setToL1_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (hT' : DominatedFinMeasAdditive μ T' C')
     (hTT' : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁[μ] E) :
     setToL1 hT f ≤ setToL1 hT' f := by
-  induction f using Lp.induction with
-  | hp_ne_top h => exact one_ne_top h
+  induction f using Lp.induction (hp_ne_top := one_ne_top) with
   | @h_ind c s hs hμs =>
     rw [setToL1_simpleFunc_indicatorConst hT hs hμs, setToL1_simpleFunc_indicatorConst hT' hs hμs]
     exact hTT' s hs hμs c
refactor(MeasureTheory): redefine on measures (#10714)

Redefine on MeasureTheory.Measure so that μ ≤ ν ↔ ∀ s, μ s ≤ ν s by definition instead of ∀ s, MeasurableSet s → μ s ≤ ν s.

Reasons

  • this way it is defeq to on outer measures;
  • if we decide to introduce an order on all DFunLike types and migrate measures to FunLike, then this is unavoidable;
  • the reasoning for the old definition was "it's slightly easier to prove μ ≤ ν this way"; the counter-argument is "it's slightly harder to apply μ ≤ ν this way".

Other changes

  • golf some proofs broken by this change;
  • add @[gcongr] tags to some ENNReal lemmas;
  • fix the name ENNReal.coe_lt_coe_of_le -> ENNReal.ENNReal.coe_lt_coe_of_lt;
  • drop an unneeded MeasurableSet assumption in set_lintegral_pdf_le_map
Diff
@@ -231,13 +231,12 @@ theorem smul [NormedField 𝕜] [NormedSpace 𝕜 β] (hT : DominatedFinMeasAddi
 
 theorem of_measure_le {μ' : Measure α} (h : μ ≤ μ') (hT : DominatedFinMeasAdditive μ T C)
     (hC : 0 ≤ C) : DominatedFinMeasAdditive μ' T C := by
-  have h' : ∀ s, MeasurableSet s → μ s = ∞ → μ' s = ∞ := by
-    intro s hs hμs; rw [eq_top_iff, ← hμs]; exact h s hs
-  refine' ⟨hT.1.of_eq_top_imp_eq_top h', fun s hs hμ's => _⟩
-  have hμs : μ s < ∞ := (h s hs).trans_lt hμ's
-  refine' (hT.2 s hs hμs).trans (mul_le_mul le_rfl _ ENNReal.toReal_nonneg hC)
-  rw [toReal_le_toReal hμs.ne hμ's.ne]
-  exact h s hs
+  have h' : ∀ s, μ s = ∞ → μ' s = ∞ := fun s hs ↦ top_unique <| hs.symm.trans_le (h _)
+  refine ⟨hT.1.of_eq_top_imp_eq_top fun s _ ↦ h' s, fun s hs hμ's ↦ ?_⟩
+  have hμs : μ s < ∞ := (h s).trans_lt hμ's
+  calc
+    ‖T s‖ ≤ C * (μ s).toReal := hT.2 s hs hμs
+    _ ≤ C * (μ' s).toReal := by gcongr; exacts [hμ's.ne, h _]
 #align measure_theory.dominated_fin_meas_additive.of_measure_le MeasureTheory.DominatedFinMeasAdditive.of_measure_le
 
 theorem add_measure_right {_ : MeasurableSpace α} (μ ν : Measure α)
@@ -1610,7 +1609,7 @@ theorem setToFun_congr_measure_of_integrable {μ' : Measure α} (c' : ℝ≥0∞
   apply hfμ.induction (P := fun f => setToFun μ T hT f = setToFun μ' T hT' f)
   · intro c s hs hμs
     have hμ's : μ' s ≠ ∞ := by
-      refine' ((hμ'_le s hs).trans_lt _).ne
+      refine ((hμ'_le s).trans_lt ?_).ne
       rw [Measure.smul_apply, smul_eq_mul]
       exact ENNReal.mul_lt_top hc' hμs.ne
     rw [setToFun_indicator_const hT hs hμs.ne, setToFun_indicator_const hT' hs hμ's]
chore: remove stream-of-consciousness uses of have, replace and suffices (#10640)

No changes to tactic file, it's just boring fixes throughout the library.

This follows on from #6964.

Co-authored-by: sgouezel <sebastien.gouezel@univ-rennes1.fr> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -727,7 +727,7 @@ theorem setToL1S_congr_measure {μ' : Measure α} (T : Set α → E →L[ℝ] F)
     setToL1S T f = setToL1S T f' := by
   refine' SimpleFunc.setToSimpleFunc_congr T h_zero h_add (SimpleFunc.integrable f) _
   refine' (toSimpleFunc_eq_toFun f).trans _
-  suffices : (f' : α → E) =ᵐ[μ] simpleFunc.toSimpleFunc f'; exact h.trans this
+  suffices (f' : α → E) =ᵐ[μ] simpleFunc.toSimpleFunc f' from h.trans this
   have goal' : (f' : α → E) =ᵐ[μ'] simpleFunc.toSimpleFunc f' := (toSimpleFunc_eq_toFun f').symm
   exact hμ.ae_eq goal'
 #align measure_theory.L1.simple_func.set_to_L1s_congr_measure MeasureTheory.L1.SimpleFunc.setToL1S_congr_measure
@@ -1178,8 +1178,8 @@ theorem setToL1_mono_left {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
 theorem setToL1_nonneg {T : Set α → G' →L[ℝ] G''} {C : ℝ} (hT : DominatedFinMeasAdditive μ T C)
     (hT_nonneg : ∀ s, MeasurableSet s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁[μ] G'}
     (hf : 0 ≤ f) : 0 ≤ setToL1 hT f := by
-  suffices : ∀ f : { g : α →₁[μ] G' // 0 ≤ g }, 0 ≤ setToL1 hT f
-  exact this (⟨f, hf⟩ : { g : α →₁[μ] G' // 0 ≤ g })
+  suffices ∀ f : { g : α →₁[μ] G' // 0 ≤ g }, 0 ≤ setToL1 hT f from
+    this (⟨f, hf⟩ : { g : α →₁[μ] G' // 0 ≤ g })
   refine' fun g =>
     @isClosed_property { g : α →₁ₛ[μ] G' // 0 ≤ g } { g : α →₁[μ] G' // 0 ≤ g } _ _
       (fun g => 0 ≤ setToL1 hT g)
@@ -1524,7 +1524,7 @@ theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f :
     suffices Tendsto (fun i => setToFun μ T hT (F_lp i)) l (𝓝 (setToFun μ T hT f)) by
       refine' (tendsto_congr' _).mp this
       filter_upwards [hfsi] with i hi
-      suffices h_ae_eq : F_lp i =ᵐ[μ] fs i; exact setToFun_congr_ae hT h_ae_eq
+      suffices h_ae_eq : F_lp i =ᵐ[μ] fs i from setToFun_congr_ae hT h_ae_eq
       simp_rw [dif_pos hi]
       exact hi.coeFn_toL1
     rw [setToFun_congr_ae hT hfi.coeFn_toL1.symm]
chore: Move lemmas about Function.const to the Function namespace (#10220)

They were in the Pi namespace instead.

Diff
@@ -625,11 +625,11 @@ theorem setToSimpleFunc_indicator (T : Set α → F →L[ℝ] F') (hT_empty : T
   swap; · rw [Finset.mem_singleton]; exact hx0
   rw [sum_singleton, (T _).map_zero, add_zero]
   congr
-  simp only [coe_piecewise, piecewise_eq_indicator, coe_const, Pi.const_zero,
+  simp only [coe_piecewise, piecewise_eq_indicator, coe_const, Function.const_zero,
     piecewise_eq_indicator]
   rw [indicator_preimage, ← Function.const_def, preimage_const_of_mem]
   swap; · exact Set.mem_singleton x
-  rw [← Pi.const_zero, ← Function.const_def, preimage_const_of_not_mem]
+  rw [← Function.const_zero, ← Function.const_def, preimage_const_of_not_mem]
   swap; · rw [Set.mem_singleton_iff]; exact Ne.symm hx0
   simp
 #align measure_theory.simple_func.set_to_simple_func_indicator MeasureTheory.SimpleFunc.setToSimpleFunc_indicator
Deprecate allowing auto-replacement (#10302)

Following these Zulip discussions, I realised that my deprecation script produced a deprecation syntax that did not allow for auto-replacement in Sébastien's #10185.

This PR fixes the deprecation statements, allowing self-correction: 119 times I replaced

@[deprecated xxx] --> @[deprecated].

Diff
@@ -573,7 +573,7 @@ theorem norm_setToSimpleFunc_le_sum_opNorm {m : MeasurableSpace α} (T : Set α
       refine' Finset.sum_le_sum fun b _ => _; simp_rw [ContinuousLinearMap.le_opNorm]
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm
 
-@[deprecated norm_setToSimpleFunc_le_sum_opNorm]
+@[deprecated]
 alias norm_setToSimpleFunc_le_sum_op_norm :=
   norm_setToSimpleFunc_le_sum_opNorm -- deprecated on 2024-02-02
 
chore: rename op_norm to opNorm (#10185)

Co-authored-by: adomani <adomani@gmail.com>

Diff
@@ -565,20 +565,24 @@ theorem setToSimpleFunc_mono {T : Set α → G' →L[ℝ] G''} (h_add : FinMeasA
 
 end Order
 
-theorem norm_setToSimpleFunc_le_sum_op_norm {m : MeasurableSpace α} (T : Set α → F' →L[ℝ] F)
+theorem norm_setToSimpleFunc_le_sum_opNorm {m : MeasurableSpace α} (T : Set α → F' →L[ℝ] F)
     (f : α →ₛ F') : ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
   calc
     ‖∑ x in f.range, T (f ⁻¹' {x}) x‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x}) x‖ := norm_sum_le _ _
     _ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ := by
-      refine' Finset.sum_le_sum fun b _ => _; simp_rw [ContinuousLinearMap.le_op_norm]
-#align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_op_norm
+      refine' Finset.sum_le_sum fun b _ => _; simp_rw [ContinuousLinearMap.le_opNorm]
+#align measure_theory.simple_func.norm_set_to_simple_func_le_sum_op_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm
+
+@[deprecated norm_setToSimpleFunc_le_sum_opNorm]
+alias norm_setToSimpleFunc_le_sum_op_norm :=
+  norm_setToSimpleFunc_le_sum_opNorm -- deprecated on 2024-02-02
 
 theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C : ℝ}
     (hT_norm : ∀ s, MeasurableSet s → ‖T s‖ ≤ C * (μ s).toReal) (f : α →ₛ F) :
     ‖f.setToSimpleFunc T‖ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
   calc
     ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
-      norm_setToSimpleFunc_le_sum_op_norm T f
+      norm_setToSimpleFunc_le_sum_opNorm T f
     _ ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).toReal * ‖x‖ := by
       gcongr
       exact hT_norm _ <| SimpleFunc.measurableSet_fiber _ _
@@ -591,7 +595,7 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm_of_integrable (T : Set α → E →
     ‖f.setToSimpleFunc T‖ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
   calc
     ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
-      norm_setToSimpleFunc_le_sum_op_norm T f
+      norm_setToSimpleFunc_le_sum_opNorm T f
     _ ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).toReal * ‖x‖ := by
       refine' Finset.sum_le_sum fun b hb => _
       obtain rfl | hb := eq_or_ne b 0
@@ -1202,7 +1206,7 @@ theorem norm_setToL1_le_norm_setToL1SCLM (hT : DominatedFinMeasAdditive μ T C)
   calc
     ‖setToL1 hT‖ ≤ (1 : ℝ≥0) * ‖setToL1SCLM α E μ hT‖ := by
       refine'
-        ContinuousLinearMap.op_norm_extend_le (setToL1SCLM α E μ hT) (coeToLp α E ℝ)
+        ContinuousLinearMap.opNorm_extend_le (setToL1SCLM α E μ hT) (coeToLp α E ℝ)
           (simpleFunc.denseRange one_ne_top) fun x => le_of_eq _
       rw [NNReal.coe_one, one_mul]
       rfl
@@ -1213,7 +1217,7 @@ theorem norm_setToL1_le_mul_norm (hT : DominatedFinMeasAdditive μ T C) (hC : 0
     (f : α →₁[μ] E) : ‖setToL1 hT f‖ ≤ C * ‖f‖ :=
   calc
     ‖setToL1 hT f‖ ≤ ‖setToL1SCLM α E μ hT‖ * ‖f‖ :=
-      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
+      ContinuousLinearMap.le_of_opNorm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ C * ‖f‖ := mul_le_mul (norm_setToL1SCLM_le hT hC) le_rfl (norm_nonneg _) hC
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm MeasureTheory.L1.norm_setToL1_le_mul_norm
 
@@ -1221,17 +1225,17 @@ theorem norm_setToL1_le_mul_norm' (hT : DominatedFinMeasAdditive μ T C) (f : α
     ‖setToL1 hT f‖ ≤ max C 0 * ‖f‖ :=
   calc
     ‖setToL1 hT f‖ ≤ ‖setToL1SCLM α E μ hT‖ * ‖f‖ :=
-      ContinuousLinearMap.le_of_op_norm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
+      ContinuousLinearMap.le_of_opNorm_le _ (norm_setToL1_le_norm_setToL1SCLM hT) _
     _ ≤ max C 0 * ‖f‖ :=
       mul_le_mul (norm_setToL1SCLM_le' hT) le_rfl (norm_nonneg _) (le_max_right _ _)
 #align measure_theory.L1.norm_set_to_L1_le_mul_norm' MeasureTheory.L1.norm_setToL1_le_mul_norm'
 
 theorem norm_setToL1_le (hT : DominatedFinMeasAdditive μ T C) (hC : 0 ≤ C) : ‖setToL1 hT‖ ≤ C :=
-  ContinuousLinearMap.op_norm_le_bound _ hC (norm_setToL1_le_mul_norm hT hC)
+  ContinuousLinearMap.opNorm_le_bound _ hC (norm_setToL1_le_mul_norm hT hC)
 #align measure_theory.L1.norm_set_to_L1_le MeasureTheory.L1.norm_setToL1_le
 
 theorem norm_setToL1_le' (hT : DominatedFinMeasAdditive μ T C) : ‖setToL1 hT‖ ≤ max C 0 :=
-  ContinuousLinearMap.op_norm_le_bound _ (le_max_right _ _) (norm_setToL1_le_mul_norm' hT)
+  ContinuousLinearMap.opNorm_le_bound _ (le_max_right _ _) (norm_setToL1_le_mul_norm' hT)
 #align measure_theory.L1.norm_set_to_L1_le' MeasureTheory.L1.norm_setToL1_le'
 
 theorem setToL1_lipschitz (hT : DominatedFinMeasAdditive μ T C) :
chore: move to v4.6.0-rc1, merging adaptations from bump/v4.6.0 (#10176)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Joachim Breitner <mail@joachim-breitner.de>

Diff
@@ -638,7 +638,7 @@ theorem setToSimpleFunc_const' [Nonempty α] (T : Set α → F →L[ℝ] F') (x
 
 theorem setToSimpleFunc_const (T : Set α → F →L[ℝ] F') (hT_empty : T ∅ = 0) (x : F)
     {m : MeasurableSpace α} : SimpleFunc.setToSimpleFunc T (SimpleFunc.const α x) = T univ x := by
-  cases hα : isEmpty_or_nonempty α
+  cases isEmpty_or_nonempty α
   · have h_univ_empty : (univ : Set α) = ∅ := Subsingleton.elim _ _
     rw [h_univ_empty, hT_empty]
     simp only [setToSimpleFunc, ContinuousLinearMap.zero_apply, sum_empty,
refactor: Use Pairwise wherever possible (#9236)

Performed with a regex search for ∀ (.) (.), \1 ≠ \2 →, and a few variants to catch implicit binders and explicit types.

I have deliberately avoided trying to make the analogous Set.Pairwise transformation (or any Pairwise (foo on bar) transformations) in this PR, to keep the diff small.

Co-authored-by: Yaël Dillies <yael.dillies@gmail.com>

Diff
@@ -359,7 +359,8 @@ theorem map_setToSimpleFunc (T : Set α → F →L[ℝ] F') (h_add : FinMeasAddi
 #align measure_theory.simple_func.map_set_to_simple_func MeasureTheory.SimpleFunc.map_setToSimpleFunc
 
 theorem setToSimpleFunc_congr' (T : Set α → E →L[ℝ] F) (h_add : FinMeasAdditive μ T) {f g : α →ₛ E}
-    (hf : Integrable f μ) (hg : Integrable g μ) (h : ∀ x y, x ≠ y → T (f ⁻¹' {x} ∩ g ⁻¹' {y}) = 0) :
+    (hf : Integrable f μ) (hg : Integrable g μ)
+    (h : Pairwise fun x y => T (f ⁻¹' {x} ∩ g ⁻¹' {y}) = 0) :
     f.setToSimpleFunc T = g.setToSimpleFunc T :=
   show ((pair f g).map Prod.fst).setToSimpleFunc T = ((pair f g).map Prod.snd).setToSimpleFunc T by
     have h_pair : Integrable (f.pair g) μ := integrable_pair hf hg
@@ -373,7 +374,7 @@ theorem setToSimpleFunc_congr' (T : Set α → E →L[ℝ] F) (h_add : FinMeasAd
         have h_eq : T ((⇑(f.pair g)) ⁻¹' {(f a, g a)}) = T (f ⁻¹' {f a} ∩ g ⁻¹' {g a}) := by
           congr; rw [pair_preimage_singleton f g]
         rw [h_eq]
-        exact h (f a) (g a) eq
+        exact h eq
       simp only [this, ContinuousLinearMap.zero_apply, pair_apply]
 #align measure_theory.simple_func.set_to_simple_func_congr' MeasureTheory.SimpleFunc.setToSimpleFunc_congr'
 
perf(FunLike.Basic): beta reduce CoeFun.coe (#7905)

This eliminates (fun a ↦ β) α in the type when applying a FunLike.

Co-authored-by: Matthew Ballard <matt@mrb.email> Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -1081,8 +1081,6 @@ theorem setToL1_add_left (hT : DominatedFinMeasAdditive μ T C)
     rw [this, ContinuousLinearMap.add_apply]
   refine' ContinuousLinearMap.extend_unique (setToL1SCLM α E μ (hT.add hT')) _ _ _ _ _
   ext1 f
-  simp only [ContinuousLinearMap.add_comp, ContinuousLinearMap.coe_comp', Function.comp_apply,
-    ContinuousLinearMap.add_apply]
   suffices setToL1 hT f + setToL1 hT' f = setToL1SCLM α E μ (hT.add hT') f by
     rw [← this]; rfl
   rw [setToL1_eq_setToL1SCLM, setToL1_eq_setToL1SCLM, setToL1SCLM_add_left hT hT']
@@ -1095,8 +1093,6 @@ theorem setToL1_add_left' (hT : DominatedFinMeasAdditive μ T C)
   suffices setToL1 hT'' = setToL1 hT + setToL1 hT' by rw [this, ContinuousLinearMap.add_apply]
   refine' ContinuousLinearMap.extend_unique (setToL1SCLM α E μ hT'') _ _ _ _ _
   ext1 f
-  simp only [ContinuousLinearMap.add_comp, ContinuousLinearMap.coe_comp', Function.comp_apply,
-    ContinuousLinearMap.add_apply]
   suffices setToL1 hT f + setToL1 hT' f = setToL1SCLM α E μ hT'' f by rw [← this]; congr
   rw [setToL1_eq_setToL1SCLM, setToL1_eq_setToL1SCLM,
     setToL1SCLM_add_left' hT hT' hT'' h_add]
@@ -1107,8 +1103,6 @@ theorem setToL1_smul_left (hT : DominatedFinMeasAdditive μ T C) (c : ℝ) (f :
   suffices setToL1 (hT.smul c) = c • setToL1 hT by rw [this, ContinuousLinearMap.smul_apply]
   refine' ContinuousLinearMap.extend_unique (setToL1SCLM α E μ (hT.smul c)) _ _ _ _ _
   ext1 f
-  simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_comp,
-    Pi.smul_apply, ContinuousLinearMap.coe_smul']
   suffices c • setToL1 hT f = setToL1SCLM α E μ (hT.smul c) f by rw [← this]; congr
   rw [setToL1_eq_setToL1SCLM, setToL1SCLM_smul_left c hT]
 #align measure_theory.L1.set_to_L1_smul_left MeasureTheory.L1.setToL1_smul_left
@@ -1120,8 +1114,6 @@ theorem setToL1_smul_left' (hT : DominatedFinMeasAdditive μ T C)
   suffices setToL1 hT' = c • setToL1 hT by rw [this, ContinuousLinearMap.smul_apply]
   refine' ContinuousLinearMap.extend_unique (setToL1SCLM α E μ hT') _ _ _ _ _
   ext1 f
-  simp only [ContinuousLinearMap.coe_comp', Function.comp_apply, ContinuousLinearMap.smul_comp,
-    Pi.smul_apply, ContinuousLinearMap.coe_smul']
   suffices c • setToL1 hT f = setToL1SCLM α E μ hT' f by rw [← this]; congr
   rw [setToL1_eq_setToL1SCLM, setToL1SCLM_smul_left' c hT hT' h_smul]
 #align measure_theory.L1.set_to_L1_smul_left' MeasureTheory.L1.setToL1_smul_left'
chore: cleanup typo in filter_upwards (#7719)

mathport was forgetting a space in filter_upwards [...]with instead of filter_upwards [...] with.

Diff
@@ -1520,7 +1520,7 @@ theorem tendsto_setToFun_of_L1 (hT : DominatedFinMeasAdditive μ T C) {ι} (f :
       rw [Lp.tendsto_Lp_iff_tendsto_ℒp']
       simp_rw [snorm_one_eq_lintegral_nnnorm, Pi.sub_apply]
       refine' (tendsto_congr' _).mp hfs
-      filter_upwards [hfsi]with i hi
+      filter_upwards [hfsi] with i hi
       refine' lintegral_congr_ae _
       filter_upwards [hi.coeFn_toL1, hfi.coeFn_toL1] with x hxi hxf
       simp_rw [dif_pos hi, hxi, hxf]
chore: update/remove heart beat bumps (#6860)

We clean up heart beat bumps after #6474.

Diff
@@ -775,7 +775,6 @@ theorem setToL1S_sub {T : Set α → E →L[ℝ] F} (h_zero : ∀ s, MeasurableS
   rw [sub_eq_add_neg, setToL1S_add T h_zero h_add, setToL1S_neg h_zero h_add, sub_eq_add_neg]
 #align measure_theory.L1.simple_func.set_to_L1s_sub MeasureTheory.L1.SimpleFunc.setToL1S_sub
 
-set_option synthInstance.maxHeartbeats 30000 in
 theorem setToL1S_smul_real (T : Set α → E →L[ℝ] F)
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (c : ℝ)
     (f : α →₁ₛ[μ] E) : setToL1S T (c • f) = c • setToL1S T f := by
@@ -785,7 +784,6 @@ theorem setToL1S_smul_real (T : Set α → E →L[ℝ] F)
   exact smul_toSimpleFunc c f
 #align measure_theory.L1.simple_func.set_to_L1s_smul_real MeasureTheory.L1.SimpleFunc.setToL1S_smul_real
 
-set_option synthInstance.maxHeartbeats 30000 in
 theorem setToL1S_smul {E} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedSpace 𝕜 E]
     [NormedSpace 𝕜 F] (T : Set α → E →L[ℝ] F) (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0)
     (h_add : FinMeasAdditive μ T) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜)
fix(Analysis,Topology): fix names (#6938)

Rename:

  • tendsto_iff_norm_tendsto_onetendsto_iff_norm_div_tendsto_zero;
  • tendsto_iff_norm_tendsto_zerotendsto_iff_norm_sub_tendsto_zero;
  • tendsto_one_iff_norm_tendsto_onetendsto_one_iff_norm_tendsto_zero;
  • Filter.Tendsto.continuous_of_equicontinuous_atFilter.Tendsto.continuous_of_equicontinuousAt.
Diff
@@ -1739,7 +1739,7 @@ theorem tendsto_setToFun_of_dominated_convergence (hT : DominatedFinMeasAdditive
   -- the convergence of setToL1 follows from the convergence of the L1 functions
   refine' L1.tendsto_setToL1 hT _ _ _
   -- up to some rewriting, what we need to prove is `h_lim`
-  rw [tendsto_iff_norm_tendsto_zero]
+  rw [tendsto_iff_norm_sub_tendsto_zero]
   have lintegral_norm_tendsto_zero :
     Tendsto (fun n => ENNReal.toReal <| ∫⁻ a, ENNReal.ofReal ‖fs n a - f a‖ ∂μ) atTop (𝓝 0) :=
     (tendsto_toReal zero_ne_top).comp
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -205,7 +205,7 @@ theorem eq_zero_of_measure_zero {β : Type*} [NormedAddCommGroup β] {T : Set α
     T s = 0 := by
   refine' norm_eq_zero.mp _
   refine' ((hT.2 s hs (by simp [hs_zero])).trans (le_of_eq _)).antisymm (norm_nonneg _)
-  rw [hs_zero, ENNReal.zero_toReal, MulZeroClass.mul_zero]
+  rw [hs_zero, ENNReal.zero_toReal, mul_zero]
 #align measure_theory.dominated_fin_meas_additive.eq_zero_of_measure_zero MeasureTheory.DominatedFinMeasAdditive.eq_zero_of_measure_zero
 
 theorem eq_zero {β : Type*} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ} {m : MeasurableSpace α}
@@ -1671,7 +1671,7 @@ theorem setToFun_top_smul_measure (hT : DominatedFinMeasAdditive (∞ • μ) T
   rw [lt_top_iff_ne_top] at hμs
   simp only [true_and_iff, Measure.smul_apply, ENNReal.mul_eq_top, eq_self_iff_true,
     top_ne_zero, Ne.def, not_false_iff, not_or, Classical.not_not, smul_eq_mul] at hμs
-  simp only [hμs.right, Measure.smul_apply, MulZeroClass.mul_zero, smul_eq_mul]
+  simp only [hμs.right, Measure.smul_apply, mul_zero, smul_eq_mul]
 #align measure_theory.set_to_fun_top_smul_measure MeasureTheory.setToFun_top_smul_measure
 
 theorem setToFun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞)
chore: remove unused simps (#6632)

Co-authored-by: Eric Wieser <wieser.eric@gmail.com>

Diff
@@ -659,7 +659,6 @@ theorem norm_eq_sum_mul (f : α →₁ₛ[μ] G) :
     ‖f‖ = ∑ x in (toSimpleFunc f).range, (μ (toSimpleFunc f ⁻¹' {x})).toReal * ‖x‖ := by
   rw [norm_toSimpleFunc, snorm_one_eq_lintegral_nnnorm]
   have h_eq := SimpleFunc.map_apply (fun x => (‖x‖₊ : ℝ≥0∞)) (toSimpleFunc f)
-  dsimp only at h_eq
   simp_rw [← h_eq]
   rw [SimpleFunc.lintegral_eq_lintegral, SimpleFunc.map_lintegral, ENNReal.toReal_sum]
   · congr
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -78,7 +78,7 @@ open Set Filter TopologicalSpace ENNReal EMetric
 
 namespace MeasureTheory
 
-variable {α E F F' G 𝕜 : Type _} {p : ℝ≥0∞} [NormedAddCommGroup E] [NormedSpace ℝ E]
+variable {α E F F' G 𝕜 : Type*} {p : ℝ≥0∞} [NormedAddCommGroup E] [NormedSpace ℝ E]
   [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedAddCommGroup F'] [NormedSpace ℝ F']
   [NormedAddCommGroup G] {m : MeasurableSpace α} {μ : Measure α}
 
@@ -98,7 +98,7 @@ def FinMeasAdditive {β} [AddMonoid β] {_ : MeasurableSpace α} (μ : Measure 
 
 namespace FinMeasAdditive
 
-variable {β : Type _} [AddCommMonoid β] {T T' : Set α → β}
+variable {β : Type*} [AddCommMonoid β] {T T' : Set α → β}
 
 theorem zero : FinMeasAdditive μ (0 : Set α → β) := fun s t _ _ _ _ _ => by simp
 #align measure_theory.fin_meas_additive.zero MeasureTheory.FinMeasAdditive.zero
@@ -191,7 +191,7 @@ def DominatedFinMeasAdditive {β} [SeminormedAddCommGroup β] {_ : MeasurableSpa
 
 namespace DominatedFinMeasAdditive
 
-variable {β : Type _} [SeminormedAddCommGroup β] {T T' : Set α → β} {C C' : ℝ}
+variable {β : Type*} [SeminormedAddCommGroup β] {T T' : Set α → β} {C C' : ℝ}
 
 theorem zero {m : MeasurableSpace α} (μ : Measure α) (hC : 0 ≤ C) :
     DominatedFinMeasAdditive μ (0 : Set α → β) C := by
@@ -200,7 +200,7 @@ theorem zero {m : MeasurableSpace α} (μ : Measure α) (hC : 0 ≤ C) :
   exact mul_nonneg hC toReal_nonneg
 #align measure_theory.dominated_fin_meas_additive.zero MeasureTheory.DominatedFinMeasAdditive.zero
 
-theorem eq_zero_of_measure_zero {β : Type _} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ}
+theorem eq_zero_of_measure_zero {β : Type*} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) {s : Set α} (hs : MeasurableSet s) (hs_zero : μ s = 0) :
     T s = 0 := by
   refine' norm_eq_zero.mp _
@@ -208,7 +208,7 @@ theorem eq_zero_of_measure_zero {β : Type _} [NormedAddCommGroup β] {T : Set 
   rw [hs_zero, ENNReal.zero_toReal, MulZeroClass.mul_zero]
 #align measure_theory.dominated_fin_meas_additive.eq_zero_of_measure_zero MeasureTheory.DominatedFinMeasAdditive.eq_zero_of_measure_zero
 
-theorem eq_zero {β : Type _} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ} {m : MeasurableSpace α}
+theorem eq_zero {β : Type*} [NormedAddCommGroup β] {T : Set α → β} {C : ℝ} {m : MeasurableSpace α}
     (hT : DominatedFinMeasAdditive (0 : Measure α) T C) {s : Set α} (hs : MeasurableSet s) :
     T s = 0 :=
   eq_zero_of_measure_zero hT hs (by simp only [Measure.coe_zero, Pi.zero_apply])
@@ -509,7 +509,7 @@ theorem setToSimpleFunc_smul {E} [NormedAddCommGroup E] [NormedField 𝕜] [Norm
 
 section Order
 
-variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
+variable {G' G'' : Type*} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
 theorem setToSimpleFunc_mono_left {m : MeasurableSpace α} (T T' : Set α → F →L[ℝ] G'')
@@ -825,7 +825,7 @@ theorem setToL1S_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F}
 
 section Order
 
-variable {G'' G' : Type _} [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
+variable {G'' G' : Type*} [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
   [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] {T : Set α → G'' →L[ℝ] G'}
 
 theorem setToL1S_mono_left {T T' : Set α → E →L[ℝ] G''} (hTT' : ∀ s x, T s x ≤ T' s x)
@@ -963,7 +963,7 @@ theorem setToL1SCLM_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C
 
 section Order
 
-variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
+variable {G' G'' : Type*} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
 theorem setToL1SCLM_mono_left {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
@@ -1157,7 +1157,7 @@ theorem setToL1_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C
 
 section Order
 
-variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] [CompleteSpace G'']
+variable {G' G'' : Type*} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] [CompleteSpace G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
 theorem setToL1_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
@@ -1460,7 +1460,7 @@ theorem setToFun_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T
 
 section Order
 
-variable {G' G'' : Type _} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] [CompleteSpace G'']
+variable {G' G'' : Type*} [NormedLatticeAddCommGroup G''] [NormedSpace ℝ G''] [CompleteSpace G'']
   [NormedLatticeAddCommGroup G'] [NormedSpace ℝ G']
 
 theorem setToFun_mono_left' {T T' : Set α → E →L[ℝ] G''} {C C' : ℝ}
@@ -1781,7 +1781,7 @@ theorem tendsto_setToFun_filter_of_dominated_convergence (hT : DominatedFinMeasA
     assumption
 #align measure_theory.tendsto_set_to_fun_filter_of_dominated_convergence MeasureTheory.tendsto_setToFun_filter_of_dominated_convergence
 
-variable {X : Type _} [TopologicalSpace X] [FirstCountableTopology X]
+variable {X : Type*} [TopologicalSpace X] [FirstCountableTopology X]
 
 theorem continuousWithinAt_setToFun_of_dominated (hT : DominatedFinMeasAdditive μ T C)
     {fs : X → α → E} {x₀ : X} {bound : α → ℝ} {s : Set X}
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2021 Rémy Degenne. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Zhouhang Zhou, Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne
-
-! This file was ported from Lean 3 source module measure_theory.integral.set_to_l1
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.MeasureTheory.Function.SimpleFuncDenseLp
 
+#align_import measure_theory.integral.set_to_l1 from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Extension of a linear function from indicators to L1
 
chore: remove occurrences of semicolon after space (#5713)

This is the second half of the changes originally in #5699, removing all occurrences of ; after a space and implementing a linter rule to enforce it.

In most cases this 2-character substring has a space after it, so the following command was run first:

find . -type f -name "*.lean" -exec sed -i -E 's/ ; /; /g' {} \;

The remaining cases were few enough in number that they were done manually.

Diff
@@ -1426,7 +1426,7 @@ theorem setToFun_congr_ae (hT : DominatedFinMeasAdditive μ T C) (h : f =ᵐ[μ]
   by_cases hfi : Integrable f μ
   · have hgi : Integrable g μ := hfi.congr h
     rw [setToFun_eq hT hfi, setToFun_eq hT hgi, (Integrable.toL1_eq_toL1_iff f g hfi hgi).2 h]
-  · have hgi : ¬Integrable g μ := by rw [integrable_congr h] at hfi ; exact hfi
+  · have hgi : ¬Integrable g μ := by rw [integrable_congr h] at hfi; exact hfi
     rw [setToFun_undef hT hfi, setToFun_undef hT hgi]
 #align measure_theory.set_to_fun_congr_ae MeasureTheory.setToFun_congr_ae
 
chore: convert lambda in docs to fun (#5045)

Found with git grep -n "λ [a-zA-Z_ ]*,"

Diff
@@ -47,7 +47,7 @@ The lemmas listed here don't show all hypotheses. Refer to the actual lemmas for
 Linearity:
 - `setToFun_zero_left : setToFun μ 0 hT f = 0`
 - `setToFun_add_left : setToFun μ (T + T') _ f = setToFun μ T hT f + setToFun μ T' hT' f`
-- `setToFun_smul_left : setToFun μ (λ s, c • (T s)) (hT.smul c) f = c • setToFun μ T hT f`
+- `setToFun_smul_left : setToFun μ (fun s ↦ c • (T s)) (hT.smul c) f = c • setToFun μ T hT f`
 - `setToFun_zero : setToFun μ T hT (0 : α → E) = 0`
 - `setToFun_neg : setToFun μ T hT (-f) = - setToFun μ T hT f`
 If `f` and `g` are integrable:
feat: golf using gcongr throughout the library (#4784)

Following on from #4702, another hundred sample uses of the gcongr tactic.

Diff
@@ -581,10 +581,9 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm (T : Set α → F →L[ℝ] F') {C
   calc
     ‖f.setToSimpleFunc T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ :=
       norm_setToSimpleFunc_le_sum_op_norm T f
-    _ ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).toReal * ‖x‖ :=
-      (sum_le_sum fun b _ =>
-        mul_le_mul_of_nonneg_right (hT_norm _ <| SimpleFunc.measurableSet_fiber _ _) <|
-          norm_nonneg _)
+    _ ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).toReal * ‖x‖ := by
+      gcongr
+      exact hT_norm _ <| SimpleFunc.measurableSet_fiber _ _
     _ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ := by simp_rw [mul_sum, ← mul_assoc]; rfl
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_mul_norm MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm
 
@@ -599,11 +598,9 @@ theorem norm_setToSimpleFunc_le_sum_mul_norm_of_integrable (T : Set α → E →
       refine' Finset.sum_le_sum fun b hb => _
       obtain rfl | hb := eq_or_ne b 0
       · simp
-      exact
-        mul_le_mul_of_nonneg_right
-          (hT_norm _ (SimpleFunc.measurableSet_fiber _ _) <|
-            SimpleFunc.measure_preimage_lt_top_of_integrable _ hf hb)
-          (norm_nonneg _)
+      gcongr
+      exact hT_norm _ (SimpleFunc.measurableSet_fiber _ _) <|
+        SimpleFunc.measure_preimage_lt_top_of_integrable _ hf hb
     _ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).toReal * ‖x‖ := by simp_rw [mul_sum, ← mul_assoc]; rfl
 #align measure_theory.simple_func.norm_set_to_simple_func_le_sum_mul_norm_of_integrable MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm_of_integrable
 
style: recover Is of Foo which is ported from is_foo (#4639)

I have misported is_foo to Foo because I misunderstood the rule for IsLawfulFoo. This PR recover Is of Foo which is ported from is_foo. This PR also renames some misported theorems.

Diff
@@ -823,7 +823,7 @@ theorem setToL1S_indicatorConst {T : Set α → E →L[ℝ] F} {s : Set α}
   exact toSimpleFunc_indicatorConst hs hμs.ne x
 #align measure_theory.L1.simple_func.set_to_L1s_indicator_const MeasureTheory.L1.SimpleFunc.setToL1S_indicatorConst
 
-theorem setToL1S_const [FiniteMeasure μ] {T : Set α → E →L[ℝ] F}
+theorem setToL1S_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F}
     (h_zero : ∀ s, MeasurableSet s → μ s = 0 → T s = 0) (h_add : FinMeasAdditive μ T) (x : E) :
     setToL1S T (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) = T univ x :=
   setToL1S_indicatorConst h_zero h_add MeasurableSet.univ (measure_lt_top _ _) x
@@ -960,7 +960,7 @@ theorem norm_setToL1SCLM_le' {T : Set α → E →L[ℝ] F} {C : ℝ} (hT : Domi
   LinearMap.mkContinuous_norm_le' _ _
 #align measure_theory.L1.simple_func.norm_set_to_L1s_clm_le' MeasureTheory.L1.SimpleFunc.norm_setToL1SCLM_le'
 
-theorem setToL1SCLM_const [FiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C : ℝ}
+theorem setToL1SCLM_const [IsFiniteMeasure μ] {T : Set α → E →L[ℝ] F} {C : ℝ}
     (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     setToL1SCLM α E μ hT (simpleFunc.indicatorConst 1 MeasurableSet.univ (measure_ne_top μ _) x) =
       T univ x :=
@@ -1156,7 +1156,7 @@ theorem setToL1_indicatorConstLp (hT : DominatedFinMeasAdditive μ T C) {s : Set
   exact setToL1_simpleFunc_indicatorConst hT hs hμs.lt_top x
 #align measure_theory.L1.set_to_L1_indicator_const_Lp MeasureTheory.L1.setToL1_indicatorConstLp
 
-theorem setToL1_const [FiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
+theorem setToL1_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     setToL1 hT (indicatorConstLp 1 MeasurableSet.univ (measure_ne_top _ _) x) = T univ x :=
   setToL1_indicatorConstLp hT MeasurableSet.univ (measure_ne_top _ _) x
 #align measure_theory.L1.set_to_L1_const MeasureTheory.L1.setToL1_const
@@ -1457,7 +1457,7 @@ theorem setToFun_indicator_const (hT : DominatedFinMeasAdditive μ T C) {s : Set
   exact L1.setToL1_indicatorConstLp hT hs hμs x
 #align measure_theory.set_to_fun_indicator_const MeasureTheory.setToFun_indicator_const
 
-theorem setToFun_const [FiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
+theorem setToFun_const [IsFiniteMeasure μ] (hT : DominatedFinMeasAdditive μ T C) (x : E) :
     (setToFun μ T hT fun _ => x) = T univ x := by
   have : (fun _ : α => x) = Set.indicator univ fun _ => x := (indicator_univ _).symm
   rw [this]
feat: port MeasureTheory.Integral.SetToL1 (#4579)

Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Dependencies 12 + 934

935 files ported (98.7%)
426538 lines ported (98.7%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file